НЕПАРАМЕТРИЧЕСКОЕ МАСШТАБНОЕ УРАВНЕНИЕ СОСТОЯНИЯ ДЛЯ ФЛЮИДОВ С УЧЕТОМ АСИММЕТРИИ

П. П. Безверхий^{а, b*}, В. Г. Мартынец^а, Э. В. Матизен^а

^а Институт неорганической химии им. А. В. Николаева Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 20 марта 2009 г.

Предложено непараметрическое масштабное уравнение состояния в явной форме с учетом асимметрии реальной жидкости, которое в приведенных переменных плотности $(\rho - \rho_c)/\rho_c$ и температуры $(T - T_c)/T_c$ адекватно описывает $P - \rho - T$ -данные вблизи критических точек флюидов. Аппроксимация новым уравнением $P - \rho - T$ -данных He^4 , SF_6 и изобутана в критической области показывает, что вполне достаточно учитывать асимметрию по плотности в членах уравнения состояния. Расчет асимметрии пограничной кривой по константам асимметричного уравнения состояния приводит к совпадению с ходом «закона прямолинейного диаметра» для экспериментальных кривых насыщения в данных жидкостях не только в асимптотической, но и в достаточно далекой по плотности от критической точки области ($|(\rho - \rho_c)/\rho_c| < 0.5$). Предлагаемое асимметричное уравнение состояния описывает $P - \rho - T$ -данные в критической области ($|(T - T_c)/T_c|$, $|(\rho - \rho_c)/\rho_c| < 0.1$) с погрешностью, не превышающей экспериментальную. Получены также явные выражения энтропии и теплоемкости, учитывающие асимметрию по плотности при их расчете с использованием констант уравнения состояния. Новое уравнение сохраняет преимущества простоты применения к описанию $P - \rho - T$ -данных и теплоемкости в отличие от параметрических уравнений состояния на основе линейной модели Скофилда.

PACS: 05.70.Ce, 05.70.Jk, 64.10.+h

1. УРАВНЕНИЕ СОСТОЯНИЯ

Масштабные уравнения состояния применяются для описания симметричных систем, подобных модели Изинга, вблизи критических точек. Для расширения области применимости скэйлинга предложены варианты этих уравнений, учитывающие асимметрию и неасимптотическое поведение реальных жидкостей, см., например, [1–3]. Одновременно усложнился вид таких уравнений состояния, так как они получены на основе параметрической линейной модели Скофилда [4].

В этой работе для учета асимметрии реальных жидкостей относительно критической изохоры применен метод, использованный нами ранее для получения простого симметричного масштабного уравнения состояния для флюидов, которое в явном виде выражает давление P как функцию $\tau = (T - T_c)/T_c$, $\Delta \rho = (\rho - \rho_c)/\rho_c$ (ρ — плотность, T — температура) и описывает не только $P - \rho - T$ -данные, но и теплоемкость в критической области [5–8]. Следуя этому методу, запишем выражение для обобщенного упорядочивающего поля h_1 (аналога химического потенциала для симметричных систем) в виде

$$h_{1} = mA_{1}|A_{1}|^{\delta-1} + kA_{1}[(h_{2} - h_{p})^{\gamma} - (h_{b} - h_{p})^{\gamma} - |h_{b}|^{\gamma}], \quad (1)$$

где

$$h_b = -q|A_1|^{1/\beta}, \quad h_p = -q_p|A_1|^{1/\beta}.$$
 (2)

В уравнениях (1), (2) h_2 — обобщенное неупорядочивающее поле (аналог температуры), сопряженное обобщенной плотности A_2 (аналог энтропии), A_1 — сопряженная полю h_1 обобщенная плотность (аналог плотности системы), входящие в дифференциал $d\Phi = A_1 dh_1 + A_2 dh_2$ термодинамического

