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ELUSIVE s-f INTRASITE INTERACTIONS AND DOUBLEEXCHANGE IN SOLIDS: FERROMAGNETIC VERSUSNONMAGNETIC GROUND STATEA. V. Nikolaev a*, K. H. Mi
hel baInstitute of Physi
al Chemistry of Russian A
ademy of S
ien
e117915, Mos
ow, RussiaInstitute of Nu
lear Physi
s, Mos
ow State University119992, Mos
ow, RussiabUniversity of Antwerp2020, Antwerp, BelgiumRe
eived January 20, 2009From the theory of many-ele
tron states in atoms, we know that there exists a strong Coulomb repulsion,whi
h results in the ele
troni
 term stru
ture of atoms and is responsible for Hund's rules. By expanding theCoulomb on-site repulsion into a multipolar series, we derive this intera
tion and show that it is also presentin solids as a 
orrelation e�e
t, whi
h means that the intera
tion requires a multideterminant version of theHartree�Fo
k method. Of parti
ular interest is the 
ase where this intera
tion 
ouples states of lo
alized (f)and delo
alized (s) ele
trons. We show that the intera
tion is bilinear in the 
reation/annihilation operators forlo
alized ele
trons and bilinear in the operators for 
ondu
tion ele
trons. To study the 
oupling, we 
onsidera simple model in the framework of an e�e
tive limited 
on�guration intera
tion method with one lo
alizedf -ele
tron and one itinerant s-ele
tron per 
rystal site. The on-site multipole intera
tion between the f - ands-ele
trons is expli
itly taken into a

ount. It is shown that depending on the low-lying ex
itation spe
trumimposed by the 
rystal ele
tri
 �eld, the model 
an lead not only to ferromagnetism but also to a nonmagneti
state. The model is relevant for solids with lo
alized and itinerant ele
tron states.PACS: 71.10.Li, 75.10.Dg1. INTRODUCTIONPresently, ab initio 
al
ulations of the ele
troni
band stru
ture for solids have be
ome a routine pro-
edure. But it is known that even the most sophis-ti
ated methods la
k some very important 
orrelatione�e
ts (for a review, see [1℄). One example is the fa-mous Hubbard repulsion, whi
h has to be in
luded ex-pli
itly into an e�e
tive Hamiltonian [1℄. The Hub-bard repulsion is not the only 
orrelation e�e
t. Inthis paper, we dis
uss another important 
lass of on-site 
orrelations that 
an be des
ribed in general asmulipole Coulomb intrasite intera
tions [2�4℄. Thesemany-ele
tron 
orrelations are well known in the the-ory of atoms [5℄, but are often ignored in the band*E-mail: alex�benik�yahoo.
om

stru
ture 
al
ulations of solids. Zener �rst realized theimportan
e of these 
orrelations and proposed a me
h-anism 
alled �double ex
hange� to explain the origin offerromagnetism and antiferromagnetism in solids [6℄.He 
onsidered the 
oupling of an in
omplete d-shell tothe 
ondu
tion ele
trons and 
on
luded that in a

or-dan
e with Hund's rules, it tends to align the spins ina ferromagneti
 manner. (This is the third prin
iple ofhis double-ex
hange 
on
ept [6℄.) Be
ause the multi-pole Coulomb intera
tions o�er a mi
ros
opi
 basis forHund's rules and 
an even des
ribe the ex
eptions tothem for a number of elements (like atomi
 
erium withthe 1G4 ground-state 
on�guration; see [7℄ and the ref-eren
es therein), we 
an apply the te
hnique to derivee�e
tive magneti
 
orrelations from �rst prin
iples.The problem was also addressed in a number of re-
ent publi
ations [8�10℄, where many-ele
tron f -states338
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tions : : :are embedded into a bath of 
ondu
tion ele
trons, andseveral parameters of the model (Kondon�Shortley�Slater radial integrals for the f -shell) are 
al
ulatedfrom �rst prin
iples in the lo
al density approxima-tion (LDA). It is 
alled the �Hubbard-I� approximation(HIA) and we 
ompare it with our model in Se
. 3.We start by explaining why multipole intera
tionsare not fully taken into a

