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SPONTANEOUS SYMMETRY BREAKING IN A SYSTEM OFSTRONGLY INTERACTING MULTICOMPONENT FERMIONS(ELECTRONS WITH SPIN AND CONDUCTING NANOTUBES)V. V. Afonin a*, V. L. Gurevi
h a, V. Yu. Petrov baIo�e Institute, Russian A
ademy of S
ien
es194021, Saint Petersburg, RussiabKonstantinov Saint Petersburg Nu
lear Physi
s Institute, Russian A
ademy of S
ien
es18830, Gat
hina, Leningrad region, RussiaRe
eived O
tober 11, 2008We 
al
ulate the ground-state wave fun
tions for a system of multi
omponent strongly intera
ting fermions.We show that it is a state with spontaneously broken 
hiral symmetry that dis
ribes a phase with a �nite densityof 
hiral 
omplexes. The number of parti
les 
onstituting a 
omplex depends on the number of fermion 
om-ponents. For example, in the 
ase of two-
omponent ele
trons (spin), the 
ondensate is built of four-parti
le
omplexes 
onsisting of two �right� ele
trons and two �left� holes with the opposite spins.PACS: 71.10.Hf, 71.10.Pm, 73.63.Fg1. INTRODUCTION AND DISCUSSION OFRESULTSAdvan
es in semi
ondu
tor te
hnology have re-newed the interest in the properties of one-dimensional(1D) ele
tron systems. It is well known that theele
tron�ele
tron (e�e) intera
tion alters the propertiesof 1D systems qualitatively. For a better understand-ing of the problem, the physi
al question of primaryimportan
e must be 
lari�ed: what is the nature ofthe ground state of this system? The answer is usuallysought in the studies of the ground state of 1D in-tera
ting fermions using the �density�density� 
orrela-tion fun
tions. However, this information is not dire
tand the results have to be interpreted. The anomaliesobtained in 
orrelation fun
tions (see, e.g., [1℄) wereusually interpreted as an example of the Peierls in-stability [2; 3℄ (the part os
ilating with 2pF ) and as amarginal Wigner 
rystal [4℄ (os
illating with 4pF ).In Ref. [5℄, the ground-state wave fun
tion of spin-less fermions was 
onstru
ted for the exa
tly solubleTomonaga�Luttinger model. It has been shown thatat su�
iently low temperatures, the system should be*E-mail: vasili.afonin�mail.io�e.ru

in the state that has nothing in 
ommon with a sys-tem undergoing the Peierls transition. It is a statewith a spontaneously broken 
hiral symmetry. Hen
e,the ele
tron system is a system with a long-range or-der. In the limit of in�nitely strong intera
tion, at lowtemperatures, a �nite-density 
ondensate is formed. It
onsists of neutral (ex
iton-like) pairs of a right ele
-tron and a left hole or vi
e versa. The uniqueness ofa 1D system requires 
onsidering a se
ond-order phasetransition in a 
hannel of a �nite length Lk. The pointis that the phase transition temperature vanishes as1=Lk, as it should. At the same time, we 
ould notuse the standard limit Lk ! 1 from the very begin-ning be
ause the normalizing 
oe�
ient of the ground-state wave fun
tion tends to zero in this limit. (Thisphenomenon is well known as the �orthogonality 
atas-trophe�, see [6℄.) Hen
e, in passing to this limit, theresult depends, on the one hand, on the method andon the other hand, on the step at whi
h the limit wastaken. (This point is 
arefully dis
ussed in our previouspaper [5℄.) We note that the phase transition temper-ature need not be too small. For Lk � 10�4 
m, itshould be about 1 K.The multi-
omponent fermions in 1D systems wereextensively dis
ussed in the literature. In a number ofpapers [2; 3℄, separation of the spatial and spin degrees969
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onsidered. In the present paper, wedis
uss the form of the ground-state wave fun
tion forsu
h a system. Be
ause the variables separate, we 
anexpe
t that the ground-state wave fun
tion is a dire
tprodu
t of two fa
tors, with one of them, des
ribingthe spinless 
omponent, 
oin
ident with the ground-state wave fun
tion of spinless fermions. In the presentpaper, we show that an entirely di�erent situation isa
tually realized. Namely, the most 
orrelated state isthe state where the total spin vanishes. However, forn-
omponent ele
trons, this state 
onsists not of pairs(as in the 
ase of spinless fermions) but of point-likeneutral 
omplexes 
ontaining 2n parti
les and havingthe 
hirality �2n.In the ordinary ele
tron system, n = 2, there arethe 
omplexes 
onsisting of two right ele
trons and twoleft holes with opposite spins. Therefore, in a

ordan
ewith Ref. [10℄, the ground state of the system is spin-less. For the 
ondu
ting nanotubes, n = 4 (Refs. [7�9℄),and the 
omplexes 
onsist of eight parti
les. The 
om-plexes with a smaller number of parti
les 
an have anonzero spin, but their 
orrelation is mu
h weaker. Forexample, for n = 2, the spin phase 
an be realized onlyas a Berezinskii�Kosterlitz�Thouless (BKT) phase, andin the limit of in�nitely strong intera
tion, the 
omplexdensity tends to zero as 1=pLk. By 
ontrast, the spin-less phase has a �nite density in this limit.This situation is typi
al of many �eld-theory mod-els with an Adler anomaly (this is the 
ase for the Lut-tinger model as well). It is known that in su
h models,the new fermion intera
tion (�'t Hooft intera
tion� [11℄)
an appear with a vortex that is a produ
t of all the
omponents of fermions. In many 
ases, the 't Hooftintera
tion leads to a spontaneous breakdown of the
hiral invarian
e with 2n fermion order parameters.In parti
ular, this is the 
ase for the multi
omponentS
hwinger model [12℄ and, as we see in what follows,for the Luttinger model in the limit of in�nitely strongintera
tion.For the last model, the most 
orrelated state is builtout of 
omplexes ea
h of whi
h has the maximum pos-sible number of the degrees of freedom. As a result,the state has a highest phase volume and appears tobe the most 
orrelated one. This state di�ers qualita-tively from a marginal Wigner 
rystal. Instead of analmost �rst-order phase transition, an almost se
ond-order phase transition o

urs. To manifest the break-down of the 
hiral symmetry in the Luttinger liquid, wehave exa
tly 
al
ulated the wave fun
tion of the groundstate in this model, Eq. (27), and expli
itly demon-strated that its symmetry is less than the original sym-metry of the Hamiltonian. (This is the de�nition of

