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Gravitational properties of a hedgehog-type topological defect in two extra dimensions are considered in general
relativity using a vector as the order parameter. All previous considerations were done using the order parameter
in the form of a multiplet in the target space of scalar fields. The difference of these two approaches is analyzed
and demonstrated in detail. Regular solutions of the Einstein equations are studied analytically and numerically.
It is shown that the existence of a negative cosmological constant is sufficient for the spontaneous symmetry
breaking of the initially flat bulk. Regular configurations have an increasing gravitational potential and are able
to trap the matter on the brane. If the energy of spontaneous symmetry breaking is high, the gravitational
potential has several minimum points. Spinless particles that are identical in the uniform bulk, being trapped
at separate minima, acquire different masses and appear to the observer on the brane as different particles with

integer spins.
PACS: 04.50.-h, 11.27.+d

1. INTRODUCTION

The theories of brane world and multidimensional
gravity are widely discussed in the literature. A nat-
ural physical concept is that a distinguished surface
in the space—time manifold is a topological defect that
appeared as a result of a phase transition with spon-
taneous symmetry breaking. The macroscopic theory
of phase transitions allows considering the brane world
concept self-consistently, even without the knowledge
of the nature of the physical vacuum. The properties
of topological defects (strings, monopoles, . ..) are gen-
erally described with the aid of a multiplet of scalar
fields forming a hedgehog configuration in extra dimen-
sions (see [1] and the references therein). The scalar
multiplet plays the role of the order parameter. The
hedgehog configuration forms a vector proportional to
a unit vector in the Euclidean target space of scalar
fields. This model is self-consistent, but it is not the
only generalization of a plane monopole to the curved
space—time.

In a flat space—time, there is no difference between
a vector and a hedgehog-type multiplet of scalar fields.
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On the contrary, in a curved space—time, scalar multi-
plets and vectors are transformed differently. In gen-
eral relativity, the two approaches (based on a multiplet
of scalar fields and a vector order parameter) therefore
give different results which are worth comparing. Deal-
ing with a vector order parameter seems to be more
difficult, which is probably the reason why we could
not find any papers considering phase transitions with
a hedgehog-type vector order parameter in general rel-
ativity.

2. GENERAL FORMULAS

2.1. Lagrangian

The order parameter enters the Lagrangian via
scalar bilinear combinations of its derivatives and via
a scalar potential V' allowing a spontaneous symmetry
breaking. If ¢; is a vector order parameter, then V'
should be a function of the scalar

K IK
"ok =g " o1k,
and a bilinear combination of the derivatives is a tensor

(1)

SrkLm = O,k 01, M-
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The index “; K is used as usual for covariant deriva-
tives. There are three ways to simplify Srrrar into
scalars, and the most general form of the scalar S
formed via contractions of Sy s is
S =A(slf)" +Bolicail +Cslitoliy  (2)

where A, B, and C' are arbitrary constants. Different
topological defects can be classified by these param-
eters. In a curved space—time, the scalar S depends
not only on the derivatives of the order parameter but
also on the derivatives of the metric tensor. This is the
principal difference between a vector and a multiplet of
scalar fields.

The general form of the Lagrangian determining
gravitational properties of topological defects with a
vector order parameter is

£ aglK
L <¢Iagll ) Ozl ) - Lg +Ld7 (3)
where
R
Li=352 (4)

is the Lagrangian of the gravitational field, R is the
scalar curvature of space-time, x? is the (multidimen-
sional) gravitational constant, and

La=A(65,)" +Bole s +Cole ok —V (65 6x) (5)

is the Lagrangian of a topological defect. The covariant
derivative

_ O¢p
¢P;M = aT—M -
1 14 0gam 0gap dgmp
R (81:13 drM — PrA o1 (6)

and raising of indices ¢® = ¢/®¢; involve g'® and
Ogri/0z", and it is therefore convenient to express the
Lagrangian as a function of ¢r, ¢’*, and 9grr/0xT.

