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MOMENTUM DEFICIT IN QUANTUM GLASSES
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Using the concept of tunneling two-level systems, we explain the reduction of rotational inertia of disordered
solid *He observed in the torsional oscillator experiments. The key point is a peculiar quantum phenomenon
of momentum deficit for two-level systems in moving solids. We show that an unusual state that is essentially
different from both normal and superfluid solid states can be realized in quantum glasses. This state is charac-
terized by reduced rotational inertia in oscillator experiments, by the absence of a superflow, and by the normal

behavior in steady rotation.
PACS: 67.80.-s

1. INTRODUCTION

Owing to the large probability of quantum tunnel-
ing of the atoms (quantum solid), solid helium may be
superfluid [1]. General macroscopic motion of a super-
fluid solid is characterized by two mutually independent
velocities, those of the solid bulk and of the superfluid
one. Because the superflow is irrotational, the moment
of inertia of a superfluid solid is determined by the nor-
mal fraction density. On the contrary, the solid bulk
velocity in a capillary is zero and the mass transfer is
exclusively determined by the superflow.

Kim and Chan [2] observed the reduction of the
solid *He moment of inertia below 0.2 K in the torsional
oscillator experiments and interpreted it as superfluidi-
ty of the solid. However, all attempts to observe a su-
perflow (see [3,4]) were unsuccessful. The experiment
in [4] gives the upper limit of the critical velocity which
is seven orders of magnitude smaller than the value ob-
tained in [2]. The experimental data therefore disagree
with the picture of a superfluid solid.

Further experiments [5] showed that the reduc-
tion of rotational inertia observed in highly disordered
(glassy) samples of *He is remarkably large, exceeding
20 %. The reduction seems to be absent in ideal helium
crystals (see [6] for a review).
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It was shown in [7] that the quantum tunneling of
the atoms is responsible for anomalies in some low-
temperature properties (thermal, electromagnetic, and
acoustic) of usual glasses. The key point is the pres-
ence of the so-called tunneling two-level systems (TLS)
in the solids. A TLS can be understood as an atom or
a group of atoms that can tunnel between two localized
states characterized by a small energy difference.

In this paper (also see earlier letter [8]), we show
that anomalous properties of disordered solid *He (the
reduction of the rotational inertia, the absence of a su-
perflow, and the absence of anomalies in perfect crys-
tals) can be naturally explained on the basis of the
concept of TLS. We show that a peculiar quantum phe-
nomenon occurs. In a solid moving with a velocity v,
the contribution P of a TLS to the total momentum of
the solid can under certain conditions (see below) be
different from mv, where m is the contribution of the
TLS to the total mass. The difference p = P — mv
is determined by the velocity v itself. The momentum
deficit —p is proportional to the squared TLS tunneling
amplitude.

Ag a result, an unusual state of quantum glasses can
be realized. This state is essentially different from both
normal and superfluid solid states. As a normal solid,
this state is characterized by a single velocity of macro-
scopic motion, the solid bulk velocity v. But under
certain conditions, the momentum density is (p — pa)Vv,
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where p is the mass density, pgv is the momentum den-
sity deficit, and pg is the mass density deficit. In this
paper, we calculate pg in terms of TLS parameters.
Being proportional to the squared TLS tunneling am-
plitude, the density deficit can be large for highly disor-
dered solid *He and other quantum solids (hydrogen).

Our results are supported by the experiment in [9],
where the temperature dependence of pressure in solid
4He grown by the blocked capillary technique was mea-
sured. At temperatures below 0.3 K, where the reduc-
tion of the rotational inertia was observed, a glassy
contribution to the pressure (proportional to T%) was
found in [9]. This corresponds exactly to the TLS con-
tribution. On the other hand, the measurements of
the melting pressure in perfect *He samples showed no
deviations from the T* law [10].

2. TLS IN MOVING SOLIDS

The Hamiltonian Hy of a TLS in the frame of ref-
erence where the solid bulk velocity v is zero, can be
written as

Hy

(1)
where Fe (¢ > 0) are the energies of two locali-
zed states, J is the tunneling amplitude, and o,
(a =1, 2, 3) are the Pauli matrices.

