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SPONTANEOUS SYMMETRY BREAKING IN GENERALRELATIVITY. VECTOR ORDER PARAMETERB. E. Meierovi
h *Kapitza Institute for Physi
al Problems, Russian A
ademy of S
ien
es117334, Mos
ow, RussiaRe
eived January 14, 2009Gravitational properties of a hedgehog-type topologi
al defe
t in two extra dimensions are 
onsidered in generalrelativity using a ve
tor as the order parameter. All previous 
onsiderations were done using the order parameterin the form of a multiplet in the target spa
e of s
alar �elds. The di�eren
e of these two approa
hes is analyzedand demonstrated in detail. Regular solutions of the Einstein equations are studied analyti
ally and numeri
ally.It is shown that the existen
e of a negative 
osmologi
al 
onstant is su�
ient for the spontaneous symmetrybreaking of the initially �at bulk. Regular 
on�gurations have an in
reasing gravitational potential and are ableto trap the matter on the brane. If the energy of spontaneous symmetry breaking is high, the gravitationalpotential has several minimum points. Spinless parti
les that are identi
al in the uniform bulk, being trappedat separate minima, a
quire di�erent masses and appear to the observer on the brane as di�erent parti
les withinteger spins.PACS: 04.50.-h, 11.27.+d1. INTRODUCTIONThe theories of brane world and multidimensionalgravity are widely dis
ussed in the literature. A nat-ural physi
al 
on
ept is that a distinguished surfa
ein the spa
e�time manifold is a topologi
al defe
t thatappeared as a result of a phase transition with spon-taneous symmetry breaking. The ma
ros
opi
 theoryof phase transitions allows 
onsidering the brane world
on
ept self-
onsistently, even without the knowledgeof the nature of the physi
al va
uum. The propertiesof topologi
al defe
ts (strings, monopoles, : : : ) are gen-erally des
ribed with the aid of a multiplet of s
alar�elds forming a hedgehog 
on�guration in extra dimen-sions (see [1℄ and the referen
es therein). The s
alarmultiplet plays the role of the order parameter. Thehedgehog 
on�guration forms a ve
tor proportional toa unit ve
tor in the Eu
lidean target spa
e of s
alar�elds. This model is self-
onsistent, but it is not theonly generalization of a plane monopole to the 
urvedspa
e�time.In a �at spa
e�time, there is no di�eren
e betweena ve
tor and a hedgehog-type multiplet of s
alar �elds.*E-mail: meierovi
h�yahoo.
om

On the 
ontrary, in a 
urved spa
e�time, s
alar multi-plets and ve
tors are transformed di�erently. In gen-eral relativity, the two approa
hes (based on a multipletof s
alar �elds and a ve
tor order parameter) thereforegive di�erent results whi
h are worth 
omparing. Deal-ing with a ve
tor order parameter seems to be moredi�
ult, whi
h is probably the reason why we 
ouldnot �nd any papers 
onsidering phase transitions witha hedgehog-type ve
tor order parameter in general rel-ativity. 2. GENERAL FORMULAS2.1. LagrangianThe order parameter enters the Lagrangian vias
alar bilinear 
ombinations of its derivatives and viaa s
alar potential V allowing a spontaneous symmetrybreaking. If �I is a ve
tor order parameter, then Vshould be a fun
tion of the s
alar�K�K = gIK�I�K ;and a bilinear 
ombination of the derivatives is a tensorSIKLM = �I;K�L;M : (1)52
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ovariant deriva-tives. There are three ways to simplify SIKLM intos
alars, and the most general form of the s
alar Sformed via 
ontra
tions of SIKLM isS = A ��K;K�2 +B�L;K�;KL + C�M;K�K;M ; (2)where A;B, and C are arbitrary 
onstants. Di�erenttopologi
al defe
ts 
an be 
lassi�ed by these param-eters. In a 
urved spa
e�time, the s
alar S dependsnot only on the derivatives of the order parameter butalso on the derivatives of the metri
 tensor. This is theprin
ipal di�eren
e between a ve
tor and a multiplet ofs
alar �elds.The general form of the Lagrangian determininggravitational properties of topologi
al defe
ts with ave
tor order parameter isL��I ; gIK ; �gIK�xL � = Lg + Ld; (3)where Lg = R2�2 (4)is the Lagrangian of the gravitational �eld, R is thes
alar 
urvature of spa
e�time, �2 is the (multidimen-sional) gravitational 
onstant, andLd = A ��K;K�2+B�I;K�;KI +C�I;K�K;I�V ��K�K� (5)is the Lagrangian of a topologi
al defe
t. The 
ovariantderivative�P ;M = ��P�xM �� 12gLA��gAM�xP + �gAP�xM � �gMP�xA ��L (6)and raising of indi
es �K = gIK�I involve gIK and�gIK=�xL, and it is therefore 
onvenient to express theLagrangian as a fun
tion of �I , gIK , and �gIK=�xL.2.2. Energy�momentum tensorVarying the Lagrangian Ld in (5) with respe
t toÆgIK and having in mind thatÆgIK = �gKMgINÆgNM ; (7)we obtain the energy�momentum tensor1)1) It di�ers from (94.4) in [2℄ be
ause the Lagrangian is 
on-sidered there as a fun
tion of gIK and �gIK=�xL. Here andbelow, p�g stands for p(�1)D�1g.

