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�ELASTIC� FLUCTUATION-INDUCED EFFECTSIN SMECTIC WETTING FILMSE. S. Pikina *Oil and Gas Researh Institute, Russian Aademy of Sienes119333, Mosow, RussiaReeived May 26, 2009The Li�Kardar �eld theory approah is generalized to wetting smeti �lms and the �elasti� �utuation-induedinteration is obtained between the external �at bounding surfae and distorted IA (isotropi liquid�smeti A)interfae ating as an � internal� (bulk) boundary of the wetting smeti �lm under the assumption that the IAinterfae is essentially �softer� than the surfae smeti layer. This �eld theory approah allows alulating the�utuation-indued orretions in Hamiltonians of the so-alled �orrelated� liquids on�ned by two surfaes inthe ase where one of the bounding surfaes is �rough� and with di�erent types of surfae smeti layer anhor-ing. We obtain that in pratie, the aount of thermal displaements of the smeti layers in a wetting smeti�lm redues to the addition of two ontributions to the IA interfae Hamiltonian. The �rst, so-alled loalontribution desribes the long-range thermal �elasti� repulsion of the �utuating IA interfae from the �atbounding surfae. The seond, so-alled nonloal ontribution is onneted with the ourrene of an �elasti��utuation-indued orretion to the sti�ness of the IA interfae. An analyti expression for this orretion isobtained.PACS: 61.30.Hn, 61.30.Dk, 64.70.M-, 61.30.Eb1. INTRODUCTIONIt is known that just above the bulk isotropi liquid�smeti A (IA) phase transition temperature, lose tothe external surfae bounding an isotropi liquid phaseof a smeti liquid rystal (LC), smeti layering is ob-served [1�7℄. Smeti layering is a speial ase of sme-ti wetting when the growth of the wetting smeti �lm(WSF) thikness proeeds via a series of disrete lay-ering transitions. Smeti layering is observed loseto the external bounding surfae (free surfae or solidsubstrate) and ours above the bulk IA phase transi-tions loated far from the triple isotropi liquid�smetiA�nemati (INA) point. In onstruting the interfaemodel of smeti layering [8℄, the question of the in�u-ene of thermal displaements of smeti layers on theIA interfae Hamiltonian naturally ourred to us. Thispaper is devoted to the solution of this problem. Wenote that what is traditionally meant [8�16℄ by the IAinterfae is the boundary between isotropi liquid andsmeti A phases. The IA interfae ats as an �internal�(bulk) bounding surfae of the WSF (see the Figure).*E-mail: elena�ogri.ru

We emphasize that obtaining the �elasti� �utuation-indued interation between the IA interfae and theexternal bounding surfae has an independent inter-est beause it solves the problem of thermal �elasti��utuation-indued e�ets (so-alled thermal Casimire�ets) in wetting smeti �lms.The �elasti� �utuation-indued ontribution tothe free energy density of a smeti �lm as a fun-tion of the equilibrium thikness of this �lm was �rstalulated in [9℄ within the �hydrodynami� approah.However, this approah allowed onsidering only thease of strong anhoring of both surfae smeti layerswith both �smooth� smeti interfaes. We note thatthe result derived in [9℄ orresponds to the �elasti��utuation-indued interation between unperturbed(�at) surfaes bounding the smeti �lm (see Se. 5).Subsequently, the limit ases of a long-range Mikheevinteration [9℄ were obtained in [17℄.Finally, in [18; 19℄, the general �eld theory approahhas been developed. This approah allows alulatingthe �utuation-indued orretions to the Hamiltoniansof the so-alled �orrelated� liquids on�ned by two sur-faes, in the ase where one of the bounding surfaes is1023



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009�rough� and with di�erent types of surfae smeti layeranhoring. The �orrelated� liquid is a system with along-range order due to a broken ontinuous symmetry.Thermal �utuations in the �orrelated� liquid are de-sribed by massless Goldstone modes. Possible exam-ples are a super�uid or a liquid rystal. The surfaesbounding the �orrelated� liquid naturally hange its�utuations in their viinity.The advantage of this �eld theory approah is thattwo types of boundary onditions are quite easily im-plemented. Boundaries of the �rst type orrespondto the suppression of the �uid �utuations. Suhzero boundary onditions at the bounding surfaes(so-alled Dirihlet boundary ondition) orrespond,for example, to strong anhoring for liquid rystals.Seond-type boundaries orrespond to the suppressionof the normal gradients of �utuations (so-alled Neu-mann boundary onditions).However, di�erent types of boundary onditionswere onsidered in [18; 19℄ only in the ase of a super-�uid liquid, in whih phase �utuations are the mass-less Goldstone modes and are desribed by a simp-le quadrati Hamiltonian. In partiular, two ases ofboundary onditions have been onsidered for this sys-tem. In the �rst ase, the Dirihlet boundary ondi-tions at both bounding surfaes are satis�ed. In theseond ase, the simpler Dirihlet boundary onditionis satis�ed at a �rough� surfae and the more ompli-ated Neumann boundary ondition is satis�ed at a �atbounding surfae.It is important to note that only the simplest aseof zero boundary onditions for thermal displaementsof smeti layers at both bounding surfaes was onsid-ered for a smeti �lm in [18; 19℄. As we show in whatfollows, for the problem of smeti wetting, on the on-trary, the mixed boundary onditions are of interestand the more ompliated Neumann boundary ondi-tion is assumed to be satis�ed exatly at the �rough�bounding surfae.2. FORMULATION OF THE PROBLEM.BOUNDARY CONDITIONSWe develop the Li�Kardar formalism [18; 19℄ in thease of smeti wetting in the viinity of a �at boundingsurfae and solve the problem of the e�et of thermal�utuations of smeti layers on the e�etive Hamilto-nian of the IA interfae (see the Figure).The e�etive Hamiltonian of the IA interfae, in thespirit of the known interfae models [9; 10�16℄, without