We suppose that the tunneling of the TLS be ac-
companied by displacement of a mass m by a vector a.
The coordinates rq » of the center of gravity of the TLS
before and after the tunneling can be written as ri» =
= Fa/2. The operator form of the last equality is r =
= —o3a/2. The velocity operator is determined by the
commutator:

co3 + Joy,

Ja
——0s.

h )

= %[Ho,r] -

The TLS momentum in the frame where v = 0 is

mJa

I

p=mf=— o3. (3)
In an arbitrary frame of reference, a description of the
TLS by means of a discrete coordinate is impossible.
But we can use Galilean transformations to find the
TLS Hamiltonian and momentum in the frame where

v is finite. We obtain

Ho+p-v+mv?/2; p+mv. (4)

The last terms in both expressions must be included
into the total kinetic energy and momentum of the solid
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bulk. Therefore, the contributions of the TLS tunne-
ling to the energy and momentum of the total system
are

H=Hy+p-v; (5)

These two operators represent the energy and momen-
tum of the tunneling TLS in the solid moving with the
velocity v. We note that the operators p and H do not
commute with each other.

The eigenvalues of the Hamiltonian H are E; 5 =
= FE, where E = (2 + A2, A = J(1 +u*)'/?,
and u (m/h)a - v. Using the standard formula
(see [11, §11]), we can express the momentum mean
values (p), , in the stationary states 1 and 2 as

= > -

It follows that
J?m?

<p>12 = :Fﬁa(a V).

p.

on
ov

OFEi »
ov

- (6)

(7)

In the case of a nonzero v, the TLS has nonzero mean
values of momenta in both of its stationary states. We
note that in the TLS ground state, the projection of
the momentum (p), on the direction of the velocity v
is negative. This is the mechanism of the momentum
deficit. The Hamiltonian H is the same as for spin 1/2
in an external magnetic field. The sign of (p), corre-
sponds to spin paramagnetism.

3. STEADY ROTATION

Equilibrium properties of a TLS in a steadily ro-
tating solid are determined by the equilibrium density
matrix w of the TLS in the steadily rotating frame. We
regard the TLSs as almost closed systems, neglecting
the interaction between different TLSs. The density
matrix is
f/ =

— ®)

where f' and H' are the free energy and the Hamilto-
nian in the rotating frame. We have

w = exp

H =H-w M=Hy+p-v—w- M, 9)

where w is the angular velocity and M is the TLS an-
gular momentum. Because the size of the TLS is sup-
posed to be much smaller than the length scale of the
rotating container, we can use the following expressions
for the velocity and the angular momentum:

M=Rxp, v=wxR, (10)
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where R is the coordinate of the TLS center of gravity
with respect to the origin located at the rotation axis.
We obtain H' = Hy. This means that TLSs cause no
anomalies. Steadily rotating quantum glasses behave
like normal solids.

4. ADIABATIC PROCESS

The result is different if the solid bulk velocity de-
pends on time, v = v(¢). We note that the term p - v
in Hamiltonian (5) describes the interaction between a
TLS and the velocity field v(#). We assume that it is
applied adiabatically. We consider two different physi-
cal situations.

4.1. TLS in thermodynamic equilibrium

At low temperatures in highly disordered solids, the
TLS-TLS relaxation time 7 is much shorter than the
TLS-phonon relaxation time 7,. We assume that du-
ring the adiabatic process, the TLSs remain in ther-
modynamic equilibrium. This means (see [12, §11])
that the “transition duration” is much longer than 7
but much shorter than 7,. In oscillator experiments,
the same conditions must be satisfied for the period of
oscillations.

We suppose that the velocity is applied as a re-
sult of an axisymmetric container rotation. Otherwise,
additional terms should be added to the Hamiltonian
to take the macroscopic displacement of the container
walls into account (see [12, § 11]).

As is usual in statistical mechanics [12, §11, §15],

we have
(-, o
where
f=-TInTx exp(—H/T) (12)

is the TLS free energy and H is determined by the first
expression in (5) with v = v(t).
The free energy in (12) can be written as

2

E),

T

—-F
f=-Tln (exp Tl + exp (13)

where E; 5 = FE are the eigenvalues of the Hamilto-
nian H. The mean value of the TLS momentum is

#),

ou

ma

<m=h

(14)
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Simple calculation gives

of Ju | FE
- = ———th— 15
<6U>T E T (15)
or
(pi> = —mEZ)vk, (16)
where the mass deficit tensor is
2
d Jm th(E/T)
mgk) = <T> aiakT. (17)