TIK = 2p�g 264�p�g Ld�gIK ++ gQKgPI ��xL 0B�p�g �Ld� �gPQ�xL 1CA375 : (8)In the 
ase of the ve
tor order parameter, the potentialV ��K�K� = V �gIK�I�K�also undergoes a variation as gIK is varied.We pro
eed with the derivations taking the spe-
i�
 properties of parti
ular topologi
al defe
ts into a
-
ount.3. GLOBAL STRING IN EXTRA DIMENSIONSIn our previous papers with Bronnikov (see [1℄ andthe referen
es therein), we 
onsidered global monopolesand strings as topologi
al defe
ts with the order param-eter in the form of a hedge-hog-type multiplet of s
alar�elds in some �at target spa
e. The aim of this paper isto des
ribe these defe
ts using a ve
tor order parameterand 
ompare the results.3.1. Metri
The dire
tion of the ve
tor spe
i�es one 
oordi-nate, and in the simplest 
ase, the system is uniformand isotropi
 with respe
t to all the other 
oordinates.In [1℄, we presented the detailed properties of globalstrings in two extra dimensions. In what follows, wetherefore 
onsider a topologi
al defe
t in a spa
e�timewith two extra dimensions. The order parameter isa spa
e-like ve
tor (gIK�I�K < 0) dire
ted normallyfrom the brane hypersurfa
e and depending on the onlyone spe
i�
 
oordinate, the distan
e from the brane.The whole (D = d0 + 2)-dimensional spa
e�time hasthe stru
ture Md0� R1� �1 and the metri
ds2 = e2
(l)���dx�dx� � �dl2 + e2�(l)d'2� ; (9)where ��� = diag (1;�1; : : : ;�1) is the d0-dimensionalMinkowski brane metri
 (d0 > 1) and ' is the angular
ylindri
al 
oordinate in extra dimensions; 
 and � arefun
tions of the distinguished extra-dimensional 
oor-dinate l, the distan
e from the 
enter (i.e., from thebrane), and e�(l) = r (l) is the 
ir
ular radius. Greek in-di
es �; �; : : : 
orrespond to the d0-dimensional spa
e�time on the brane, and I;K; : : : to all the D = d0 + 253
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oordinates. The metri
 tensor gIK is diagonal, and itsnonzero 
omponents aregIK =8>>>><>>>>: e2
 ; I = K = 0;�e2
; 0 < I = K < d0;�1; I = K = d0;�e2�; I = K = ':The 
urvature of the metri
 on the brane 
aused bymatter is supposed to be mu
h smaller than the 
urva-ture of the bulk 
aused by the brane formation.3.2. Regularity 
onditionsIf the e�e
t of matter on the brane is negle
ted, thenthere is no physi
al reason for singularities, and theself-
onsistent stru
ture of a topologi
al defe
t shouldbe regular. A ne
essary 
ondition of regularity is the�niteness of all invariants of the Riemann 
urvaturetensor. The nonzero 
omponents of the Riemann ten-sor areRABCD == 8>>>><>>>>:�
02 �ÆACÆBD � ÆADÆBC � ; A;B;C;D < d0;��0
0; A = C = '; B;D < d0;� �
00+
02� ÆBD; A = C = d0; B;D < d0;� ��00+�02� ; A = C = d0; B = D = '; (10)where the prime denotes d=dl. One of the invari-ants of the Riemann tensor is the Kret
hmann s
alarK = RABCDRCDAB , whi
h is the sum of all nonzeroRABCD squared, and hen
e all the nonzero 
omponentsof the Riemann tensor, and spe
i�
ally
0; 
00 + 
02; �0
0; �00 + �02 (11)must be �nite. r = 0 is a singular point of the 
ylind-ri
al 
oordinate system. The absen
e of a 
urvaturesingularity in the 
enter follows from the last 
onditionin (11). Let �00 + �02 = 
 <1 at l = 0: (12)Integrating (12) in the vi
inity of the 
enter, we have�0 = 1l + 13
l +O �l3� : (13)Relation (13) ensures the 
orre
t (= 2�) 
ir
umferen
e-to-radius ratio, or, equivalently, dr2 = dl2 as l ! 0.The quantity �0
0 is �nite at l = 0 if
0 = O (l) or smaller as l! 0: (14)