^{*}E-mail: ppb@che.nsk.su

потенциала симметричной системы; γ — критический индекс сжимаемости на критической изохоре, β — индекс пограничной кривой, $\delta = (\gamma + \beta)/\beta$ индекс критической изотермы; m, k — системно-зависимые подгоночные константы. Поле h_b значения h_2 на кривой насыщения (бинодали), h_p значения h_2 на S-спинодали (кривой расходимости обобщенной восприимчивости $(\partial A_2/\partial h_2)_{h_1}$, расположенной в лабильной области [6]). В уравнении (2) $q = (m/k)^{1/\gamma}$ и q_p — коэффициенты бинодали и S-спинодали, связанные соотношением универсальности $q_p/q = 4.0015$ [8] при значениях $\gamma = 1.239$, $\beta = 0.3255$ для трехмерной модели Изинга [1], принятых в качестве универсальных в данной статье для описания разных по асимметрии He⁴, SF₆ и изобутана. Спинодаль $h_s = -q_s |A_1|^{1/\beta}$ для уравнения (1) (кривая расходимости обобщенной сжимаемости $(\partial A_1/\partial h_1)_{h_2}$, ограничивающая область лабильных состояний), где h_s — значения h_2 на спинодали, находится из обычного определения $(\partial h_1/\partial A_1) = 0$ при $h_2 = \text{const.}$ При этом отношение $q_s/q = 2.4196$ находится путем численного решения соответствующего нелинейного уравнения [8] при известном отношении $q_p/q = 4.0015$.

Перейдем к описанию критической области жидкости с помощью преобразований Покровского [9], выбрав в качестве аналога поля h_1 отклонение химического потенциала μ от его значения μ_c в критической точке. Согласно [9], $\mu - \mu_c$, $\Delta \rho$, σ , τ являются линейной комбинацией полей и сопряженных им плотностей симметричной системы:

$$\Delta \rho = A_1 + bA_2, \quad \sigma = A_2 + aA_1, \quad (3)$$
$$h_1 = \eta + a\tau, \quad h_2 = \tau + b\eta,$$

где $\eta = (\mu - \mu_c)(\rho_c/P_c), \sigma = (s - s_c)(T_c/P_c), P$ — давление, s — энтропия единицы объема, индекс «c» отмечает критическое значение величины, a и b — константы, определяющие величину «перемешивания» полей.

Используя уравнение (1), получим уравнения состояния в симметричных переменных, связанных через уравнения (3) с измеряемыми величинами P, ρ и T. Очевидно, дифференциал $dP = \rho d\mu + s dT$ [10] в безразмерных переменных имеет вид

$$d\pi = (1 + \Delta\rho) \, d\eta + (\sigma + s_c T_c/P_c) \, d\tau, \qquad (4)$$

или, переходя с помощью формул (3) к переменным симметричной модели,

$$d\pi = \left(\frac{1-bM}{1-ab} + A_1\right) dh_1 + \left(\frac{M-a}{1-ab} + A_2\right) dh_2.$$
(5)

Здесь $\pi = (P - P_c)/P_c, M \equiv s_c T_c/P_c.$

Дифференциал $d\pi$ (5) также является полным в силу полноты $d\Phi$ для симметричной системы. Это позволяет получить выражение для A_2 [8]:

$$A_{2} = -k\gamma \int A_{1} \left(h_{2} + q_{p} |A_{1}|^{1/\beta} \right)^{\gamma - 1} \times dA_{1} + \varphi_{1}(h_{2}), \quad (6)$$

где $\varphi_1(h_2)$ — неизвестная функция, связанная с регулярной частью A_2 . Интеграл в формуле (6) может быть записан в виде ряда (при $h_2 > 0$ и при $h_b < h_2 < 0$). Разлагая в ряд подынтегральную функцию (с предварительной заменой переменной интегрирования A_1 на $t = h_2 + q_p |A_1|^{1/\beta}$ при условии $h_2 < t$) и интегрируя, получим выражение для A_2 в виде

$$A_{2} = \frac{k\gamma\beta \left(h_{2} + q_{p}|A_{1}|^{1/\beta}\right)^{1-\alpha}}{q_{p}^{2\beta}} \times \left[\frac{1}{\alpha - 1} + \sum_{n=1}^{\infty} \frac{(2\beta - n)!}{n!(n+\alpha - 1)} \frac{(-h_{2})^{n}}{\left(h_{2} + q_{p}|A_{1}|^{1/\beta}\right)^{n}}\right] + C_{1}h_{2}, \quad (7)$$