ount. The limitations ofband stru
ture 
al
ulations be
ome apparent in thelimit of large distan
e between the 
onstituent atoms.In this 
ase, the energy spe
trum of a solid be
omesatomi
. Therefore, one should �nd dis
rete multipletspe
tra (the ground-state level and ex
ited terms) ofatoms, whi
h are well do
umented in the literature (seeRef. [7℄ for lanthanides). Instead, the full potentialLAPW and LMTO methods [11℄ give a ground-stateenergy 
al
ulated with a spheri
ally symmetri
 e�e
tivepotential. One-ele
tron energies of the 
orrespondings-, p-, d-, and f -states are obtained in the spheri
alapproximation. Atomi
 
al
ulations of that sort areinadequate in the sense that they do not reprodu
e theatomi
 terms observed in atomi
 spe
tra [5℄ and 
an-not give the 
orre
t value of the atomi
 ground-stateenergy.We further illustrate the main idea by 
onsidering asimple example of an atom with only two ele
trons: oneof the f type and the other of the s type. This modelis very useful for lanthanides and a
tinides, where theground states have a few 4f (5f) ele
trons and oneor two 6s (7s) ele
trons. In the limit of large latti
e
onstants, the band stru
ture 
al
ulations give energyspe
tra 
ontaining two energy levels, �(s) and �(f).(The in�uen
e of the rest of the 
rystal in the limit isnegligible.) The energy �(s) is independent of the spinproje
tion of an s ele
tron. The energy �(f) of an fele
tron is also independent of its spin (sz) and orbital(mz) proje
tions. The resultant 28-fold degenera
y ofthe two-ele
tron states is a 
onsequen
e of the e�e
tive�eld with the spheri
al symmetry. As a result, the lo-
alized states of an f ele
tron are un
orrelated with thestates of the s ele
tron. From the theory of atomi
 spe
-tra [5℄, we know that this pi
ture is in
orre
t. Thereexist important observations known as Hund's rules,whi
h pres
ribe the e�e
tive 
ouplings between the va-len
e ele
trons. In the 
ase of two ele
trons, the �rstHund's rule requires that the two ele
trons have thetotal spin quantum number S = s(s) + s(f) equal toone, S = 1 in the ground state, and S = 0 for theexited state. However, Hund's rules are just empiri
alobservations. The real driving for
e behind the termsplitting is the Coulomb intrasite repulsion between thevalen
e ele
trons. In what follows, we demonstrate this

by using the te
hnique of multipolar expansion, whi
hwas formulated in a number of publi
ations [2�4℄. It isworth noting that all intera
tions are derived from theCoulomb repulsion, whi
h distinguishes our approa
hfrom others based on model Hamiltonians 
onstru
tedfrom symmetry arguments [12℄ or some other 
onsider-ations.2. INTRASITE COULOMB CORRELATIONS2.1. Intera
tions in atomsWe �rst introdu
e two-ele
tron basis ket-ve
torsjIi = jis; if i: (1)Here, the index if = (mf ; sfz ) stands for the orbitalproje
tion (mf = 1�7) and spin proje
tion (sz = �1=2)quantum numbers of one f ele
tron. Therefore, thereare 14 states, to be labeled by if = 1�14. The twostates of an s ele
tron are labeled by is = 1; 2. The
umulative index I therefore ranges from 1 to 28. Thetwo-ele
tron wave fun
tions arehr1; r2jIi = 1p2 Xa=1;2 (�1)P (a) hra1jisi � hra2jif i; (2)where a stands for a permutation of two ele
trons sen-ding the �rst ele
tron to a1 = 1; 2 and the se
ond toa2 = 2; 1, 
orrespondingly. The fa
tor (�1)P a

ountsfor the parity of a permutation. We note that ea
hwave fun
tion 
orresponds to a 2� 2 determinant, andthere are 28 su
h determinants in total. Finally,hrjif i = Rf (r)hr̂jif i; (3a)hr0jisi = Rs(r0)hr̂0jisi; (3b)where Rf and Rs are the radial 
omponents of thef and s ele
trons and r̂ denotes the polar angles
 = (�; �). The f spin orbitals 
an be written ashr̂jif i = hr̂jmf ius(sz(f)); (4)where us is the spin fun
tion (s = �). The f -orbitalparts hr̂jmf i are expressed in terms of spheri
al har-moni
s Y ml (
) = hr̂jl;mi. We �nd it 
onvenient towork with real spheri
al harmoni
s Y �l [13℄, where� = 0, (m; 
), or (m; s).The order of indi
es in (1) is important. For ex-ample, as follows from the dynami
al equivalen
e ofele
trons, the state jis; if i 
an be redu
ed to jif ; isiby inter
hanging two ele
trons, i.e.,jif ; isi = �jis; if i: (5)339 9*