Æh(x)
Substrate hSmeti layersIA interfaeIsotropi liquid phaseh(x)Smeti wetting filmShemati piture of the wetting smeti �lm overinga �at bounding surfae (substrate) with thermal dis-plaements of smeti layers taken into aount. Thethik line represents the IA interfae ating as a bound-ary between the isotropi and wetting smeti A phases.Loal thikness of the WSF is determined as the loalremoval of the IA interfae from the wetted surfae.The thin straight line shows the equilibrium position ofthe IA interfaetaking thermal �utuations of the smeti layers intoaount, an be written in the general form (see [8℄)Hint[h(x)℄ == ZS d2xnVint(h(x))+IA2 (rh(x))2o ; (1)where h(x) is the loal thikness of the WSF (see theFigure), Vint(h(x)) is the initial potential of the inter-ation of the IA interfae with a �at bounding surfae(substrate) and with smeti layers, without taking thein�uene of thermal �utuations of the smeti layersinto aount, IA is the initial sti�ness of the IA inter-fae, and S is the area of an external �at wetted surfae(substrate).To apply the �eld theory approah in [18; 19℄ to theWSF, we use the following assumptions. First, we sup-pose for simpliity that at the external �at boundingsurfae with the oordinate z = 0, the ondition ofstrong anhoring of the surfae smeti layer, i.e., theDirihlet boundary ondition is satis�ed. Seond, wesuppose that the IA interfae is essentially �softer� thanthe surfae smeti layer and, aordingly, the ondi-tion IA � C33�0 (2)is satis�ed, where C33 is the ompression modulus ofsmeti layers and �0 is the De Gennes elasti �rosslength� [20℄. We onsider stati distortions of the sme-ti layers in WSF, whih give rise the long-range �u-tuation e�ets in the smeti �lm [9; 17℄, and negletthe density hange in the system aused by deforma-tion [21, �� 44�46℄. Condition (2) then allows negleting1024



ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti� �utuation-indued e�ets : : :the in�uene of the IA interfae on the smeti layersreahing the IA interfae, i.e., allows supposing thatondition of the equality of normal stresses [22, � 61℄,[21, �� 44�46℄ in the WSF and isotropi phase at theIA interfae is redued to setting the normal gradientsof �utuations of the smeti layers reahing the IA in-terfae to zero. Aordingly, the Neumann boundaryondition (suppression of the normal gradients of �u-tuations of smeti layers) is assumed to be satis�ed atthe IA interfae. We note that our boundary onditionsorrespond to the ase of limit values  =1 and  = 0at the surfaes bounding the smeti �lm [9℄, or to thease of strong and weak oupling for smeti �lms inderiving the �pseudo-Casimir� ontribution to the freeenergy of suh �lms [17℄.3. BASIC ASSUMPTIONS OF THELI�KARDAR FIELD THEORY APPROACHWe speify two basi assumptions of the Li�Kardar�eld theory formalism [18; 19℄ applied to the problemof obtaining the �utuation ontribution to interfaeHamiltonian (1), aused by thermal displaements ofthe smeti layers.First, the �utuation displaements of the smetilayers are desribed by bulk Grinstein�Pelovits Hamil-tonian [23℄, taken in the quadrati approximation:H0[u(z;x)℄ = ZS d2x Z dz ���C332 �(�zu(z;x))2 + �20(r2u(z;x))2�� ; (3)where u(z;x) is a nonuniform elasti thermal displae-ment of the smeti layer, whih is at the point (z;x)beause of the elasti deformation, r is the gradient inthe wetted surfae plane, and �z � �=�z.Seond, the boundary onditions that must be sat-is�ed by the elasti displaements u(z;x) at the �at ex-ternal surfae (substrate) and at the IA interfae, i.e.,at two surfaes bounding the smeti �lm, are regardedas perturbations ating on the unperturbed bulk sys-tem. The smeti �lm is thus modeled by the in�u-ene of these perturbations on the bulk smeti. Theboundary onditions are imposed by inserting auxiliary�utuation �elds and using an integral representationfor the Æ-funtion.

4. THE GENERAL EXPRESSION FOR THE�ELASTIC� FLUCTUATION-INDUCEDCONTRIBUTION TO THE EFFECTIVEINTERFACE HAMILTONIANThe general expression for the ontribution to ef-fetive interfae Hamiltonian (1) desribing the �elas-ti� �utuation-indued interation between the sur-faes bounding the WSF is obtained as follows.We desribe eah point at the surfaes bounding theWSF by the three-dimensional radius vetorr1(x) = (0;x) and r2(y) = (h+ Æh(y);y); (4)where x, y is the �internal� two-dimensional radius ve-tor for eah of the surfaes, Æh(y) is the nonuniformthermal �utuation distortion of the IA interfae rela-tive to its equilibrium position z = h (R d2y Æh(y) = 0),and the loal thikness of the WSF is aordingly rep-resented in the form h(y) = h+Æh(y) (see the Figure).We introdue an auxiliary �utuation �eld 
1(x)at the �at bounding surfae and an auxiliary �u-tuation �eld 
2(y) at the IA interfae. By anal-ogy with [18; 19℄, the boundary onditions at the sur-faes bounding the WSF (see Se. 2) an be imposedthrough these auxiliary �elds using the integral rep-resentation of Æ-funtions. We therefore express theDirihlet boundary ondition at the �at bounding sur-fae asÆ�u(0;x)� = Z D
1(x)�� exp �i Z d2x
1(x)u(r1(x))� ; (5)and the Neumann boundary ondition at the IA inter-fae asÆ�rnu(h(y);y)� = Z D
2(y) �� exp�i Z d2y
2(y)�rn2(y)u(r2(y))�� ; (6)where rn2(y) is the normal gradient of thermal dis-plaements of the smeti layers at the IA interfae ata point r2(y).With (3)�(6), in terms of funtional integration overthe thermal displaements of the smeti layers andover the auxiliary �elds, the general expression for the�elasti� �utuation-indued ontribution Heff to inter-fae Hamiltonian (1) is given by13 ÆÝÒÔ, âûï. 5 (11) 1025