spontaneous symmetry breaking). These are basi
allythe main results in this paper.For a one-
omponent fermion system, point-like
omplexes with more than two parti
les as well as 
ol-lisions of su
h 
omplexes are forbidden by the Pauliprin
iple. This is not the 
ase for multi
omponentfermions. For this reason, the ground-state wave fun
-tion in Eq. (27) is mu
h more 
umbersome and the
al
ulations are more involved. Therefore, we presentthe results only for a short-range potential in the limitof in�nitely strong intera
tion. At the same time, thephysi
al pi
ture in our 
ase is quite similar to that ofone-
omponent fermions. For instan
e, had we taken
orre
tions in the re
ipro
al strength of the intera
tioninto a

ount, we would have also obtained a BKT phasefor spinless 
omplexes. With the strength of the inter-a
tion in
reasing, it would be gradually transformedinto a state of a de�nite 
ondensate density.This paper is organized as follows. In Se
. 1, wegive a brief review of our results. Se
tion 2 
ontainsa dis
ussion of the main di�eren
e between the multi-
omponent problem and the spinless one in regard tothe theoreti
al des
ription and most essential steps ofthe 
al
ulation. In Se
. 3, we give arguments 
on
ern-ing the appli
ability of our theory to nanotubes. TheAppendix is devoted to a derivation of some interme-diate results.2. DESCRIPTION OF THE APPROACH ANDTHE DERIVATION OF MAIN RESULTSOur starting point is the usual Tomonaga�LuttingerHamiltonian (see, e.g, Refs. [3; 13℄) for a system of in-tera
ting ele
trons with ba
ks
attering ignored. In the
ase where the intera
tion does not 
hange the ele
t-ron spin, the Hamiltonian 
an be expressed through thedensity of the right (R) and left (L) ele
trons% (x)� = %R;� (x) + %L;� (x)(the spin index � equals � for the spin �1=2 respe
-tively) asH =X� Z dx h	̂yR;� (x) vF (�i�x) 	̂R;� (x) ++ 	̂yL;� (x) vF i�x	̂L;� (x)i++ Z dx dy % (x)V (x� y) % (y) ; (1)where vF is the Fermi velo
ity,970



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :	̂� (x) = exp (ipFx) 	̂R;� (x) ++ exp (�ipFx) 	̂L;� (x) ; (2)and % is the total density. For simpli
ity, we assumethat the intera
tion is spin-independent (it is not tooessential for 
al
ulations). We introdu
e the ele
tronand hole operators in the usual way	̂(R;L)� (x) = 1Z0 dp2� �exp (�ipx) â(R;L)� (p) ++ exp (�ipx) b̂y(R;L)� (p)� == â(R;L)� (x) + b̂y(R;L)� (x) ; (3)where âR;+ (x) is the operator of annihilation of anele
tron with spin +1=2 and b̂R;+ (x) is the operatorof annihilation of a hole with spin �1=2. To write thisintera
tion via a fun
tional integral, it is ne
essary tointrodu
e one Bose �eld � and apply a version of theHubbard�Stratonovi
h identity [14℄:exp24 i2 TZ0 dt 1Z�1 dp2�V (p) % (p; t) % (�p; t)35 == 1N Z D�exp24 i2 TZ0 dt 1Z�1 dp2� ��� (p; t) � (�p; t)V �1 (p)� i2 TZ0 dt 1Z�1 dp2� �� (% (p; t) � (�p; t) + % (�p; t)� (p; t))35 ; (4)where V (p) is the Fourier transform of the e�e inter-a
tion and the normalization fa
tor isN = Z D��� exp24 i2 TZ0 dt 1Z�1 dp2�� (p; t) � (�p; t)V �1 (p)35 : (5)This identity shows that the theory with the e�e in-tera
tion is equivalent to the theory of nonintera
tingele
trons in an external �eld �. (Had we 
onsidereda theory with a spin-dependent intera
tion, we wouldhave to introdu
e two independent Bose �elds. The 
al-
ulation would be more 
umbersome, but the physi
alpi
ture would be the same.)

Cal
ulation of the ground-state wave fun
tion isgiven in detail in Ref. [5℄. It is based on the 
al
ulationof the evolution operator for the ele
tronsS (T ) =Xm;n jnihnj exp (�iHT )jmihmj; (6)where jni are the exa
t wave fun
tions of the Hamilto-nian in the se
ondary quantization representation andT is the observation time. S(T ) determines the evo-lution of an arbitrary initial wave fun
tion (hmj) fromthe instant t = 0 up to �nal states (at t = T ). (Hen
e-forth, we imply that the S
hrödinger representation foroperators with time-dependent wave fun
tions is used.)Equation (6) suggests the general method to obtainthe wave fun
tions. We �rst 
al
ulate the evolutionoperator and present it as a sum of time-dependent ex-ponentials. The 
oe�
ients in front of these exponen-tials are produ
ts of the exa
t wave fun
tions and their
omplex 
onjugates. To extra
t the ground-state wavefun
tion, we then take the limit T !1 (we add an in-�nitesimal imaginary part to the energy). Pro
eedingto the Eu
lidean time T ! �i=�, we see that the evo-lution operator determines the density matrix for theequilibrium system at a nonzero temperature �.As in the 
ase of spinless ele
trons (see [5℄ for thedetails), the evolution operator for the ele
trons in anexternal �eld 
an be represented asŜ (�) = exp (S0 + ln[Det � (T ) ℄)jF ihF j: (7)Before the integration over the �elds �, the equa-tion for Ŝ (�) undergoes some 
hanges in 
omparisonwith the spinless 
ase. They amount to the appearan
eof a fa
tor n, the number of 
omponents of the ele
tronwave fun
tion, in the equation des
ribing the quantum�u
tuations in the ele
tron system under the a
tion ofthe �eld � (T ) (for the spin 
ase n = 2):ln [Det � (T )℄ = � n4� TZ0 dt dt1 �� 1Z�1 dp2�� (�p; t) � (p; t1) jpj exp [�ijpjvF jt�t1j℄ : (8)The operator stru
ture of Eq. (7) is determined by these
ond part of the a
tion, S0. Here, we should take thespin index � into a

ount,971
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le Green'sfun
tionG0R;L (x; t;x1; t1) = 12�i �� [vF (t� t1)� (x� x1)� iÆ sign (t� t1)℄�1 : (10)Behavior of the multi
omponent fermions in the ex-ternal �eld is quite similar to that in the one-
omponent
ase. An essential 
ompli
ation, however, o