где для φ_1 выбран простейший вид $\varphi_1(h_2) = C_1h_2$, C_1 — константа. Из выражения (7) можно получить асимптотический вид A_2 на критической изохоре $(A_1 = 0)$:

$$A_2(h_2, A_1 = 0) = C_s h_2^{1-\alpha} + C_1 h_2, \qquad (8)$$

где 1 – $\alpha = \gamma + 2\beta - 1$, $C_s = k\beta\gamma B(\alpha - 1, 2\beta)/q_p^{2\beta}$, $B(\alpha - 1, 2\beta)$ — бета-функция Эйлера, значение которой при $\alpha = 0.11$, $\beta = 0.3255$ равно 2.6396.

Получив аналитический вид для A_2 (6), восстановим $d\pi$ (5), интегрируя первый член (5) по h_1 от 0 до h_1 при $h_2 = \text{const}$, а второй член (5) по h_2 от 0 до h_2 при $h_1 = 0$ (меняя порядок интегрирования в нем и считая, что условие $h_1 = 0$ выполняется при $A_1 = 0$), имеем для давления в симметричных переменных:

$$\pi = \frac{1 - bM}{1 - ab} h_1 - \frac{k\delta}{1 + \delta} (q_p - q)^{\gamma} |A_1|^{\delta + 1} + kA_1^2 (h_2 + q_p |A_1|^{1/\beta})^{\gamma} - k \int_0^{A_1} x \left(h_2 + q_p |x|^{1/\beta} \right)^{\gamma} dx + \frac{(M - a)h_2}{1 - ab} + \frac{C_s h_2^{2 - \alpha}}{2 - \alpha} + \frac{C_1 h_2^2}{2}, \quad (9)$$

где $h_1 = -k(q_p - q)^{\gamma} A_1 |A_1|^{\delta - 1} + k A_1 (h_2 + q_p |A_1|^{1/\beta})^{\gamma}$ следует из уравнений (1), (2). Это уравнение состояния в силу условий (3) при b = 0 ($\Delta \rho = A_1, \tau = h_2$) совпадает с полученной ранее формой симметричного уравнения состояний [6]. В симметричной модели пограничная кривая находится из условия $h_1 = 0$, которое для уравнения (1) приводит к зависимости (2) для $h_2 = h_b$ со значением $q = (m/k)^{1/\gamma}$. Для учета асимметрии кривой насыщения согласно (3) имеем на кривой равновесия фаз $(h_1 = 0) \eta = -a\tau$, $h_2 = (1 - ab)\tau$, т. е. ввиду предполагаемой малости b можно считать $h_2 = \tau$. Следовательно, асимметрия в основном определяется преобразованием плотности $\Delta \rho = A_1 + bA_2$, где интеграл в формуле (6) вдоль кривой насыщения в пределах от 0 до A_1 может быть записан точным выражением с учетом связи $h_2 = -q|A_1|^{1/\beta}$ и вида интеграла на нижнем пределе (8):

$$A_{2} = \left[-\frac{k\gamma\beta(q_{p}-q)^{\gamma-1}}{q^{1-\alpha}(1-\alpha)} - C_{s} \right] |h_{2}|^{1-\alpha}.$$
 (10)

Подставляя $h_2 = \tau$ и $A_1 = \Delta \rho - bA_2$ (где A_2 определяется формулой (10)) в выражение $h_2 = -q|A_1|^{1/\beta}$, запишем асимметричный вид бинодали

$$\Delta \rho = \pm \left(\frac{\tau}{-q}\right)^{\beta} - b \left[\frac{k\gamma\beta}{1-\alpha} \frac{(q_p - q)^{\gamma - 1}}{q^{1-\alpha}} + C_s\right] |\tau|^{1-\alpha}$$

и «закон прямолинейного диаметра»

$$\frac{\rho_l + \rho_g}{2\rho_c} = 1 - b \left[\frac{k\beta\gamma(q_p - q)^{\gamma - 1}}{(1 - \alpha)q^{1 - \alpha}} + C_s \right] |\tau|^{1 - \alpha}.$$
 (11)

Эти выражения соответствуют асимметрии по скейлингу [9]. Асимметричный вид спинодали соответствует бинодали с заменой *q* на *q*_s.