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009exp ��HeffkBT � = Z D
1(x)D
2(y) ��� 1Z0 Z Du(r) exp ��H0[u℄kBT ++ i Z d2x
1(x)u(r1(x)) ++ i Z d2y
2(y)�rn2(y)u(r2(y))��� ; (7)where Z0 = Z Du(r) exp ��H0[u℄kBT � : (8)Expanding the expression in braes in the right-hand side of (7), in the terms proportional to i, we�ndexp ��HeffkBT � � Z D
1(x)D
2(y) 1Z0 Z Du(r)�� exp ��H0[u℄kBT ��1 + i Z d2x
1(x)u(r1(x)) ++ i Z d2y
2(y)�rn2(y)u(r2(y))� �� 12 �Z d2x
1(x)u(r1(x)) ++ Z d2y
2(y)�rn2(y)u(r2(y))��2 + : : :) : (9)The on�guration integration in (9) over the elastivariables an thus be performed with the resultexp ��HeffkBT � = Z D
1(x)D
2(y) �� exp��H1[
1(x);
2(y)℄�; (10)where the e�etive Hamiltonian of the two-omponent�eld 
 � (
1(x);
2(y)) is given byH1[
℄ = 12 Z d2x Z d2y�
1(x)G(r1(y)��r1(x))
1(y)+
1(x)�rn2(y)G(r2(y)�r1(x))�
2(y)++ 
1(y)�rn2(x)G(r2(x) � r1(y))�
2(x) + 
2(x) �� �rn2(x)rn2(y)G(r2(y)� r2(x))�
2(y)	 �� 
M
T : (11)

Here, G(r) = 
u(0)u(r)�0 is the two-point orrelationfuntion in bulk smeti,
: : : �0 = 1Z0 Z Du(r) (: : : ) exp ��H0[u℄kBT � ; (12)and the matrix M is a funtional of the radius ve-tors r1(x) and r2(y). In obtaining (10), we used that
u(r1) : : : u(r2m)u(r2m+1)�0 = 0.Within the approah orresponding to the negletof the bulk elasti anharmoni terms in (3), we supposethat rn2(y)u(h(y);y) � rzyu(z;y)jz=h(y): (13)In the onsidered ase, the two-point orrelationfuntion in bulk smeti is de�ned asG(y � x; zy � zx) = kBTC33 �� Z d2q(2�)2 exp(iq � (y � x) exp(��0 q2 z)2�0 q2 ; (14)where, following the hoie in (4), we assume thatzy � zx and set z = zy � zx. Aordingly, we �ndrzyG(y � x; zy � zx) � ��zG(y � x; z); (15)rzxrzyG(y � x; zy � zx) � � �2�z2G(y � x; z): (16)The quadrati form of the Hamiltonian H1[
℄in (11) allows integrating over the auxiliary �elds 
in (10) and then obtaining the general expression forthe e�etive Hamiltonian that desribes the additional�elasti� �utuation-indued interation between theIA interfae and a �at surfae bounding the WSF(f. [18; 19; 24℄):Heff [r1(x); r2(y)℄ == kBT2 lnDet�M [r1(x); r2(y)℄� � : (17)Here, with (13), in the ase of bounding surfaes de-sribed by (4), the funtional matrixM is dedued from(11) using (14)�(16):M(x;y) = 12 0BB� G(y � x; 0) ��zG(y � x; h+ Æh(y))��zG(x� y; h+ Æh(x)) � �2�z2G(y � x; Æh(y) � Æh(x)) 1CCA ; (18)�m�zmG(y � x; �(y;x)) � �m�zmG(y � x; z)jz��(y;x):1026



ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti� �utuation-indued e�ets : : :5. Heff IN THE CASE OF SMALLDISTORTIONS OF THE IA INTERFACEIn the ase of small distortions Æh(x) of the IA in-terfae, the matrix M(x;y) an be alulated approxi-mately by expanding the orrelation funtions and theirderivatives appearing in (18) in powers of Æh(x):M(x;y) =M0(x;y) + ÆM(x;y); (19)whereM0(x;y) = 12 ��0BB� G(y � x; 0) ��zG(y � x; h)��zG(x � y; h) � �2�z2G(y � x; 0) 1CCA (20)is the funtional matrix for the �at bounding surfaesand ÆM(x;y) is the orretion aused by �utuationdisplaements of the IA interfae. The Fourier trans-form of the matrix M0(x;y) required for the alula-tions in what follows is given in Appendix A.We note that the two-dimensional Fourier transformof the funtional matrix fM an be represented asfM = fM0 + fM0 fM�10 ÆfM; (21)where the tilde denotes the two-dimensional Fouriertransform (see Appendix A).In this ase, e�etive Hamiltonian (17) an be de-omposed as Heff = Hflat +Horr; (22)where Hflat = kBT2 lnDetfM0� (23)is the e�etive Hamiltonian desribing the �elasti��utuation-indued interation between the unper-turbed (�at) IA interfae and the �at external surfaebounding the WSF, andHorr = kBT2 lnDetn1 + fM�10 ÆfMo (24)is the additional �elasti� �utuation-indued ontribu-tion to Heff , aused by thermal distortions of the IAinterfae.We also note that using (14) and (A.1), (A.2), it ispossible to illustrate the physial meaning of inequality(2). By analogy with obtaining Horr, the �eld theoryapproah allows alulating the orrelation funtion ofthermal displaements of the smeti layers in bounded

