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We calculate the ground-state wave functions for a system of multicomponent strongly interacting fermions.
We show that it is a state with spontaneously broken chiral symmetry that discribes a phase with a finite density
of chiral complexes. The number of particles constituting a complex depends on the number of fermion com-
ponents. For example, in the case of two-component electrons (spin), the condensate is built of four-particle
complexes consisting of two “right” electrons and two “left” holes with the opposite spins.
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1. INTRODUCTION AND DISCUSSION OF
RESULTS

Advances in semiconductor technology have re-
newed the interest in the properties of one-dimensional
(1D) electron systems. It is well known that the
electron—electron (e—e) interaction alters the properties
of 1D systems qualitatively. For a better understand-
ing of the problem, the physical question of primary
importance must be clarified: what is the nature of
the ground state of this system? The answer is usually
sought in the studies of the ground state of 1D in-
teracting fermions using the “density—density” correla-
tion functions. However, this information is not direct
and the results have to be interpreted. The anomalies
obtained in correlation functions (see, e.g., [1]) were
usually interpreted as an example of the Peierls in-
stability [2, 3] (the part oscilating with 2pp) and as a
marginal Wigner crystal [4] (oscillating with 4pr).

In Ref. [5], the ground-state wave function of spin-
less fermions was constructed for the exactly soluble
Tomonaga—Luttinger model. It has been shown that
at sufficiently low temperatures, the system should be
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in the state that has nothing in common with a sys-
tem undergoing the Peierls transition. It is a state
with a spontaneously broken chiral symmetry. Hence,
the electron system is a system with a long-range or-
der. In the limit of infinitely strong interaction, at low
temperatures, a finite-density condensate is formed. It
consists of neutral (exciton-like) pairs of a right elec-
tron and a left hole or vice versa. The uniqueness of
a 1D system requires considering a second-order phase
transition in a channel of a finite length L;. The point
is that the phase transition temperature vanishes as
1/Ly, as it should. At the same time, we could not
use the standard limit L — oo from the very begin-
ning because the normalizing coefficient of the ground-
state wave function tends to zero in this limit. (This
phenomenon is well known as the “orthogonality catas-
trophe”, see [6].) Hence, in passing to this limit, the
result depends, on the one hand, on the method and
on the other hand, on the step at which the limit was
taken. (This point is carefully discussed in our previous
paper [5].) We note that the phase transition temper-
ature need not be too small. For Lj ~ 107* cm, it
should be about 1 K.

The multi-component fermions in 1D systems were
extensively discussed in the literature. In a number of
papers [2, 3], separation of the spatial and spin degrees
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of freedom was considered. In the present paper, we
discuss the form of the ground-state wave function for
such a system. Because the variables separate, we can
expect that the ground-state wave function is a direct
product of two factors, with one of them, describing
the spinless component, coincident with the ground-
state wave function of spinless fermions. In the present
paper, we show that an entirely different situation is
actually realized. Namely, the most correlated state is
the state where the total spin vanishes. However, for
n-component electrons, this state consists not of pairs
(as in the case of spinless fermions) but of point-like
neutral complexes containing 2n particles and having
the chirality +2n.

In the ordinary electron system, n = 2, there are
the complexes consisting of two right electrons and two
left holes with opposite spins. Therefore, in accordance
with Ref. [10], the ground state of the system is spin-
less. For the conducting nanotubes, n = 4 (Refs. [7-9]),
and the complexes consist of eight particles. The com-
plexes with a smaller number of particles can have a
nonzero spin, but their correlation is much weaker. For
example, for n = 2, the spin phase can be realized only
as a Berezinskii-Kosterlitz—Thouless (BKT) phase, and
in the limit of infinitely strong interaction, the complex
density tends to zero as 1/,/Lj. By contrast, the spin-
less phase has a finite density in this limit.

This situation is typical of many field-theory mod-
els with an Adler anomaly (this is the case for the Lut-
tinger model as well). It is known that in such models,
the new fermion interaction (“’t Hooft interaction” [11])
can appear with a vortex that is a product of all the
components of fermions. In many cases, the 't Hooft
interaction leads to a spontaneous breakdown of the
chiral invariance with 2n fermion order parameters.
In particular, this is the case for the multicomponent
Schwinger model [12] and, as we see in what follows,
for the Luttinger model in the limit of infinitely strong
interaction.

For the last model, the most correlated state is built
out of complexes each of which has the maximum pos-
sible number of the degrees of freedom. As a result,
the state has a highest phase volume and appears to
be the most correlated one. This state differs qualita-
tively from a marginal Wigner crystal. Instead of an
almost first-order phase transition, an almost second-
order phase transition occurs. To manifest the break-
down of the chiral symmetry in the Luttinger liquid, we
have exactly calculated the wave function of the ground
state in this model, Eq. (27), and explicitly demon-
strated that its symmetry is less than the original sym-
metry of the Hamiltonian. (This is the definition of
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spontaneous symmetry breaking). These are basically
the main results in this paper.