2.2. Energy—momentum tensor

Varying the Lagrangian L, in (5) with respect to

5¢g"" and having in mind that,

091K _gKMgIN(sgNMa (7)

we obtain the energy—momentum tensor')

D 1t differs from (94.4) in [2] because the Lagrangian is con-
sidered there as a function of ¢/ and 9¢’% /8z”. Here and

below, \/—g stands for \/(—1)P~1g.
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2 8\/ —g Ld
Tk = =g dgTK
0 0Ly
+ QQKQPIW v—gaagPQ (8)
ozl

In the case of the vector order parameter, the potential

V(6% oK) =V (¢"F d16K)

K is varied.

also undergoes a variation as g’
We proceed with the derivations taking the spe-
cific properties of particular topological defects into ac-

count.

3. GLOBAL STRING IN EXTRA DIMENSIONS

In our previous papers with Bronnikov (see [1] and
the references therein), we considered global monopoles
and strings as topological defects with the order param-
eter in the form of a hedge-hog-type multiplet of scalar
fields in some flat target space. The aim of this paper is
to describe these defects using a vector order parameter
and compare the results.

3.1. Metric

The direction of the vector specifies one coordi-
nate, and in the simplest case, the system is uniform
and isotropic with respect to all the other coordinates.
In [1], we presented the detailed properties of global
strings in two extra dimensions. In what follows, we
therefore consider a topological defect in a space—time
with two extra dimensions. The order parameter is
a space-like vector (¢'X¢réx < 0) directed normally
from the brane hypersurface and depending on the only
one specific coordinate, the distance from the brane.
The whole (D = dy + 2)-dimensional space—time has
the structure M% x R!'x &' and the metric

ds® = 627(1)77“,,dx“d1'” — (dl2 + e26(l)d4p2) , 9)
where 1, = diag (1,—1,...,—1) is the do-dimensional
Minkowski brane metric (dy > 1) and ¢ is the angular
cylindrical coordinate in extra dimensions; v and [ are
functions of the distinguished extra-dimensional coor-
dinate [, the distance from the center (i.e., from the
brane), and e?() = r (1) is the circular radius. Greek in-
dices p, v, ... correspond to the dy-dimensional space—
time on the brane, and I, K,... to all the D = dy + 2
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coordinates. The metric tensor g;x is diagonal, and its
nonzero components are

e, I=K=0,
-2, 0<I=K <dy,
I =K =dy,
I=K=o.

JgIKk =

e,

The curvature of the metric on the brane caused by
matter is supposed to be much smaller than the curva-
ture of the bulk caused by the brane formation.

3.2. Regularity conditions

If the effect of matter on the brane is neglected, then
there is no physical reason for singularities, and the
self-consistent structure of a topological defect should
be regular. A necessary condition of regularity is the
finiteness of all invariants of the Riemann curvature
tensor. The nonzero components of the Riemann ten-
sor are

RA%D =
=2 (6468 — 6468), A,B,C,D <dy,
_BI717 A:C:(pa B7D<d07

10
— (v"+7?) 08, A=C =dy, B,D < dy, o

—(8"+p7), A=C=dy, B=D=p,

where the prime denotes d/dl. One of the invari-
ants of the Riemann tensor is the Kretchmann scalar
K = RAZ,,RED ;. which is the sum of all nonzero
RAB, ) squared, and hence all the nonzero components
of the Riemann tensor, and specifically
Y A"+ B, BT+ 87 (11)
must be finite. r = 0 is a singular point of the cylind-
rical coordinate system. The absence of a curvature

singularity in the center follows from the last condition
n (11). Let

"+ p%=c<oo at [=0. (12)

Integrating (12) in the vicinity of the center, we have

(%)

Relation (13) ensures the correct (= 27) circumference-
to-radius ratio, or, equivalently, dr? = dI*> as | — 0.
The quantity '’ is finite at [ = 0 if

1 1
fl==+5cd+0

73 (13)

7' =0(l) orsmalleras [— 0. (14)
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3.3. Vector order parameter

Our aim is to consider the order parameter as a
vector in extra dimensions directed normally from the
Minkowski hypersurface. In the cylindrical coordinate
system of extra dimensions, the only nonzero compo-
nent of the vector order parameter is

bdy = ¢- (15)