Для получения асимметричного уравнения состояния из формулы (9) с помощью преобразований (3) применим также приближение $h_2 = \tau$, учитывая, что на критической изохоре (A₁ = 0) выполняется условие $h_1 = 0$, как и для кривой равновесия фаз. Замена A_1 в уравнении состояния (9) на выражение $A_1 = \Delta \rho - b A_2(\tau, A_1 \approx \Delta \rho)$ в качестве первого приближения, где интеграл A_2 в пределах $0-\Delta\rho$ представляется формулой (6) или (7), приводит к громоздкому и неудобному для практики выражению асимметричного уравнения состояния. Поэтому запишем интеграл в выражении (6), преобразуя его по формуле «взятия по частям» в пределах от 0 до $\Delta \rho$ к виду, содержащему под интегралом множитель $(h_2 + q_p |A_1|^{1/\beta})^{\gamma}$, который можно разложить по отношению $q_p |A_1|^{1/\beta} / h_2 < 1$ с хорошей точностью $(\gamma \approx 1)$ до членов первого порядка [5]. В результате получаем аппроксимационную формулу для A_2 :

$$A_{2} = -k\gamma \int_{0}^{\Delta\rho} x \left(\tau + q_{p} |x|^{1/\beta}\right)^{\gamma-1} dx \approx \\ \approx -k\gamma |\tau|^{\gamma-1} \frac{\Delta\rho^{2}}{2}, \quad (12)$$

где принято в качестве нулевого приближения $A_1 \approx \Delta \rho$ с учетом того, что $\Delta \rho$ для симметричной системы мало отличается от $\Delta \rho$ реальной жидкости. Расчет с константами симметричного уравнения состояния показывает, что поведение аппроксимации A_2 (12) и точной формулы (7) для A_2 в пределах $0-\Delta \rho$ практически совпадает в широком интервале по $\Delta \rho$ вне асимптотической области. В результате имеем простое преобразование A_1 в плотность с учетом асимметрии:

$$A_1 = \Delta \rho + bk\gamma |\tau|^{\gamma - 1} \frac{\Delta \rho^2}{2}.$$
 (13)

Разлагая в ряд с такой же точностью скобку $(h_2 + q_p |x|^{1/\beta})^{\gamma}$ под интегралом в уравнении состояния (9) и учитывая выражение для h_1 , формулу (13) для A_1 и $\tau = h_2$, получим масштабное уравнение состояния с асимметричными членами, удобное для аппроксимации $P-\rho-T$ -данных:

$$\pi = \frac{1 - bM}{1 - ab} \left[-k(q_p - q)^{\gamma} A_1 |A_1|^{\delta - 1} + kA_1 \left(\tau + q_p |A_1|^{1/\beta} \right)^{\gamma} \right] - \frac{k\delta}{1 + \delta} (q_p - q)^{\gamma} |A_1|^{\delta + 1} + kA_1^2 \left(\tau + q_p |A_1|^{1/\beta} \right)^{\gamma} - k|\tau|^{\gamma - 1} A_1^2 \left(\frac{\tau}{2} + \frac{\gamma\beta}{1 + 2\beta} q_p |A_1|^{1/\beta} \right) + \frac{(M - a)\tau}{1 - ab}, \quad (14)$$

$$A_1 = \Delta \rho + bk\gamma |\tau|^{\gamma - 1} \Delta \rho^2 / 2.$$

При выводе выражения (14) учтено, что интеграл в уравнении состояния (9) на нижнем пределе равен $-C_s h_2^{(2-\alpha)}/(2-\alpha) - C_1 h_2^2/2$. Следует отметить, что приближенное выражение для интеграла, примененное в уравнении состояния (14), непригодно в пределе $\tau \to 0$ и $\Delta \rho \to -1$ (разложение интеграла в формуле (9) в этом пределе ведется по $h_2/q_p |x|^{1/\beta} < 1$). При вычислении производных от давления также следует пользоваться исходным уравнением состояния (9), приближением (13) для A_1 и $\tau = h_2$. Например, для сжимаемости из уравнений (9), (13) получаем выражение