For a one-component fermion system, point-like
complexes with more than two particles as well as col-
lisions of such complexes are forbidden by the Pauli
principle. This is not the case for multicomponent
fermions. For this reason, the ground-state wave func-
tion in Eq. (27) is much more cumbersome and the
calculations are more involved. Therefore, we present
the results only for a short-range potential in the limit
of infinitely strong interaction. At the same time, the
physical picture in our case is quite similar to that of
one-component fermions. For instance, had we taken
corrections in the reciprocal strength of the interaction
into account, we would have also obtained a BKT phase
for spinless complexes. With the strength of the inter-
action increasing, it would be gradually transformed
into a state of a definite condensate density.

This paper is organized as follows. In Sec. 1, we
give a brief review of our results. Section 2 contains
a discussion of the main difference between the multi-
component problem and the spinless one in regard to
the theoretical description and most essential steps of
the calculation. In Sec. 3, we give arguments concern-
ing the applicability of our theory to nanotubes. The
Appendix is devoted to a derivation of some interme-
diate results.

2. DESCRIPTION OF THE APPROACH AND
THE DERIVATION OF MAIN RESULTS

Our starting point is the usual Tomonaga-Luttinger
Hamiltonian (see, e.g, Refs. [3,13]) for a system of in-
teracting electrons with backscattering ignored. In the
case where the interaction does not change the elect-

ron spin, the Hamiltonian can be expressed through the
density of the right (R) and left (L) electrons

0 ($)a = OR,« ($) + OL,« ($)

(the spin index « equals £ for the spin +1/2 respec-
tively) as

H = Z/dm [@}m (2) vp (=i0,) Up.o (2) +
+ i’}a (z) Upiam\i/La (x)| +
+ [dedyo@)Ve-ye). ()

where v is the Fermi velocity,
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A

U, () = exp (iprz) Vp.a (2) +
+ exp (—iprx) ‘i’L,a (x), (2)

and p is the total density. For simplicity, we assume
that the interaction is spin-independent (it is not too
essential for calculations). We introduce the electron
and hole operators in the usual way

§ Oodp
0) = [ 5 (exp (ipe) o () +
m
0

+ exp (Fip2) b 1 () =
= ar1)a () +blp 1) (@), (3)

where ag 4+ (x) is the operator of annihilation of an
electron with spin +1/2 and bg , () is the operator
of annihilation of a hole with spin —1/2. To write this
interaction via a functional integral, it is necessary to
introduce one Bose field ® and apply a version of the
Hubbard-Stratonovich identity [14]:

X (Q (p,t)(b(_p/t) +Q(—p,t)‘1)(p,t)) ) (4)

where V (p) is the Fourier transform of the e—e inter-
action and the normalization factor is

N:/Dq)x

T [e¢)
T
0 —0oo

This identity shows that the theory with the e—e in-
teraction is equivalent to the theory of noninteracting
electrons in an external field ®. (Had we considered
a theory with a spin-dependent interaction, we would
have to introduce two independent Bose fields. The cal-
culation would be more cumbersome, but the physical
picture would be the same.)

X exp (—p,t) V' (p)|. (5)

DO | .
S’I%

Calculation of the ground-state wave function is
given in detail in Ref. [5]. It is based on the calculation
of the evolution operator for the electrons

S(T) = |n)(n|exp (=iHT)|m)(m|, (6)

m,n

where |n) are the exact wave functions of the Hamilto-
nian in the secondary quantization representation and
T is the observation time. S(T') determines the evo-
lution of an arbitrary initial wave function ({m]) from
the instant ¢ = 0 up to final states (at t = T'). (Hence-
forth, we imply that the Schrédinger representation for
operators with time-dependent wave functions is used.)

Equation (6) suggests the general method to obtain
the wave functions. We first calculate the evolution
operator and present it as a sum of time-dependent ex-
ponentials. The coefficients in front of these exponen-
tials are products of the exact wave functions and their
complex conjugates. To extract the ground-state wave
function, we then take the limit 7' — oo (we add an in-
finitesimal imaginary part to the energy). Proceeding
to the Euclidean time ' — —i/©, we see that the evo-
lution operator determines the density matrix for the
equilibrium system at a nonzero temperature ©.

As in the case of spinless electrons (see [5] for the
details), the evolution operator for the electrons in an
external field can be represented as

S (®) = exp (So + In[Det & (T)))|F)(F|.  (7)

Before the integration over the fields ®, the equa-
tion for S (®) undergoes some changes in comparison
with the spinless case. They amount to the appearance
of a factor n, the number of components of the electron
wave function, in the equation describing the quantum
fluctuations in the electron system under the action of
the field @ (T') (for the spin case n = 2):

T

i/dtdtl x
iy

0

In[Det ® (T)] = —
X / Z_f.@(_pvt)q>(p,t1) \p| exp [—i|p‘1)F‘t_t1|]. (8)

The operator structure of Eq. (7) is determined by the
second part of the action, Sy. Here, we should take the
spin index « into account,
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= /da/: dx' [i)la (') GY (2',0;2,€) @i () +

()G (2! T;2,T — €) b}, (2) —
—aj (2')GY (2!, T; 2,0) a0 () —

— bia (') GY (2',0:2,T)b], (2)], (9)
where GY is the spin-independent free-particle Green’s
function

G iz, t) = — X
R7L(x r1,t1) i

X [op (t—t1) F (2 —a1) —idsign (t — )] . (10)

Behavior of the multicomponent fermions in the ex-
ternal field is quite similar to that in the one-component
case. An essential complication, however, occurs af-
ter the integration of the operator S (®) over ® with
weight (4).