In the space-time with metric (9), the covariant deriva-
tive

1
oKk = 5?05?(%5’ - 5511’&’9,11(75 (16)

is a symmetric tensor:

oK = OK;T-

Hence,
I oK _ I K
;I\’¢I _¢;I\’ I

and Lagrangian (5) takes the form

2
1
Li=A <¢I + §¢;gKKgIKK> +

S (g“g'LLf) ~V(=¢*). (7

+§<d2+i&

which contains only two arbitrary constants A and
B =B+ C. In (17), we set g%% = —1 in accordance
with (9). But we should keep in mind that (17) cannot
be used in (8). To derive energy-momentum tensor (8),
we should use Lagrangian (5) and set gdodo = —1,
(g%d0)" = 0 after the differentiation. Nevertheless, the

field equation can be derived using (17) in the general
1 (8\ /—3g Ld

formula
!
NaY ¢! )

In the space-time with metric (9), the sums in (17) are

OLy
—a—¢—0

(18)

1 o
Sn = 2_'n Z (gBBgII\’I\’)n = doﬂyln + Blna

K (19)
n=12,...,
and the determinant of the metric tensor is
g = (=1)P71 2dor+6), (20)
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3.4. Field equation

We consider the case A # 0, B =0 in what follows.
The case A = 0, B # 0 will be considered elsewhere.
Substituting (17) with A = 1/2 and B = 0 in (18), we
obtain the following field equation in the case of vector
order parameter:

ov

(o + oy + B) o] + 5o =0 ()

In the case of the multiplet of scalar fields, we had [1]

oV
¢" +¢' (doy' + B') — pe F + — 55 = ° (22)
Unlike (22), field equation (21) does not depend di-
rectly on 3 (and hence on the circular radius r = In ),
but instead includes second derivatives of the metric
tensor. In the flat space—time,

1 _ 1
71:07 BI:_ /8”:_1_27 € 23:1_27
and both field equations reduce to

w1y ov
o) +7¢— ¢+8¢ 0. (23)

3.5. Energy-momentum tensor

The energy-momentum tensor in (8) inevitably con-
tains second derivatives, but they can be eliminated
with the aid of field equation (21). The final result of
a rather tiresome derivation is

| .
TH = 361 [0 + (doy' + 8) o] + 6V +

+ (6?°5§§ —55() 2—‘; (24)
Unlike in the scalar multiplet case, energy—momentum
tensor (24) contains not only the potential V' but also
its derivative 9V /0.

Correctness of (24) is checked by the derivation of
the covariant, divergence T (actually, T ). Again,
with the aid of field equation (21), we confirm that
TE  =0.

3.6. Einstein equations

The same way as in [1], we use the Einstein equa-
tions in the form

RR — KJQTII\,

where R is the Ricci tensor,

Oof " 49" (doy" + 8], I'< do,
RE = o8 [do (v ++") + 8" +87], I=do,
05 18" + B (don' + B")], I=g¢,
and
~ 1 .
T =T~ ok T = —d—f%“ ¢+ (dov'+8") 6] -
_ox 2 a0 1)V
o V+5 (5, %) 3%

In the case of the vector order parameter, the set of
Einstein equations

Y+ (doy' + B) =
1 2V 1 0V
= | o+ o -2 G0 29)

do’Y” + B” + d07/2 + ﬂl2 _
1
= |- 16+ (o' + 8 o -

2V 1\ ov
(g 5] o

/8”+Bl(d0"yl+ﬁl):
=2 |- o o -5 Soe] e

consists of three first-order equations for +', 3', and ¢.
Both v and S enter Eqs. (25)-(27) not directly but via
the derivatives. In the case of a scalar multiplet order
parameter (see Eqs. (14)—(16) in [1]), S enters the Ein-
stein equations directly, and the system of equations is
of the fourth order.

Field equation (21) is not independent. It is a con-
sequence of Einstein equations (25)—(27) due to the
Bianchi identity.