3.3. Ve
tor order parameterOur aim is to 
onsider the order parameter as ave
tor in extra dimensions dire
ted normally from theMinkowski hypersurfa
e. In the 
ylindri
al 
oordinatesystem of extra dimensions, the only nonzero 
ompo-nent of the ve
tor order parameter is�d0 � �: (15)In the spa
e�time with metri
 (9), the 
ovariant deriva-tive �I;K = Æd0I Æd0K �0 � 12ÆIKg0II� (16)is a symmetri
 tensor:�I;K = �K;I :Hen
e, �I;K�;KI = �I;K�K;I ;and Lagrangian (5) takes the formLd = A �0 + 12�XK gKKg0KK!2 ++ eB �02 + 14�2XL �gLLg0LL�2!� V ���2� ; (17)whi
h 
ontains only two arbitrary 
onstants A andeB = B + C. In (17), we set gd0d0 = �1 in a

ordan
ewith (9). But we should keep in mind that (17) 
annotbe used in (8). To derive energy�momentum tensor (8),we should use Lagrangian (5) and set gd0d0 = �1,�gd0d0�0 = 0 after the di�erentiation. Nevertheless, the�eld equation 
an be derived using (17) in the generalformula 1p�g ��p�g Ld��0 �0 � �Ld�� = 0: (18)In the spa
e�time with metri
 (9), the sums in (17) areSn = 12n XK �gKKg0KK�n = d0
0n + �0n;n = 1; 2; : : : ; (19)and the determinant of the metri
 tensor isg = (�1)D�1 e2(d0
+�): (20)54
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onsider the 
ase A 6= 0, eB = 0 in what follows.The 
ase A = 0, eB 6= 0 will be 
onsidered elsewhere.Substituting (17) with A = 1=2 and eB = 0 in (18), weobtain the following �eld equation in the 
ase of ve
tororder parameter:[�0 + (d0
0 + �0)�℄0 + �V�� = 0: (21)In the 
ase of the multiplet of s
alar �elds, we had [1℄�00 + �0 (d0
0 + �0)� �e�2� + �V�� = 0: (22)Unlike (22), �eld equation (21) does not depend di-re
tly on � (and hen
e on the 
ir
ular radius r = ln�),but instead in
ludes se
ond derivatives of the metri
tensor. In the �at spa
e�time,
0 = 0; �0 = 1l ; �00 = � 1l2 ; e�2� = 1l2 ;and both �eld equations redu
e to�00 + 1l �0 � 1l2�+ �V�� = 0: (23)3.5. Energy-momentum tensorThe energy�momentum tensor in (8) inevitably 
on-tains se
ond derivatives, but they 
an be eliminatedwith the aid of �eld equation (21). The �nal result ofa rather tiresome derivation isTKI = 12ÆKI [�0 + (d0
0 + �0)�℄2 + ÆKI V ++ �Æd0I ÆKd0 � ÆKI � �V�� �: (24)Unlike in the s
alar multiplet 
ase, energy�momentumtensor (24) 
ontains not only the potential V but alsoits derivative �V =��.Corre
tness of (24) is 
he
ked by the derivation ofthe 
ovariant divergen
e TKI;K (a
tually, TKd0;K). Again,with the aid of �eld equation (21), we 
on�rm thatTKd0;K = 0. 3.6. Einstein equationsThe same way as in [1℄, we use the Einstein equa-tions in the form RKI = �2 eTKI ;where RKI is the Ri