Two points should be indicated.

1) The coefficient n in Eq. (8) enters the equation
for the action. Due to this coefficient, after calculation
of the integral over ®, the analytic structure of the re-
sulting expression becomes much more complicated. As
a result, integrals defining wave functions of multipar-
ticle complexes acquire cuts instead of simple poles as
in the one-component case. This leads to rather cum-
bersome complex wave functions. In particular, the
complexes are nonlocal.

2) The property of nonlocality results in an essen-
tial increase in the number of various electron states.
A number of electron states are forbidden for one-
component electrons due to the Pauli principle. In con-
trast to this, in the multicomponent case, the number of
connected diagrams becomes infinite. This makes the
expression for the ground-state wave function rather
cumbersome. However, the very fact of the existence
of the chiral phase for the infinitely strong interaction
persists.

Because of a non-Gaussian form of the final func-
tional integral, it is impossible to perform the integra-
tion in Eq. (8) over ®(z,t) in a closed form, but it is
possible to obtain an arbitrary term of the evolution
operator by expanding it in (S,)". This suffices for
obtaining the ground-state wave function, because the
relevant integral is of a Gaussian type and can be easily
calculated. After the final integration over ®, the final
recipe of calculation of the evolution operator can be
written as a sum of the terms (see [5], where similar
calculation were done very carefully)

. ) exp (ST |FY(F|. (1)

Here, |F) is the Fermi “sphere” and the term S(()n) (one
term in the entire sum (Sp)") determines the operator
structure of the wave functions, i.e., a possible particle
configuration due to the e—e interaction. Equation (11)
is a sort of symbolic expression. Indeed, the analytic
equation for the effective action S/ in the nth term of
the expansion depends explicitly on the particle config-
uration in the preexponential factor Sé"). Naturally, it
is different for different terms. We note that evolution
operator (6) is determined such that the initial state
expressed through the electron and hole annihilation
operators and the final state determined through the
creation operators are given at different times. This
means that in calculating the evolution operator, we
should regard the operators dRL (x) and ag,r. (y) as
anticommuting.

In what follows, we give a prescription to write the
effective action (S¢7) for a given electron-hole config-
uration. To write the expression for S/, we intro-
duce the following notation for the coordinates of the
electron—hole creation—annihilation operators.

1. We let = (y) denote the coordinates of the right
(left) particles.

2. We put a tilde on the coordinates related to an-
nihilation operators (the initial state): the coordinates
of creation operators (the final state) have no tilde.

3. We prime the hole coordinates.

The effective action differs from the action for the
one-component fermions only by a factor and in the
limit of strong interaction

Vi)

TR

>1
is equal to
St =L Z \pm\
)+ Ri(=p,@1... ) Ri(py&1...)] —
2 1 —
X e (5 )

(=p,x1...) X

X Rf(p,xl...

The extra factor n is the number of the fermion com-
ponents. It occurs because in the Luttinger model, the
excitation spectrum is [15]

nV (p).

(13)
TR

wp = |plvpy[1+

Equation (12) is valid in the temperature region
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echiral KO K ec =w (pmzn) .

The right-hand side of the last inequality is the
energy of excitations with a minimal momentum (for
periodic boundary conditions ppi, = 2m/L)) and
Ochiral = |Pmin|vr is the degeneracy temperature of
the ground state. In this temperature region, the en-
ergy difference between the states with different chi-
ralities can be neglected. This means that the ground
states with a different chirality become degenerate.

The origin of this inequality has been discussed
in detail in [5]. It is not sensitive to the number
of wave function components. For the temperatures
© < Ocpiral, the last term in Eq. (12) should be omit-
ted. Then the corresponding equation is also valid for
the lowest temperatures.

The functions R; ¢ (p, &1 ...) in Eq. (12) depend ex-
plicitly on the electron (z...) and hole (&...) coordi-
nates in the preexponential factor in Eq. (11). These
functions are given by

>

Ty sy
— exp (ipa")] + 0 (=p) [exp (ipy) — exp (ipy')] ,
Ri(p.@...) >

— exp (ipi")] + 0 (p) [exp (ipy) — exp (ipy')] .

Ry(px... 0 (p) lexp (ipz) —

z..

(14)

6 (—p) [exp (ipT) —

T

To obtain the complete expression for the gro-
und-state wave function, we have to consider all the
complexes and separate their connected parts. This is
not necessary, however, because according to the gen-
eral theorem, the complete wave function is an expo-
nential of the connected complexes [16]").

For one-component fermions, there is only one pos-
sible two-particle connected complex. This is not so
in the multi-component case, where many of the scat-
tering channels are possible and hence the number of
connected diagrams is infinite. In principle, the exact
wave function of any given complex can be calculated
by taking the Gaussian integral over ®. Unfortunately,
this is not enough to present the whole wave function
of the system in a closed form, but we do not actually
need it to prove the existence of symmetry breaking.
To verify this, it is sufficient to prove that the wave
function symmetry is less than that of the Hamiltonian.