urs af-ter the integration of the operator Ŝ (�) over � withweight (4).Two points should be indi
ated.1) The 
oe�
ient n in Eq. (8) enters the equationfor the a
tion. Due to this 
oe�
ient, after 
al
ulationof the integral over �, the analyti
 stru
ture of the re-sulting expression be
omes mu
h more 
ompli
ated. Asa result, integrals de�ning wave fun
tions of multipar-ti
le 
omplexes a
quire 
uts instead of simple poles asin the one-
omponent 
ase. This leads to rather 
um-bersome 
omplex wave fun
tions. In parti
ular, the
omplexes are nonlo
al.2) The property of nonlo
ality results in an essen-tial in
rease in the number of various ele
tron states.A number of ele
tron states are forbidden for one-
omponent ele
trons due to the Pauli prin
iple. In 
on-trast to this, in the multi
omponent 
ase, the number of
onne
ted diagrams be
omes in�nite. This makes theexpression for the ground-state wave fun
tion rather
umbersome. However, the very fa
t of the existen
eof the 
hiral phase for the in�nitely strong intera
tionpersists.Be
ause of a non-Gaussian form of the �nal fun
-tional integral, it is impossible to perform the integra-tion in Eq. (8) over �(x; t) in a 
losed form, but it ispossible to obtain an arbitrary term of the evolutionoperator by expanding it in (S0)n. This su�
es forobtaining the ground-state wave fun
tion, be
ause therelevant integral is of a Gaussian type and 
an be easily
al
ulated. After the �nal integration over �, the �nalre
ipe of 
al
ulation of the evolution operator 
an bewritten as a sum of the terms (see [5℄, where similar
al
ulation were done very 
arefully)

S(n)0 �â(R;L); b̂(R;L); : : :� exp �Seffn �jF ihF j: (11)Here, jF i is the Fermi �sphere� and the term S(n)0 (oneterm in the entire sum (S0)n) determines the operatorstru
ture of the wave fun
tions, i.e., a possible parti
le
on�guration due to the e�e intera
tion. Equation (11)is a sort of symboli
 expression. Indeed, the analyti
equation for the e�e
tive a
tion Seffn in the nth term ofthe expansion depends expli
itly on the parti
le 
on�g-uration in the preexponential fa
tor S(n)0 . Naturally, itis di�erent for di�erent terms. We note that evolutionoperator (6) is determined su
h that the initial stateexpressed through the ele
tron and hole annihilationoperators and the �nal state determined through the
reation operators are given at di�erent times. Thismeans that in 
al
ulating the evolution operator, weshould regard the operators âyR;L (x) and âR;L (y) asanti
ommuting.In what follows, we give a pres
ription to write thee�e
tive a
tion �Seffn � for a given ele
tron�hole 
on�g-uration. To write the expression for Seffn , we intro-du
e the following notation for the 
oordinates of theele
tron�hole 
reation�annihilation operators.1. We let x (y) denote the 
oordinates of the right(left) parti
les.2. We put a tilde on the 
oordinates related to an-nihilation operators (the initial state): the 
oordinatesof 
reation operators (the �nal state) have no tilde.3. We prime the hole 
oordinates.The e�e
tive a
tion di�ers from the a
tion for theone-
omponent fermions only by a fa
tor and in thelimit of strong intera
tionV (p)�vF � 1is equal toSeff = � �nL Xm6=0 1jpmj [Rf (�p; x1 : : : ) �� Rf (p; x1 : : : ) +Ri (�p; ~x1 : : : )Ri (p; ~x1 : : : )℄�� 2�nL Xm6=0 1jpmj exp��jpmjvF� ���Rf (�p; x1 : : : )Ri (p; ~x1 : : : ) : (12)The extra fa
tor n is the number of the fermion 
om-ponents. It o

urs be
ause in the Luttinger model, theex
itation spe
trum is [15℄!p = jpjvFs1 + nV (p)�vF : (13)Equation (12) is valid in the temperature region972



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :�
hiral � �� �
 = ! (pmin) :The right-hand side of the last inequality is theenergy of ex
itations with a minimal momentum (forperiodi
 boundary 
onditions pmin = 2�=Lk) and�
hiral = jpminjvF is the degenera
y temperature ofthe ground state. In this temperature region, the en-ergy di�eren
e between the states with di�erent 
hi-ralities 
an be negle
ted. This means that the groundstates with a di�erent 
hirality be
ome degenerate.The origin of this inequality has been dis
ussedin detail in [5℄. It is not sensitive to the numberof wave fun
tion 
omponents. For the temperatures�� �
hiral, the last term in Eq. (12) should be omit-ted. Then the 
orresponding equation is also valid forthe lowest temperatures.The fun
tionsRi;f (p; ~x1 : : : ) in Eq. (12) depend ex-pli
itly on the ele
tron (x : : : ) and hole (~x : : : ) 
oordi-nates in the preexponential fa
tor in Eq. (11). Thesefun
tions are given byRf (p; x : : : ) = Xx:::;x0:::;y:::;y0::: � (p) [exp (ipx) �� exp (ipx0)℄ + � (�p) [exp (ipy)� exp (ipy0)℄ ;Ri (p; ~x : : : ) = X~x:::;~x0:::;~y:::;~y0::: � (�p) [exp (ip~x) �� exp (ip~x0)℄ + � (p) [exp (ip~y)� exp (ip~y0)℄ : (14)
To obtain the 
omplete expression for the gro-und-state wave fun
tion, we have to 
onsider all the
omplexes and separate their 
onne
ted parts. This isnot ne
essary, however, be
ause a

ording to the gen-eral theorem, the 
omplete wave fun
tion is an expo-nential of the 
onne
ted 
omplexes [16℄1).For one-
omponent fermions, there is only one pos-sible two-parti
le 
onne
ted 
omplex. This is not soin the multi-
omponent 
ase, where many of the s
at-tering 
hannels are possible and hen
e the number of
onne
ted diagrams is in�nite. In prin
iple, the exa
twave fun
tion of any given 
omplex 
an be 
al
ulatedby taking the Gaussian integral over �. Unfortunately,this is not enough to present the whole wave fun
tionof the system in a 
losed form, but we do not a
tuallyneed it to prove the existen
e of symmetry breaking.To verify this, it is su�
ient to prove that the wavefun
tion symmetry is less than that of the Hamiltonian.1) This theorem is, in fa
t, a purely 
ombinatorial statement.In �eld theory, we apply it mostly to Green's fun
tions. In statis-ti
al physi
s, it is known as the �rst Mayer theorem (G. E. Uh-lenbek, G. W. Ford, and E. W. Montroll, Le
tures in Statisti
alMe
hani
s, Ameri
an Mathemati
al So
iety, Providen
e (1963)).