A. V. Nikolaev, K. H. Mi
hel ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009In what follows, we study the intraatomi
 
or-relations of ele
trons within a formalism based ona multipole expansion of the Coulomb potentialV (r; r0) = 1=jr � r0j between two ele
trons (
hargee = �1). The multipole expansion in terms of realspheri
al harmoni
s Y 0l , Y m;
l , and Y m;sl (we use thephase 
onvention and de�nitions in Ref. [13℄) is givenby V (r; r0) =Xl;� vl(r; r0)Y �l (r̂)Y �l (r̂0); (6)where � denotes m = 0, (m; 
), or (m; s) of the realspheri
al harmoni
s andvl(r; r0) = rl<r(l+1)> 4�2l + 1 (7)with r> = max(r; r0) and r< = min(r; r0).The dire
t matrix elements for the intrasiteCoulomb intera
tions are obtained if we 
onsider theif ! jf transitions for the �rst ele
tron and theis ! js transitions for the se
ond. We start fromEq. (6) and obtainhI jV (r; r0)jJiCoul ==Xl;� vff�ssl 
l;� (if ; jf ) 
l;� (is; js); (8)wherevff�ssl = Z dr r2 Z dr0 r02R2f (r)R2s(r0) vl(r; r0) (9)a

ounts for the average radial dependen
e. The tran-sition matrix elements 
l;� (it; jt0) (t = t0 = f; s) arede�ned by
l;� (i; j) = Z d
 hitjr̂iY �l (r̂) hr̂jjt0i: (10)We note that in the basis with real orbitals and withreal spheri
al harmoni
s Y �l , the 
oe�
ients 
l;� arereal.The other possibility is to 
onsider the transitionsif ! js for the �rst ele
tron and the transitionsis ! jf for the se
ond. This gives the ex
hange in-tera
tion; we then use (5) to return to the standardorder of the spin orbitals. We �ndhI jV (r; r0)jJiex
h == �Xl;� vfs�sfl 
l;� (if ; js) 
l;� (is; jf ); (11)

where the 
oe�
ients 
l;� are again given by Eq. (10)with t = f; t0 = s or t = s; t0 = f , andvfs�sfl = Z dr r2Rf (r)Rs(r) �� Z dr0 r02Rs(r0)Rf (r0) vl(r; r0): (12)The typi
al value of vfs�sfl is 0.7�0.8 eV for lanthanidesand 1.0�1.1 eV for a
tinides.For the sf 
on�guration, there are only three typesof these 
oe�
ients. For the s�s transition, only oneintegral hsjY 00 jsi = 1=p4� is nonzero. For the f�ftransitions and real spheri
al harmoni
s [13℄, the 
oef-�
ients 
l;� (if ; jf ) were tabulated in Ref. [2℄. Althoughsome 
oe�
ients 
l;� (if ; jf ) are not zero for l = 0; 2; 4,and 6, we 
on
lude from Eq. (8) that be
ause of thes�s transition, only the spheri
ally symmetri
 repul-sion (l = 0) is relevant. In that 
ase, the 
oe�
ient
l=0(if ; jf ) be
omes diagonal,
l=0(if ; jf ) = 1p4� Æ(if ; jf ); (13)and we rewrite Eq. (8) ashI jV (r; r0)jJiCoul = vff�ss04� Æ(if ; jf ) Æ(is; js): (14)We note that this expression is exa
tly the one obtainedin the approximation of a spheri
ally symmetri
 repul-sion. The 
ontribution of Eq. (14) is further 
ombinedwith the attra
tion from the nu
leus and the repulsionand ex
hange from the 
ore ele
trons. The 
ore ele
-trons form only 
losed ele
tron shells; in a