1) This theorem is, in fact, a purely combinatorial statement.
In field theory, we apply it mostly to Green’s functions. In statis-
tical physics, it is known as the first Mayer theorem (G. E. Uh-
lenbek, G. W. Ford, and E. W. Montroll, Lectures in Statistical
Mechanics, American Mathematical Society, Providence (1963)).
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For this, we analyze the simplest connected diagrams
resulting in a spontaneous breaking of the symmetry of
the Hamiltonian. The other terms either have the sym-
metry of the Hamiltonian or describe the scattering of
the simplest correlated complexes and also violate the
chiral symmetry.

In what follows, we restrict ourself to the case of
a short-range interaction (V(p) = Vp) in the limit
nVo/mvp > 1. Now we embark on analysis of the sim-
plest diagrams of the evolution operator for the elec-
trons having a spin. We begin with the temperature
region O.pirq; > ©. In this case, the action and there-
fore the evolution operator factor, and hence we can
explicitly consider the ground-state wave function |(2).
(It is actually the ground state with the lowest energy,
and is therefore realized at ® = 0.) The simplest non-
trivial diagram we should be interested in is

/

dydx! dr_dx' dyydy’ dy_dy'

(27i)> (27i)?

y il (2y) b (2)) dly (22) bR (2") y
v —xy —id . —x_ —id
b 0B, ) ah, w-)BL ()
Y+ —yy —id y— —yL —id

x exp[8); (x4, )]IF). (15)
We see in what follows that the terms with a smaller
number of operators give a weaker correlation than
Eq. (15).
The action for this electrons—hole configuration is
) =
Ha7a’... (l‘a —Ys + 26) (x:x’ - ylﬁ’ + Z6)

oo (x4 —ys +id) (xaf —yh + i6) '

Sg}f (Tay- -

1

n (16)

In fact, it differs from the corresponding expression for
one-component fermions by the factor 1/2 and by a
greater number of the independent variables. The fac-
tor 1/2 does not permit calculating the integral in the
problem explicitly because it involves cuts instead of
the simple poles that occur in the one-component case.

Nevertheless, it is possible to recognize the sponta-
neous breakdown of the chiral symmetry in our system.
For this, several steps are necessary. First, we have to
analyze what new bound complexes appear as a result
of the interaction. We have to take an arbitrary con-
nected diagram and try to separate complexes with a
smaller number of particles out of it. To do this, we
have to consider all particles in one complex as being
close to one another, whereas the distances between
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different complexes are large. If the full wave func-
tion turns into a product of two wave functions in this
limit, one of them depending only on the coordinates
of the first complex and the other depending only on
coordinates of the second one, then the complexes can
be considered new “free particles’?) because the prob-
ability to find one such complex is independent of the
position of the other. In other words, we should repre-
sent a term of the expansion of the evolution operator
we consider as a product of the form

dl‘ dy a -
/#'“ak#(fv”“'h($+,-..-,y+...;)><

xa2,+(y+)...

Next, we should verify that if the complex with co-
ordinates (x4,...) is moved away from the complex
(Y4 ...) over the distance of the order of L, then the
amplitude K (z4,...,y+,...) tends not to zero (as is
usually the case with scattering amplitudes) but to
the factored product k (z1,...) k1 (yx,...), where each
factor depends on the variables of the respective group.
This means that the two complexes are formed as a re-
sult of the interaction. If the intercomplex distance is
large enough, their contribution to the wave function
can be represented as

dx+

Vomi

F(ay..)ip, (o40...) %

dy+ ot

The remaining part of K (which is K — kky) is a con-
nected diagram that describes the intercomplex scat-
tering under the condition that it tends to zero as the
distance between the complexes increases. The theo-
rem of logarithmic connectedness [16] guarantees that
the same connected complexes appear in all orders with
the correct combinatorial coefficients and the final an-
swer is an exponential of connected complexes. In par-
ticular, the first-order term

k()i (o2) . |F)
should appear in the expansion of the evolution oper-
ator directly unless it is forbidden by some conserva-
tion law (e.g., the chirality conservation for the lowest-
temperature case in our model). In this case, we have
to use the projector on the proper state as in Eq. (24)
below. It permits excluding the states forbidden by a
conservation law.

2) We note that the analogy with a bound state is quite limi-
ted. It would be more correct to write about a correlation in the
momentum space.

Whether a symmetry breaks down depends on the
symmetry of the complexes &}rm_ (1) ... If they are
less symmetric than the initial Hamiltonian, the sym-
metry is broken. As a result, it is possible to intro-
duce a nonvanishing order parameter in the less sym-
metric phase (in the more symmetric phase, where the
complexes do not exist, the order parameter vanishes).
More precisely, taking fluctuations of the low-symmetry
phase in the phase with a nonbroken symmetry into ac-
count, we can see that the order parameter should not
increase with Lj in the high-symmetry phase. (Our
definition of the order parameter is given below in
Eq. (29).) The fluctuations result in well-known ef-
fects such as the Aslamasov-Larkin one [17]. Accord-
ing to Landau (see [18]), the appearance of the order
parameter is the definition of the second-order phase
transition. But if the symmetries of all the connected
complexes and of the Hamiltonian are the same, there
are long-range correlations without a spontaneous sym-
metry breaking.