3.6.1. First integral

Eliminating the second derivatives ~" and "
n (25)—(27), we obtain the relation

(do'}/l +ﬂ/)2 _ (d07/2 +ﬂ12) _
==k {[¢ + (dor' + B) O] +2V},  (28)

which can be considered a first integral of sys-
tem (25)—(27).
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3.6.2. Further simplification

Equations (25) and (27) have the same right-hand
sides. Subtracting one from the other yields the equa-
tion

(Y =B + (= B) (doy + ") =0,

which can be used instead of one of Eqs. (25) and (27).
With the aid of relations (28) and (29) the complete
set of equations can be reduced to a simpler form. In-
troducing new functions

(29)

U=y'=p, W=doy'+5, Z=¢"+W¢, (30)

we obtain the set of four first-order equations

U'=-UW, (31)
do +1 [0V
’ 290 2 2
=20 (Zl g oy - 722) - 2
W=k @ (8¢¢ v ) W=, (32)
¢'=7Z-W¢, (33)
ov
Z'=——. 4
5 (34)
The functions 5’ and 7', and their combination
Se = doy'* + B
in (19) are expressed via U and W as follows:
,_U+W o W —doU S_d0U2+W2
R A T do+1 0 TP T dg+1

The first integral (28), rewritten in terms of U, W,
and Z as

Z2

W2—U2=—m2%d—1-1{ +2v),

allows simplifying (32) even further:

do + 10V
r . 2%0 UV o 2
W'=k A 8¢¢ U-.
The set of equations
U =-UW,
W 2d0+16_V¢_U2’
dy 0¢ (35)
¢ =27 W,
oV
7 = ——
9¢

is most convenient for both analytic and numerical
analysis.
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3.7. General analysis of the equations

Equations (25)-(27) are invariant under the addi-
tion of arbitrary constants to v and 5. Without loss of
generality, we can set

7(0) =0.

The requirement of regularity in the center dictates
condition (13), and, if we do not consider configura-
tions with an angle deficit (or surplus), we have

(36)

r=e’=1as 1 =0. (37)
Integrating (29) with boundary conditions (36)
and (37), we obtain

A — B = —e—(dov+B) (38)

It follows from (38) that 8’ > +' everywhere.

We recall that topological defects formed as mul-
tiplets of scalar fields [1] are of three types. Integral
curves can terminate with:

a) an infinite circular radius r (1) as [ — oo;

b) a finite circular radius 7o, = r (00) = const < o0;

c¢) a second center r = 0 at some finite [ = [..

In the vector order parameter case, the situation
is different. Equation (38) allows proving that a reg-
ular configuration can terminate neither with a finite
circular radius r as I — oo nor in the second center.

We suppose for a moment that ro, = const < oo.
Then ('(00) = 0, and (38) reduces to

'Y, — _iefdgﬁy

T

as [ — oo.

After integration, we have

d,
= (I - 1),

oo

edor —

where [y is a constant of integration. The left-hand
side is obviously positive, while the right-hand side be-
comes negative and infinitely large as [ — oo. Hence,
Teo = const < oo is impossible.

The second center is also impossible. In the vicinity
of the second center, the left-hand side of (38) becomes
large positive due to —f’, and the right-hand side re-
mains negative.

We conclude that regular configurations of topolog-
ical defects with the vector order parameter start at the
center [ = 0 and terminate at [ — oo with an infinitely
increasing circular radius r (1) — oo.

It follows from the requirement of regularity in (14)
that v = ~{l as | — 0. From the first integral (28), we
find the relation between ~{/, ¢, and Vj:

2
K
Yo = A (265 + Vo) (39)



MIT®, Tom 136, Bomt. 1(7), 2009

Spontaneous symmetry breaking in general relativity . ..

where Vj is the value of the potential at the center
[ = 0. In both cases (scalar multiplet and vector or-
der parameter), the value ¢ = ¢’ (0) is not restricted
by the equations. The difference is that in the scalar
multiplet case, @ is uniquely fixed by the regularity re-
quirement, and in the case of vector order parameter,
¢f remains a free parameter.

3.8. Asymptotic behavior

The regularity condition requires that ' be finite
everywhere. Within the domain of regularity, 7' tends
to a fixed finite value 7., as | — oo. As soon as
r(l) — oo as | — oo, we see from (38) that ' — 3’ — 0.
Hence, (' (0) = 7.,. The field ¢ (1) also tends to its
finite value ¢y = @ (c0). It then follows from field
equation (21) that 9V /0¢ — 0 as | — oo, i.e., the reg-
ular configuration terminates at an extremum of the
potential V (¢). Let

Voo =V (6c), V'(d) =0.