ordan
ewith the Unsöld theorem, this results in a spheri
allysymmetri
 ele
tron density (l = 0). Neither the �eld ofthe nu
leus not the 
losed shells give any 
ontributionwith l 6= 0.Finally, there are f�s and s�f transitions, whi
hrequire the evaluation of 
l;� (if ; js). From the ortho-gonality of spheri
al harmoni
s, we �nd thath0; 0jY �3 j3; �i = 1p4� ; (15)where � = 0, (m; 
), (m; s) for m = 1�3 and zero other-wise. We observe that the ex
hange term, Eq. (11),results in the repulsion 
omponent with a nontrivialo
tupolar 
omponent of the ele
tron density (l = 3).We rewrite Eq. (11) ashI jV (r; r0)jJiex
h == �vfs�sf34� Æ(�if ; � 0jf ) Æ(uif ; ujs) Æ(uis ; ujf ): (16)340



ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009 Elusive s�f intrasite intera
tions : : :The �rst Krone
ker symbol in the right-hand side ofEq. (16) states that the ex
hange 
oupling is possibleonly between the basis states I and J that have thesame f -orbital part (Y �3 ). The se
ond and the thirdKrone
ker symbol impose 
onditions on the spin 
om-ponents.We now 
onsider the matrix of the Hamiltonian inour basis jIi. There are only seven di�erent orbitalparts for our basis ve
tors, whi
h are 
hara
terizedby the orbital part of the f -ele
tron (� = 0, (m; 
),(m; s), where m = 1; 2; 3). We rearrange our 28 ve
-tors into groups of seven as follows: for I = 1�7, wede�ne uf = +1=2 and us = +1=2; for I = 8�14,uf = �1=2 and us = +1=2; for I = 15�21, uf = +1=2and us = �1=2; and for I = 22�28, uf = �1=2 andus = �1=2. Then the 28 � 28 matrix of the Hamilto-nian is given byhI jH jJi == ���������� (E � A)1̂ 0̂ 0̂ 0̂0̂ E1̂ �A1̂ 0̂0̂ �A1̂ E1̂ 0̂0̂ 0̂ 0̂ (E �A)1̂ ���������� ; (17)where 1̂ is the 7� 7 identity matrix, 0̂ is the 7� 7 zeromatrix, and A = vfs�sf34� > 0: (18)E is the energy of the atom in the spheri
al approxi-mation, l = 0. It is easy to show that matrix (17) hasthe (3�7 = 21)-fold degenerate eigenvalue E�A (spintriplets) and the 7-fold degenerate eigenvalue E + A(spin singlets). The result is in agreement with the�rst Hund's rule.The important 
on
lusion is that the energy of thesf 
on�guration is lower than in the spheri
ally sym-metri
 model by the value of A, Eq. (18). This value isalways larger than zero, be
ause a

ording to Eq. (12)it 
an be regarded as the self-intera
tion energy of a
lassi
al o
tupole with the radial density Rf (r)Rs(r).We 
omputed this energy for the lanthanides and thea
tinides (see the Table). The radial dependen
es for f -and s-ele
trons were taken from the density fun
tionaltheory (LDA) relativisti
 atomi
 
al
ulations. (These
omputations are of 
ourse based on a spheri
ally sym-metri
 model for the e�e
tive potential.) We note thatthis energy de
rease is visible for all lanthanides anda
tinides, and 
annot be negle
ted.