systems, whih is an independent problem. This use ofthe funtional integration method [18; 19℄ for obtainingthe orrelation funtions of �utuating �elds satisfy-ing the Dirihlet boundary onditions has been on-sidered in [25; 26℄. Developing this method for bound-ary onditions (5) and (6) allows obtaining the leadingontribution to the two-dimensional Fourier transformof the orrelation funtion of thermal displaements ofthe smeti layers in WSF reahing the IA interfae
u(x; h(x))u(y; h(y))�:eGIA(q) � kBTC33�0q2 1� exp(�2�0 q2 h)1 + exp(�2�0 q2 h) : (25)We introdue the Fourier transform of the nonuni-form �utuating values Æh(x) given above:Æh(x) =Xq 0hq exp(iq � x):In the zeroth order of the interfae potential up toa �xed point of the renormalization group proedure ofeliminating fast �utuations of the IA interfae, i.e., upto q = qap [8; 27℄, we have
hqh�q�0 � kBTIAq2 : (26)In limit (2), it follows from (25) and (26) forq > qC = 1=p�0h thateGIA(q) � kBTC33�0q2 � 
hqh�q�0: (27)It is well known that the amplitudes of the interfaialpotential Vint(h) determine the value of qap [8; 27℄. Itan be shown that the inequality eGIA(q) � 
hqh�q�0is also satis�ed for q < qC under the assumption thatthe onditions analogous to (2) hold for the seondderivatives of the interfaial potential Vint(h) and thegap C33=h of orrelator (25).Hene, the ondition of �softness� of the IA inter-fae expressed by inequality (2) and leading to inequal-ity (27) means, in partiular, that �utuations of thethermal apillary mode Æh are dominant at the IA in-terfae. This in turn means that in the smeti wettingproblem, the roughening �utuations of the IA interfae (x) = Æh(x)�u(x; h(x)) [8; 9℄ are atually redued tothe �utuations of the mode Æh. Capillary �utuationsof the IA interfae are �dangerous�. This indiates thatthe roughening �utuations of the IA interfae shouldbe understood as the thermal apillary displaementsof the IA interfae.After evaluating the determinant of fM0 (see Ap-pendix A for the details), we obtain the following h-de-pended ontribution to Hflat:1027 13*



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009Hflat(h) = SkBT2 Z d2k(2�)2 �� lnh1 + exp(�2�0 k2 h)i= SVMikh(h); (28)where VMikh(h) = kBT32� �(2)�0 h (29)and �R(2) = �2=6 is a value of the Riemann zeta fun-tion. Expression (29) is a long-range �repulsive� on-tribution to the interation potential Vint(h) betweenthe unperturbed (�at) IA interfae and the external�at surfae bounding the WSF (more aurately, tothe density of the free energy of the WSF with theequilibrium thikness h).We note that the long-range �repulsive� potentialVMikh(h) oinides with the limit of the �hydrody-nami� Mikheev interation (in the limit IA � C33�0,ext � C33�0, where ext is the sti�ness of the exter-nal boundary of the WSF; see Ses. 2, 7) arising due todimensional sreening of the elasti smeti modes [9℄,whih on�rms the orretness of the boundary ondi-tions imposed in Se. 2. We also note that the potentialVMikh(h) oinides with the ontribution to the freeenergy density of the smeti �lm obtained in [17℄ forasymmetri boundary onditions at the surfaes bound-ing this �lm. In turn, the asymmetri boundary ondi-tions agree with the boundary onditions imposed forthe WSF in Se. 2.6. OBTAINING Horr. LOCAL ANDNONLOCAL CORRECTIONSThe additional ontribution to the e�etive Hamil-tonian aused by thermal displaements of the IA in-terfae an be evaluated approximately by expandingin powers of the �utuation displaements Æh(x) of theIA interfae.The evaluation of Horr from Eq. (24) is su�ientlytedious. For this reason, the details of the alulationare given in Appendix B. The result is in (B.20).Integrating over the relative variables v1 � y andv2 � x in (B.20) and using the identityÆh(x)Æh(y) = (1=2) �Æh2(x)+Æh2(y)�(Æh(y)�Æh(x))2�;it is possible to deompose Horr into loal and nonlo-al ontributions.The loal ontribution is given by

H(lo)orr = Z d2y Æh2(y)hkBT2 Z d2k(2�)2 �� n� 14D0(k) � ��h eG(k; h)�� �3�h3 eG(k; h)��� �� ��h eG(k; h)�2� eG(k; 0)� �2�z2 eG(k; z)�z=0 ��� 116D20(k) � �2�h2 eG(k; h)�2oi: (30)We note that the expression in square brakets in (30) isa �utuation-indued orretion to the gap of the modeÆh. Inserting (A.1), (A.2), and (B.11) in (30) and ex-tending the integration over k from 0 to 1 (using thefast onvergene of integrals due to the presene of adereasing exponential), we �ndH(lo)orr = kBT16� �(2)�0 h3 Z d2y Æh2(y)2 : (31)It is important that if we formally keep the termlinear in Æh(y) in A(k;k) given by (B.19), then thefollowing additional ontribution to the loal part ofH(lo)orr formally appears:� kBT2 Z d2k(2�)2 12D0(k) � ��h eG(k; h)���� �2�h2 eG(k; h)�Z d2y Æh(y) == �kBT32� �(2)�0 h2 Z d2y Æh(y): (32)Expressions (31) and (32) de�ne �rst-order and seond-order orretions of the Æh(y)-expansion of the ontri-bution to Vint(h(y)) following from taking the thermaldisplaements of smeti layers into aount. There-fore, we an formally ombine the essential ther-mal �elasti� orretions VMikh(h), V 0Mikh(h)Æh(y), and(1=2)V 00Mikh(h)Æh2(y) to Vint(h(y)) into the total �lo-al� long-range thermal �elasti� potential of the repul-sion of the distorted IA interfae from the �at boundingsurfae and regard these orretions as the �rst termsof its expansion:V (lo)Mikh(h+ Æh(y)) = kBT32� �(2)�0 h(y) � VMikh(h) ++ V 0Mikh(h)Æh(y) + 12V 00Mikh(h)Æh2(y): (33)Combining (31) and (32) with (28), we obtain the fol-lowing expression for the orresponding loal ontribu-tion to interfae Hamiltonian (1):1028



ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti� �utuation-indued e�ets : : :H(lo)Mikh[h(y)℄ = Z d2y V (lo)Mikh(h+ Æh(y)) == Z d2y kBT32� �(2)�0 h(y) : (34)The nonloal ontribution to Horr is also unwieldyand is therefore given in Appendix B (see (B.21)). It isobvious that in the ase of weak nonloality, when theexpansionÆh(x) � Æh(y) + (ryÆh(y)) (x � y)is valid, nonloal ontribution (B.21) desribes the o-urrene of an �elasti� �utuation-indued orretionÆel to the sti�ness of the IA interfae:H(nonlo)orr [Æh(y)℄ � Z d2y Æel (rÆh(y))22 ; (35)whereÆel = kBT2 Z d2x(y � x)2 �� �Z k dk2� J0(kjy � xj) (�0k2)3 �� Z q dq2� J0(qjy � xj) 11 + exp(�2�0q2h) 2�0q2 ++�Z q dq2� J0(qjy � xj)�0q2 exp(�2�0q2h)1 + exp(�2�0q2h)�2 �� Z q dq2� J0(qjy � xj) (�0q2)2 exp(��0q2h)1 + exp(�2�0q2h) �� Z k dk2� J0(kjy � xj) exp(��0k2h)1 + exp(�2�0k2h)� : (36)Expression (36) is a �utuation orretion to the sti�-ness of the apillary mode Æh, that is, to the sti�nessof the IA interfae aused by thermal displaementsof smeti layers in WSF. It is obvious that integralsover the wave vetor in the �rst term in the squarebrakets in (36) are de�ned by the uto� parametersof these integrals and the orresponding ontributionto Æel is traditionally (see [27℄) inluded into a rede-�ned sti�ness of the IA interfae. But the other twoterms in (36) give an h-depended (dimensional) orre-tion to the sti�ness of the apillary mode Æh, aused bythermal displaements of smeti layers in WSF. Theintegrals over the wave vetor in these terms an bealulated approximately in view of their fast onver-gene beause of the presene of the rapidly dereasingexponential exp(��0 q2 h). Indeed, onsidering thatthe q . qC give the leading ontribution to these inte-grals, it is possible to omit the dereasing exponentialsin the denominators. Then these integrals redue to

tabulated ones. Changing the variables as Q = q=qC ,� = qC jy � xj, we �nd the following expression for theh-depended orretion Æel(h) to the sti�ness of the IAinterfae:Æel(h) � kBT4� 1h2 �� Z �3 d�h�Z Q3 dQ exp(�2Q2)J0(Q�)�2 �� Z Q51dQ1 exp(�Q21) J0(Q1�)�� Z Q2 dQ2 exp(�Q22) J0(Q22�)i: (37)After some alulations, we haveÆel(h) � 564� kBTh2 : (38)We note that even in the ase of the simple bound-ary onditions for smeti �lms onsidered in [18; 19℄,Æel(h) was not alulated and the orresponding ana-lyti result was not obtained.7. CONCLUSIONIn the absene of experimental data onerning thevalue of IA, it is natural to assume [8℄ thatIA � 10�10 � 100 erg � m�2; (39)where 0 is the sti�ness of the free surfae of WSF(0 � 30 erg�m�2 [18℄). In partiular, the ase of rota-tor phases of the normal alkanes (para�ns) [28℄ on�rmsthis estimation of IA. For these phases, the tensionof the isotropi liquid�layered rotator phase interfae ismuh smaller (by almost an order of magnitude) thanthe tension of the free surfae of molten alkanes, whihis of the same harateristi value as 0 [28℄.For a typial bilayer smeti LC (see [7; 20; 29℄), wehave �HIA � 108 erg � m�3; (40)C33 � 108 erg � m�3: (41)The fat that �HIA and C33 are of the same order indi-ates the nonritial harater of the bulk IA transition.For the subsequent estimations, we use that (see [20℄)�0 � d0 � 10�7 m: (42)In this ase, simple analysis shows that inequality(2) is satis�ed in pratie. For TIA � 300 K, orre-tion (38) to the initial sti�ness of the IA interfae IAturns out to be negligibly small (Æel(h) � IA) evenfor h � d0:1029



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009Æel(h) � 10�2�10�1 erg � m�2: (43)Thus, having generalized the �eld theory ap-proah [18; 19℄ to the ase of a WSF, we have obtainedthat under ondition (2), whih is satis�ed in pratie,and the ondition of strong anhoring of the surfaesmeti layer and the external bounding surfae, ta-king the elasti thermal displaements of the smetilayers in the WSF into aount redues to adding twoontributions, H(lo)Mikh[h(y)℄ and H(nonlo)orr [h(y)℄, to thee�etive Hamiltonian of the IA interfae (1). This, a-ordingly, leads to adding the potential of long-ran-ge repulsion of the IA interfae from the �at boun-ding surfae V (lo)Mikh(h(y)) to the WSF interfae poten-tial Vint(h(y)) and to the ourrene of the orretionÆel(h) to the sti�ness of the IA interfae.These onlusions are also valid in the ase of wet-ting by the smeti A phase of a free surfae of a sme-ti LC under the ondition of strong anhoring of thisbounding surfae and the adjoining smeti layer andwith the ondition 0 > C33�0, whih is neessary forpreserving the repulsive harater of the Mikheev in-teration [9℄, imposed in addition to (2). The �rst on-dition is apparently always satis�ed, by partiular, byvirtue of learly distinguishable steps at the surfae ofa drop of smeti A [30; 31℄. Ful�llment of the seondondition is also on�rmed experimentally (see [32℄).It is interesting to note that �elasti� �utuation-indued long-range repulsion (33) is most dangerousin the limit of large h (h & 10d0 [8℄) and providesthe omplete smeti wetting in the absene of layer-ing transitions independently of the sign of the long-range van der Waals interation onstant. We reallthat the so-alled �osillatory� regular regime of sme-ti wetting is typial of the bulk IA transition in loseviinity of a triple INA point [3; 5; 6; 34; 35℄ and oursjust above the temperature of suh bulk IA-transitions,when the potential of the pinning of the IA interfaeat the positions of the smeti layers in Vint(h) is notsu�ient and layering transitions are absent [8℄. Inthis regime, the WSF equilibrium thikness growthsontinuously, weakly osillating relative to its averagetemperature dependene [8℄. The growth of the WSFthikness is diretly registered by ellipsometri studyof the free surfae of the smeti LC above the bulkIA transition [4; 5; 33℄ or veri�ed by �tting the X-rayre�etivity from the WSF using the model mass den-sity pro�le [3; 6; 34; 35℄. Thus, for the IA transitionsmentioned above, the smeti wetting is found to beomplete within the experimental auray [5; 34℄. Inthis ase, in the limit of large WSF thikness, the devi-ation of the temperature positions of the layering tran-

