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From the theory of many-electron states in atoms, we know that there exists a strong Coulomb repulsion,
which results in the electronic term structure of atoms and is responsible for Hund's rules. By expanding the
Coulomb on-site repulsion into a multipolar series, we derive this interaction and show that it is also present
in solids as a correlation effect, which means that the interaction requires a multideterminant version of the
Hartree—-Fock method. Of particular interest is the case where this interaction couples states of localized (f)
and delocalized (s) electrons. We show that the interaction is bilinear in the creation/annihilation operators for
localized electrons and bilinear in the operators for conduction electrons. To study the coupling, we consider
a simple model in the framework of an effective limited configuration interaction method with one localized
f-electron and one itinerant s-electron per crystal site. The on-site multipole interaction between the f- and
s-electrons is explicitly taken into account. It is shown that depending on the low-lying excitation spectrum
imposed by the crystal electric field, the model can lead not only to ferromagnetism but also to a nonmagnetic
state. The model is relevant for solids with localized and itinerant electron states.

PACS: 71.10.Li, 75.10.Dg
1. INTRODUCTION

Presently, ab initio calculations of the electronic
band structure for solids have become a routine pro-
cedure. But it is known that even the most sophis-
ticated methods lack some very important correlation
effects (for a review, see [1]). One example is the fa-
mous Hubbard repulsion, which has to be included ex-
plicitly into an effective Hamiltonian [1]. The Hub-
bard repulsion is not the only correlation effect. In
this paper, we discuss another important class of on-
site correlations that can be described in general as
mulipole Coulomb intrasite interactions [2-4]. These
many-electron correlations are well known in the the-
ory of atoms [5], but are often ignored in the band
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structure calculations of solids. Zener first realized the
importance of these correlations and proposed a mech-
anism called “double exchange” to explain the origin of
ferromagnetism and antiferromagnetism in solids [6].
He considered the coupling of an incomplete d-shell to
the conduction electrons and concluded that in accor-
dance with Hund’s rules, it tends to align the spins in
a ferromagnetic manner. (This is the third principle of
his double-exchange concept [6].) Because the multi-
pole Coulomb interactions offer a microscopic basis for
Hund’s rules and can even describe the exceptions to
them for a number of elements (like atomic cerium with
the !G4 ground-state configuration; see [7] and the ref-
erences therein), we can apply the technique to derive
effective magnetic correlations from first principles.

The problem was also addressed in a number of re-
cent publications [8-10], where many-electron f-states
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are embedded into a bath of conduction electrons, and
several parameters of the model (Kondon—Shortley—
Slater radial integrals for the f-shell) are calculated
from first principles in the local density approxima-
tion (LDA). It is called the “Hubbard-I” approximation
(HTA) and we compare it with our model in Sec. 3.

We start by explaining why multipole interactions
are not fully taken into account. The limitations of
band structure calculations become apparent in the
limit of large distance between the constituent atoms.
In this case, the energy spectrum of a solid becomes
atomic. Therefore, one should find discrete multiplet
spectra (the ground-state level and excited terms) of
atoms, which are well documented in the literature (see
Ref. [7] for lanthanides). Instead, the full potential
LAPW and LMTO methods [11] give a ground-state
energy calculated with a spherically symmetric effective
potential. One-electron energies of the corresponding
s-, p-, d-, and f-states are obtained in the spherical
approximation. Atomic calculations of that sort are
inadequate in the sense that they do not reproduce the
atomic terms observed in atomic spectra [5] and can-
not give the correct value of the atomic ground-state
energy.