By analogy with the theory of one-component
fermions, we can assume that the simplest connected
diagram originates from the term

/dx+dx'+ dy dy' ik (24) 0k, (2)) )

2mi 2mi v —xy —id
ah () by (v")
X - - X
y- —y. —id

+r ) (A7)

However, because of the factor n~!, the corresponding
contribution to the action is

X exp [Sg;f (x

Shy(ag,...) =
1 (o4 —y— +i6) (2 —y’ +id)
=—In T - — —.
2 (2, —y— +1i6) (x4 —y" +1i6)

(18)

The bound chiral complexes are determined by
the singularities of the integrand at |2/, —y | ~ d,
x4y —y' | ~d, and |x; —y_| ~ Lj (where d is the
width of the conductor). As a result, the contribution
we are interested in is of the order of

[ desdy-ily (@0 B) (21) ] (00 x

A d
x bl (y-)

—|F)
2y —y-|

This quantity tends to 0 as [x4 —y_| = L — oo, but
more slowly than for a free particle?).

3) This means that even in the strong interaction limit, the spin
phase can exist as a Kosterlitz—Thouless phase with the Thouless
constant of the order of 1/2.
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We now show that the most correlated state can
be obtained from Eq. (15). It can be split into
two four-particle complexes, each with zero spin, ha-

ving the chirality charges +4: &E#dk,ﬁl,ﬁl,, and
&J'L’Jr&TL’ibkﬂLb%ﬁ. (We assign the chirality +1 to a

right electron and a left hole and —1 to their counter-
parts.) The amplitude K in Eq. (15) factores and does
not tend to 0 as L — co. Indeed, the C-factor in the
integrand is

1 1

v —xy —id . —x —id

I(($+,... =

)

1 1
Y+ —yL —id y- —y' —id

\/Ha,a’... (l’a —Ys + 26) (I‘Ia/ - ;y'B, + 2(5)
X

\/Ha,az... (2, —ys +1i0) (xaf — Yz + z’é) |

We now consider the integration regions x4 ~ x_ ~
~y. ~y\ and 2!, ~z" ~y, ~y_ assuming that the
distances between these groups of variables are of the
order of L. Then the amplitude K tends to

X

X

(19)

Via (@) Vet (@) = 1y (g — oy +0) (24 — g +38) (= — )y +i0) (w= — g +i6) x

X 1/\/(93’_|_ —yp +1i6) (2!, —y— +1i8) (22 — yp +0) (a2 —y— +1id). (20)

This means that each amplitude V' depends on the
variables belonging either to the first or to the second
group. This property of the amplitude allows indenti-
fying the full equation for the evolution operator of the
connected complexes and the amplitude of intercom-
plex scattering that tends to zero for large intercomplex
distances.

This term of the expansion, besides the chiral com-
plexes, has also neutral complexes with zero chirality,
il b, al b andal, b}, ai bl . Theydonot
violate the symmetry of the Hamiltonian. But they
should be isolated in order that the remaining scat-
tering amplitude tend to zero in the whole region of
the variables. This permits interpreting it as the inter-
complex scattering amplitude. The zero-chirality com-
plexes are not important for the existence of a phase
transition. However, they should be taken into account
in the calculation of matrix elements because they are
not small. To check that they exist, we consider the
regions x4 ~ !, ~y_ ~y" andx_ ~ ' ~yp ~yl
in (15). In these regions, the amplitude K tends to
Vo(zg,...) Vo (z—,...) where

) = [(2l,—za—id) (y_a—yla—i5)]_l X

X [(Ta —y_a +i6) (zh, —y' o + i5)]1/2 X

VO (JUO“..

X [(Ta =y 0 +i0) (2 —y o +i8)] 2. (21)

This means that this quantity can be represented as a
product of the amplitudes each of which remains finite
as the distance between them tends to infinity.

It is now convenient to introduce the intercomplex
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scattering amplitude V... By derivation, it tends to
zero with the intercomplex distance tending to oc:

):K’(x+7'~-)_v+4($+.,...)><
) = Vo () Vo(a_,...).

The contribution to the ground-state wave function can
be represented in terms of these amplitudes as

/

xi)kﬁ (z

Vcoll (er', cee

X V_4 (x'+, N (22)

drydx!' dr_dx’" dyydy’ dy_dy'
(27i)> (27i)?
X &J}r%mt () B’}rﬁ (#'y) ap,
Lyal, (o) by, (W) ah wo)blh (-
.)V,4 (xii_,) +
N IE).

The first term here describes noninteracting complexes
with a nonzero chirality, the second describes 4-particle
neutral complexes, and the third (the connected part)
describes their collision. We are mainly interested in
the first term because it is related to the chiral symme-
try breakdown.

The chiral complex that we have obtained is already
connected and cannot be split into simpler ones. This
means that its wave function is a decreasing function of
the interparticle distances. It is shown in the Appendix
that the probability to find particles of the complex far
from each other is negligibly small.