sitions from equidistant on a logarithmi temperaturesale in the layering regime or the deviation of the tem-perature positions of the in�etion points of the WSFthikness temperature dependene in the �osillatory�regime is experimentally observed [4; 5; 33℄. These de-viations orrespond to a derease in the temperatureintervals between these positions [4; 5; 33℄ and on�rmthe ourrene in the system of the long-range repul-sion of the IA interfae from the external wetted sur-fae in addition to the short-range repulsion. More-over, the temperature dependene of the average WSFthikness in the limit of large h does not oinide witheither the logarithmi or the power law aused by thelong-range van der Waals interation temperature de-pendenes [4; 5; 33℄.Unfortunately, the temperature dependene of theaverage WSF thikness still was not �tted using boththe logarithmi and power-law temperature depen-denes aused by long-range interation (33). Suh astudy of the WSF for the bulk IA transitions in thelose viinity of a triple INA point or in the ase ofa large �nite WSF thikness in the smeti layeringregime (whih is typial, e.g., of the homologues of then.O.6-series with n � 18 [4; 5℄), using the results in [8℄,would be an additional on�rmation of the ourreneof long-range interation (33) in the system and a diretexperimental observation of the �elasti� �utuation-indued long-range repulsion of the IA interfae fromthe external wetted surfae.Presently, beause of the absene in [4; 5; 33℄ of thetemperature dependene of the WSF thikness tabu-lated data for di�erent smeti homologues and theWSF thikness tabulated data for h & 10d0 in parti-ular, only some qualitative estimations on�rming thisstatement an be made. Using the results in [8℄ and iso-lating the smooth part V0(h) of the interfaial potentialVint(h), it is not di�ult to derive an equation for thetemperature dependene of the average WSF thiknessh0(t) taking interation (33) into aount (V 00h = 0):t = A exp��h0�C�+ 1�HIA kBT�R(2)32��0 h20 ; (44)where t = (T � TIA)=TIA is the redued deviation ofthe temperature T from the temperature of the bulk IAphase transition (t � 0), �C is the orrelation length inthe bulk smeti A phase, and A is the redued ampli-tude of the short-range repulsive interation (A > 0).Equation (44) determines the inverse dependene ofh0(t), and hene plotting h0(t) with the given valuesof the onstants is trivial [8℄. Choosing three pointsfrom seven points of the WSF thikness temperaturedependene presented in Fig. 4 in [4℄ (h & 10 d0) for1030



ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti� �utuation-indued e�ets : : :ompound 18.O.6 (TIA = 359:88 K [4℄) within theauray aeptable in [4℄, f(t1 = 0:000152778, h1 == 26�10�7 m), (t2 = 0:0000694444, h2 = 30�10�7 m),(t3 = 0:0000263889, h3 = 34�10�7 m)g, we obtain thatthese points are desribed by Eq. (44) withA � 0:0455 and �C � 4:5 � 10�7 m; (45)whih is in agreement with the estimations A � 10�2�10�1 and q0�C � 10 obtained in [8℄ in the analysis ofthe data in [1�7; 33�35℄, where q0 = 2�=d0 is the wavenumber of the bulk smeti lattie. We note that fromthe analysis of Eq. (44), it is easy to obtain the esti-mation h & 10d0 for the WSF thikness, for whih it isneessary to take the long-range �elasti� �utuation-indued interation (33) into aount in addition to theshort-range interation in the WSF interfaial poten-tial.We also note that the onlusion in Se. 5 thatthe roughening �utuations of the IA interfae shouldbe understood as �utuations of the thermal apillarymode Æh, allows us to de�ne the Fourier transform ofthe two-point orrelator of the relative thermal dis-plaements of the IA interfae 
 k �k� within the in-terfae model disussed:
 k �k� � 
hkh�k� �� kBTV 00int(h) + V 00Mikh(h) + (IA + Æel(h))k2 : (46)This Fourier transform (46) of the two-point orre-lator, in partiular, de�nes the intensity of light sat-tered by a free LC surfae in the presene of WSFin the experiments similar to those in [36℄ and stru-ture fators related to the redued X-ray re�etivityboth from the free LC surfae in the presene of WSF(see, e.g., [1�3; 8; 28; 35℄) and from the WSF wetting aspeially treated solid substrate (see [6; 7℄). We takeinto aount that in the ase of large WSF thiknessin the regime without layering transitions just abovethe bulk IA-transitions in a lose viinity of the tripleINA point, the terms V 00Mikh(h) and (IA + Æel(h))k2beome the leading terms in the denominator of theorrelator 
hkh�k�. In this ase, from the simulta-neous �tting of the intensity of light sattered by therelative apillary displaements of the IA interfae sim-ilar to [36℄ and of the X-ray re�etivity from the WSFsimilar to [1�3; 6; 8; 28; 35℄ for the same LC ompound,it would be possible to experimentally determine thevalue of IA and to derive the dependenes V 00Mikh(h)and Æel(h) for omparison with the results obtained inthis paper. Suh experiments would also be the diretstudy of the �elasti� �utuation-indued e�ets in the

WSF, but it is important for this study that expres-sions for the strutural fators used in [1; 2℄ have to bealulated more aurately [8℄. In addition, with simi-lar researh goals, similar experiments may be arriedout for the �lms of di�erent orrelated liquids.To summarize, we note that the onsideredfuntional-integral method allows simplifying the al-ulation of the �utuation-indued interations in thebounded systems and arrying out these alulations inthe same way for various orrelated liquids with quiteeasily implemented boundary onditions on �rough�bounding surfaes.I thank V. E. Podnek for the useful and inter-esting disussions that stimulated my thinking duringthe work. I also thank E. E. Gorodetsky, E. I. Kats,V. V. Lebedev, and S. A. Pikin for the interesting anduseful disussions, and interest in our joint work [8℄ andin this work in partiular.APPENDIX AIn this appendix, we give details of the derivationof the e�etive Hamiltonian Hflat desribing the �elas-ti� �utuation-indued interation between the unper-turbed (�at) IA interfae and a �at external surfaebounding the WSF, de�ned by (23). It is obvious thatthese alulations require �nding the determinant offM0. For obtaining the Fourier transform of the matrixM0(x;y), we use (14) to de�ne the two-dimensionalFourier transformation of the orrelation funtions o-urring in (20) and �nd their Fourier transforms aseG(q; 0) = Z d2� exp(�iq ��) eG(�; 0) == kBTC33 12�0 q2 ; (A.1)eG(q; h) = Z d2� exp(�iq ��) eG(�; h) == kBTC33 exp(��0 q2 h)2�0 q2 ; (A.2)where � = y�x and the tilde spei�es the two-dimen-sional Fourier transformation.Using (A.1) and (A.2), we then obtain the Fourier-transformed matrix M0:fM0(k) == 12 0BB� eG(k; 0) ��h eG(k; h)��h eG(k; h) � �2�z2 eG(k; z)jz=0 1CCA : (A.3)1031