We further illustrate the main idea by considering a
simple example of an atom with only two electrons: one
of the f type and the other of the s type. This model
is very useful for lanthanides and actinides, where the
ground states have a few 4f (5f) electrons and one
or two 6s (7s) electrons. In the limit of large lattice
constants, the band structure calculations give energy
spectra containing two energy levels, e(s) and e(f).
(The influence of the rest of the crystal in the limit is
negligible.) The energy ¢(s) is independent of the spin
projection of an s electron. The energy e(f) of an f
electron is also independent of its spin (s.) and orbital
(m.) projections. The resultant 28-fold degeneracy of
the two-electron states is a consequence of the effective
field with the spherical symmetry. As a result, the lo-
calized states of an f electron are uncorrelated with the
states of the s electron. From the theory of atomic spec-
tra [5], we know that this picture is incorrect. There
exist important observations known as Hund’s rules,
which prescribe the effective couplings between the va-
lence electrons. In the case of two electrons, the first
Hund’s rule requires that the two electrons have the
total spin quantum number S = s(s) + s(f) equal to
one, S = 1 in the ground state, and S = 0 for the
exited state. However, Hund’s rules are just empirical
observations. The real driving force behind the term
splitting is the Coulomb intrasite repulsion between the
valence electrons. In what follows, we demonstrate this
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by using the technique of multipolar expansion, which
was formulated in a number of publications [2—4]. It is
worth noting that all interactions are derived from the
Coulomb repulsion, which distinguishes our approach
from others based on model Hamiltonians constructed
from symmetry arguments [12] or some other consider-
ations.

2. INTRASITE COULOMB CORRELATIONS

2.1. Interactions in atoms

We first introduce two-electron basis ket-vectors
T) = |i*, if). (1)

Here, the index if = (m/,sf) stands for the orbital
projection (m/ = 1-7) and spin projection (s, = +1/2)
quantum numbers of one f electron. Therefore, there
are 14 states, to be labeled by if = 1-14. The two
states of an s electron are labeled by i®* = 1,2. The
cumulative index I therefore ranges from 1 to 28. The
two-electron wave functions are

<I‘17 ro |[ Z P(a

a12

(ra1li®) - (ra2li’), (2)

where a stands for a permutation of two electrons sen-
ding the first electron to al = 1,2 and the second to
a2 = 2,1, correspondingly. The factor (—1)¥ accounts
for the parity of a permutation. We note that each
wave function corresponds to a 2 x 2 determinant, and
there are 28 such determinants in total. Finally,

(elif) = Ry (r)(7li?), (3a)
(r']i%) = Ra(r')(#'[i%), (3b)

where Ry and R are the radial components of the
f and s electrons and 7 denotes the polar angles
Q= (0, 9¢). The f spin orbitals can be written as

(PliT) = (Flmg) us(s: (1)), (4)

where u; is the spin function (s = +). The f-orbital
parts (f|my) are expressed in terms of spherical har-
monics Y, (Q) = (#|l,m). We find it convenient to
work with real spherical harmonics Y;” [13], where
7 =0, (m,c), or (m,s).

The order of indices in (1) is important.
ample, as follows from the dynamical equivalence of
electrons, the state |i*, if) can be reduced to |if, i%)
by interchanging two electrons, i.e.,

For ex-

|if, 4%y = —]i*, i), (5)
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In what follows, we study the intraatomic cor-
relations of electrons within a formalism based on
a multipole expansion of the Coulomb potential
V(r,r') 1/|r — r'| between two electrons (charge
e = —1). The multipole expansion in terms of real
spherical harmonics Y,?, Y™, and V;""* (we use the
phase convention and definitions in Ref. [13]) is given

by

Vier') =Y ol ) Y7 (7) Y7 (#),

L7

(6)

where 7 denotes m = 0, (m,c), or (m,s) of the real
spherical harmonics and

l
re 47

A
vl(T‘,T‘) - rg+1) 20+ 1

(7)

with r~ = max(r,r') and r- = min(r,r').

The direct matrix elements for the intrasite
Coulomb interactions are obtained if we consider the
if — jf transitions for the first electron and the
i®* — j® transitions for the second. We start from
Eq. (6) and obtain

(I|V (x,x")|J)“ou =
= Zvlffissclff(ifvjf) Cl:"’(isvjs)v

LT

(8)

where

ff 5% /drr /dr' 2R

accounts for the average radial dependence. The tran-

(MR i (rr) (9)

sition matrix elements ¢, - (if,j*) (t = t' = f,s) are
defined by
lind) = [ @Y F). (10

We note that in the basis with real orbitals and with
real spherical harmonics Y;”, the coefficients ¢; . are
real.

