
ÆÝÒÔ, 2009, òîì 136, âûï. 2 (8), ñòð. 338�345  2009
ELUSIVE s-f INTRASITE INTERACTIONS AND DOUBLEEXCHANGE IN SOLIDS: FERROMAGNETIC VERSUSNONMAGNETIC GROUND STATEA. V. Nikolaev a*, K. H. Mihel baInstitute of Physial Chemistry of Russian Aademy of Siene117915, Mosow, RussiaInstitute of Nulear Physis, Mosow State University119992, Mosow, RussiabUniversity of Antwerp2020, Antwerp, BelgiumReeived January 20, 2009From the theory of many-eletron states in atoms, we know that there exists a strong Coulomb repulsion,whih results in the eletroni term struture of atoms and is responsible for Hund's rules. By expanding theCoulomb on-site repulsion into a multipolar series, we derive this interation and show that it is also presentin solids as a orrelation e�et, whih means that the interation requires a multideterminant version of theHartree�Fok method. Of partiular interest is the ase where this interation ouples states of loalized (f)and deloalized (s) eletrons. We show that the interation is bilinear in the reation/annihilation operators forloalized eletrons and bilinear in the operators for ondution eletrons. To study the oupling, we onsidera simple model in the framework of an e�etive limited on�guration interation method with one loalizedf -eletron and one itinerant s-eletron per rystal site. The on-site multipole interation between the f - ands-eletrons is expliitly taken into aount. It is shown that depending on the low-lying exitation spetrumimposed by the rystal eletri �eld, the model an lead not only to ferromagnetism but also to a nonmagnetistate. The model is relevant for solids with loalized and itinerant eletron states.PACS: 71.10.Li, 75.10.Dg1. INTRODUCTIONPresently, ab initio alulations of the eletroniband struture for solids have beome a routine pro-edure. But it is known that even the most sophis-tiated methods lak some very important orrelatione�ets (for a review, see [1℄). One example is the fa-mous Hubbard repulsion, whih has to be inluded ex-pliitly into an e�etive Hamiltonian [1℄. The Hub-bard repulsion is not the only orrelation e�et. Inthis paper, we disuss another important lass of on-site orrelations that an be desribed in general asmulipole Coulomb intrasite interations [2�4℄. Thesemany-eletron orrelations are well known in the the-ory of atoms [5℄, but are often ignored in the band*E-mail: alex�benik�yahoo.om

struture alulations of solids. Zener �rst realized theimportane of these orrelations and proposed a meh-anism alled �double exhange� to explain the origin offerromagnetism and antiferromagnetism in solids [6℄.He onsidered the oupling of an inomplete d-shell tothe ondution eletrons and onluded that in aor-dane with Hund's rules, it tends to align the spins ina ferromagneti manner. (This is the third priniple ofhis double-exhange onept [6℄.) Beause the multi-pole Coulomb interations o�er a mirosopi basis forHund's rules and an even desribe the exeptions tothem for a number of elements (like atomi erium withthe 1G4 ground-state on�guration; see [7℄ and the ref-erenes therein), we an apply the tehnique to derivee�etive magneti orrelations from �rst priniples.The problem was also addressed in a number of re-ent publiations [8�10℄, where many-eletron f -states338



ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009 Elusive s�f intrasite interations : : :are embedded into a bath of ondution eletrons, andseveral parameters of the model (Kondon�Shortley�Slater radial integrals for the f -shell) are alulatedfrom �rst priniples in the loal density approxima-tion (LDA). It is alled the �Hubbard-I� approximation(HIA) and we ompare it with our model in Se. 3.We start by explaining why multipole interationsare not fully taken into aount. The limitations ofband struture alulations beome apparent in thelimit of large distane between the onstituent atoms.In this ase, the energy spetrum of a solid beomesatomi. Therefore, one should �nd disrete multipletspetra (the ground-state level and exited terms) ofatoms, whih are well doumented in the literature (seeRef. [7℄ for lanthanides). Instead, the full potentialLAPW and LMTO methods [11℄ give a ground-stateenergy alulated with a spherially symmetri e�etivepotential. One-eletron energies of the orrespondings-, p-, d-, and f -states are obtained in the spherialapproximation. Atomi alulations of that sort areinadequate in the sense that they do not reprodue theatomi terms observed in atomi spetra [5℄ and an-not give the orret value of the atomi ground-stateenergy.We further illustrate the main idea by onsidering asimple example of an atom with only two eletrons: oneof the f type and the other of the s type. This modelis very useful for lanthanides and atinides, where theground states have a few 4f (5f) eletrons and oneor two 6s (7s) eletrons. In the limit of large lattieonstants, the band struture alulations give energyspetra ontaining two energy levels, �(s) and �(f).(The in�uene of the rest of the rystal in the limit isnegligible.) The energy �(s) is independent of the spinprojetion of an s eletron. The energy �(f) of an feletron is also independent of its spin (sz) and orbital(mz) projetions. The resultant 28-fold degeneray ofthe two-eletron states is a onsequene of the e�etive�eld with the spherial symmetry. As a result, the lo-alized states of an f eletron are unorrelated with thestates of the s eletron. From the theory of atomi spe-tra [5℄, we know that this piture is inorret. Thereexist important observations known as Hund's rules,whih presribe the e�etive ouplings between the va-lene eletrons. In the ase of two eletrons, the �rstHund's rule requires that the two eletrons have thetotal spin quantum number S = s(s) + s(f) equal toone, S = 1 in the ground state, and S = 0 for theexited state. However, Hund's rules are just empirialobservations. The real driving fore behind the termsplitting is the Coulomb intrasite repulsion between thevalene eletrons. In what follows, we demonstrate this

by using the tehnique of multipolar expansion, whihwas formulated in a number of publiations [2�4℄. It isworth noting that all interations are derived from theCoulomb repulsion, whih distinguishes our approahfrom others based on model Hamiltonians onstrutedfrom symmetry arguments [12℄ or some other onsider-ations.2. INTRASITE COULOMB CORRELATIONS2.1. Interations in atomsWe �rst introdue two-eletron basis ket-vetorsjIi = jis; if i: (1)Here, the index if = (mf ; sfz ) stands for the orbitalprojetion (mf = 1�7) and spin projetion (sz = �1=2)quantum numbers of one f eletron. Therefore, thereare 14 states, to be labeled by if = 1�14. The twostates of an s eletron are labeled by is = 1; 2. Theumulative index I therefore ranges from 1 to 28. Thetwo-eletron wave funtions arehr1; r2jIi = 1p2 Xa=1;2 (�1)P (a) hra1jisi � hra2jif i; (2)where a stands for a permutation of two eletrons sen-ding the �rst eletron to a1 = 1; 2 and the seond toa2 = 2; 1, orrespondingly. The fator (�1)P aountsfor the parity of a permutation. We note that eahwave funtion orresponds to a 2� 2 determinant, andthere are 28 suh determinants in total. Finally,hrjif i = Rf (r)hr̂jif i; (3a)hr0jisi = Rs(r0)hr̂0jisi; (3b)where Rf and Rs are the radial omponents of thef and s eletrons and r̂ denotes the polar angles
 = (�; �). The f spin orbitals an be written ashr̂jif i = hr̂jmf ius(sz(f)); (4)where us is the spin funtion (s = �). The f -orbitalparts hr̂jmf i are expressed in terms of spherial har-monis Y ml (