In addition, we should take into consideration that
in the temperature interval ©® < O.pirqa;, Where the
last term in Eq. (12) need not be considered, there is
a one-to-one correspondence between complexes with
the chiralities ) = 4 and () = —4. Hence, the total

b (a2) x

) x
x (V+4 (T4,

+ Vo (o, ) Vo(z_,. o)+ Veou (24, . .. (23)
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chirality of the state is zero. The theorem of logarith-
mic connectedness states that the ground-state wave
function can be represented as

|Q> = Pg=o X

X exp ZTr

x (a}{’a (o) a}‘,ﬁa (o

x 0b (o) +a
X ék,,ox

—V+4 (xa,x—om Yy avyoz)

04) i)T ,— o (yia) X
Lhal L) x
)bl o (70

)+
(dR,a (Ta) X

1
+ —2V+0 (-Ta,xfoz-, yl—oﬂytl)z)

(27i)

x Do (2h) i), o (y-a) B,
+ o (@-)bh o (¢0) af o (5) B o (1)) +

1

scribe collision of three and more complexes, while all
the elementary complexes are present here. We note
that the complexes with a nonzero chirality have ap-
peared in the theory. Nevertheless, the wave function
of the ground state as a whole describes the state with
@ = 0, i.e., the symmetry of the ground state is the
same as that of the Hamiltonian. The states with a
nonzero chirality have a higher energy (of the order
of 2rvp/L)). Therefore, the spontaneous symmetry
breaking may occur only in the region of higher tem-
peratures © > O.pirq1, Wwhere such an energy difference
is not essential. In this temperature region, the term
where the time arguments of the Green’s functions dif-
fer by T' must also be considered in Eq. (9) for the ac-
tion Sp. (In practice, it is more convenient to introduce
the temperature by the replacement T'— —i/0© in the
final equations.) We then have the following nontrivial
term in the evolution operator:

ot ot
+ —Veoll (TayT—a,... )R o (Ta) dp _, (T—a) X
(27i) ! i (vy)ar (1) afy_ (v-)ar (3-) y
2 2 N r = = -
X bTL7—a (v_a) bTL@ (Ya) aTL7a (Ya) % @ri)! Ty—zy+opT—id & —x 4vpT—id
. N - I
-t it Ry 04 O (w) be () by (v8)be ()
Xy _o (Y-a) bp 4 (+14) Ra(@a)+. ] (24) por ; — — - -
Uy =y, —vrT +i6 §_ —y" —vrT +i6
where Pg—g is the projector on the state with zero chi- x eXP[Seff] (@4, )FNF] (25)
rality. The symbol Tr includes the integrations over the
particle coordinates. The terms omitted in Eq. (24) de-  The action Sefﬁ for this configuration is
\
1 Hoz,a’ (ya y - UFT + 26) (xa’ - i‘ﬁ’ - UFT + 25)

It is readily seen from the operator structure of
this term that the amplitude V,; appears here auto-
matically (without extracting the amplitudes of neutral
complexes and scattering channels), as it should. This
is a consequence of the theorem of logarithmic connect-
edness. It guarantees the coincidence of the amplitude
in this term with V4. We verify this. We consider
the region where the same variables with spin up and
spin down are quite close to each other (for instance,
Ty ~ T_,). Besides, the coordinates in the creation
and annihilation operators are apart at the distance of
the order of L) (x4 ~ o ~ L > 27vr/©). Then the
C-factor in the integrand of (25) turns into the factored
expression

V+4(l'+ )V_*4(i'+/)

This proves that the chiral four-particle complexes

were segregated properly from a more complicated ex-

Moo (xa — Y+ w) (i, — &g +i0)

pression (15). Such terms in the evolution opera-
tor result in the existence of the ground state with
a nonzero chirality. But any state with fixed chirali-
ties should be unstable under weak backscattering once
states with different chiralities are degenerate. There-
fore, we should consider a superposition of all such
states. As a result, in the same way as in the theory
of superconductivity, we have to introduce a conden-
sate with a fixed phase instead of a state with a fixed
chirality:

D)y —epoTr

X (exp (i0)alk, ,

—V+4 (:roz xr_ (e8] y—ouya)

(wa) iy (2-a) X

x DY o (ya) L o (yh) + exp (=if)dh , (yh) x
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x dz,—a (yl—a) b;%,—oz (x—a) b1}.%7a (xa) +
1 N
+ —,2V+0 (xomx—omylfaay;) (aTRa(xa) X
(271) ’

x bl (h)al o (y-a) bl (v ) +

iy (-0) B (020) ] o (va) B0 () +

1 N .
+ ——Veor (Ta,T—a,-..) a}r% o (@a) ak_a (r_q) X

(271)

x b o (0 a) L (Wh) L, (ya) X

t ! i

X QL o (y—a) Dl o (o) Bk (@) + .| (27)

Equation (27) demonstrates that for a strong
electron—electron interaction, a spontaneous symmetry
breaking occurs. The first two terms in the equation for
the ground-state wave function are not invariant under
the chiral transformation

VR, () — exp (£iA) VR 1, (28)

while the Hamiltonian retains the invariance. Here, A
is an arbitrary constant.