From the first integral (28), we find the limit value v._:

b ] 2k2Vso
Yoo TA T o + 1) [do + (do + 1) 202%]

(40)

A necessary condition for the existence of regular
configurations of topological defects with the vector or-
der parameter is V,, < 0.

To find the asymptotic behavior of ¢ (I) and W (1),
we linearize Eqs. (35) as | — oo:

= oo + 00,

W = (do + 1)v., + oW,

1
wdotlyny 56,
7

§¢' =07 — (do + 1) 7. .60 — doodW,

SW' =
(41)

67" = V.6,

where primes denote the derivatives d/dl (6W' =
=déW/dl,...) except

VI o’V
oo T 2 .
05 |os.
Eliminating §Z and 6W, we obtain a second-order lin-
ear homogeneous equation for ¢,

262 Voo | V2

6// d 1/6/7
P o+ D GG+ 2

56 = 0.

57

If the extremum of the potential is a minimum
(VZ > 0), the nontrivial solution vanishes as [ — oo:

6 = AeM! 4 Ber!, (42)

where A and B are constants of integration, and both

eigenvalues
X | 1F,/1— (43)
( \/ do (do +1)° 414 )

are either negative or have negative real parts. The
absence of increasing solutions is the reason why ¢, re-
mains a free parameter in the vector order parameter
case.

The asymptotic behavior of the field ¢ () far from
the center is determined by two constant parameters
of the symmetry breaking potential near its extremum,
Voo and V. If the extremum is a minimum, V! > 0,
then the expression under the root can be both positive
and negative. Therefore, ¢ (I) can tend to ¢ either
smoothly or with oscillations. In the space of physical
parameters, the boundary between smooth and oscil-
lating solutions is determined by the relation

8k2 | Vao| V!
do (do +1)* 44

Oscillating behavior of the field ¢ (1) induces oscil-
lations of 3" and ~'. If o' changes sign, then v (I) can
have minima. We recall that v acts as a gravitational
potential, and hence the matter can be trapped near
the minima of v ().

Usually, ¢ = 0 is a maximum of the potential V (¢).
This is also an extremum, 9V/d¢ = 0 at ¢ = 0. Re-
gular configurations that start at the center I = 0 with
¢ (0) = 0 can also terminate with ¢, = 0asl — co. In
this case, V2! = V" (0) < 0, and linear set (41) reduces
to the following asymptotic equation for ¢ (1):

¢" + (do + 1) 750’ — Vgl o = 0.

Tts general solution is a linear combination of functions
vanishing and growing as [ — oo,

¢ = Ae M 4 Be !,

1)/ 1)% 42

(do +1) v y

A
* 2
8K2 Voo | VI

(44)

/\i [ — 0.

2 4

The regularity requirement demands that the in-
creasing solutions be excluded from consideration. This
can be done at the expense of ¢f,. Regular solutions ter-
minating at a maximum of the potential can exist only
at some fixed values of ¢f.
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3.9. Boundary conditions

The complete set of equations determining the
structure of a topological defect in the case of a vector
order parameter, Eqs. (25), (27), and (28), is of the
third order with respect to the three unknowns +', ',
and ¢. The simple solution is uniquely determined by
the values of these three functions at any regular point.
The center [ = 0 is a singular point of the cylindrical
coordinate system. The condition ¢ (0) = 0 is satisfied
for both symmetries (high and broken). ' is infinite
at [ = 0. We have to set the boundary conditions very
close to the center, but not exactly at [ = 0.

For numerical analysis, it is convenient to deal with
a system of four first-order equations solved for deriva-
tives (35). The symmetry breaking potential V (¢) en-
ters Eqs. (35) only via its derivative OV /0¢. If we leave
only the leading terms in the boungary conditions,

1 1
U= —7, W = 7 as [ — 07
then we lose any information about the absolute value
of the potential. The value Vy = V (0) appears in the
next approximation. Using expansion (13) of ' in the
vicinity of the center and Eq. (38), we express ¢ in terms
of v{:

c=—(do—2)7.

To preserve the complete information about the sym-
metry breaking potential, we have to write the boun-
dary conditions as [ — 0 as follows

1 1
= 2 (do+1)Yll1—~
U 3( 0+ )’YO l

¢ = ¢ol,

The values v, ¢, and Vp are not independent. They
are connected with each other by Eq. (39).