Table. Cal
ulated values of A = vfs�sf3 =4�, in meV,for the indi
ated atomi
 ground-state 
on�gurations oflanthanides and a
tinidesLanthanides A
tinidesLa 5d6s2 60.0 A
 6d7s2 139.8Ce 4f5d6s2 57.8 Th 6d27s2 101.6Pr 4f36s2 64.7 Pa 5f26d7s2 102.7Nd 4f46s2 61.5 U 5f36d7s2 94.1Pm 4f56s2 59.5 Np 5f46d7s2 88.2Sm 4f66s2 58.1 Pu 5f67s2 89.2Eu 4f76s2 58.9 Am 5f77s2 92.7Gd 4f75d6s2 56.3 Cm 5f76d7s2 84.2Tb 4f96s2 56.9 Bk 5f97s2 84.8Dy 4f106s2 55.9 Cf 5f107s2 82.5Ho 4f116s2 55.0 Es 5f117s2 80.9Er 4f126s2 54.0 Fm 5f127s2 80.0Tm 4f136s2 52.9 Md 5f137s2 79.5Yb 4f146s2 51.9 No 5f147s2 79.3Lu 4f145d6s2 50.8 Lr 5f147s27p 91.12.2. Intera
tions in solidsSo far, we have 
onsidered an atom with the fs
on�guration. The question is what happens to thiso
tupole intera
tion when we 
onstru
t a 
rystal 
on-sisting of su
h atoms? Intuitively, it is 
lear that theintera
tion 
annot disappear in the assembled solid. In-deed, any band state is just a linear 
ombination of thelo
al states, and vi
e versa. The e�e
tive on-site inter-a
tion in the basis of lo
al states, Eq. (17), persists inthe basis of delo
alized states [14℄. In what follows, wedemonstrate this expli
itly in the tight-binding appro-ximation for the s-ele
trons [15℄. We 
onsider a hypo-theti
al 
rystal of N atoms with the fs valen
e ele
tron
on�guration. We assume that the s-ele
trons are de-lo
alized and the f -ele
trons are lo
alized. This is the
ase for all lanthanides (ex
ept 
erium) and for the a
-tinides of the se
ond half of the series. We label thelo
al s and f states at a site n (n = 1�N) as jisin andjif in. Starting with the N lo
al jsin states (where wefo
us only on the orbital part of the s states), we 
an
onstru
t N independent delo
alized statesjki = 1pN Xn eik�x(n)jsin; (19)where the radius ve
tor x gives the position of the nu-
leus of atom n. In addition, ea
h state jki 
an have341



A. V. Nikolaev, K. H. Mi
hel ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009two di�erent spin polarizations, sz = �1=2. Althoughit is not always mentioned expli
itly, band stru
ture
al
ulations involve a single determinant trial wavefun
tion,hr1; r2; : : : ; rN jBi ==Xa (�1)P (a)hra1jk = 0; u+i � : : :�� : : : hranjk; ui � : : : � hraN jkF ; u�i; (20)where all one-ele
tron wave fun
tions with the waveve
tors from k = 0 to the Fermi level kF are present,and jBi stands for the metalli
 state of N ele
trons.In the absen
e of the lo
alized jfin states, the energyspe
trum of the s-ele
trons isE(k) = E0 � 
X� 
os(k �R�); (21)where 
 > 0 (attra
tive metalli
 bond), and the sum-mation is taken over the nearest neighbors indi
atedby the index � [15℄. Ea
h metalli
 state a

ommo-dates two itinerant ele
trons with two spin 
omponentssz = �1=2. Therefore, without the lo
alized f -ele
t-rons, we have a 
onventional metalli
 ground state andno magneti
 e�e
ts.We now 
onsider the intrasite intera
tion with thelo
alized states. We start with one 
ondu
tion ele
t-ron in the k state and N lo
alized f -ele
trons. The
ondu
tion ele
tron is also spe
i�ed by its spin polari-zation index is = 1; 2. As we have seen, the lo
alizedf states 
annot be 
hara
terized by a single determi-nant. We use the index ifg (g = 1�14) to des
ribe the14 f states at a site n, jifg in. For a 
rystal with Nsites, we therefore obtain 2 � 14N di�erent determi-nants of the type jis; if1 ; if2 ; : : : ; ifn; : : : ; ifNi. Be
auseit is not possible to deal with su
h a large number,we simplify the problem by 
onsidering only 28 of thedeterminants, jis; (if )N i, namely, those where all N lo-
alized f -ele
trons are in the same state 
hara
terizedby the index if = if1 = : : : = ifn = ifN . The problem
an then be solved in the redu
ed basis. We 
onsiderthe band ele
tron (k = 0) intera
ting with the lo
ali-zed ele
tron at a site n. Again, we �nd the o
tupoleintera
tion there, whi
h now has the formhIredjV (r; r0)jJrediex
hn == �AN Æ(�if ; � 0jf ) Æ(uif ; ujs) Æ(uis ; ujf ): (22)However, by summing over the N 
rystal sites, we ob-tain the same result as before (
f. Eq. (16)):hIredjV (r; r0)jJrediex
h == �AÆ(�if ; � 0jf ) Æ(uif ; ujs) Æ(uis ; ujf ): (23)