Such a form of the bound state permits introducing
the order parameter. It is equal to zero in the high-sym-
metry phase (0@ > 0. = w,, ;. ) and is proportional
to L in the low-symmetry phase (in the low-tempera-
tures region). (These statements can be proved using
ordinary symmetry considerations or by direct analytic
calculation.) In our case, the following quantity can be
considered an order parameter:

/ dr o (Qlal, (2)dly . (2) %
x bl (2) ) o (2) |0 (29)

We can see from Eq. (29) why the second-order
phase transition requires the chirality degeneracy of
the ground state. For the order parameter to be non-
vanishing, it is necessary to be able to add an extra
four-particle complex to the ground state. This re-
quires the condition ©® > ©.pirq; because the zero-
chirality state has the lowest energy and the energy dif-
ference between states with different chiralities is about
Ochirar- There is also an upper bound for existence of
the low-symmetry phase,

0 <K wWpin- (30)

This limitation is because the long-range order is sup-
pressed by thermal excitations in one-dimensional sys-
tems. In the temperature region given by (30), it can

10 ZKSBT®, srim. 5

be neglected; this condition is independent of the num-
ber of fermion components and is discussed in detail
in [5]. Hence, the temperature region

echiral < @ < @c (31)

is the region where the broken symmetry phase exists.

3. CARBON NANOTUBES

Conducting carbon nanotubes may give one more
example of multicomponent electrons. The theory de-
veloped above can be generalized to this case. We con-
sider one-dimensional conducting tubes and the e—e in-
teraction such that it can be rewritten in the densi-
ty—density form (cf. Eq. (1)). This means that the
backward and inter-component (see below) scattering
can be neglected. Following Ref. [19], we can visualize
a nanotube as a cylinder constructed of a monoatomic
layer of graphite. Graphite has a lattice of adjoining
regular hexagons, with the angle between the neigh-
boring basis vectors a and b being 27/3. Choosing the
coordinates & and & such that the 0&; axis is parallel
to the vector a and the 0, axis is perpendicular to a,
we can represent these vectors as

a = a(1,0), b:a(—1/2.,\/§/2). (32)

Here, a is the lattice constant, equal to dv/3, d =1.44 A
being the interatomic distance [20].
The circumferential vector L can be written as

L = n,a + nyb, (33)

where n, and n; are integers.
The electron effective Hamiltonian for a graphite

sheet is
0 h*
H = . 4
(% %) (34)

It can be expanded in the vicinity of the points

4T a7
P=—(-1,0 P'=—(1,0 35
Z(-1,0, P=20)  (3)
up to the first order in the small deviations p and p’
from the values respectively given by the first and the

second equation in (35),
h(P,p) =ve™ " (p1 —ip:), (36)
h(P',p') = ve’ (=p/L —ipl),

where v = (v/3/2)ya, 7 ~ 3 eV (see Egs. (21)
and (22)) is the transfer integral between the neighbo-
ring 7 orbitals, and 6 is the angle between the vectors L
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and a. The subscripts z and L refer to the components
of p relative to the direction of L, p, 1L L and p, ||L,
such that p,(p, ) is parallel (perpendicular) to the axis
of the tube.

The spectrum near the point P is given by

E(P,p) = +v,/p? + p}.

where the upper (lower) sign corresponds to the con-
duction (valence) band in this equation. The spect-
rum near the P’ point is obtained by the replacement
p—p.

The electron wave function ¥(r) must satisfy the
cyclic boundary condition

(37)

U(r) = U(r + L), (38)

and hence the discrete values of p; and p, are given
by (see Ref. [19])
v 2r ( n 1/)
n+ —
3 b

(n-3) Pi=m

where n = 0,£1,£2,..., |L| = ay/n2 +nl — ngne,
and v = 0 or £1 is determined by representing the
sum n, +np as 3N + v (with N being an integer). The
nanotubes are conductive (metallic) for the combina-
tion

27

= i (39)

pL

n=v=0 (40)

and we consider this case in what follows. In other
words, there are two conic bands in such tubes, i.e.,
the points apP with ap = £1. The large phase cor-
responding to the quasimomentum apP should be ex-
tracted in the same way as this was done in Eq. (2). In
addition, we assume that due to the presence of gate
electrodes, the Fermi level is well above (or below) the
points apP (cf. Ref. [8]). As a result, we have a theo-
ry with four-component fermions. There are two extra
branches corresponding to two values of ap. In each
of them, there are analogues of R- and L-particles. To
establish a correspondence between the present model
and the Luttinger model, we should be able to neglect
the transitions both between different branches (dif-
ferent values of ap) and between R- and L-particles
within the same branch. As indicated in Ref. [21],
nanotubes have relatively large radii that encompass
N > 1 atoms. Therefore, the only e—e scattering that
is important in this limit is the forward scattering with
a small quasimomentum transfer. The matrix element
describing the backscattering within a band as well as
the P < P’ scattering acquire an extra small factor of
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the order of 1/N. This is why these types of scatter-
ing can be neglected. This means that we can use the
results obtained in Sec. 2. Repeating the arguments in
that section for n = 4, we conclude that a condensate
is formed in the ground state. It consists of the 8-plets
of the form

W oap (2) Ak (@) Lo (@)B) (@) X
x &1}.%7(1,—0513 (x) &11‘%,—057—(1}9 (x) bE,(L—a;: (x) X
XDy o —ap ()

Their chirality is £8.