4.2. Free TLS

We now consider the opposite limit case where the
time scale of velocity variations (the period of oscilla-
tions) is much shorter than the TLS relaxation time.
The TLS can be regarded as free. The Hamiltonian H
of a TLS (see (5)) can be written as

H = —hy0q, (18)
where a = 1, 2, 3 and h,, is the “field” having the com-
ponents hy = —J, hy = Ju, and hg = . The TLS
density matrix w is generally determined by a real po-
larization vector sq:

1 ot o
w = ~+ a0 (19)
2
We have
(00) = Tr (woy) = Sa- (20)
The mean value of the TLS momentum is
m.Ja
(p) =~ 25, (21)
From the equation for the density matrix
W = ~w, H], (22)
h
we obtain the equation for s,:
hsa = eapyhpsy, (23)

where eqg, is the Levi-Civita tensor.

The adiabatic theorem (see [13, Chapt. II, §5c])
holds as a consequence of (23). In addition to the ab-
solute value s = |s,| of the polarization, the angle be-
tween the field h, and s, is an integral of motion. The
process is adiabatic for a free TLS if the time scale of
velocity variation is much longer than f/ |hy|. The last
condition is very liberal for quantum solids.
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Until the solid is set into motion, the polarization
is directed along the field (—J,0,¢), and the absolute
value of the equilibrium polarization is

(242"

— th
5 T

(24)

With the same absolute value, the polarization is di-
rected along the field (—J, Ju,e) when the velocity
v = v(t) is applied. We then have

(242"
T

_Jul(t)
== 5

(25)

Again, the TLS momentum is determined by (16), but
now the mass deficit tensor is

(24 2)"?

= a;ag th T

(26)

5. MOMENTUM DEFICIT

To calculate the momentum density, we have to in-
tegrate expression (16) with (17) and (26) over the TLS
ensemble. Let Nde (N = const) be the number of TLSs
per unit volume of the solid and per interval of the en-
ergy half-difference de near some ¢ that is much smaller
than the characteristic height U of the energy barriers
in the solid. The total momentum density j is

Ji = pvi — pEZ)vk, (27)

where the density deficit tensor is the same with the
logarithmic accuracy in both cases (17) and (26):

/

U
(@) _
max(A,T

de
py. = (m®Pa;ay) — (28)
)

Here, (...) denotes averaging over the TLS ensemble
at ¢ = 0, and max(A,T) is of the order of A if T <« A
and of the order of T if T' > A. Both T and A are
much smaller than U.

For an isotropic system (glass), we have pgz)

= padix, where

N

Pa =515 (m>J%a*)In v

max(A,T)’ (29)

We see that the characteristic temperature of the
phenomenon is of the order of A. The critical velocity
Ve is determined by the condition u,. ~ 1. We have
ve ~ h/(ma). The critical velocities observed experi-
mentally (see [2]) are very small. This suggests the
macroscopic character of the most effective TLS. In
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principle, this is possible. The pressure dependence
of pgq is determined by the competition of all the pa-
rameters N, m, J, and a. For efficient tunneling of a
TLS, the presence of a region with a lower local par-
ticle number density is necessary near the TLS. The
3He impurity, due to the smaller mass of *He atoms,
must bind to such regions (see [6]), thus destroying the
TLS. This is a simple explanation of the depletion of
the momentum deficit by 3He impurities observed in
the experiments in [2].

6. CONCLUSIONS

We have shown that a new quantum phenomenon
of momentum deficit occurs for TLS in moving solids.
As a result, an unusual state of quantum glasses (solid
helium, solid hydrogen) can be realized. Like normal
solids, this state is characterized by a single velocity of
macroscopic motion, the solid bulk velocity. This ex-
plains the negative results of experiments in [3] and [4].
The reduction of rotational inertia observed in [2] is a
direct consequence of momentum deficit.

Our prediction is that steadily rotating quantum
glasses behave like normal solids. TLS cause no reduc-
tion of the moment of inertia in this case.

We have generalized the results in our work [§]
to the wider region of rotation frequencies. Dynamic
equations (23) for TLS are derived. In the general
case, these equations should be solved together with
elasticity theory equations using proper boundary con-
ditions. The present theory is therefore nonlocal and
is not excluded by the blocked annulus experiment as
suggested in [14].

I thank L. A. Melnikovsky for helpful discus-
sions. This work was supported by the RFBR. (grant
Ne06-02-17369a) and by grant NSh-7018.2006.2 under
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