The other possibility is to consider the transitions
if — j° for the first electron and the transitions
i* — jI for the second. This gives the exchange in-
teraction; we then use (5) to return to the standard
order of the spin orbitals. We find

(IV (r,x)] T)yeeeh =

—Z’U 7,] )Clﬂ'(isvjf)v (11)

ClT
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where the coefficients ¢; » are again given by Eq. (10)
witht=f, ' =sort=s,t = f, and

ol :/drr2Rf(r)Rs(r) X

x/dr'

The typical value of vlf 575/ i50.7-0.8 éV for lanthanides
and 1.0-1.1 eV for actinides.

For the sf configuration, there are only three types
of these coefficients. For the s—s transition, only one
integral (s|Y|s) = 1/v/4r is nonzero. For the f—f
transitions and real spherical harmonics [13], the coef-
ficients ¢; - (i7, j7) were tabulated in Ref. [2]. Although
some coefficients ¢; , (if, j) are not zero for [ = 0,2, 4,
and 6, we conclude from Eq. (8) that because of the
s—s transition, only the spherically symmetric repul-
sion (I = 0) is relevant. In that case, the coefficient

PP R (YR () vi(r,r').  (12)

c1—o(if, j¥) becomes diagonal,
c—olis,jr) = —= 8637, 57), 13
and we rewrite Eq. (8) as
ol f—ss
(Vv (e, e 7)o = =067, j7) 6(i%,5%). (14)

We note that this expression is exactly the one obtained
in the approximation of a spherically symmetric repul-
sion. The contribution of Eq. (14) is further combined
with the attraction from the nucleus and the repulsion
and exchange from the core electrons. The core elec-
trons form only closed electron shells; in accordance
with the Unsold theorem, this results in a spherically
symmetric electron density (I = 0). Neither the field of
the nucleus not the closed shells give any contribution
with [ # 0.

Finally, there are f—s and s—f transitions, which
require the evaluation of ¢, (if, j*). From the ortho-
gonality of spherical harmonics, we find that

\/471'7

where 7 =0, (m, ¢), (m, s) for m = 1-3 and zero other-
We observe that the exchange term, Eq. (11),
results in the repulsion component with a nontrivial
octupolar component of the electron density (I = 3).
We rewrite Eq. (11) as

(0,0]Y5|3,7) = (15)

wise.

IV (x,x)| Tyt =

ol s7sf
U3
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The first Kronecker symbol in the right-hand side of
Eq. (16) states that the exchange coupling is possible
only between the basis states I and .J that have the
same f-orbital part (Y3). The second and the third
Kronecker symbol impose conditions on the spin com-
ponents.

We now consider the matrix of the Hamiltonian in
our basis |I). There are only seven different orbital
parts for our basis vectors, which are characterized
by the orbital part of the f-electron (7 = 0, (m,c),
(m,s), where m = 1,2,3). We rearrange our 28 vec-
tors into groups of seven as follows: for I = 1-7, we
define uy = +1/2 and us; = +1/2; for I = 8-14,
up = —1/2 and us = +1/2; for I = 1521, uy = +1/2
and us = —1/2; and for I = 22-28, uy = —1/2 and
us = —1/2. Then the 28 x 28 matrix of the Hamilto-
nian is given by

(IlH|J) =
(E—A)1 0 0 0
0 Ei -4l 0
= R S X . (17)
0 —A1 Eil 0
0 0 0 (E-A]l

where 1 is the 7 x 7 identity matrix, 0 is the 7 x 7 zero
matrix, and

vgs*s‘f

E is the energy of the atom in the spherical approxi-
mation, [ = 0. It is easy to show that matrix (17) has
the (3 x 7 = 21)-fold degenerate eigenvalue E — A (spin
triplets) and the 7-fold degenerate eigenvalue E + A
(spin singlets). The result is in agreement with the
first Hund’s rule.