i tensor,

RKI = 8><>: ÆKI [
00 + 
0 (d0
0 + �0)℄ ; I < d0;ÆKd0 �d0 �
00 + 
02�+ �00 + �02� ; I = d0;ÆK' [�00 + �0 (d0
0 + �0)℄ ; I = ';andeTKI = TKI � 1d0 ÆKI T = � 1d0 ÆKI [�0+(d0
0+�0)�℄2�� ÆKI 2d0V + ÆKI �Æd0I + 1d0� �V�� �:In the 
ase of the ve
tor order parameter, the set ofEinstein equations
00 + 
0 (d0
0 + �0) == �2 �� 1d0 [�0+(d0
0+�0) �℄2�2Vd0 + 1d0 �V�� �� ; (25)d0
00 + �00 + d0
02 + �02 == �2 �� 1d0 [�0 + (d0
0 + �0) �℄2 �� 2Vd0 +�1 + 1d0� �V�� �� ; (26)�00 + �0 (d0
0 + �0) == �2 �� 1d0 [�0+(d0
0+�0)�℄2�2Vd0 + 1d0 �V�� �� (27)
onsists of three �rst-order equations for 
0, �0, and �.Both 
 and � enter Eqs. (25)�(27) not dire
tly but viathe derivatives. In the 
ase of a s
alar multiplet orderparameter (see Eqs. (14)�(16) in [1℄), � enters the Ein-stein equations dire
tly, and the system of equations isof the fourth order.Field equation (21) is not independent. It is a 
on-sequen
e of Einstein equations (25)�(27) due to theBian
hi identity.3.6.1. First integralEliminating the se
ond derivatives 
00 and �00in (25)�(27), we obtain the relation(d0
0 + �0)2 � �d0
02 + �02� == ��2 n[�0 + (d0
0 + �0) �℄2 + 2V o ; (28)whi
h 
an be 
onsidered a �rst integral of sys-tem (25)�(27).55
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ationEquations (25) and (27) have the same right-handsides. Subtra
ting one from the other yields the equa-tion (
0 � �0)0 + (
0 � �0) (d0
0 + �0) = 0; (29)whi
h 
an be used instead of one of Eqs. (25) and (27).With the aid of relations (28) and (29) the 
ompleteset of equations 
an be redu
ed to a simpler form. In-trodu
ing new fun
tionsU = 
0 � �0; W = d0
0 + �0; Z = �0 +W�; (30)we obtain the set of four �rst-order equationsU 0 = �UW; (31)W 0 = �2 d0 + 1d0 ��V�� �� 2V � Z2��W 2; (32)�0 = Z �W�; (33)Z 0 = ��V�� : (34)The fun
tions �0 and 
0, and their 
ombinationS2 = d0
02 + �02in (19) are expressed via U and W as follows:
0 = U +Wd0 + 1 ; �0 = W � d0Ud0 + 1 ; S2 = d0U2 +W 2d0 + 1 :The �rst integral (28), rewritten in terms of U , W ,and Z asW 2 � U2 = ��2 d0 + 1d0 �Z2 + 2V 	 ;allows simplifying (32) even further:W 0 = �2 d0 + 1d0 �V�� �� U2:The set of equationsU 0 = �UW;W 0 = �2 d0 + 1d0 �V�� �� U2;�0 = Z �W�;Z 0 = ��V�� (35)is most 
onvenient for both analyti
 and numeri
alanalysis.

3.7. General analysis of the equationsEquations (25)�(27) are invariant under the addi-tion of arbitrary 
onstants to 
 and �. Without loss ofgenerality, we 
an set 
 (0) = 0: (36)The requirement of regularity in the 
enter di
tates
ondition (13), and, if we do not 
onsider 
on�gura-tions with an angle de�
it (or surplus), we haver = e� = l as l ! 0: (37)Integrating (29) with boundary 
onditions (36)and (37), we obtain
0 � �0 = �e�(d0
+�): (38)It follows from (38) that �0 > 
0 everywhere.We re
all that topologi
al defe
ts formed as mul-tiplets of s
alar �elds [1℄ are of three types. Integral
urves 
an terminate with:a) an in�nite 
ir
ular radius r (l) as l!1;b) a �nite 
ir
ular radius r1 = r (1) = 
onst <1;
) a se
ond 
enter r = 0 at some �nite l = l
.In the ve
tor order parameter 
ase, the situationis di�erent. Equation (38) allows proving that a reg-ular 
on�guration 
an terminate neither with a �nite
ir
ular radius r1 as l !1 nor in the se
ond 
enter.We suppose for a moment that r1 = 
onst < 1.Then �0(1) = 0, and (38) redu
es to
0 = � 1r1 e�d0
 as l!1:After integration, we haveed0
 = d0r1 (l0 � l) ;where l0 is a 
onstant of integration. The left-handside is obviously positive, while the right-hand side be-
omes negative and in�nitely large as l ! 1. Hen
e,r1 = 
onst <1 is impossible.The se
ond 
enter is also impossible. In the vi
inityof the se
ond 
enter, the left-hand side of (38) be
omeslarge positive due to ��0, and the right-hand side re-mains negative.We 
on
lude that regular 
on�gurations of topolog-i
al defe
ts with the ve
tor order parameter start at the
enter l = 0 and terminate at l!1 with an in�nitelyin
reasing 
ir
ular radius r (l)!1.It follows from the requirement of regularity in (14)that 
0 = 
000 l as l! 0. From the �rst integral (28), we�nd the relation between 
000 , �00, and V0:
000 = ��2d0 �2�020 + V0� ; (39)56
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enterl = 0. In both 
ases (s
alar multiplet and ve
tor or-der parameter), the value �00 = �0 (0) is not restri
tedby the equations. The di�eren
e is that in the s
alarmultiplet 
ase, �00 is uniquely �xed by the regularity re-quirement, and in the 
ase of ve
tor order parameter,�00 remains a free parameter.3.8. Asymptoti
 behaviorThe regularity 
ondition requires that 
0 be �niteeverywhere. Within the domain of regularity, 
0 tendsto a �xed �nite value 
01 as l ! 1. As soon asr (l)!1 as l!1, we see from (38) that 
0��0 ! 0.Hen
e, �0 (1) = 
01. The �eld � (l) also tends to its�nite value �1 = � (1). It then follows from �eldequation (21) that �V =��! 0 as l!1, i.e., the reg-ular 
on�guration terminates at an extremum of thepotential V (�). LetV1 = V (�1) ; V 0 (�1) = 0:From the �rst integral (28), we �nd the limit value 
01:
01 =s� 2�2V1(d0 + 1) [d0 + (d0 + 1)�2�21℄ : (40)A ne
essary 
ondition for the existen
e of regular
on�gurations of topologi
al defe
ts with the ve
tor or-der parameter is V1 < 0.To �nd the asymptoti
 behavior of � (l) and W (l),we linearize Eqs. (35) as l!1:� = �1 + Æ�;W = (d0 + 1) 
01 + ÆW;ÆW 0 = �2 d0 + 1d0 V 001�1Æ�;Æ�0 = ÆZ � (d0 + 1) 
01Æ�� �1ÆW; (41)ÆZ 0 = �V 001Æ�;where primes denote the derivatives d=dl (ÆW 0 == dÆW=dl; : : : ) ex
eptV 001 = �2V��2 �����=�1 :Eliminating ÆZ and ÆW , we obtain a se
ond-order lin-ear homogeneous equation for Æ�,Æ�00 + (d0 + 1) 
01Æ�0 + 2�2 jV1jV 001d0 (d0 + 1) 
021 Æ� = 0:

If the extremum of the potential is a minimum(V 001 > 0), the nontrivial solution vanishes as l!1:Æ� = Ae�+l +Be��l; (42)where A and B are 
onstants of integration, and botheigenvalues�� = � (d0 + 1) 
012 �� 1�s1� 8�2 jV1jV 001d0 (d0 + 1)3 
041 ! (43)are either negative or have negative real parts. Theabsen
e of in
reasing solutions is the reason why �00 re-mains a free parameter in the ve
tor order parameter
ase.The asymptoti
 behavior of the �eld � (l) far fromthe 
enter is determined by two 
onstant parametersof the symmetry breaking potential near its extremum,V1 and V 001. If the extremum is a minimum, V 001 > 0,then the expression under the root 
an be both positiveand negative. Therefore, � (l) 
an tend to �1 eithersmoothly or with os
illations. In the spa
e of physi
alparameters, the boundary between smooth and os
il-lating solutions is determined by the relation8�2 jV1jV 001d0 (d0 + 1)3 
041 = 1: (44)Os
illating behavior of the �eld � (l) indu
es os
il-lations of �0 and 
0. If 
0 
hanges sign, then 
 (l) 
anhave minima. We re
all that 
 a
ts as a gravitationalpotential, and hen
e the matter 
an be trapped nearthe minima of 
 (l).Usually, � = 0 is a maximum of the potential V (�).This is also an extremum, �V=�� = 0 at � = 0. Re-gular 
on�gurations that start at the 
enter l = 0 with� (0) = 0 
an also terminate with �1 = 0 as l!1. Inthis 
ase, V 001 = V 00 (0) < 0, and linear set (41) redu
esto the following asymptoti
 equation for � (l):�00 + (d0 + 1) 
01�0 � jV 001j� = 0:Its general solution is a linear 
ombination of fun
tionsvanishing and growing as l!1,� = Ae��+l +Be���l;�� = (d0+1) 
012 �s (d0+1)2 
0214 + jV 001j; l!1:The regularity requirement demands that the in-
reasing solutions be ex
luded from 
onsideration. This
an be done at the expense of �00. Regular solutions ter-minating at a maximum of the potential 
an exist onlyat some �xed values of �00.57