For this, we analyze the simplest 
onne
ted diagramsresulting in a spontaneous breaking of the symmetry ofthe Hamiltonian. The other terms either have the sym-metry of the Hamiltonian or des
ribe the s
attering ofthe simplest 
orrelated 
omplexes and also violate the
hiral symmetry.In what follows, we restri
t ourself to the 
ase ofa short-range intera
tion (V (p) = V0) in the limitnV0=�vF � 1. Now we embark on analysis of the sim-plest diagrams of the evolution operator for the ele
-trons having a spin. We begin with the temperatureregion �
hiral � �. In this 
ase, the a
tion and there-fore the evolution operator fa
tor, and hen
e we 
anexpli
itly 
onsider the ground-state wave fun
tion j
i.(It is a
tually the ground state with the lowest energy,and is therefore realized at � = 0.) The simplest non-trivial diagram we should be interested in isZ dx+dx0+dx�dx0�(2�i)2 dy+dy0+dy�dy0�(2�i)2 �� âyR;+ (x+) b̂yR;+ �x0+�x0+ � x+ � iÆ âyR;� (x�) b̂yR;� �x0��x0� � x� � iÆ �� âyL;+ (y+) b̂yL;+ �y0+�y+ � y0+ � iÆ âyL;� (y�) b̂yL;� �y0��y� � y0� � iÆ �� exp[Sfeff (x+; : : : )℄jF i: (15)We see in what follows that the terms with a smallernumber of operators give a weaker 
orrelation thanEq. (15).The a
tion for this ele
trons�hole 
on�guration isSfeff (x�; : : : ) == 12 ln Q�;�0::: (x� � y� + iÆ)�x0�0 � y0�0 + iÆ�Q�;�0::: (x0� � y� + iÆ)�x�0 � y0�0 + iÆ� : (16)In fa
t, it di�ers from the 
orresponding expression forone-
omponent fermions by the fa
tor 1=2 and by agreater number of the independent variables. The fa
-tor 1=2 does not permit 
al
ulating the integral in theproblem expli
itly be
ause it involves 
uts instead ofthe simple poles that o

ur in the one-
omponent 
ase.Nevertheless, it is possible to re
ognize the sponta-neous breakdown of the 
hiral symmetry in our system.For this, several steps are ne
essary. First, we have toanalyze what new bound 
omplexes appear as a resultof the intera
tion. We have to take an arbitrary 
on-ne
ted diagram and try to separate 
omplexes with asmaller number of parti
les out of it. To do this, wehave to 
onsider all parti
les in one 
omplex as being
lose to one another, whereas the distan
es between973
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omplexes are large. If the full wave fun
-tion turns into a produ
t of two wave fun
tions in thislimit, one of them depending only on the 
oordinatesof the �rst 
omplex and the other depending only on
oordinates of the se
ond one, then the 
omplexes 
anbe 
onsidered new �free parti
les�2) be
ause the prob-ability to �nd one su
h 
omplex is independent of theposition of the other. In other words, we should repre-sent a term of the expansion of the evolution operatorwe 
onsider as a produ
t of the formZ dx+dy+2�i : : : âyR;+ (x+) : : :K (x+; : : : ; y+ : : : ; )�� ayL;+ (y+) : : :Next, we should verify that if the 
omplex with 
o-ordinates (x+; : : : ) is moved away from the 
omplex(y+ : : : ) over the distan
e of the order of Lk, then theamplitude K (x+; : : : ; y+; : : : ) tends not to zero (as isusually the 
ase with s
attering amplitudes) but tothe fa
tored produ
t k (x+; : : : ) k1 (y+; : : : ), where ea
hfa
tor depends on the variables of the respe
tive group.This means that the two 
omplexes are formed as a re-sult of the intera
tion. If the inter
omplex distan
e islarge enough, their 
ontribution to the wave fun
tion
an be represented asZ dx+p2�i : : : k (x+ : : : ) âyR;+ (x+ : : : )�� Z dy+p2�ik1 (y+ : : : ) âyL;+ (y+ : : : ) jF i:The remaining part of K (whi
h is K � kk1) is a 
on-ne
ted diagram that des
ribes the inter
omplex s
at-tering under the 
ondition that it tends to zero as thedistan
e between the 
omplexes in
reases. The theo-rem of logarithmi
 
onne
tedness [16℄ guarantees thatthe same 
onne
ted 
omplexes appear in all orders withthe 
orre
t 
ombinatorial 
oe�
ients and the �nal an-swer is an exponential of 
onne
ted 
omplexes. In par-ti
ular, the �rst-order termZ dx+p2�i : : : k (x+; : : : ) âyR;+ (x+) : : : jF ishould appear in the expansion of the evolution oper-ator dire
tly unless it is forbidden by some 
onserva-tion law (e.g., the 
hirality 
onservation for the lowest-temperature 
ase in our model). In this 
ase, we haveto use the proje
tor on the proper state as in Eq. (24)below. It permits ex
luding the states forbidden by a
onservation law.2) We note that the analogy with a bound state is quite limi-ted. It would be more 
orre
t to write about a 
orrelation in themomentum spa
e.

Whether a symmetry breaks down depends on thesymmetry of the 
omplexes âyR;+ (x+) : : : If they areless symmetri
 than the initial Hamiltonian, the sym-metry is broken. As a result, it is possible to intro-du
e a nonvanishing order parameter in the less sym-metri
 phase (in the more symmetri
 phase, where the
omplexes do not exist, the order parameter vanishes).More pre
isely, taking �u
tuations of the low-symmetryphase in the phase with a nonbroken symmetry into a
-
ount, we 
an see that the order parameter should notin
rease with Lk in the high-symmetry phase. (Ourde�nition of the order parameter is given below inEq. (29).) The �u
tuations result in well-known ef-fe
ts su
h as the Aslamasov�Larkin one [17℄. A