The important conclusion is that the energy of the
sf configuration is lower than in the spherically sym-
metric model by the value of A, Eq. (18). This value is
always larger than zero, because according to Eq. (12)
it can be regarded as the self-interaction energy of a
classical octupole with the radial density R ;(r)Rs(r).
We computed this energy for the lanthanides and the
actinides (see the Table). The radial dependences for f-
and s-electrons were taken from the density functional
theory (LDA) relativistic atomic calculations. (These
computations are of course based on a spherically sym-
metric model for the effective potential.) We note that
this energy decrease is visible for all lanthanides and
actinides, and cannot be neglected.

Table. Calculated values of A = vI*™*/ /47, in meV,
for the indicated atomic ground-state configurations of
lanthanides and actinides

Lanthanides Actinides
La 5d65> 60.0 | Ac 6d7s2 139.8
Ce 4f5d6s> | 57.8 | Th 642752 101.6
Pr 4£36s> 64.7 | Pa | 5f%6d7s> [102.7

Nd | 4f%s® | 615 | U
Pm | 4f°6s> 59.5 | Np

5f36d7s% | 94.1
5f%6d7s> | 88.2

Sm 4f%65s2 58.1 | Pu 5f67s2 89.2
Eu 4f76s2 58.9 | Am 5f77s2 92.7
Gd | 4f75d6s®> | 56.3 | Cm | 5f76d7s> | 84.2
Th 49652 56.9 | Bk 5f97s2 84.8

Dy | 4f19s2 | 559 | Cf
Ho | 4f'6s®> | 55.0 | Es
Er 412652 54.0 | Fm
Tm | 4f136s> | 52.9 | Md
Yb | 4f"%6s> | 51.9 | No
Lu | 4f'45d6s% | 50.8 | Lr

510752 | 825
511752 | 80.9
512752 | 80.0
513752 | 79.5
514752 | 79.3
5F147s27p | 91.1

2.2. Interactions in solids

So far, we have considered an atom with the fs
configuration. The question is what happens to this
octupole interaction when we construct a crystal con-
sisting of such atoms? Intuitively, it is clear that the
interaction cannot disappear in the assembled solid. In-
deed, any band state is just a linear combination of the
local states, and vice versa. The effective on-site inter-
action in the basis of local states, Eq. (17), persists in
the basis of delocalized states [14]. In what follows, we
demonstrate this explicitly in the tight-binding appro-
ximation for the s-electrons [15]. We consider a hypo-
thetical crystal of IV atoms with the fs valence electron
configuration. We assume that the s-electrons are de-
localized and the f-electrons are localized. This is the
case for all lanthanides (except cerium) and for the ac-
tinides of the second half of the series. We label the
local s and f states at asiten (n = 1—N) as |is), and
lif)n. Starting with the N local |s), states (where we
focus only on the orbital part of the s states), we can
construct N independent delocalized states

1 ik-x(n
k) = \/—ﬁ ;e’k ( )|s>n7 (19)

where the radius vector x gives the position of the nu-
cleus of atom n. In addition, each state |k) can have
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two different spin polarizations, s. = +1/2. Although
it is not always mentioned explicitly, band structure
calculations involve a single determinant trial wave
function,

(r1,ro,...,rny|B) =
=D (=1)P D rar [k = 0,uy) - ... x
a

X oo Aranlk,uy - oo (ran|kp,us),  (20)

where all one-electron wave functions with the wave
vectors from k = 0 to the Fermi level ky are present,
and |B) stands for the metallic state of N electrons.
In the absence of the localized |f), states, the energy
spectrum of the s-electrons is

E(k) = FEo—7 Y cos(k-Ry), (21)
K

where v > 0 (attractive metallic bond), and the sum-
mation is taken over the nearest neighbors indicated
by the index s [15]. Each metallic state accommo-
dates two itinerant electrons with two spin components
s, = £1/2. Therefore, without the localized f-elect-
rons, we have a conventional metallic ground state and
no magnetic effects.