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009For simpliity, we pass to the disrete wave ve-tor notation ki. Eah blok in expression (A.3) should then be understood as an in�nite-dimensional matrix,namely:
fM0(k) = 12

0BBBBBBBBBBBBBBBBB�
eG(k1; 0) 0 : : : ��h eG(k1; h) 0 : : :0 eG(k2; 0) : : : 0 ��h eG(k2; h) : : :... ... ... ... ... ...��h eG(k1; h) 0 : : : � �2�z2 eG(k1; z)jz=0 0 : : :0 ��h eG(k2; h) : : : 0 � �2�z2 eG(k2; z)jz=0 : : :... ... ... ... ... ...

1CCCCCCCCCCCCCCCCCA (A.4)
To simplify the de�nition of Hflat, after an even number of rearrangements and substitution of the Fouriertransforms of orrelation funtions (A.1) and (A.2), the matrix fM0(k) takes the simple formfM0(k) = 12 kBTC33 �

�
0BBBBBBBBBBBBBBBBBBB�

: : : 0 0 0 0 00 12�0 k2i �12 exp(��0k2i h) 0 0 00 �12 exp(��0k2i h) ��0 k2i2 0 0 00 0 0 12�0 k2i+1 �12 exp(��0k2i+1h) 00 0 0 �12 exp(��0k2i+1h) ��0 k2i+12 00 0 0 0 0 : : :
1CCCCCCCCCCCCCCCCCCCA : (A.5)

Then the determinant of fM0 is easily alulated asDet fM0 =Yi �12 kBTC33 �2�� 14 h1 + exp(�2�0 k2i h) i: (A.6)Substituting (A.6) in (23) and passing from summa-tion over ki to integration, it is easy to �nd the di-mensional h-depended ontribution to Hflat, given byexpression (28). APPENDIX BIn this appendix, we give details of the derivation ofthe e�etive Hamiltonian Horr de�ned by (24). ThisHamiltonian is an additional ontribution to the e�e-

tive Hamiltonian, aused by thermal displaements ofthe IA interfae.To obtain an expliit expression for the matrixÆM(x;y), we expand the orrelation funtions andtheir derivatives appearing in (18) in powers of smallÆh(x) through the seond order:G(y�x; h+Æh(y)) = G(y�x; h)+�G�z (y�x; h)Æh(y)++ 12 �2G�z2 (y � x; h) Æh2(y); (B.1)��zG(y � x; h+ Æh(y)) = ��zG(y � x; h) ++ �2�z2G(y � x; h)Æh(y) ++ 12 �3�z3G(y � x; h)Æh2(y); (B.2)1032



ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti� �utuation-indued e�ets : : :�2�z2G(y � x; Æh(y) � Æh(x)) = �2�z2G(y � x; 0) ++ 12 �4�z4G(y � x; 0) (Æh(y)� Æh(x))2: (B.3)In (B.3), the term linear in (Æh(y)�Æh(x)) is identiallyequal to zero, as an be easily veri�ed using represen-tation (14).By analogy with [18; 19℄, after taking the two-dimensional Fourier transformation for the expansionsof orrelation funtions (B.1)�(B.3), we obtainÆfM(k;q) = 12  0 A(k;q)A(q;k) B(k;q) ! ; (B.4)whereA(k;q) = Z d2x Z d2y exp(�ik � y) �� exp(iq � x) �2�h2 G(y � x; h)Æh(y) ++ 12 Z d2x Z d2y exp(�ik � y) exp(iq � x)�� �3�h3 G(y � x; h)Æh2(y); (B.5)B(k;q) = �12 Z d2x Z d2y exp(�ik �y) exp(iq �x)��� �4�z4 G(y � x; z)�z=0 (Æh(y) � Æh(x))2: (B.6)

For simpliity of the alulation, we setW = 1 + fM�10 ÆfM: (B.7)Then Horr is written asHorr = kBT2 lnDetW: (B.8)Inverting the matrix fM0 using (A.4) results infM�10 (k) = 12D0(k) ��0BB�� �2�z2 eG(k; z)jz=0 � ��h eG(k; h)� ��h eG(k; h) eG(k; 0) 1CCA ; (B.9)whereD0(k) = 14  � �2�z2 eG(k; z)jz=0 eG(k; 0) �� � ��h eG(k; h)�2! ; (B.10)and substitution of (A.1) and (A.2) in (B.10) yieldsD0(k) = ��12 kBTC33 �2 14 �1+exp(�2�0 k2 h) �: (B.11)Substituting (B.4) and (B.11) in (B.7), we obtain
W (k;q) = 0BB� 1� a ��h eG(k; h)A(k;q) �a �2�z2 eG(k; z)z=0A(k;q) � a ��h eG(k; h)B(k;q)a eG(k; 0)A(k;q) 1� a ��h eG(k; h)A(k;q) + a eG(k; 0)B(k;q) 1CCA ; (B.12)a = 14D0(k) ;where disrete representation of this matrix and its elements in wave vetors ki are given below.In the disrete wave vetor notation ki(ki = qi), eah blok in the matrix ÆfM(k;q) in (B.4) should also beunderstood as an in�nite-dimensional matrix, namely:

ÆfM(k;q) = 12 0BBBBBBBBBB�
0 0 : : : A(k1;k1) A(k1;q2) : : :0 0 : : : A(k2;q1) A(k2;k2) : : :... ... ... ... ... ...A(q1;q1) A(q1;k2) : : : B(k1;k1) B(k1;q2) : : :A(q2;k1) A(q2;q2) : : : B(k2;q1) B(k2;k2) : : :... ... ... ... ... ...