где $k_1 = (1 - bM)/(1 - ab)$ и A_1 находятся из формулы (13). Преобразования $\sigma = A_2 + aA_1$ для энтропии, $\tau = h_2$ и выражения (7), (13) позволяют учесть также асимметрию в поведении энтропии и теплоемкости. Для теплоемкости C_v на изохоре получаем

$$\frac{T_c^2 \rho C_v}{P_c T} = \left(\frac{\partial \sigma}{\partial \tau}\right)_{\rho} = -k\gamma(\gamma - 1) \times \\ \times \int \left(\tau + q_p |A_1|^{1/\beta}\right)^{\gamma - 2} A_1 dA_1 + bk\gamma(\gamma - 1) \times \\ \times \left[a - k\gamma A_1 \left(\tau + q_p |A_1|^{1/\beta}\right)^{\gamma - 1}\right] \times \\ \times \frac{|\tau|^{\gamma - 2} \Delta \rho^2}{2} + C_1, \quad (15)$$

где интеграл представлен рядом в явном виде (для $\tau > \tau_b$ — температуры бинодали):

$$\int \left(\tau + q_p |A_1|^{1/\beta}\right)^{\gamma - 2} A_1 dA_1 = = -\frac{\beta (\tau + q_p |A_1|^{1/\beta})^{-\alpha}}{q_p^{2\beta}} \times \times \left[\frac{1}{\alpha} + \sum_{n=1}^{\infty} \frac{(2\beta - n)!}{n!(n+\alpha)} \frac{(-\tau)^n}{(\tau + q_p |A_1|^{1/\beta})^n}\right],$$

а вместо A_1 подставляется (13). На критической изохоре ($A_1 = 0$) из формулы (15) следует:

$$\frac{T_c^2 \rho C_v}{P_c T} = \left[k\beta \gamma (\gamma - 1) \frac{B(\alpha, 2\beta)}{q_p^{2\beta}} \right] \tau^{-\alpha} + C_1,$$

где $B(\alpha, 2\beta) = 9.8340$ — бета-функция Эйлера (при $\alpha = 0.11, \beta = 0.3255$). Формула для C_v (15) при b = 0 переходит в уравнение для теплоемкости симметричной системы, расчет по которому совпадает с данными C_v для He⁴ с погрешностью до 4 % [5].

В асимметричном уравнении состояния (14) подгоночными константами являются k, q (или m), a, b. Безразмерная энтропия M в критической точке может также быть подгоночной константой или ее значение рассчитывается из термодинамических данных. Асимметричное уравнение состояния (14) содержит до пяти подгоночных констант и по структуре сходно с простым симметричным уравнением состояния в явном виде, предложенным нами ранее в качестве нулевого приближения [11] для описания только $P-\rho-T$ -данных.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Для определения подгоночных констант уравнения (14) мы взяли *Р-р-Т*-данные по He⁴ [12] и по SF₆ [13], являющиеся наиболее точными в критической области, при получении которых интервал по плотности был достаточно широким ($|\Delta \rho| < 0.5$). Это важное условие, так как асимметрия пограничной кривой для этих систем, как показал анализ данных [14, 15], экспериментально становится заметной для He^4 при $|\Delta \rho| > 0.3$, для SF_6 — при $|\Delta \rho| > 0.25$. Внутри этих интервалов плотности бинодаль может быть описана также симметричной кривой в пределах погрешности эксперимента. Для изобутана (i-C₄H₁₀) мы использовали *P*-*ρ*-*T*-данные в интервале от 380 К до 500 К из нескольких работ разных авторов [16-22], так как данных для критической области в пределах $|\Delta \rho| < 0.5$ и $|\tau| < 0.2$ в рамках одной работы нет (несмотря на значительное число исследований), и построенные на основе их данных многоконстантные справочные уравнения состояния в виде полиномов, см., например, недавнюю статью с обзором [23].