ord-ing to Landau (see [18℄), the appearan
e of the orderparameter is the de�nition of the se
ond-order phasetransition. But if the symmetries of all the 
onne
ted
omplexes and of the Hamiltonian are the same, thereare long-range 
orrelations without a spontaneous sym-metry breaking.By analogy with the theory of one-
omponentfermions, we 
an assume that the simplest 
onne
teddiagram originates from the termZ dx+dx0+2�i dy�dy0�2�i âyR;+ (x+) b̂yR;+ �x0+�x0+ � x+ � iÆ �� âyL;� (y�) b̂yL;� �y0��y� � y0� � iÆ �� exp[Sfeff (x+; : : : )℄jF i: (17)However, be
ause of the fa
tor n�1, the 
orresponding
ontribution to the a
tion isSfeff (x+; : : : ) == 12 ln (x+ � y� + iÆ) �x0+ � y0� + iÆ��x0+ � y� + iÆ� �x+ � y0� + iÆ� : (18)The bound 
hiral 
omplexes are determined bythe singularities of the integrand at jx0+ � y�j � d,jx+ � y0�j � d, and jx+ � y�j � Lk (where d is thewidth of the 
ondu
tor). As a result, the 
ontributionwe are interested in is of the order ofZ dx+dy�âyR (x+) b̂yL (x+) âyL (y�)�� b̂yR (y�) djx+ � y�j jF i:This quantity tends to 0 as jx+ � y�j ! Lk !1, butmore slowly than for a free parti
le3).3) This means that even in the strong intera
tion limit, the spinphase 
an exist as a Kosterlitz�Thouless phase with the Thouless
onstant of the order of 1/2.974
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orrelated state 
anbe obtained from Eq. (15). It 
an be split intotwo four-parti
le 
omplexes, ea
h with zero spin, ha-ving the 
hirality 
harges �4: âyR;+âyR;�b̂yL;+ b̂yL;� andâyL;+ âyL;� b̂yR;+b̂yR;�. (We assign the 
hirality +1 to aright ele
tron and a left hole and �1 to their 
ounter-parts.) The amplitude K in Eq. (15) fa
tores and doesnot tend to 0 as Lk ! 1: Indeed, the C-fa
tor in theintegrand isK (x+; : : : ) = 1x0+ � x+ � iÆ 1x0� � x� � iÆ �
� 1y+ � y0+ � iÆ 1y� � y0� � iÆ �� rQ�;�0::: (x� � y� + iÆ)�x0�0 � y0�0 + iÆ�rQ�;�0::: (x0� � y� + iÆ)�x�0 � y0�0 + iÆ� : (19)We now 
onsider the integration regions x+ � x� �� y0� � y0+ and x0+ � x0� � y+ � y� assuming that thedistan
es between these groups of variables are of theorder of Lk. Then the amplitude K tends toV+4 (x+; : : : )V�4 �x0+; : : : � = 1=q�x+ � y0+ + iÆ� �x+ � y0� + iÆ� �x� � y0+ + iÆ� �x� � y0� + iÆ��� 1=q�x0+ � y+ + iÆ� �x0+ � y� + iÆ� �x0� � y+ + iÆ� �x0� � y� + iÆ�: (20)This means that ea
h amplitude V depends on thevariables belonging either to the �rst or to the se
ondgroup. This property of the amplitude allows indenti-fying the full equation for the evolution operator of the
onne
ted 
omplexes and the amplitude of inter
om-plex s
attering that tends to zero for large inter
omplexdistan
es.This term of the expansion, besides the 
hiral 
om-plexes, has also neutral 
omplexes with zero 
hirality,âyR;+b̂yR;+âyL;� b̂yL;� and âyR;�b̂yR;�âyL;+ b̂yL;+ . They do notviolate the symmetry of the Hamiltonian. But theyshould be isolated in order that the remaining s
at-tering amplitude tend to zero in the whole region ofthe variables. This permits interpreting it as the inter-
omplex s
attering amplitude. The zero-
hirality 
om-plexes are not important for the existen
e of a phasetransition. However, they should be taken into a

ountin the 
al
ulation of matrix elements be
ause they arenot small. To 
he
k that they exist, we 
onsider theregions x+ � x0+ � y� � y0� and x� � x0� � y+ � y0+in (15). In these regions, the amplitude K tends toV0 (x+; : : : )V0 (x�; : : : ) whereV0 (x�; : : : ) = �(x0��x��iÆ) �y���y0���iÆ���1 �� �(x� � y�� + iÆ) �x0� � y0�� + iÆ��1=2 �� ��x� � y0�� + iÆ� �x0� � y0�� + iÆ���1=2 : (21)This means that this quantity 
an be represented as aprodu
t of the amplitudes ea
h of whi
h remains �niteas the distan
e between them tends to in�nity.It is now 
onvenient to introdu
e the inter
omplex

s
attering amplitude V
oll. By derivation, it tends tozero with the inter
omplex distan
e tending to 1:V
oll (x+; : : : ) = K (x+; : : : )� V+4 (x+; : : : )�� V�4 �x0+; : : : �� V0 (x+; : : : )V0 (x�; : : : ) : (22)The 
ontribution to the ground-state wave fun
tion 
anbe represented in terms of these amplitudes asZ dx+dx0+dx�dx0�(2�i)2 dy+dy0+dy�dy0�(2�i)2 �� âyR;+ (x+) b̂yR;+ �x0+� âyR;� (x�)��b̂yR;� �x0�� âyL;+ (y+) b̂yL;+ �y0+� âyL;� (y�) b̂yL;� �y0���� �V+4 (x+; : : : )V�4 �x0+; : : : � ++ V0 (x+; : : : )V0 (x�; : : : ) + V
oll (x+; : : : )) jF i: (23)The �rst term here des
ribes nonintera
ting 
omplexeswith a nonzero 
hirality, the se
ond des
ribes 4-parti
leneutral 
omplexes, and the third (the 
onne
ted part)des
ribes their 
ollision. We are mainly interested inthe �rst term be
ause it is related to the 
hiral symme-try breakdown.The 
hiral 
omplex that we have obtained is already
onne
ted and 
annot be split into simpler ones. Thismeans that its wave fun
tion is a de
reasing fun
tion ofthe interparti
le distan
es. It is shown in the Appendixthat the probability to �nd parti
les of the 
omplex farfrom ea
h other is negligibly small.In addition, we should take into 
onsideration thatin the temperature interval � � �
hiral, where thelast term in Eq. (12) need not be 
onsidered, there isa one-to-one 
orresponden
e between 
omplexes withthe 
hiralities Q = 4 and Q = �4. Hen
e, the total975
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hirality of the state is zero. The theorem of logarith-mi
 