) = hr̂jl;mi. We �nd it onvenient towork with real spherial harmonis Y �l [13℄, where� = 0, (m; ), or (m; s).The order of indies in (1) is important. For ex-ample, as follows from the dynamial equivalene ofeletrons, the state jis; if i an be redued to jif ; isiby interhanging two eletrons, i.e.,jif ; isi = �jis; if i: (5)339 9*



A. V. Nikolaev, K. H. Mihel ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009In what follows, we study the intraatomi or-relations of eletrons within a formalism based ona multipole expansion of the Coulomb potentialV (r; r0) = 1=jr � r0j between two eletrons (hargee = �1). The multipole expansion in terms of realspherial harmonis Y 0l , Y m;l , and Y m;sl (we use thephase onvention and de�nitions in Ref. [13℄) is givenby V (r; r0) =Xl;� vl(r; r0)Y �l (r̂)Y �l (r̂0); (6)where � denotes m = 0, (m; ), or (m; s) of the realspherial harmonis andvl(r; r0) = rl<r(l+1)> 4�2l + 1 (7)with r> = max(r; r0) and r< = min(r; r0).The diret matrix elements for the intrasiteCoulomb interations are obtained if we onsider theif ! jf transitions for the �rst eletron and theis ! js transitions for the seond. We start fromEq. (6) and obtainhI jV (r; r0)jJiCoul ==Xl;� vff�ssl l;� (if ; jf ) l;� (is; js); (8)wherevff�ssl = Z dr r2 Z dr0 r02R2f (r)R2s(r0) vl(r; r0) (9)aounts for the average radial dependene. The tran-sition matrix elements l;� (it; jt0) (t = t0 = f; s) arede�ned byl;� (i; j) = Z d
 hitjr̂iY �l (r̂) hr̂jjt0i: (10)We note that in the basis with real orbitals and withreal spherial harmonis Y �l , the oe�ients l;� arereal.The other possibility is to onsider the transitionsif ! js for the �rst eletron and the transitionsis ! jf for the seond. This gives the exhange in-teration; we then use (5) to return to the standardorder of the spin orbitals. We �ndhI jV (r; r0)jJiexh == �Xl;� vfs�sfl l;� (if ; js) l;� (is; jf ); (11)

where the oe�ients l;� are again given by Eq. (10)with t = f; t0 = s or t = s; t0 = f , andvfs�sfl = Z dr r2Rf (r)Rs(r) �� Z dr0 r02Rs(r0)Rf (r0) vl(r; r0): (12)The typial value of vfs�sfl is 0.7�0.8 eV for lanthanidesand 1.0�1.1 eV for atinides.For the sf on�guration, there are only three typesof these oe�ients. For the s�s transition, only oneintegral hsjY 00 jsi = 1=p4� is nonzero. For the f�ftransitions and real spherial harmonis [13℄, the oef-�ients l;� (if ; jf ) were tabulated in Ref. [2℄. Althoughsome oe�ients l;� (if ; jf ) are not zero for l = 0; 2; 4,and 6, we onlude from Eq. (8) that beause of thes�s transition, only the spherially symmetri repul-sion (l = 0) is relevant. In that ase, the oe�ientl=0(if ; jf ) beomes diagonal,l=0(if ; jf ) = 1p4� Æ(if ; jf ); (13)and we rewrite Eq. (8) ashI jV (r; r0)jJiCoul = vff�ss04� Æ(if ; jf ) Æ(is; js): (14)We note that this expression is exatly the one obtainedin the approximation of a spherially symmetri repul-sion. The ontribution of Eq. (14) is further ombinedwith the attration from the nuleus and the repulsionand exhange from the ore eletrons. The ore ele-trons form only losed eletron shells; in aordanewith the Unsöld theorem, this results in a spheriallysymmetri eletron density (l = 0). Neither the �eld ofthe nuleus not the losed shells give any ontributionwith l 6= 0.Finally, there are f�s and s�f transitions, whihrequire the evaluation of l;� (if ; js). From the ortho-gonality of spherial harmonis, we �nd thath0; 0jY �3 j3; �i = 1p4� ; (15)where � = 0, (m; ), (m; s) for m = 1�3 and zero other-wise. We observe that the exhange term, Eq. (11),results in the repulsion omponent with a nontrivialotupolar omponent of the eletron density (l = 3).We rewrite Eq. (11) ashI jV (r; r0)jJiexh == �vfs�sf34� Æ(�if ; � 0jf ) Æ(uif ; ujs) Æ(uis ; ujf ): (16)340



ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009 Elusive s�f intrasite interations : : :The �rst Kroneker symbol in the right-hand side ofEq. (16) states that the exhange oupling is possibleonly between the basis states I and J that have thesame f -orbital part (Y �3 ). The seond and the thirdKroneker symbol impose onditions on the spin om-ponents.We now onsider the matrix of the Hamiltonian inour basis jIi. There are only seven di�erent orbitalparts for our basis vetors, whih are haraterizedby the orbital part of the f -eletron (� = 0, (m; ),(m; s), where m = 1; 2; 3). We rearrange our 28 ve-tors into groups of seven as follows: for I = 1�7, wede�ne uf = +1=2 and us = +1=2; for I = 8�14,uf = �1=2 and us = +1=2; for I = 15�21, uf = +1=2and us = �1=2; and for I = 22�28, uf = �1=2 andus = �1=2. Then the 28 � 28 matrix of the Hamilto-nian is given byhI jH jJi == ���������� (E � A)1̂ 0̂ 0̂ 0̂0̂ E1̂ �A1̂ 0̂0̂ �A1̂ E1̂ 0̂0̂ 0̂ 0̂ (E �A)1̂ ���������� ; (17)where 1̂ is the 7� 7 identity matrix, 0̂ is the 7� 7 zeromatrix, and A = vfs�sf34� > 0: (18)E is the energy of the atom in the spherial approxi-mation, l = 0. It is easy to show that matrix (17) hasthe (3�7 = 21)-fold degenerate eigenvalue E�A (spintriplets) and the 7-fold degenerate eigenvalue E + A(spin singlets). The result is in agreement with the�rst Hund's rule.The important onlusion is that the energy of thesf on�guration is lower than in the spherially sym-metri model by the value of A, Eq. (18). This value isalways larger than zero, beause aording to Eq. (12)it an be regarded as the self-interation energy of alassial otupole with the radial density Rf (r)Rs(r).We omputed this energy for the lanthanides and theatinides (see the Table). The radial dependenes for f -and s-eletrons were taken from the density funtionaltheory (LDA) relativisti atomi alulations. (Theseomputations are of ourse based on a spherially sym-metri model for the e�etive potential.) We note thatthis energy derease is visible for all lanthanides andatinides, and annot be negleted.

Table. Calulated values of A = vfs�sf3 =4�, in meV,for the indiated atomi ground-state on�gurations oflanthanides and atinidesLanthanides AtinidesLa 5d6s2 60.0 A 6d7s2 139.8Ce 4f5d6s2 57.8 Th 6d27s2 101.6Pr 4f36s2 64.7 Pa 5f26d7s2 102.7Nd 4f46s2 61.5 U 5f36d7s2 94.1Pm 4f56s2 59.5 Np 5f46d7s2 88.2Sm 4f66s2 58.1 Pu 5f67s2 89.2Eu 4f76s2 58.9 Am 5f77s2 92.7Gd 4f75d6s2 56.3 Cm 5f76d7s2 84.2Tb 4f96s2 56.9 Bk 5f97s2 84.8Dy 4f106s2 55.9 Cf 5f107s2 82.5Ho 4f116s2 55.0 Es 5f117s2 80.9Er 4f126s2 54.0 Fm 5f127s2 80.0Tm 4f136s2 52.9 Md 5f137s2 79.5Yb 4f146s2 51.9 No 5f147s2 79.3Lu 4f145d6s2 50.8 Lr 5f147s27p 91.12.2. Interations in solidsSo far, we have onsidered an atom with the fson�guration. The question is what happens to thisotupole interation when we onstrut a rystal on-sisting of suh atoms? Intuitively, it is lear that theinteration annot disappear in the assembled solid. In-deed, any band state is just a linear ombination of theloal states, and vie versa. The e�etive on-site inter-ation in the basis of loal states, Eq. (17), persists inthe basis of deloalized states [14℄. In what follows, wedemonstrate this expliitly in the tight-binding appro-ximation for the s-eletrons [15℄. We onsider a hypo-thetial rystal of N atoms with the fs valene eletronon�guration. We assume that the s-eletrons are de-loalized and the f -eletrons are loalized. This is thease for all lanthanides (exept erium) and for the a-tinides of the seond half of the series. We label theloal s and f states at a site n (n = 1�N) as jisin andjif in. Starting with the N loal jsin states (where wefous only on the orbital part of the s states), we anonstrut N independent deloalized statesjki = 1pN Xn eik�x(n)jsin; (19)where the radius vetor x gives the position of the nu-leus of atom n. In addition, eah state jki an have341