Для аппроксимации Р-р-Т-данных уравнением (14) нами использованы экспериментальные величины P_c , ρ_c , T_c , рекомендованные в работах для гелия [24] ($T_c = 5.1968$ K, $P_c = 0.227195$ МПа (1704.1 Торр), $ho_c~=~69.56~{
m kr/m^3})$ и для ${
m SF_6}$ [13] $(T_c = 318.723 \text{ K}, P_c = 3.755 \text{ MIIa}, \rho_c = 742.26 \text{ }\text{kr/m}^3).$ Эти же значения P_c, ρ_c, T_c использовались нами ранее при аппроксимациях *Р*-*р*-*T*-данных симметричным непараметрическим уравнением состояния (см., например, [5]) и объединенным уравнением состояния [17]. Массивы данных включали 20 изотерм, 553 точки $(-0.030 < \tau < 0.035)$ для He^4 [12] и 24 изотермы, 555 точек ($-0.30 < \tau < 0.08, P \le 10$ МПа) для SF₆ [13], из которых выбирались точки в заданных интервалах по плотности. Сводный массив данных для изобутана включал 17 изотерм, 217 точек ($-0.08 < \tau < 0.23$, $P \leq 22$ МПа). Значения $T_c = 407.81 \text{ K}, P_c = 3.629 \text{ МПа}, \rho_c = 225.5 \text{ кг/м}^3$ для изобутана, которые использованы ранее и в других уравнениях состояния, взяты из работ [23,25], так как экспериментальные величины у разных авторов находятся в интервалах: по T_c — от 407.76 К [18] до 407.885 К [16], по ho_c — от 221 кг/м 3 [20] до 233 кг/м³ [18]. Для адекватного сравнения разных систем значения критических индексов при аппроксимациях данных этих флюидов не были подгоночными, а взяты из трехмерной модели Изинга [1].

3. РЕЗУЛЬТАТЫ АППРОКСИМАЦИИ

Для нахождения подгоночных констант уравнения состояния (14) применялись стандартный метод наименьших квадратов (для линейных систем нормальных уравнений) и метод конфигураций (для нелинейных уравнений). Среднеквадратичная погрешность аппроксимации σ оценивалась по формуле

$$\sigma = \sqrt{\frac{1}{N-n} \sum_{1}^{N} (P_{i,exp} - P_{i,calc})^2}$$

где N — число точек выборки из массива данных, n — число констант уравнений состояния, $P_{i,exp}-P_{i,calc}$ — разность между экспериментальным и расчетным значением давления. При изменении Pболее, чем в 5–10 раз в интервалах по ρ и T, минимизировался также и относительный вклад этой разности в квадратичный функционал, при этом

$$\sigma_{\%} = \sqrt{\frac{1}{N-n} \sum_{1}^{N} \left(\frac{P_{i,exp} - P_{i,calc}}{P_{i,exp}}\right)^{2}} \cdot 100 \%.$$

При оптимальных значениях констант асимметричного уравнения состояния (14) для He⁴ (q = 0.48643, k = 6.9864, a = 0.8680, b = -0.00965, M = 4.8598 при $\sigma/P_c = 0.22$ %), для SF₆ (q = 0.2080, k = 14.6102, a = 0.9444, b = -0.0148, M = 8.4043 при $\sigma_{\%} = 0.53$ %) и изобутана (q = 0.19790, k = 13.0811, a = 1.8701, b = -0.0195, M = 9.3781 при $\sigma_{\%} = 0.54$ %) в интервале аппроксимации -0.45 < $\Delta \rho$ < 0.45 описание $P-\rho-T$ -данных этих систем осуществляется с погрешностью, сравнимой с погрешностью для симметричного уравнения состояния [6] в тех же интервалах аппроксимации по $\Delta \rho$ и τ (для He⁴ имеем $\sigma/P_c = 0.23$ %, для SF₆ величина $\sigma_{\%} = 0.61$ %, для изобутана $\sigma_{\%} = 0.45$ %).