The last expression des
ribes the intera
tion of ones-ele
tron with N lo
alized ele
trons in the same quan-tum state if . As is 
lear from the approximation, thereis a one-to-one 
orresponden
e between the 
rystal ba-sis and the basis of lo
al states, Eq. (1):jis; (if )N i = jIired $ jIi = jis; if i: (24)Not surprisingly, the stru
ture of the matrix elementsis still given by Eq. (17). The energy spe
trum 
onsistsof the spin triplet E0 � j
j � A and the spin singletE0 � j
j+A. In the general 
ase of an ele
tron with awave ve
tor k, we obtainET (k) = E(k) �A; (25a)ES(k) = E(k) +A: (25b)We observe that the initial spe
trum of the s-ele
trons,Eq. (21), is split into two lines (see Fig. b). Ea
h line
orresponds to a many-ele
tron 
oupled state of the lo-
alized and a 
ondu
tion ele
tron. The splitting is ex-pe
ted to 
onsist of many lines for more 
omplex ele
-tron systems like sfn, pfn, or dfn (here, n = 1�13 isthe number of lo
alized f -ele
trons). To des
ribe su
hsubbands, we have to apply an e�
ient limited 
on�gu-ration intera
tion approa
h, whi
h we have formulatedhere for the s�f ele
tron system.3. DISCUSSIONIn the spin spa
e, the e�e
tive Hamiltonian inEqs. (25a) and (25b) 
an be written asH = E(k) � 32A� 2AS1 � S2; (26)where S1 is the spin of a 
ondu
tion ele
tron with theband energy E(k) and S2 is the spin of the lo
alizedele
tron. (We re
all that all lo
alized ele
trons havethe same spin proje
tion on all sites in the model.) TheHeisenberg type of Hamiltonian (26) is well known insolid state physi
s. Be
ause A > 0 in the mean-�eldapproximation (when hS2i 6= 0), it leads to a ferromag-neti
 ground state.We stress that initially, in 
onsidering the problemwith one 
ondu
tion ele
tron, the ground state was atriplet. Therefore, there is a more 
omplex pi
ture here,and it is more appropriate to speak of spin-triplet-likestates and spin-singlet-like states, meaning that bothtypes of pair 
orrelations are represented in the ele
-tron spe
trum. We re
all that for a triplet, the spin
omponents are Mz = �1, 0, +1 (in �B), and Mz = 0for a singlet. Therefore, the spin-triplet-like states 
an342
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tions : : :à b 
Singlet
TripletCEF, MF Nonmagneti
k

Energy

Energy spe
trum of itinerant ele
trons: a � no inter-a
tion with lo
alized f -ele
trons; b � triplet�singletsplitting due to the intrasite Coulomb intera
tion; 
 �further splitting of the triplet line due to the CEF ormean �eld (MF). The lowest subband 
an be nonmag-neti
be further lifted by other, weaker intera
tions. Themain 
andidates here are the 
rystal �eld and mean-�eld e�e
ts. Indeed, it is well known that even a weak
rystal ele
tri
 �eld (CEF) splits energy levels of highlydegenerate states [16, 17℄. It is also worth noting thatthe CEF for many-ele
tron states, or, more pre
isely,two-ele
tron s�f states, is understood here [2℄. In whatfollows, we 
onsider the symmetry aspe
ts of the prob-lem in more detail.The CEF and mean �eld for lanthanide and a
-tinide ions have been extensively dis
ussed in the litera-ture [16�20℄. In 
onne
tion with the present approa
h,it is worth noting that the CEF is regarded as the �rstmeaningful term of the intersite multipole expansion,when all neighbors of a lanthanide ion are 
onsideredin the spheri
al approximation (l = 0) [3℄. The CEFis a single-parti
le potential [18℄. In reality, the CEFshould be 
onsidered on equal footing with the spin�orbit 
oupling, as has been extensively dis
ussed in theliterature [16�18℄. But the in�uen
e of the spin�orbit
oupling on energy levels is very spe
i�
. As was shownin Ref. [3℄, the 
ombined e�e
t of the CEF and spin�or-bit 
oupling in the �eld with a 
ubi
 symmetry is as fol-lows. 1) The orbital momenta of lo
alized f states arenot free. They are strongly 
oupled to the spin degreesof freedom. The possible degenera
ies (irredu
ible rep-resentations) of the two-ele
tron states are A, T1, T2,and E. 2) The spin triplet ground state keeps beingtriply degenerate, but the magneti
 moments are �M,0 and M, where M 
an take any positive value, not