onne
tedness states that the ground-state wavefun
tion 
an be represented asj
i = PQ=0 �� expX� Tr" 1(2�i)2V+4 �x�; x��; y0��; y0�� �� �âyR;� (x�) âyR;�� (x��) b̂yL;�� �y0��� �� b̂yL;� (y0�) + âyL;� (y0�) âyL;�� �y0����� b̂yR;�� (x��) b̂yR;� (x�)�++ 1(2�i)2V+0 �x�; x��; y0��; y0�� �âyR;� (x�) �� b̂yR;� (x0�) âyL;�� (y��) b̂yL;�� �y0���++ âyR;�� (x��) b̂yR;�� �x0��� âyL;� (y�) b̂yL;� (y0�)� ++ 1(2�i)4V
oll (x�; x��; : : : ) âyR;� (x�) âyR;�� (x��)�� b̂yL;�� �y0��� b̂yL;� (y0�) âyL;� (y�)�� âyL;�� (y��) b̂yR;�� �x0��� b̂yR;� (x0�) + : : :#; (24)where PQ=0 is the proje
tor on the state with zero 
hi-rality. The symbol Tr in
ludes the integrations over theparti
le 
oordinates. The terms omitted in Eq. (24) de-

s
ribe 
ollision of three and more 
omplexes, while allthe elementary 
omplexes are present here. We notethat the 
omplexes with a nonzero 
hirality have ap-peared in the theory. Nevertheless, the wave fun
tionof the ground state as a whole des
ribes the state withQ = 0, i.e., the symmetry of the ground state is thesame as that of the Hamiltonian. The states with anonzero 
hirality have a higher energy (of the orderof 2�vF =Lk). Therefore, the spontaneous symmetrybreaking may o

ur only in the region of higher tem-peratures �� �
hiral, where su
h an energy di�eren
eis not essential. In this temperature region, the termwhere the time arguments of the Green's fun
tions dif-fer by T must also be 
onsidered in Eq. (9) for the a
-tion S0. (In pra
ti
e, it is more 
onvenient to introdu
ethe temperature by the repla
ement T ! �i=� in the�nal equations.) We then have the following nontrivialterm in the evolution operator:Tr 1(2�i)4 âyR;+ (x+) âR (~x+)~x+�x++vFT�iÆ âyR;� (x�) âR (~x�)~x��x�+vFT�iÆ �� b̂yL;+ �y0+� b̂L �~y0+�~y0+ � y0+ � vFT + iÆ b̂yL;� �y0�� b̂L �~y0��~y0� � y0� � vFT + iÆ �� exp[Sfeff ℄ (x+; : : : )jF ihF j: (25)The a
tion Sfeff for this 
on�guration is12 ln Q�;�0::: �~y0� � y0� � vFT + iÆ� (x�0 � ~x�0 � vFT + iÆ)Q�;�0::: �x� � y0� + iÆ� (~y0�0 � ~x�0 + iÆ) : (26)It is readily seen from the operator stru
ture ofthis term that the amplitude V4 appears here auto-mati
ally (without extra
ting the amplitudes of neutral
omplexes and s
attering 
hannels), as it should. Thisis a 
onsequen
e of the theorem of logarithmi
 
onne
t-edness. It guarantees the 
oin
iden
e of the amplitudein this term with V4. We verify this. We 
onsiderthe region where the same variables with spin up andspin down are quite 
lose to ea
h other (for instan
e,x� � x��). Besides, the 
oordinates in the 
reationand annihilation operators are apart at the distan
e ofthe order of Lk (x� � ~x� � Lk � 2�vF =�). Then theC-fa
tor in the integrand of (25) turns into the fa
toredexpression V+4 (x+; : : : )V ��4 (~x+; : : : ) :This proves that the 
hiral four-parti
le 
omplexeswere segregated properly from a more 
ompli
ated ex-

pression (15). Su
h terms in the evolution opera-tor result in the existen
e of the ground state witha nonzero 
hirality. But any state with �xed 
hirali-ties should be unstable under weak ba
ks
attering on
estates with di�erent 
hiralities are degenerate. There-fore, we should 
onsider a superposition of all su
hstates. As a result, in the same way as in the theoryof super
ondu
tivity, we have to introdu
e a 
onden-sate with a �xed phase instead of a state with a �xed
hirality:j
i� = expX� Tr" 1(2�i)2V+4 �x�; x��; y0��; y0�� �� �exp (i�)âyR;� (x�) âyR;�� (x��) �� b̂yL;�� �y0��� b̂yL;� (y0�) + exp (�i�)âyL;� (y0�)�976



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :� âyL;�� �y0��� b̂yR;�� (x��) b̂yR;� (x�)�++ 1(2�i)2V+0 �x�; x��; y0��; y0�� �âyR;� (x�) �� b̂yR;� (x0�) âyL;�� (y��) b̂yL;�� �y0���++ âyR;�� (x��) b̂yR;�� �x0��� âyL;� (y�) b̂yL;� (y0�)�++ 1(2�i)4V
oll (x�; x��; : : : ) âyR;� (x�) âyR;�� (x��)�� b̂yL;�� �y0��� b̂yL;� (y0�) âyL;� (y�)�� âyL;�� (y��) b̂yR;�� �x0��� b̂yR;� (x0�) + : : :#: (27)Equation (27) demonstrates that for a strongele
tron�ele
tron intera
tion, a spontaneous symmetrybreaking o

urs. The �rst two terms in the equation forthe ground-state wave fun
tion are not invariant underthe 
hiral transformation	R;L (x)! exp (�i�)	R;L; (28)while the Hamiltonian retains the invarian
e. Here, �is an arbitrary 
onstant.Su
h a form of the bound state permits introdu
ingthe order parameter. It is equal to zero in the high-sym-metry phase (� � �
 = !pmin) and is proportionalto Lk in the low-symmetry phase (in the low-tempera-tures region). (These statements 
an be proved usingordinary symmetry 
onsiderations or by dire
t analyti

al
ulation.) In our 
ase, the following quantity 
an be
onsidered an order parameter:Z dx � h
jâyR;� (x) âyR;�� (x)�� b̂yL;� (x) b̂yL;�� (x) j
i�: (29)We 
an see from Eq. (29) why the se
ond-orderphase transition requires the 
hirality degenera
y ofthe ground state. For the order parameter to be non-vanishing, it is ne
essary to be able to add an extrafour-parti
le 
omplex to the ground state. This re-quires the 
ondition � � �
hiral be
ause the zero-
hirality state has the lowest energy and the energy dif-feren
e between states with di�erent 
hiralities is about�
hiral. There is also an upper bound for existen
e ofthe low-symmetry phase,�� !pmin : (30)This limitation is be
ause the long-range order is sup-pressed by thermal ex
itations in one-dimensional sys-tems. In the temperature region given by (30), it 
an