Из сравнения значений σ очевидно, что для описания $P-\rho-T$ -данных He⁴, SF₆ и изобутана в критической области вполне достаточно симметричного уравнения состояния, что подтверждает ранее использованное предположение о возможности пренебрежения асимметричными добавками при получении непараметрического уравнения состояния в первом приближении [6]. Однако при описании кривых фазового равновесия (закона «прямолинейного диаметра») и изотерм при $\tau < 0$ необходим учет асимметрии для всех систем, причем выбор интервала $P-\rho-T$ -данных по $\Delta \rho$ для описания асимметричным уравнением состояния зависит от степени асимметрии системы, которая для SF₆ и изобутана заметно больше, чем для He⁴.

Рис. 1. Асимметрия бинодали в окрестности критической точки He⁴: • — данные работы [14], линия — расчет по формуле (11) с константами асимметричного уравнения состояния

На рис. 1–3 показано поведение полусуммы $(\rho_l + \rho_g)/2\rho_c$ (11), для расчета которой использованы константы асимметричного уравнения состояния, в сравнении с экспериментальными данными (точки) по кривой насыщения для He⁴ [14] в критической области, SF₆ [15] и изобутана [17, 26–28], для которых данные получены в более широком интервале по τ . Хорошее согласие с независимыми данными по кривым фазового равновесия этих систем показывает применимость асимметричного непараметрического уравнения состояния для предсказания поведения и других особенностей термодинамических свойств систем в широкой окрестности критической точки.

Среднее отклонение данных в критической области относительно асимметричного уравнения состояния сравнимо с погрешностью измерений $P-\rho-T$ -данных этих систем в интервале $|\Delta \rho| < 0.4$. Вне этого интервала отклонение растет с удалением от критической точки, что закономерно с учетом того, что масштабные уравнения состояния являются асимптотическими. Для лучшего описания эксперимента в широких интервалах необходим учет неасимптотических состояний поправок [29] или объединение («сшивка») масштабного уравнения с регулярным уравнением, см., например, [30, 31]. Аппроксимация такими уравнениями дает меньшую погрешность, что естественно, поскольку вводятся дополнительные подгоночные константы. Непараметрическое асимметричное уравнение состояния в явном виде с минимальным числом системно-зависимых констант дает преиму-

Рис.2. «Прямолинейный диаметр» кривой равновесия фаз SF_6 . Точки — данные работы [15], линия — расчетное поведение асимметрии бинодали по (11) с константами асимметричного уравнения состояния, полученными при аппроксимации $P-\rho-$

T-данных ${
m SF}_6$ [13] в критической области

Рис. 3. Изобутан. Поведение «прямолинейного диаметра», рассчитанное по формуле (11) с константами асимметричного уравнения состояния (14). Линия — расчет, точки — экспериментальные данные кривой равновесия фаз: ∘ — [17], □ — [26], • — [27], △ — [28]

щества простоты использования по сравнению с другими видами масштабных уравнений состояния на основе линейной модели [1,2,4] при описании термодинамических данных.

4. ЗАКЛЮЧЕНИЕ

На основе новой функциональной зависимости скэйлингового поля с учетом бинодали и S-спинодали в явной форме получено асимметричное непараметрическое уравнение состояния, дающее простое описание асимметрии термических и калорических свойств жидкостей в явном виде. Это уравнение состояния имеет пять подгоночных констант. Новое уравнение состояния имеет правильные асимптотики различных термодинамических свойств в критической точке. В широкой области состояний вокруг критической точки оно описывает корректно *Р*-*р*-*Т*-зависимости разных систем в пределах погрешности до 0.5 %. Предлагаемое асимметричное уравнение состояния проще, чем известные параметрические уравнения состояния, удобнее при практическом применении и дает простое выражение для асимметрии бинодали, верно предсказывающее поведение «прямолинейного диаметра» экспериментальных кривых фазового равновесия разных по асимметрии систем (He⁴, SF₆, изобутан) в критической области. Сравнение расчетной асимметрии по плотности для C_v в рамках данной модели с данными по теплоемкости этих систем возможно при наличии данных C_v на изотермах в критической области.