2 1
LW = 2 (dot1) V4

3 ()BT 45
Z =24,

3.10. Solutions in case 8V /8¢ =0

If the potential V' = V4 is independent of ¢, then
it actually plays the role of the cosmological constant
A = k2Vj. The peculiarity of the vector order param-
eter is that Eqs. (35) lose the information about the
potential if 9V /0¢ = 0. Vj is present only in boundary
conditions (45). Equations (35) with 9V /0¢ = 0 and
boundary conditions (45) have the analytic solution

___ YV G
U= sh(\/éz)’ W \/5th(\/51),

_ 26, VCI

Jo T2

¢ (1)
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where

2(do +1)

C=2(d+1)v =—
do

(26705 +A) . (46)

The solution is regular if C' > 0, i.e., A < —2x2¢}>. For
goo = €27 and r = €?, we find

4/(do+1)
goo (1) = €*7 = (Ch @) ’

= —5 5
The slope ¢f, remains arbitrary. If ¢; = 0, this solu-
tion reduces to the one found earlier (see [1] and [3]) in
the special case ¢ = 0. The point is that the Einstein
equations with a negative cosmological constant have
a nontrivial solution (with a nonzero order parameter)
even without a symmetry breaking potential.

2en [ YOI
2 <Ch \/5l> —(do—1)/(do+1)

The necessary condition for regular solutions with
broken symmetry is the existence of extremum points of
V (¢), where 0V /0¢ = 0. In case V = const, the con-
dition 0V /9¢ = 0 is satisfied identically, and the order
parameter ¢ can formally tend to any ¢, as [ — oo.
The above analytic solution shows that the existence
of a negative cosmological constant, is sufficient for the
symmetry breaking of a uniform flat bulk.

The special case C' = 40 in (46) with 7] = 0 and

A
$o = 32

corresponds to the flat bulk gog (1) = 1, and r (1) = L.

(47)

3.11. Weak curvature of space—time

The limit x> — 0 is the transition to a flat space—ti-
me. The functions A and 4’ reduce to ' = I~ and
~" = 0. Field equation (21) reduces to (23), which is the
usual equation for the order parameter in cylindrical co-
ordinates in a flat space—time. The symmetry breaking
potential V is a function of ¢?, and hence OV /0¢ ~ ¢
and (23) has a trivial solution ¢ = 0 corresponding to
the symmetric (unbroken) state. The nontrivial solu-
tions that start with ¢ (0) = 0, ¢’ (0) # 0 and termi-
nate with ¢ = ¢, at an extremum of the potential
(OV (¢m)/0¢ = 0) describe the states of broken sym-
metry. Equation (23) is nonlinear. However, depen-
ding on the form of the potential V' ([), it can also have
a sequence of nontrivial solutions ¢,, (1), n =0,1,2...,
with zero boundary conditions ¢ (0) = ¢(oc0) = 0
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on both ends. The discrete sequence of derivatives
An = ¢!, (0) forms the eigenvalues for the eigenfunc-
tions ¢y, (I). The functions ¢, (I) change sign n times.
The nontrivial solutions of the field equation with ¢’ (0)
within the interval (A,, Ap+1) change sign n + 1 times.

The principal difference between Egs. (21) and (23)
is that the coefficient (doy' + ') at ¢’ in a curved
space—time does not vanish as [ — oco. If ¢ = ¢, is
a minimum of V (¢), then V" (¢,,) > 0, and the lin-
earized field equation (23) in the case of a flat space-
time as [ — oo reduces to

¢" + V" (m) (6 — 6m) =0

and describes nonvanishing oscillations. In a curved
space—time, the oscillations vanish as [ — oo in accor-
dance with (42).

Further detailed analysis is done with the aid of nu-
merical integration.

4. NUMERICAL ANALYSIS

4.1. Regular solutions in the space of
parameters

The numerical integration of Eqgs. (35) is performed
for the “Mexican hat” potential taken in the same form

as in [1]:
E+<1_77_j> ]

Potential (48) has three extremum points: a maximum
at ¢ = 0 and two minima at ¢ = £7. At the limit
values of the order parameter, we have

At

V= (48)

1) Vo,o =0, Vo,é = 27727 ¢oo = inv

$oo = 0.