B. E. Meierovi
h ÆÝÒÔ, òîì 136, âûï. 1 (7), 20093.9. Boundary 
onditionsThe 
omplete set of equations determining thestru
ture of a topologi
al defe
t in the 
ase of a ve
tororder parameter, Eqs. (25), (27), and (28), is of thethird order with respe
t to the three unknowns 
0, �0,and �. The simple solution is uniquely determined bythe values of these three fun
tions at any regular point.The 
enter l = 0 is a singular point of the 
ylindri
al
oordinate system. The 
ondition � (0) = 0 is satis�edfor both symmetries (high and broken). �0 is in�niteat l = 0. We have to set the boundary 
onditions very
lose to the 
enter, but not exa
tly at l = 0.For numeri
al analysis, it is 
onvenient to deal witha system of four �rst-order equations solved for deriva-tives (35). The symmetry breaking potential V (�) en-ters Eqs. (35) only via its derivative �V =��. If we leaveonly the leading terms in the boungary 
onditions,U = �1l ; W = 1l as l! 0;then we lose any information about the absolute valueof the potential. The value V0 = V (0) appears in thenext approximation. Using expansion (13) of �0 in thevi
inity of the 
enter and Eq. (38), we express 
 in termsof 
000 : 
 = � (d0 � 2) 
000 :To preserve the 
omplete information about the sym-metry breaking potential, we have to write the boun-dary 
onditions as l! 0 as followsU = 13 (d0+1) 
000 l�1l ; W = 23 (d0+1) 
000 l+1l ;� = �00l; Z = 2�00: (45)The values 
000 , �00, and V0 are not independent. Theyare 
onne
ted with ea
h other by Eq. (39).3.10. Solutions in 
ase �V =�� = 0If the potential V = V0 is independent of �, thenit a
tually plays the role of the 
osmologi
al 
onstant� = �2V0. The pe
uliarity of the ve
tor order param-eter is that Eqs. (35) lose the information about thepotential if �V =�� � 0. V0 is present only in boundary
onditions (45). Equations (35) with �V =�� � 0 andboundary 
onditions (45) have the analyti
 solutionU = � pCsh�pC l� ; W = pC 
th�pC l� ;� (l) = 2�00pC th pC l2 ;

whereC = 2 (d0 + 1) 
000 = �2 (d0 + 1)d0 �2�2�020 +�� : (46)The solution is regular if C � 0, i.e., � � �2�2�020 . Forg00 = e2
 and r = e�, we �ndg00 (l) = e2
 =  
h pCl2 !4=(d0+1) ;r (l) = 2 sh pC l2 !pC  
h pCl2 !�(d0�1)=(d0+1) :The slope �00 remains arbitrary. If �00 = 0, this solu-tion redu
es to the one found earlier (see [1℄ and [3℄) inthe spe
ial 
ase � � 0. The point is that the Einsteinequations with a negative 
osmologi
al 
onstant havea nontrivial solution (with a nonzero order parameter)even without a symmetry breaking potential.The ne
essary 
ondition for regular solutions withbroken symmetry is the existen
e of extremum points ofV (�), where �V =�� = 0. In 
ase V = 
onst, the 
on-dition �V =�� = 0 is satis�ed identi
ally, and the orderparameter � 
an formally tend to any �1 as l ! 1.The above analyti
 solution shows that the existen
eof a negative 
osmologi
al 
onstant is su�
ient for thesymmetry breaking of a uniform �at bulk.The spe
ial 
ase C = +0 in (46) with 
000 = 0 and�00 = �r� �2�2 (47)
orresponds to the �at bulk g00 (l) = 1, and r (l) = l.3.11. Weak 
urvature of spa
e�timeThe limit �2 ! 0 is the transition to a �at spa
e�ti-me. The fun
tions �0 and 
0 redu
e to �0 = l�1 and
0 = 0. Field equation (21) redu
es to (23), whi
h is theusual equation for the order parameter in 
ylindri
al 
o-ordinates in a �at spa
e�time. The symmetry breakingpotential V is a fun
tion of �2, and hen
e �V =�� � �and (23) has a trivial solution � = 0 
orresponding tothe symmetri
 (unbroken) state. The nontrivial solu-tions that start with � (0) = 0, �0 (0) 6= 0 and termi-nate with � = �m at an extremum of the potential(�V (�m)=�� = 0) des
ribe the states of broken sym-metry. Equation (23) is nonlinear. However, depen-ding on the form of the potential V (l), it 
an also havea sequen
e of nontrivial solutions �n (l), n = 0; 1; 2 : : : ,with zero boundary 
onditions � (0) = � (1) = 058
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rete sequen
e of derivatives�n = �0n (0) forms the eigenvalues for the eigenfun
-tions �n (l). The fun
tions �n (l) 
hange sign n times.The nontrivial solutions of the �eld equation with �0 (0)within the interval (�n; �n+1) 
hange sign n+1 times.The prin
ipal di�eren
e between Eqs. (21) and (23)is that the 
oe�
ient (d0
0 + �0) at �0 in a 
urvedspa
e�time does not vanish as l ! 1. If � = �m isa minimum of V (�), then V 00 (�m) > 0, and the lin-earized �eld equation (23) in the 
ase of a �at spa
e�time as l!1 redu
es to�00 + V 00 (�m) (�� �m) = 0and des
ribes nonvanishing os
illations. In a 
urvedspa
e�time, the os
illations vanish as l ! 1 in a

or-dan
e with (42).Further detailed analysis is done with the aid of nu-meri
al integration.4. NUMERICAL ANALYSIS4.1. Regular solutions in the spa
e ofparametersThe numeri
al integration of Eqs. (35) is performedfor the �Mexi
an hat� potential taken in the same formas in [1℄: V = ��44 ""+�1� �2�2�2# : (48)Potential (48) has three extremum points: a maximumat � = 0 and two minima at � = ��. At the limitvalues of the order parameter, we have1) V 01 = 0; V 001 = 2�2; �1 = ��;2) V 01 = 0; V 001 = ��2; �1 = 0:The dimensionless parameter " moves the �Mexi
anhat� up and down. It is equivalent to adding a 
osmo-logi
al 
onstant. The energy of spontaneous symmetrybreaking is 
hara
terized by �2=(D�2), anda = 1p�� (49)determines the length s
ale, as usual. In most 
ases,a is asso
iated with the 
ore radius of a topologi
aldefe
t. Without loss of generality, we set a = 1 in
omputations. The strength of the gravitational �eldis 
hara
terized by the dimensionless parameter� = �2�2: (50)