Работа выполнена при финансовой поддержке СО РАН в рамках Междисциплинарного интеграционного проекта №81 и РФФИ (грант №06-08-00456-а).

ЛИТЕРАТУРА

- V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Phys. Rev. E 64, 026125-1-19 (2001).
- S. B. Kiselev and D. G. Friend, Fluid Phase Equilibr. 162, 51 (1999).
- П. П. Безверхий, В. Г. Мартынец, Э. В. Матизен и др., ТВТ 26, 700 (1988).
- 4. P. Schofield, Phys. Rev. Lett. 22, 606 (1969).
- 5. П. П. Безверхий, В. Г. Мартынец, Э. В. Матизен, ТВТ 45, 510 (2007).
- 6. П. П. Безверхий, В. Г. Мартынец, Э. В. Матизен, ЖЭТФ 132, 162 (2007).
- P. P. Bezverkhy, V. G. Martynets, and E. V. Matizen, J. Engin. Thermoph. 16, 164 (2007).

- 8. П. П. Безверхий, В. Г. Мартынец, Э. В. Матизен, ЖФХ 81, 978 (2007).
- А. З. Паташинский, В. Л. Покровский, Флуктуационная теория фазовых переходов, Наука, Москва (1982).
- 10. Л. Д. Ландау, Е. М. Лифшиц, *Статистическая физика*, 3-е изд., Наука, Москва (1976).
- П. П. Безверхий, В. Г. Мартынец, Э. В. Матизен, ЖЭТФ 126, 1146 (2004).
- 12. В. Ф. Кукарин, В. Г. Мартынец, Э. В. Матизен и др., ФНТ 6, 549 (1980).
- M. Funke, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynamics 34, 717 (2002).
- 14. P. R. Roach, Phys. Rev. 170, 213 (1968).
- M. Funke, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynamics 34, 735 (2001).
- G. Masui, Y. Honda, and M. Uematsu, J. Chem. Thermodynamics 38, 1711 (2006).
- 17. H. Miyamoto, T. Koshi, and M. Uematsu, J. Chem. Thermodynamics 40, 1222 (2008).
- 18. Y. Kayukawa, M. Hasumoto, Y. Kano et al., J. Chem. Eng. Data 50(2), 556 (2005).
- H. Miyamoto and M. Uematsu, J. Chem. Thermodynamics 38, 360 (2006).

- 20. J. A. Beattie, D. G. Edwards, and S. Marple, J. Chem. Phys. 17, 576 (1949).
- 21. J. A. Beattie, S. Marple, and D. G. Edwards, J. Chem. Phys. 18, 127 (1950).
- 22. M. Waxman and J. S. Gallagher, J. Chem. Eng. Data 28(2), 241 (1983).
- 23. D. Bucker and W. Wagner, J. Phys. Chem. Ref. Data 35, 929 (2006).
- 24. В. Ф. Кукарин, В. Г. Мартынец, Э. В. Матизен и др., ФНТ 7, 1501 (1981).
- 25. J. M. H. Levelt Sengers, B. Kamgar-Parsi, and J. V. Sengers, J. Chem. Eng. Data 28(4), 354 (1983).
- 26. S. Glos, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynamics 36, 1037 (2004).
- 27. Y. Higashi, J. Chem. Eng. Data 51, 406 (2006).
- 28. R. Goodwin and W. Haynes, NBS Tech. Note No.1051 (1982).
- 29. А. Т. Берестов, ЖЭТФ 72, 348 (1977).
- **30**. П. П. Безверхий, В. Г. Мартынец, Э. В. Матизен, СФТП **3**, 13 (2008).
- 31. M. S. Shin, Y. Lee, and H. Kim, J. Chem. Thermodynamics 40, 174 (2008).