The dimensionless parameter ¢ moves the “Mexican
hat” up and down. It is equivalent to adding a cosmo-
logical constant. The energy of spontaneous symmetry
breaking is characterized by n%/(P?=2) and

1
VA

determines the length scale, as usual. In most cases,
a is associated with the core radius of a topological
defect. Without loss of generality, we set a
computations. The strength of the gravitational field
is characterized by the dimensionless parameter

2) VL =0, VI=-n

a (49)

= 1in

T = x%np. (50)
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$0(0)
5F

0 1 1 1 1 1 1 1 1 1

—20-18 -16 —14 —12 -10 -8 —6 —4 -2 0
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Fig.1. The domain of regular configurations in the
plane (e, ¢) for dg = 4 and T' = 1. The upper curve
is the boundary of the existence of regular solutions.
Other curves separate the regions with different signs of
00 Below the lower curve, ¢(I) does not change sign.
Between the first and the second curves from bottom,
the order parameter changes its sign once. Between
the second and the third curves, it changes sign twice,
and so on. The curves quickly condense to the upper
curve

In the case of a vector order parameter, the state of
broken symmetry is controlled by four parameters d, &,
T, and ¢. The main difference is that in the scalar mul-
tiplet case, regular configurations with given dp, ¢, and
I existed only for a fixed value of ¢, but with a vector
order parameter, regular configurations with given dy,
e, and I' exist within some interval 0 < ¢ < O max
whose upper boundary ¢ .. depends on dy, ¢, and
I'. This additional parametric freedom allows forgeting
about the so-called “fine tuning” of the physical param-
eters.

For visual demonstration, it is worth fixing dy = 4
and one of the other three parameters. Then the do-
main of existence of regular solutions can be presented
as a map in the plane of two remaining parameters.

Figure 1 shows the domain of regular configurations
in the plane (g, ¢f) for dy = 4 and T' = 1. Depending on
the values of £ and ¢, the order parameter ¢ (1) tends
to +n, 0, or —n as [ — oo. The sequence of curves
fn () in Fig. 1 are those where ¢ (I) — 0 as | — oo.
They separate the domains with different signs of ¢.
Below the bottom curve f; (¢), where 0 < ¢ < f1 (¢),
the order parameter ¢ () does not change sign. Be-
tween fi (¢) < ¢y < fa(e), it changes the sign once.
In the domain f> (¢) < ¢y < f3 (), it changes the sign
twice, and so on. The curves f, (¢) rapidly condense to
the upper curve fo, (€) as n — 00. fo (€) is the upper
boundary of the existence of regular solutions (in the
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smooth ¢(1)

oscillating ¢(1)
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1000
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Fig.2. Map of regular solutions in the plane (T', —¢)

for ¢y = +4/—(¢+1)/8, do = 4. The solid curve

separates the regions of smooth (above) and oscillat-

ing (below) behavior of the order parameter as I — co.

To the left of the dashed curve, the order parameter
changes sign

particular case dg =4 and ' = 1).

The curves in Fig. 1 are those where

boo (0,6,do =4, =1) = 0. (51)

Similar curves can be shown for fixed ¢; in the
plane (e,I'). For instance, the dashed line in Fig. 2
is the first of the curves ¢oo(df) = £+1/—(c +1)/8,¢,
dp = 4,T) = 0, where the order parameter tends to
zero as | — oco. The value ¢ = £/—(¢ +1)/8 in (47)
corresponds to v{ = 0 in (39). This is the case C' =0
in (46), and hence the symmetry breaking of the flat
bulk is entirely caused by the potential V' (¢), not by
the cosmological constant. To the right of the dashed
line, ¢ (1) does not change sign.

For potential (48), boundary line (44) between the
oscillating and smooth ¢ (1) is

(1+@G)?
G Y

do + 1
G= 4T

—cp =16 (52)
It is shown in Fig. 2 (solid line). Below the solid line,
the order parameter ¢ (I) tends to its limit value ¢n
with damped oscillations (see Fig. 3), and above this
curve, without oscillations (see Fig. 4). The curves in
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Fig.3. Oscillating solutions in the close vicinity of the
lower point on the dashed curve in Fig. 2: ¢ = —17.413
(1), —17.403 (2), —17.390 (3)

-

Fig.4. Smooth solutions in the close vicinity of the
upper point on the dashed curve in Fig. 2: ¢ = —2900
(1), —2893 (2), —2880 (3)

Fig. 3 correspond to the close vicinity of the lower black
point on the dashed curve in Fig. 2, and the curves in
Fig. 4 correspond to the vicinity of the upper black
point.
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Spontaneous symmetry breaking in general relativity . ..