�20 0�2�4�6�8�10�12�14�16�18012
345

"
�00(0)

Fig. 1. The domain of regular 
on�gurations in theplane ("; �00) for d0 = 4 and � = 1. The upper 
urveis the boundary of the existen
e of regular solutions.Other 
urves separate the regions with di�erent signs of�1: Below the lower 
urve, �(l) does not 
hange sign.Between the �rst and the se
ond 
urves from bottom,the order parameter 
hanges its sign on
e. Betweenthe se
ond and the third 
urves, it 
hanges sign twi
e,and so on. The 
urves qui
kly 
ondense to the upper
urveIn the 
ase of a ve
tor order parameter, the state ofbroken symmetry is 
ontrolled by four parameters d0, ",�, and �00. The main di�eren
e is that in the s
alar mul-tiplet 
ase, regular 
on�gurations with given d0, ", and� existed only for a �xed value of �00, but with a ve
tororder parameter, regular 
on�gurations with given d0,", and � exist within some interval 0 < �00 � �00 max,whose upper boundary �00 max depends on d0, ", and�. This additional parametri
 freedom allows forgetingabout the so-
alled ��ne tuning� of the physi
al param-eters.For visual demonstration, it is worth �xing d0 = 4and one of the other three parameters. Then the do-main of existen
e of regular solutions 
an be presentedas a map in the plane of two remaining parameters.Figure 1 shows the domain of regular 
on�gurationsin the plane ("; �00) for d0 = 4 and � = 1. Depending onthe values of " and �00, the order parameter � (l) tendsto +�, 0, or �� as l ! 1. The sequen
e of 
urvesfn (") in Fig. 1 are those where � (l) ! 0 as l ! 1.They separate the domains with di�erent signs of �1.Below the bottom 
urve f1 ("), where 0 < �00 < f1 ("),the order parameter � (l) does not 
hange sign. Be-tween f1 (") < �00 < f2 ("), it 
hanges the sign on
e.In the domain f2 (") < �00 < f3 ("), it 
hanges the signtwi
e, and so on. The 
urves fn (") rapidly 
ondense tothe upper 
urve f1 (") as n!1. f1 (") is the upperboundary of the existen
e of regular solutions (in the59
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�"