be negle
ted; this 
ondition is independent of the num-ber of fermion 
omponents and is dis
ussed in detailin [5℄. Hen
e, the temperature region�
hiral � �� �
 (31)is the region where the broken symmetry phase exists.3. CARBON NANOTUBESCondu
ting 
arbon nanotubes may give one moreexample of multi
omponent ele
trons. The theory de-veloped above 
an be generalized to this 
ase. We 
on-sider one-dimensional 
ondu
ting tubes and the e�e in-tera
tion su
h that it 
an be rewritten in the densi-ty�density form (
f. Eq. (1)). This means that theba
kward and inter-
omponent (see below) s
attering
an be negle
ted. Following Ref. [19℄, we 
an visualizea nanotube as a 
ylinder 
onstru
ted of a monoatomi
layer of graphite. Graphite has a latti
e of adjoiningregular hexagons, with the angle between the neigh-boring basis ve
tors a and b being 2�=3. Choosing the
oordinates �1 and �2 su
h that the 0�1 axis is parallelto the ve
tor a and the 0�2 axis is perpendi
ular to a,we 
an represent these ve
tors asa = a(1; 0); b = a��1=2;p3=2� : (32)Here, a is the latti
e 
onstant, equal to dp3, d =1.44Åbeing the interatomi
 distan
e [20℄.The 
ir
umferential ve
tor L 
an be written asL = naa+ nbb; (33)where na and nb are integers.The ele
tron e�e
tive Hamiltonian for a graphitesheet is H = �0 h�h 0 � : (34)It 
an be expanded in the vi
inity of the pointsP = 4�3a (�1; 0); P0 = 4�3a (1; 0) (35)up to the �rst order in the small deviations p and p0from the values respe
tively given by the �rst and these
ond equation in (35),h(P;p) = 
e�i� (p? � ipz) ;h(P0;p0) = 
ei� (�p0? � ip0z) ; (36)where 
 = (p3=2)
0a, 
0 � 3 eV (see Eqs. (21)and (22)) is the transfer integral between the neighbo-ring � orbitals, and � is the angle between the ve
tors L10 ÆÝÒÔ, âûï. 5 977
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ripts z and ? refer to the 
omponentsof p relative to the dire
tion of L, pz ? L and p?kL,su
h that pz(p?) is parallel (perpendi
ular) to the axisof the tube.The spe
trum near the point P is given byE(P;p) = �
qp2z + p2?; (37)where the upper (lower) sign 
orresponds to the 
on-du
tion (valen
e) band in this equation. The spe
t-rum near the P0 point is obtained by the repla
ementp! p0.The ele
tron wave fun
tion 	(r) must satisfy the
y
li
 boundary 
ondition	(r) = 	(r+ L); (38)and hen
e the dis
rete values of p? and p0? are givenby (see Ref. [19℄)p? = 2�jLj �n� �3� ; p0? = 2�jLj �n+ �3� ; (39)where n = 0;�1;�2; : : : , jLj = apn2a + n2b � nanb,and � = 0 or �1 is determined by representing thesum na+nb as 3N + � (with N being an integer). Thenanotubes are 
ondu
tive (metalli
) for the 
ombina-tion n = � = 0 (40)and we 
onsider this 
ase in what follows. In otherwords, there are two 
oni
 bands in su
h tubes, i.e.,the points �PP with �P = �1. The large phase 
or-responding to the quasimomentum �PP should be ex-tra
ted in the same way as this was done in Eq. (2). Inaddition, we assume that due to the presen
e of gateele
trodes, the Fermi level is well above (or below) thepoints �PP (
f. Ref. [8℄). As a result, we have a theo-ry with four-
omponent fermions. There are two extrabran
hes 
orresponding to two values of �P . In ea
hof them, there are analogues of R- and L-parti
les. Toestablish a 
orresponden
e between the present modeland the Luttinger model, we should be able to negle
tthe transitions both between di�erent bran
hes (dif-ferent values of �P ) and between R- and L-parti
leswithin the same bran
h. As indi
ated in Ref. [21℄,nanotubes have relatively large radii that en
ompassN � 1 atoms. Therefore, the only e�e s
attering thatis important in this limit is the forward s
attering witha small quasimomentum transfer. The matrix elementdes
ribing the ba
ks
attering within a band as well asthe P$ P0 s
attering a
quire an extra small fa
tor of