4.2, Neutral quantum particle in the
space—time with metric (9)

A neutral spinless quantum particle is described by
a scalar wave function y with the Lagrangian

1 4.
A T

> (53)

L,
—myx*X.

L= 5

In a uniform bulk (while the symmetry is not bro-
ken), y describes a free particle with mass mg and spin
zero in the D-dimensional space—time. In the broken-
symmetry space—time with metric (9), y satisfies the
Klein—Gordon equation

(V=99 x.a) g +mix =0. (54)

vl

All coordinates except % = [ are cyclic variables, and

the conjugate momenta are quantum numbers. The
wave function in a quantum state is
A ) .
X (#%) = X (1) exp (—ipua* +inp),  (55)
where p, = (E,p) is the dy-momentum within the

brane and n is the integer angular momentum con-
jugate to the circular extra-dimensional coordinate .
X (1) satisfies the equation [1]

X"+ WX'+ (pPe™ —n’e™ —md) X =0. (56)

The eigenvalues of p> = E? —p? compose the spectrum
of squared masses, as observed on the brane. The quan-
tum number n is the integer proper angular momentum
of the particle. From the standpoint of the observer on
the brane, it is the internal momentum, identical to the
spin of the particle.

After the substitution

dl = e"dux,

Eq. (56) takes the form of the Schrodinger equation

Yoz + [p2 -V, (ac)] y=0. (57)

The gravitational potential

V, (x) = € (e n? + m3) +
11 d

df
Y37

(i) o
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Fig.5. A solution with the oscillating order param-
eter ¢(l). Here, do 4, ¢ = =2, T 10, and
dh= == +1)/8

determines the trapping properties of particles to the
brane. In terms of U, W, and ¢ in (30), the dependence
of gravitational potential (58) on the distance [ is

V() =e> (e n® +ml) +
e (doW = U) (U + (do +2) W) N

4 (do + 1)
e [ LoV, U(W —doU)

4.3. Oscillations

In terms of (52), eigenvalues (43) are expressed as

3
S ER T

16 9
14+4/14+ — 1
X +5G(G+ ) (60)

The oscillations display themselves the stronger, the
smaller is |¢|. In the limit cases of small and large T',
the oscillation frequencies

V2, L —0,
|Im A| =

1
2<1+—>I‘, ' — oo,
do

are independent of € as [ — co.
Oscillations of the order parameter ¢(I) (see Fig. 5)
induce oscillations of gravitational potential (58). At
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Fig.6. The gravitational potential V(1) in (5

same set of the parameters asin Flg 5 do=4,¢=-2,

' =10, and ¢5 = \/—(¢ + 1)/8. The initial mass of

a test particle is mo = 0. The soI|d curve corresponds

to the angular momentum n = 0 and the dashed one
ton==1

9) for the

le] ~ Land " > 1, the gravitational potential has many
points of minimum (see Fig. 6).

The length scale ¢ in (49) remains an arbitrary
parameter of the theory. The physical interpretation
is different in the limit cases of large and small a. If
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a is extremely large, each minimum of the potential (1)
forms its own brane. If the potential barrier is high, the
branes are separated from one another. In the oppo-
site limit, when the scale length «a is extremely small,
all points of minimum are located within one common
brane, and in the Kaluza—Klein spirit, the points of
minimum are beyond the resolution of modern devices.

Low-energy particles can be trapped by the points
of minimum of potential (58). Neutral spinless parti-
cles identical in the bulk, acquire different masses and
angular momenta when trapped at different minimum
points. If the scale length a is extremely small, then for
an observer within the brane, they appear as different
particles with integer spins.

Most elementary particles have half-integer spins.
The simple case of spontaneous symmetry breaking
considered above cannot relate the origin of half-integer
spins to extra-dimensional angular momenta.
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