We now consider the intrasite interaction with the
localized states. We start with one conduction elect-
ron in the k state and N localized f-electrons. The
conduction electron is also specified by its spin polari-
zation index i* = 1,2. As we have seen, the localized
f states cannot be characterized by a single determi-
nant. We use the index z'g (g = 1-14) to describe the
14 f states at a site n, |z£)n For a crystal with N
sites, we therefore obtain 2 x 14V different determi-
nants of the type [i¥; i{,ig, eyl ,if ). Because
it is not possible to deal with such a large number,
we simplify the problem by considering only 28 of the
determinants, |i%; (i7)"), namely, those where all N lo-
calized f-electrons are in the same state characterized
by the index if = if = .. fv The problem
can then be solved in the reduced basis. We consider
the band electron (k = 0) interacting with the locali-
zed electron at a site n. Again, we find the octupole
interaction there, which now has the form

exch _

<Ired|V(r7 rl)|Jred>n

A
N(S(Tifv
However, by summing over the NV crystal sites, we ob-
tain the same result as before (cf. Eq. (16)):

L= =1

T (22)

f)5(Uif7Uj5) 6(ui57ujf)'

<Ired|V(r7 rl)|t]red>ex0h =
_A(s(Tif,T]{f)(s(Uif,Ujs)6(/1142’5,”]',‘). (23)
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The last expression describes the interaction of one
s-electron with N localized electrons in the same quan-
tum state i¢. As is clear from the approximation, there
is a one-to-one correspondence between the crystal ba-
sis and the basis of local states, Eq. (1):

8% (i()N) = [Drea > 1) = [i%, i), (24)
Not surprisingly, the structure of the matrix elements
is still given by Eq. (17). The energy spectrum consists
of the spin triplet Eg — |y| — A and the spin singlet
Ey — |v| + A. In the general case of an electron with a
wave vector k, we obtain

(25a)

— A,
+ A. (25Db)
We observe that the initial spectrum of the s-electrons,
Eq. (21), is split into two lines (see Fig. b). Each line
corresponds to a many-electron coupled state of the lo-
calized and a conduction electron. The splitting is ex-
pected to consist of many lines for more complex elec-
tron systems like sf™, pf™, or df™ (here, n = 1-13 is
the number of localized f-electrons). To describe such
subbands, we have to apply an efficient limited configu-
ration interaction approach, which we have formulated
here for the s—f electron system.

3. DISCUSSION

In the spin space, the effective Hamiltonian in

Egs. (25a) and (25b) can be written as
3

H=Ek) - 514 —2AS; - S, (26)
where S is the spin of a conduction electron with the
band energy E(k) and S. is the spin of the localized
electron. (We recall that all localized electrons have
the same spin projection on all sites in the model.) The
Heisenberg type of Hamiltonian (26) is well known in
solid state physics. Because A > 0 in the mean-field
approximation (when (S») # 0), it leads to a ferromag-
netic ground state.

We stress that initially, in considering the problem
with one conduction electron, the ground state was a
triplet. Therefore, there is a more complex picture here,
and it is more appropriate to speak of spin-triplet-like
states and spin-singlet-like states, meaning that both
types of pair correlations are represented in the elec-
tron spectrum. We recall that for a triplet, the spin
components are M. = —1, 0, +1 (in up), and M. =0
for a singlet. Therefore, the spin-triplet-like states can
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Energy

A

Triplet

e —
CEF, MF Nonmagnetic

k

Energy spectrum of itinerant electrons: a — no inter-

action with localized f-electrons; b — triplet—singlet

splitting due to the intrasite Coulomb interaction; ¢ —

further splitting of the triplet line due to the CEF or

mean field (MF). The lowest subband can be nonmag-
netic

be further lifted by other, weaker interactions. The
main candidates here are the crystal field and mean-
field effects. Indeed, it is well known that even a weak
crystal electric field (CEF) splits energy levels of highly
degenerate states [16, 17]. Tt is also worth noting that
the CEF for many-electron states, or, more precisely,
two-electron s—f states, is understood here [2]. In what
follows, we consider the symmetry aspects of the prob-
lem in more detail.