the order of 1=N . This is why these types of s
atter-ing 
an be negle
ted. This means that we 
an use theresults obtained in Se
. 2. Repeating the arguments inthat se
tion for n = 4, we 
on
lude that a 
ondensateis formed in the ground state. It 
onsists of the 8-pletsof the formâyR;�;�P (x) âyR;��;�P (x) b̂yL;�;�P (x) b̂yL;��;�P (x) �� âyR;�;��P (x) âyR;��;��P (x) b̂yL;�;��P (x) �� b̂yL;��;��P (x) :Their 
hirality is �8.4. CONCLUSIONWe have demonstrated that the ground-state wavefun
tion of the system of 1D n-
omponent ele
trons
onsists of point-like neutral 
omplexes 
ontaining 2nparti
les and having the 
hirality �2n. It is essentialto distinguish between three temperature regions:1) The lowest temperature region � � �
hiral == 2�vF =Lk. Here, the numbers of the 
omplexes withopposite 
hiralities are equal. Hen
e, the 
hirality ofthe state is zero and this is a state without symme-try breaking (see Eq. (24)). We 
an say that the size ofthe system is too small for the existen
e of a long-rangeorder.2) The intermediate region 2�v
F =Lk � � �� 2�vF =Lk. Here, the states with di�erent 
hiralitiesare degenerate in energy (v
F = vFp1 + nV0=�vF is therenormalized ex
itation velo
ity, see Eq. (13)). This al-lows 
onstru
ting a symmetry-breaking wave fun
tion,Eq. (27), although the Hamiltonian has no symmet-ry-breaking term. This means that adding a 
hiral
omplex to the 
ondensate does not 
ost any energy.(An analogous property is imperative for any systemwith a se
ond-order phase transition.) Therefore, thedegenera
y is possible only if the size of the system islarge enough and Lmink � 2�vF =�. A spe
imen 
an be
onsidered in�nite with regard to symmetry breakingif its size is bigger than Lmink .3) In the high-temperature region � � �
 == 2�v
F =Lk, the thermal ex
itations destroy the phasewith a long-range order. The unique property of a 1Dele
tron system is that the phase transition tempera-ture tends to zero in an in�nite sample. This is notthe 
ase for a 3D system. As it should, the upper tem-perature border of the 
hiral phase 
oin
ides with thetemperature region where power-law 
orrelators exist.To verify this statement, we re
all that at a �nite tem-perature, the 
orrelators de
rease exponentially at dis-978
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es longer than v
F =�. In order not to rea
h theregion within the spe
imen where the asymptoti
 be-havior is exponential, the size of the spe
imen has to besmaller than v
F =� or, in other words, the temperaturemust be su
h that �� v
F =Lk.For a real 
hannel, the temperature �
 is not sosmall. For vF � 107 
m/s and Lk � 10�4 
m, we have�
 � 1 K (v
F =vF ).In summary, in the system of intera
ting multi
om-ponent fermions, the most 
orrelated state 
onsists ofspinless point-like neutral 
omplexes ea
h 
ontaining2n partti
les with 
hiralities �2n. In the limit of thein�nitely strong intera
tion, the density of the 
om-plexes is �nite. The phase with a broken symmetryexists in the temperature region �
hiral � �� �
.We dis
uss an e�e
t that 
ould indi
ate the existen-
e of the 
hiral phase. Be
ause of the 
harge neutralityof the 
ondensate, it is di�
ult to believe that an e�e
tspe
i�
 for the broken-symmetry system 
an be foundin experiment asso
iated with 
harge transfer. At thesame time, the 
ondensate 
annot transfer heat but
an transfer energy. This means that an e�e
t similarto the thermome
hani
al e�e
t in super�uid heliummay be expe
ted (de
reasing the temperature of thesample with in
reasing the super�uid mass [22℄). Inthis 
onne
tion, we note that 
hiral 
omplexes 
an beadded to the 
ondensate using an external ele
tri
 �eldwith a nonzero topologi
al number (see Refs. [23; 24℄).V. V. A. and V. L. G. are grateful for a partial sup-port of this work to the Russian Foundation for Basi
Resear
h (Grant � 06-02-16384).APPENDIXChara
teristi
 dimensions of 
orrelated
omplexesThe simplest way to prove the existen
e of a bound
hiral 
omplex and to determine its 
hara
teristi
 di-mensions is to 
onsider the state with a single 
hiral
omplex:j�
i == Tr24 âyR;+(x+)âyR;�(x�)b̂yL;�(y0�)b̂yL;+(y0+)qQ�;�0=�(x� � y0�0 + iÆ)(x� � y0�0 + iÆ)35�� jF i: (A.1)

For instan
e, we 
an 
al
ulate the probability to �ndan ele
tron with spin up at a distan
e jz+ � z�j > dfrom the ele
tron with spin down ash�
jâyR;+ (z+) aR;+ (z+) âyR;� (z�) âR;� (z�) j�
i:Moving all the 
reation operators to the right andall the annihilation operators to the left, we obtainA2=jz+ � z�j2, where A is a 
onstant equal toZ dx�(1 + x)2 + �2��1=2 �(1� x)2 + �2��1=2 ;where � is an in�nitesimal parameter. This means thatthe most probable is the parti
le 
on�guration wherejz+ � z�j � d (to obtain a physi
al parameter, weshould repla
e, as usual, Æ by d). In other words,the right and left ele
trons with opposite spins are al-ways near one another, forming a 
hiral 
omplex. Inthis sense, the 
hiral 4-plets are point-like entities, asthe RL-pairs for one-
omponent fermions. In the sameway, we 
an estimate the distan
es between all the par-ti
les belonging to a four-parti
le 
omplex.The same 
al
ulation for a neutral four-parti
le
omplex is somewhat more 
umbersome. The statewith a single neutral pair is des
ribed by the wave fun
-tionj�0i = Tr"âyR;� (x�) b̂yR;� �x0�� âyL;+ (y+) b̂yL;+ �y0+��� �x0� � x� � iÆ��1 �y+ � y0+ � iÆ��1 �� �(x� � y+ + iÆ) �x0� � y0+ + iÆ��1=2 �� ��x� � y0+ + iÆ� �x0� � y+ + iÆ���1=2 jF i: (A.2)To �nd the 
hara
teristi
 size of a neutral 
omplex, we
onsider the matrix elementh�0jâyR;� (z�) aR;� (z�) âyL;+ (z+) âL+ (z+) j�0i:It is equal to979 10*



V. V. Afonin, V. L. Gurevi
h, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009Tr0"�~x0� � ~x0� � iÆ��1 �~y0+ � ~y0+ � iÆ��1 �� �~x0� + iÆ��1 ��~y0+ + iÆ��1 �� �(z� � z+ � iÆ) �z� � z+ + ~x0� � ~y0+ � iÆ��1=2 �� ��z� � z+ � ~y0+ � iÆ� �z� � z+ + ~x0� � iÆ���1=2 �� �~x0� � iÆ��1 ��~y0+ � iÆ��1 �� �(z� � z+ + iÆ) �z� � z+ + ~x0� � ~y0+ + iÆ��1=2 �� ��z� � z+ � ~y0+ + iÆ� �� �z� � z+ + ~x0� + iÆ���1=2# (A.3)(Tr0 means that we integrate over all variables ex
eptz�). The exa
t expression for this matrix element forarbitrary values of �Z = z+�z� is rather 
umbersomeand noninformative. It su�
es to prove that the mostprobable is the parti
le 
on�guration where �Z � d.For this, we note that for �Z � Æ, all the integralsin (A.3) 
onverge and are dominated by the regions ofthe order of Æ. We show that for �Z � Æ, matrix el-ement (A.3) has an additional small fa
tor Æ=�Z. Forinstan
e, we 
onsider the integration over ~x0�. Only thefa
tor q�z� � z+ + ~x0� � ~y0+ + iÆ�q�z� � z+ + ~x0� + iÆ� (A.4)in the integrand has a singularity in the lower half-pla-ne. The rest of the integrand is independent of �Zand has singularities only in the upper half-plane. Inthe leading approximation in Æ=�Z, (A.4) tends to 1(�Z � Æ, while the region ~x0�; ~y0+ giving the leading
ontribution to the integral is of the order of Æ). Hen
e,in this approximation, the integral of (A.3) vanishes.It is nonzero only in the next approximation due tothe fa
tors of the type q�~x0� + iÆ� = (z� � z+) � 1.Hen
e, the probability to �nd the ele
trons at a largedistan
e is small. The most probable is a 4-plet wherethese parti
les are at a distan
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