A. V. Nikolaev, K. H. Mihel ÆÝÒÔ, òîì 136, âûï. 2 (8), 2009two di�erent spin polarizations, sz = �1=2. Althoughit is not always mentioned expliitly, band struturealulations involve a single determinant trial wavefuntion,hr1; r2; : : : ; rN jBi ==Xa (�1)P (a)hra1jk = 0; u+i � : : :�� : : : hranjk; ui � : : : � hraN jkF ; u�i; (20)where all one-eletron wave funtions with the wavevetors from k = 0 to the Fermi level kF are present,and jBi stands for the metalli state of N eletrons.In the absene of the loalized jfin states, the energyspetrum of the s-eletrons isE(k) = E0 � X� os(k �R�); (21)where  > 0 (attrative metalli bond), and the sum-mation is taken over the nearest neighbors indiatedby the index � [15℄. Eah metalli state aommo-dates two itinerant eletrons with two spin omponentssz = �1=2. Therefore, without the loalized f -elet-rons, we have a onventional metalli ground state andno magneti e�ets.We now onsider the intrasite interation with theloalized states. We start with one ondution elet-ron in the k state and N loalized f -eletrons. Theondution eletron is also spei�ed by its spin polari-zation index is = 1; 2. As we have seen, the loalizedf states annot be haraterized by a single determi-nant. We use the index ifg (g = 1�14) to desribe the14 f states at a site n, jifg in. For a rystal with Nsites, we therefore obtain 2 � 14N di�erent determi-nants of the type jis; if1 ; if2 ; : : : ; ifn; : : : ; ifNi. Beauseit is not possible to deal with suh a large number,we simplify the problem by onsidering only 28 of thedeterminants, jis; (if )N i, namely, those where all N lo-alized f -eletrons are in the same state haraterizedby the index if = if1 = : : : = ifn = ifN . The probleman then be solved in the redued basis. We onsiderthe band eletron (k = 0) interating with the loali-zed eletron at a site n. Again, we �nd the otupoleinteration there, whih now has the formhIredjV (r; r0)jJrediexhn == �AN Æ(�if ; � 0jf ) Æ(uif ; ujs) Æ(uis ; ujf ): (22)However, by summing over the N rystal sites, we ob-tain the same result as before (f. Eq. (16)):hIredjV (r; r0)jJrediexh == �AÆ(�if ; � 0jf ) Æ(uif ; ujs) Æ(uis ; ujf ): (23)

The last expression desribes the interation of ones-eletron with N loalized eletrons in the same quan-tum state if . As is lear from the approximation, thereis a one-to-one orrespondene between the rystal ba-sis and the basis of loal states, Eq. (1):jis; (if )N i = jIired $ jIi = jis; if i: (24)Not surprisingly, the struture of the matrix elementsis still given by Eq. (17). The energy spetrum onsistsof the spin triplet E0 � jj � A and the spin singletE0 � jj+A. In the general ase of an eletron with awave vetor k, we obtainET (k) = E(k) �A; (25a)ES(k) = E(k) +A: (25b)We observe that the initial spetrum of the s-eletrons,Eq. (21), is split into two lines (see Fig. b). Eah lineorresponds to a many-eletron oupled state of the lo-alized and a ondution eletron. The splitting is ex-peted to onsist of many lines for more omplex ele-tron systems like sfn, pfn, or dfn (here, n = 1�13 isthe number of loalized f -eletrons). To desribe suhsubbands, we have to apply an e�ient limited on�gu-ration interation approah, whih we have formulatedhere for the s�f eletron system.3. DISCUSSIONIn the spin spae, the e�etive Hamiltonian inEqs. (25a) and (25b) an be written asH = E(k) � 32A� 2AS1 � S2; (26)where S1 is the spin of a ondution eletron with theband energy E(k) and