The CEF and mean field for lanthanide and ac-
tinide ions have been extensively discussed in the litera-
ture [16-20]. In connection with the present approach,
it is worth noting that the CEF is regarded as the first
meaningful term of the intersite multipole expansion,
when all neighbors of a lanthanide ion are considered
in the spherical approximation (I = 0) [3]. The CEF
is a single-particle potential [18]. In reality, the CEF
should be considered on equal footing with the spin—
orbit coupling, as has been extensively discussed in the
literature [16-18]. But the influence of the spin—orbit
coupling on energy levels is very specific. As was shown
in Ref. [3], the combined effect of the CEF and spin—or-
bit coupling in the field with a cubic symmetry is as fol-
lows. 1) The orbital momenta of localized f states are
not free. They are strongly coupled to the spin degrees
of freedom. The possible degeneracies (irreducible rep-
resentations) of the two-electron states are A, Ty, T,
and E. 2) The spin triplet ground state keeps being
triply degenerate, but the magnetic moments are — M,
0 and M, where M can take any positive value, not
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necessarily 1up as before. The triplet ground state be-
longs to the T or T5 irreducible representation of cubic
symmetry.

The triply degenerate electron band state is close
to the ferromagnetic order. If the CEF splitting is such
that the lowest subband is a magnetic doublet (M),
then the transition to a ferromagnetic state is straight-
forward. But we are presently more interested in other
possibilities, where the effective ground state is a single
subband with the quenched magnetic moment, M = 0.
We consider two different cases.

First, the nonmagnetic state can appear as a re-
sult of a symmetry lowering (for example, from cubic
to hexagonal or trigonal). (Both cubic and hexagonal
structures are typical for lanthanides and actinides.)
Then the degeneracy of the ground state changes ac-
cording to the scheme

Ti(Ty) — E + Ay (As). (27)

The reason is that the double degeneracy is the highest
supported by the threefold symmetry C3 or the sixfold
Cs. The doubly degenerate level of the E symmetry
has the magnetic moments £ M, while the level of the
A symmetry is nonmagnetic. Which level becomes the
ground state depends crucially on the details of the
CEF and the intersite interaction driving the symme-
try lowering. Here, we do not discuss the driving forces
behind the phase transition. There are many options:
the cooperative Jahn-Teller effect [21] (translation—ori-
entation coupling [2,22]), quadrupole—quadrupole in-
teractions [23], etc. The actual source of symmetry
lowering is immaterial for our analysis in what follows.
Again, if the E level happens to be the lowest, the
electron system becomes ferromagnetic at some tem-
perature, as first was discussed by Zener. Equally im-
portant is another possibility, when the ground level
has the A symmetry. In this case, the ground state
is nonmagnetic even if it does have the magnetic mo-
ments —M, 0, and M above the phase transition. Then
the phase transition is accompanied by a loss of these
magnetic moments. In magnetic susceptibility mea-
surements, it is to manifest itself as the Curie law above
the transition (T > T, ~ AE = E4 — Eg) and a con-
stant and low magnetic susceptibility below the phase
transition (T" < T.). Such unusual behavior is found
in some actinide and lanthanide compounds (Ce [24],
YbInCuy [25], NpO2 [26]), although theoretical inter-
pretations remain controversial.

The second case occurs if there is no structural
phase transition, but the lowest level is nonmagnetic
(the A symmetry) due to the CEF. Then the magnetic
susceptibility follows the Curie law at sufficiently large
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temperatures (T' > AE = Eg — E4), but deviates con-
siderably at low temperatures (' < AE). The mag-
netic susceptibility decreases and saturates as T — 0,
with a pronounced maximum at T ~ AFE. Such un-
usual behavior was also found in some correlated me-
tals including actinide and lanthanide compounds, and
in alkali-doped fullerides [27].