ne
essarily 1�B as before. The triplet ground state be-longs to the T1 or T2 irredu
ible representation of 
ubi
symmetry.The triply degenerate ele
tron band state is 
loseto the ferromagneti
 order. If the CEF splitting is su
hthat the lowest subband is a magneti
 doublet (�M),then the transition to a ferromagneti
 state is straight-forward. But we are presently more interested in otherpossibilities, where the e�e
tive ground state is a singlesubband with the quen
hed magneti
 moment,M = 0.We 
onsider two di�erent 
ases.First, the nonmagneti
 state 
an appear as a re-sult of a symmetry lowering (for example, from 
ubi
to hexagonal or trigonal). (Both 
ubi
 and hexagonalstru
tures are typi
al for lanthanides and a
tinides.)Then the degenera
y of the ground state 
hanges a
-
ording to the s
hemeT1(T2)! E +A1(A2): (27)The reason is that the double degenera
y is the highestsupported by the threefold symmetry C3 or the sixfoldC6. The doubly degenerate level of the E symmetryhas the magneti
 moments �M, while the level of theA symmetry is nonmagneti
. Whi
h level be
omes theground state depends 
ru
ially on the details of theCEF and the intersite intera
tion driving the symme-try lowering. Here, we do not dis
uss the driving for
esbehind the phase transition. There are many options:the 
ooperative Jahn�Teller e�e
t [21℄ (translation�ori-entation 
oupling [2; 22℄), quadrupole�quadrupole in-tera
tions [23℄, et
. The a
tual sour
e of symmetrylowering is immaterial for our analysis in what follows.Again, if the E level happens to be the lowest, theele
tron system be
omes ferromagneti
 at some tem-perature, as �rst was dis
ussed by Zener. Equally im-portant is another possibility, when the ground levelhas the A symmetry. In this 
ase, the ground stateis nonmagneti
 even if it does have the magneti
 mo-ments�M, 0, andM above the phase transition. Thenthe phase transition is a

ompanied by a loss of thesemagneti
 moments. In magneti
 sus
eptibility mea-surements, it is to manifest itself as the Curie law abovethe transition (T > T
 � �E = EA � EE) and a 
on-stant and low magneti
 sus
eptibility below the phasetransition (T < T
). Su
h unusual behavior is foundin some a
tinide and lanthanide 
ompounds (Ce [24℄,YbInCu4 [25℄, NpO2 [26℄), although theoreti
al inter-pretations remain 
ontroversial.The se
ond 
ase o

urs if there is no stru
turalphase transition, but the lowest level is nonmagneti
(the A symmetry) due to the CEF. Then the magneti
sus
eptibility follows the Curie law at su�
iently large343
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hel ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009temperatures (T > �E = EE �EA), but deviates 
on-siderably at low temperatures (T < �E). The mag-neti
 sus
eptibility de
reases and saturates as T ! 0,with a pronoun
ed maximum at T � �E. Su
h un-usual behavior was also found in some 
orrelated me-tals in
luding a
tinide and lanthanide 
ompounds, andin alkali-doped fullerides [27℄.The idea of the disappearan
e of magneti
 momentsis also provided by the Kondo and Anderson modelsand is often referred to as the Kondo e�e
t [1℄. Our
onsideration here is di�erent. It is based on the intra-site intera
tions treated at the ab initio level, while theAnderson hybridization [28℄ (whi
h is linear in the 
re-ation/annihilation operators for valen
e and lo
alizedele
trons) is zero from symmetry 
onsiderations. In ourmodel, the intera
tion between 
ondu
tion and lo
al-ized ele
trons takes the form of the Coulomb intrasiterepulsion, whi
h, being a density�density 
oupling, isbilinear in these operators.The present model is a 
lassi
al 
on�guration inter-a
tion approa
h to solids, whi
h 
aptures 
orrelatione�e
ts su
h as the double ex
hange and Ruderman�Kittel�Kasuya�Yosida (RKKY) intera
tion [29℄. For asingle atomi
-like site, it is 
ommon to use the 
on�gu-ration intera
tion, but for solids even the Hartree�Fo
ktreatment free of ex
hange approximations is rare. Wenote that an alternative approa
h to the HIA problemhas been developed in Refs. [8�10℄. It 
ombines thedensity fun
tional theory (LDA) treatment of 
ondu
-tion ele
trons with an atomisti
 des
ription of equiv-alent lo
alized f -ele
trons. Our model is similar toHIA in assuming an e�e
tive one-ele
tron intera
tionbetween delo
alized ele
trons. We note, however, thatthe multipole expansion of the Coulomb repulsion anda multideterminant basis set are impli
itly used for thef -blo
k in the HIA. On the other hand, in our model,we do not 
onsider pro
esses that 
hange the o