S2 is the spin of the loalizedeletron. (We reall that all loalized eletrons havethe same spin projetion on all sites in the model.) TheHeisenberg type of Hamiltonian (26) is well known insolid state physis. Beause A > 0 in the mean-�eldapproximation (when hS2i 6= 0), it leads to a ferromag-neti ground state.We stress that initially, in onsidering the problemwith one ondution eletron, the ground state was atriplet. Therefore, there is a more omplex piture here,and it is more appropriate to speak of spin-triplet-likestates and spin-singlet-like states, meaning that bothtypes of pair orrelations are represented in the ele-tron spetrum. We reall that for a triplet, the spinomponents are Mz = �1, 0, +1 (in �B), and Mz = 0for a singlet. Therefore, the spin-triplet-like states an342
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Energy spetrum of itinerant eletrons: a � no inter-ation with loalized f -eletrons; b � triplet�singletsplitting due to the intrasite Coulomb interation;  �further splitting of the triplet line due to the CEF ormean �eld (MF). The lowest subband an be nonmag-netibe further lifted by other, weaker interations. Themain andidates here are the rystal �eld and mean-�eld e�ets. Indeed, it is well known that even a weakrystal eletri �eld (CEF) splits energy levels of highlydegenerate states [16, 17℄. It is also worth noting thatthe CEF for many-eletron states, or, more preisely,two-eletron s�f states, is understood here [2℄. In whatfollows, we onsider the symmetry aspets of the prob-lem in more detail.The CEF and mean �eld for lanthanide and a-tinide ions have been extensively disussed in the litera-ture [16�20℄. In onnetion with the present approah,it is worth noting that the CEF is regarded as the �rstmeaningful term of the intersite multipole expansion,when all neighbors of a lanthanide ion are onsideredin the spherial approximation (l = 0) [3℄. The CEFis a single-partile potential [18℄. In reality, the CEFshould be onsidered on equal footing with the spin�orbit oupling, as has been extensively disussed in theliterature [16�18℄. But the in�uene of the spin�orbitoupling on energy levels is very spei�. As was shownin Ref. [3℄, the ombined e�et of the CEF and spin�or-bit oupling in the �eld with a ubi symmetry is as fol-lows. 1) The orbital momenta of loalized f states arenot free. They are strongly oupled to the spin degreesof freedom. The possible degeneraies (irreduible rep-resentations) of the two-eletron states are A, T1, T2,and E. 2) The spin triplet ground state keeps beingtriply degenerate, but the magneti moments are �M,0 and M, where M an take any positive value, not

neessarily 1�B as before. The triplet ground state be-longs to the T1 or T2 irreduible representation of ubisymmetry.The triply degenerate eletron band state is loseto the ferromagneti order. If the CEF splitting is suhthat the lowest subband is a magneti doublet (�M),then the transition to a ferromagneti state is straight-forward. But we are presently more interested in otherpossibilities, where the e�etive ground state is a singlesubband with the quenhed magneti moment,M = 0.We onsider two di�erent ases.First, the nonmagneti state an appear as a re-sult of a symmetry lowering (for example, from ubito hexagonal or trigonal). (Both ubi and hexagonalstrutures are typial for lanthanides and atinides.)Then the degeneray of the ground state hanges a-ording to the shemeT1(T2)! E +A1(A2): (27)The reason is that the double degeneray is the highestsupported by the threefold symmetry C3 or the sixfoldC6. The doubly degenerate level of the E symmetryhas the magneti moments �M, while the level of theA symmetry is nonmagneti. Whih level beomes