Fig. 2. Map of regular solutions in the plane (�;�")for �00 = �p�("+ 1)=8, d0 = 4. The solid 
urveseparates the regions of smooth (above) and os
illat-ing (below) behavior of the order parameter as l!1.To the left of the dashed 
urve, the order parameter
hanges signparti
ular 
ase d0 = 4 and � = 1).The 
urves in Fig. 1 are those where�1 (�00; "; d0 = 4;� = 1) = 0: (51)Similar 
urves 
an be shown for �xed �00 in theplane (";�). For instan
e, the dashed line in Fig. 2is the �rst of the 
urves �1(�00 = �p�("+ 1)=8; ",d0 = 4;�) = 0, where the order parameter tends tozero as l !1. The value �00 = �p�("+ 1)=8 in (47)
orresponds to 
000 = 0 in (39). This is the 
ase C = 0in (46), and hen
e the symmetry breaking of the �atbulk is entirely 
aused by the potential V (�), not bythe 
osmologi
al 
onstant. To the right of the dashedline, � (l) does not 
hange sign.For potential (48), boundary line (44) between theos
illating and smooth � (l) is�"b = 16(1 +G)2G ; G = d0 + 1d0� : (52)It is shown in Fig. 2 (solid line). Below the solid line,the order parameter � (l) tends to its limit value �1with damped os
illations (see Fig. 3), and above this
urve, without os
illations (see Fig. 4). The 
urves in
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Fig. 3. Os
illating solutions in the 
lose vi
inity of thelower point on the dashed 
urve in Fig. 2: " = �17:413(1 ), �17:403 (2 ), �17:390 (3 )
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Fig. 4. Smooth solutions in the 
lose vi
inity of theupper point on the dashed 
urve in Fig. 2: " = �2900(1 ), �2893 (2 ), �2880 (3 )
Fig. 3 
orrespond to the 
lose vi
inity of the lower bla
kpoint on the dashed 
urve in Fig. 2, and the 
urves inFig. 4 
orrespond to the vi
inity of the upper bla
kpoint.60
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le in thespa
e�time with metri
 (9)A neutral spinless quantum parti
le is des
ribed bya s
alar wave fun
tion � with the LagrangianL� = 12gAB��;B�;A � 12m20���: (53)In a uniform bulk (while the symmetry is not bro-ken), � des
ribes a free parti
le with mass m0 and spinzero in the D-dimensional spa
e�time. In the broken-symmetry spa
e�time with metri
 (9), � satis�es theKlein�Gordon equation1p�g �p�ggAB�;A�;B +m20� = 0: (54)All 
oordinates ex
ept xd0 = l are 
y
li
 variables, andthe 
onjugate momenta are quantum numbers. Thewave fun
tion in a quantum state is� �xA� = X (l) exp (�ip�x� + in') ; (55)where p� = (E;p) is the d0-momentum within thebrane and n is the integer angular momentum 
on-jugate to the 
ir
ular extra-dimensional 
oordinate '.X (l) satis�es the equation [1℄X 00 +WX 0 + �p2e�2
 � n2e�2� �m20�X = 0: (56)The eigenvalues of p2 = E2�p2 
ompose the spe
trumof squared masses, as observed on the brane. The quan-tum number n is the integer proper angular momentumof the parti
le. From the standpoint of the observer onthe brane, it is the internal momentum, identi
al to thespin of the parti
le.After the substitutiondl = e
dx; X (l) = y (x)pf (x) ;f (x) = exp��12 [(d0 � 1) 
 + �℄� ;Eq. (56) takes the form of the S
hrödinger equationyxx + �p2 � Vg (x)� y = 0: (57)The gravitational potentialVg (x) = e2
 �e�2�n2 +m20�++ 12 1pf ddx � 1pf dfdx� (58)
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Fig. 5. A solution with the os
illating order param-eter �(l). Here, d0 = 4, " = �2, � = 10, and�00 =p�("+ 1)=8determines the trapping properties of parti
les to thebrane. In terms of U ,W , and � in (30), the dependen
eof gravitational potential (58) on the distan
e l isV (l) = e2
 �e�2�n2 +m20�++ e2
4 (d0W � U) (U + (d0 + 2)W )(d0 + 1)2 ++ e2
2 ��2 �V�� �+ U (W � d0U)d0 + 1 � : (59)4.3. Os
illationsIn terms of (52), eigenvalues (43) are expressed as�� = �r� "8 (G+ 1) �� "1�r1 + 16"G (G+ 1)2 # : (60)The os
illations display themselves the stronger, thesmaller is j"j. In the limit 
ases of small and large �,the os
illation frequen
iesjIm�j = 8>>><>>>: p2; �! 0;s2�1 + 1d0��; �!1;are independent of " as l!1.Os
illations of the order parameter �(l) (see Fig. 5)indu
e os
illations of gravitational potential (58). At61
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Fig. 6. The gravitational potential V (l) in (59) for thesame set of the parameters as in Fig. 5, d0 = 4, " = �2,� = 10, and �00 = p�("+ 1)=8. The initial mass ofa test parti
le is m0 = 0. The solid 
urve 
orrespondsto the angular momentum n = 0 and the dashed oneto n = �1j"j � 1 and �� 1, the gravitational potential has manypoints of minimum (see Fig. 6).The length s
ale a in (49) remains an arbitraryparameter of the theory. The physi
al interpretationis di�erent in the limit 
ases of large and small a. If

a is extremely large, ea
h minimum of the potential 
(l)forms its own brane. If the potential barrier is high, thebranes are separated from one another. In the oppo-site limit, when the s
ale length a is extremely small,all points of minimum are lo
ated within one 
ommonbrane, and in the Kaluza�Klein spirit, the points ofminimum are beyond the resolution of modern devi
es.Low-energy parti
les 
an be trapped by the pointsof minimum of potential (58). Neutral spinless parti-
les identi
al in the bulk, a
quire di�erent masses andangular momenta when trapped at di�erent minimumpoints. If the s
ale length a is extremely small, then foran observer within the brane, they appear as di�erentparti
les with integer spins.Most elementary parti
les have half-integer spins.The simple 
ase of spontaneous symmetry breaking
onsidered above 
annot relate the origin of half-integerspins to extra-dimensional angular momenta.REFERENCES1. K. A. Bronnikov and B. E. Meierovi
h, Zh. Eksp. Teor.Fiz. 133, 293 (2008).2. L. D. Landau and E. M. Lifshits, Field Theory, Nauka,Mos
ow (1973).3. J. M. Cline, J. Des
heneau, M. Giovannini, and J. Vi-net, arXiv:hep-th/0304147v2.
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