The idea of the disappearance of magnetic moments
is also provided by the Kondo and Anderson models
and is often referred to as the Kondo effect [1]. Our
consideration here is different. It is based on the intra-
site interactions treated at the ab initio level, while the
Anderson hybridization [28] (which is linear in the cre-
ation/annihilation operators for valence and localized
electrons) is zero from symmetry considerations. In our
model, the interaction between conduction and local-
ized electrons takes the form of the Coulomb intrasite
repulsion, which, being a density—density coupling, is
bilinear in these operators.

The present model is a classical configuration inter-
action approach to solids, which captures correlation
effects such as the double exchange and Ruderman—
Kittel-Kasuya—Yosida (RKKY) interaction [29]. For a
single atomic-like site, it is common to use the configu-
ration interaction, but for solids even the Hartree—Fock
treatment free of exchange approximations is rare. We
note that an alternative approach to the HIA problem
has been developed in Refs. [8-10]. It combines the
density functional theory (LDA) treatment of conduc-
tion electrons with an atomistic description of equiv-
alent localized f-electrons. Our model is similar to
HIA in assuming an effective one-electron interaction
between delocalized electrons. We note, however, that
the multipole expansion of the Coulomb repulsion and
a multideterminant basis set are implicitly used for the
f-block in the HIA. On the other hand, in our model,
we do not consider processes that change the occupa-
tion number of f-electrons (such as f — f?) included
in the HTA.

There have been attempts to incorporate Hund’s
rules into the band structure calculation scheme
through orbital polarization [30] or self-interaction cor-
rection (SIC) in the local spin density approximation
(LSD) framework [31]. The orbital polarization mim-
ics Hund’s rules via a phenomenologically introduced
one-electron eigenvalue shift (—E3Lm;) for the state
my. (Here, E® is the Racah parameter [30].) Also,
as claimed in Ref. [31], the SIC-LSD approximation
can reproduce Hund’s rules for f-states of ~-Ce.
But it is not clear how good this description is for
other elements or in the cases where Hund’s rules
are violated. We recall that Hund’s rules are just

344

empirical observations, while the real driving force
behind them is the Coulomb interaction. The latter
is fully described by the multipole expansion in a
many-electron basis set, which accounts for the atomic
term structure in all cases.

4. CONCLUSIONS

The presented picture of coupling between localized
and delocalized electrons at the same site is close to
the original idea of Zener, who considered that just
Hund’s rules are responsible for the coupling [6]. Fur-
thermore, the treatment derived from first principles
remains valid even when some of Hund’s rules fail (see,
e.g., atomic Ce in [2]). The effective interaction be-
tween localized f-electrons at different sites can also
be considered a variant of the RKKY mechanism [29].
The coupling appears as a natural correlation effect
that requires a multideterminant basis set to be cap-
tured. This many-electron determinant basis set is easy
to supply for a singular (atomic-like) site as shown in
Ref. [3], but it is then a localized basis set. Here, we
have explicitly demonstrated that such interactions are
present for the corresponding delocalized basis set. The
conclusion is not surprising, taking into account that in
the tight-binding approximation, a delocalized basis set
is constructed from local functions.

It is also worth noting that the on-site interactions
between conduction (s) and localized (f) electrons are
obtained from first principles. Part of this interac-
tion results in an octupole repulsion (f—s transitions),
which disappears if one averages this interaction in or-
der to introduce an effective mean-field potential. In-
deed, such a potential U(r) should have the full crystal
(cubic) symmetry and even parity under the inversion
symmetry. This implies that (s|U]|f) = 0 in contradis-
tinction to Eqs. (16) and (23).

We have added the CEF to the model and have
shown that the role of the CEF is crucial in determin-
ing the magnetic response of the electron system. The
resulting ground state can be either ferromagnetic or
nonmagnetic. Thus, the ground state and the excita-
tion spectrum of f-states are dominated by the com-
bined effect of the CEF and their interaction with de-
localized electron states.
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