upa-tion number of f -ele
trons (su
h as f ! f2) in
ludedin the HIA.There have been attempts to in
orporate Hund'srules into the band stru
ture 
al
ulation s
hemethrough orbital polarization [30℄ or self-intera
tion 
or-re
tion (SIC) in the lo
al spin density approximation(LSD) framework [31℄. The orbital polarization mim-i
s Hund's rules via a phenomenologi
ally introdu
edone-ele
tron eigenvalue shift (�E3Lml) for the stateml. (Here, E3 is the Ra
ah parameter [30℄.) Also,as 
laimed in Ref. [31℄, the SIC�LSD approximation
an reprodu
e Hund's rules for f -states of 
-Ce.But it is not 
lear how good this des
ription is forother elements or in the 
ases where Hund's rulesare violated. We re
all that Hund's rules are just

empiri
al observations, while the real driving for
ebehind them is the Coulomb intera
tion. The latteris fully des
ribed by the multipole expansion in amany-ele
tron basis set, whi
h a

ounts for the atomi
term stru
ture in all 
ases.4. CONCLUSIONSThe presented pi
ture of 
oupling between lo
alizedand delo
alized ele
trons at the same site is 
lose tothe original idea of Zener, who 
onsidered that justHund's rules are responsible for the 
oupling [6℄. Fur-thermore, the treatment derived from �rst prin
iplesremains valid even when some of Hund's rules fail (see,e.g., atomi
 Ce in [2℄). The e�e
tive intera
tion be-tween lo
alized f -ele
trons at di�erent sites 
an alsobe 
onsidered a variant of the RKKY me
hanism [29℄.The 
oupling appears as a natural 
orrelation e�e
tthat requires a multideterminant basis set to be 
ap-tured. This many-ele
tron determinant basis set is easyto supply for a singular (atomi
-like) site as shown inRef. [3℄, but it is then a lo
alized basis set. Here, wehave expli
itly demonstrated that su
h intera
tions arepresent for the 
orresponding delo
alized basis set. The
on
lusion is not surprising, taking into a

ount that inthe tight-binding approximation, a delo
alized basis setis 
onstru
ted from lo
al fun
tions.It is also worth noting that the on-site intera
tionsbetween 
ondu
tion (s) and lo
alized (f) ele
trons areobtained from �rst prin
iples. Part of this intera
-tion results in an o
tupole repulsion (f�s transitions),whi
h disappears if one averages this intera
tion in or-der to introdu
e an e�e
tive mean-�eld potential. In-deed, su
h a potential U(r) should have the full 
rystal(
ubi
) symmetry and even parity under the inversionsymmetry. This implies that hsjU jfi = 0 in 
ontradis-tin
tion to Eqs. (16) and (23).We have added the CEF to the model and haveshown that the role of the CEF is 
ru
ial in determin-ing the magneti
 response of the ele
tron system. Theresulting ground state 
an be either ferromagneti
 ornonmagneti
. Thus, the ground state and the ex
ita-tion spe
trum of f -states are dominated by the 
om-bined e�e
t of the CEF and their intera
tion with de-lo
alized ele
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