theground state depends ruially on the details of theCEF and the intersite interation driving the symme-try lowering. Here, we do not disuss the driving foresbehind the phase transition. There are many options:the ooperative Jahn�Teller e�et [21℄ (translation�ori-entation oupling [2; 22℄), quadrupole�quadrupole in-terations [23℄, et. The atual soure of symmetrylowering is immaterial for our analysis in what follows.Again, if the E level happens to be the lowest, theeletron system beomes ferromagneti at some tem-perature, as �rst was disussed by Zener. Equally im-portant is another possibility, when the ground levelhas the A symmetry. In this ase, the ground stateis nonmagneti even if it does have the magneti mo-ments�M, 0, andM above the phase transition. Thenthe phase transition is aompanied by a loss of thesemagneti moments. In magneti suseptibility mea-surements, it is to manifest itself as the Curie law abovethe transition (T > T � �E = EA � EE) and a on-stant and low magneti suseptibility below the phasetransition (T < T). Suh unusual behavior is foundin some atinide and lanthanide ompounds (Ce [24℄,YbInCu4 [25℄, NpO2 [26℄), although theoretial inter-pretations remain ontroversial.The seond ase ours if there is no struturalphase transition, but the lowest level is nonmagneti(the A symmetry) due to the CEF. Then the magnetisuseptibility follows the Curie law at su�iently large343
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empirial observations, while the real driving forebehind them is the Coulomb interation. The latteris fully desribed by the multipole expansion in amany-eletron basis set, whih aounts for the atomiterm struture in all ases.4. CONCLUSIONSThe presented piture of oupling between loalizedand deloalized eletrons at the same site is lose tothe original idea of Zener, who onsidered that justHund's rules are responsible for the oupling [6℄. Fur-thermore, the treatment derived from �rst priniplesremains valid even when some of Hund's rules fail (see,e.g., atomi Ce in [2℄). The e�etive interation be-tween loalized f -eletrons at di�erent sites an alsobe onsidered a variant of the RKKY mehanism [29℄.The oupling appears as a natural orrelation e�etthat requires a multideterminant basis set to be ap-tured. This many-eletron determinant basis set is easyto supply for a singular (atomi-like) site as shown inRef. [3℄, but it is then a loalized basis set. Here, wehave expliitly demonstrated that suh interations arepresent for the orresponding deloalized basis set. Theonlusion is not surprising, taking into aount that inthe tight-binding approximation, a deloalized basis setis onstruted from loal funtions.It is also worth noting that the on-site interationsbetween ondution (s) and loalized (f) eletrons areobtained from �rst priniples. Part of this intera-tion results in an otupole repulsion (f�s transitions),whih disappears if one averages this interation in or-der to introdue an e�etive mean-�eld potential. In-deed, suh a potential U(r) should have the full rystal(ubi) symmetry and even parity under the inversionsymmetry. This implies that hsjU jfi = 0 in ontradis-tintion to Eqs. (16) and (23).We have added the CEF to the model and haveshown that the role of the CEF is ruial in determin-ing the magneti response of the eletron system. Theresulting ground state an be either ferromagneti ornonmagneti. Thus, the ground state and the exita-tion spetrum of f -states are dominated by the om-bined e�et of the CEF and their interation with de-loalized eletron states.REFERENCES1. P. Fulde, Eletron Correlations in Moleules andSolids, Springer Heidelberg, (1995).344
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