1CCCCCCCCCCA : (B.13)
1033



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009In the disrete wave vetor notation ki, from (A.9) we obtainfM�10 (k) = 12Qi D0(ki) �
�
0BBBBBBBBBBBBBBBBBBB�
� �2�z2 eG(k1; z)z=0 0 : : : � ��h eG(k1; h) 0 : : :0 � �2�z2 eG(k2; z)z=0 : : : 0 � ��h eG(k2; h) : : :... ... ... ... ... ...� ��h eG(k1; h) 0 : : : eG(k1; 0) 0 : : :0 � ��h eG(k2; h) : : : 0 eG(k2; 0) : : :... ... ... ... ... ...

1CCCCCCCCCCCCCCCCCCCA : (B.14)
After substitution of (B.13) and (B.14) in (B.7), we �nd in the disrete wave vetor notation ki that eahblok of the matrix W (k;q) is given byW11(k;q) = 2666666641� 14D0(k1) ��h eG(k1; h)A(k1;k1) � 14D0(k1) ��h eG(k1; h)A(k1;q2) : : :� 14D0(k2) ��h eG(k2; h)A(k2;q1) 1� 14D0(k2) ��h eG(k2; h)A(k2;k2) : : :... ... ...

377777775 ; (B.15)
W12(k;q) = 2666664� 114D0(k1) � 124D0(k1) : : :� 214D0(k2) � 224D0(k2) : : :... ... ...

3777775 ; (B.16)11 = �2�z2 eG(k1; z)z=0A(k1;k1) + ��h eG(k1; h)B(k1;k1);12 = �2�z2 eG(k1; z)z=0A(k1;q2) + ��h eG(k1; h)B(k1;q2);21 = �2�z2 eG(k2; z)z=0A(k2;q1) + ��h eG(k2; h)B(k2;q1);22 = �2�z2 eG(k2; z)z=0A(k2;k2) + ��h eG(k2; h)B(k2;k2);W21(k;q) = 266666664 14D0(k1) eG(k1; 0)A(k1;k1) 14D0(k1) eG(k1; 0)A(k1;q2) : : :14D0(k2) eG(k2; 0)A(k2;q1) 14D0(k2) eG(k2; 0)A(k2;k2) : : :... ... ...
377777775 ; (B.17)
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ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti� �utuation-indued e�ets : : :W22(k;q) == 266666641 + s114D0(k1) s124D0(k1) : : :s214D0(k2) 1 + s224D0(k2) : : :... ... ...
37777775 ; (B.18)

s11 = � ��h eG(k1; h)A(k1;k1) + eG(k1; 0)B(k1;k1);s12 = � ��h eG(k1; h)A(k1;q2) + eG(k1; 0)B(k1;q2);s21 = � ��h eG(k2; h)A(k2;q1) + eG(k2; 0)B(k2;q1);s22 = � ��h eG(k2; h)A(k2;k2) + eG(k2; 0)B(k2;k2):For the alulations in what follows, we note thatdue to the ondition R d2x Æh(x) = 0, the term lin-ear in Æh(x) disappears in A(k;k). That is essentialfor the hosen quadrati approximation. Using (B.12)and (B.15)�(B.18), we an also obtain the expansionof DetW through the seond order in small �utuationdisplaements of the IA interfae Æh(x):DetW == 1+Xk 8><>: eG(k; 0)B(k;k)4D0(k) �2 ��h eG(k; h)A(k;k)4D0(k) 9>=>;�� Xk;q (q6=k)8><>: ��h eG(k; h)A(k;q)4D0(k) ��h eG(q; h)A(q;k)4D0(q) 9>=>;++ Xk;q(q6=k)( eG(k; 0)A(k;q)4D0(k) �� �2�z2 eG(q; z)z=0A(q;k)4D0(q) 9>=>; : (B.19)Substituting (B.19) in (B.8), expanding the loga-rithm in Æh(x) through the seond order, passing fromsummation over ki to integration, and using expres-sions (B.5) and (B.6), we obtain

Horr = kBT2 hZ d2k(2�)2 ZZ d2x d2y ��n� eG(k; 0)4D0(k) exp(�ik�(y�x))� �4�z4 G(y�x; z)�z=0�� (Æh(y) � Æh(x))22 � 2 ��h eG(k; h)4D0(k) �� exp(�ik � (y�x)) �3�h3G(y�x; h)Æh2(y)2 o�� Z d2k(2�)2 Z d2q(2�)2n ��h eG(k; h) ��h eG(q; h)�� eG(k; 0)� �2�z2 eG(q; z)�z=0o 116D0(k)D0(q) �� ZZ d2y d2v1 exp(iq�y�ik�v1) �2�h2G(v1�y; h)Æh(y)�� ZZ d2x d2v2 exp(ik � x� iq � v2)�� �2�h2 G(v2 � x; h)Æh(x)i: (B.20)After performing the integration over the relativevariables v1 � y and v2 � x in the general expressionfor Horr in (B.9) and using the identityÆh(x)Æh(y) = 12�Æh2(x)+Æh2(y)�(Æh(y)�Æh(x))2�;it is possible to deompose Horr into the loal andnonloal ontributions disussed in the main text.In partiular, the nonloal ontribution to Horr isgiven byH(nonlo)orr = kBT2 ZZ d2x d2y (Æh(y)� Æh(x))22 �� h�� �4�z4 G(y � x; z)�z=0�1(y � x) + �22(y � x)�� �3(y � x) �4(y � x)i; (B.21)where1035



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009�1(y � x) = Z d2q(2�)2 eG(q; 0)4D0(q) �� exp(�iq � (y � x));�2(y � x) = Z d2q(2�)2 ��h eG(q; h)�� �2�h2 eG(q; h)exp �iq � (y � x)�4D0(q) ;�3(y � x) = Z d2q(2�)2 �2�h2 eG(q; h)��� �2�z2 eG(q; z)�z=0 exp �iq � (y � x)�4D0(q) ;�4(y � x) = Z d2k(2�)2 eG(k; 0) �2�h2 eG(k; h)�� exp �� ik � (y � x)�4D0(q) :
(B.22)
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