4. CONCLUSION

We have demonstrated that the ground-state wave
function of the system of 1D n-component electrons
consists of point-like neutral complexes containing 2n
particles and having the chirality +2n. It is essential
to distinguish between three temperature regions:

1) The lowest temperature region @ < O.pirar =
= 2nvp /L. Here, the numbers of the complexes with
opposite chiralities are equal. Hence, the chirality of
the state is zero and this is a state without symme-
try breaking (see Eq. (24)). We can say that the size of
the system is too small for the existence of a long-range
order.

2) The intermediate region 27mvg /L > © >
> 2mvrp /L. Here, the states with different chiralities
are degenerate in energy (v§ = vpy/1 + nVp/mur is the
renormalized excitation velocity, see Eq. (13)). This al-
lows constructing a symmetry-breaking wave function,
Eq. (27), although the Hamiltonian has no symmet-
ry-breaking term. This means that adding a chiral
complex to the condensate does not cost any energy.
(An analogous property is imperative for any system
with a second-order phase transition.) Therefore, the
degeneracy is possible only if the size of the system is
large enough and Lﬂ’”" ~ 2rvp/O. A specimen can be
considered infinite with regard to symmetry breaking
if its size is bigger than L"l’””.

3) In the high-temperature region ©® > O, =
= 2mv% /Ly, the thermal excitations destroy the phase
with a long-range order. The unique property of a 1D
electron system is that the phase transition tempera-
ture tends to zero in an infinite sample. This is not
the case for a 3D system. As it should, the upper tem-
perature border of the chiral phase coincides with the
temperature region where power-law correlators exist.
To verify this statement, we recall that at a finite tem-
perature, the correlators decrease exponentially at dis-
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tances longer than v%/©. In order not to reach the
region within the specimen where the asymptotic be-
havior is exponential, the size of the specimen has to be
smaller than v% /0 or, in other words, the temperature
must be such that © < v% /L.

For a real channel, the temperature ©. is not so
small. For vp ~ 107 cm/s and L) ~ 10~* cm, we have
O, ~1K (vi/vp).

In summary, in the system of interacting multicom-
ponent fermions, the most correlated state consists of
spinless point-like neutral complexes each containing
2n partticles with chiralities £2n. In the limit of the
infinitely strong interaction, the density of the com-
plexes is finite. The phase with a broken symmetry
exists in the temperature region Ocpire € 0 K O,.

We discuss an effect that could indicate the existen-
ce of the chiral phase. Because of the charge neutrality
of the condensate, it is difficult to believe that an effect
specific for the broken-symmetry system can be found
in experiment associated with charge transfer. At the
same time, the condensate cannot transfer heat but
can transfer energy. This means that an effect similar
to the thermomechanical effect in superfluid helium
may be expected (decreasing the temperature of the
sample with increasing the superfluid mass [22]). In
this connection, we note that chiral complexes can be
added to the condensate using an external electric field
with a nonzero topological number (see Refs. [23,24]).

V. V. A and V. L. G. are grateful for a partial sup-
port of this work to the Russian Foundation for Basic
Research (Grant Ne(06-02-16384).

APPENDIX

Characteristic dimensions of correlated
complexes

The simplest way to prove the existence of a bound
chiral complex and to determine its characteristic di-
mensions is to consider the state with a single chiral
complex:

|‘I)C> =

=Tr i (14 )afy _ (2 )b) _(y)b] L (y%)
VTt (Fa = Vo +16) (70 — Yo +10)
x | F).

(A.1)

For instance, we can calculate the probability to find
an electron with spin up at a distance |z4 — z_| > d
from the electron with spin down as

(@claly | (1) ary (24) dh (2 )ar,— (22)[2).

Moving all the creation operators to the right and
all the annihilation operators to the left, we obtain
A%/|zy — 2|, where A is a constant equal to

/dx ((1 +a2) + 62) e ((1 —2)’ + 62)71/2 ,

where € is an infinitesimal parameter. This means that
the most probable is the particle configuration where
|z4 — z_| ~ d (to obtain a physical parameter, we
should replace, as usual, § by d). In other words,
the right and left electrons with opposite spins are al-
ways near one another, forming a chiral complex. In
this sense, the chiral 4-plets are point-like entities, as
the RL-pairs for one-component fermions. In the same
way, we can estimate the distances between all the par-
ticles belonging to a four-particle complex.

The same calculation for a neutral four-particle
complex is somewhat more cumbersome. The state
with a single neutral pair is described by the wave func-
tion

~

|@0) = Tr|af, _ (2-) bl - (¢1) af 4 (y+) b 4 ()
x (2 -z —id) " (yy — o —i6) " x
x [(zo —yy +i0) (2 =y, +i0)]""* x

x (e =y +0) (' —yy +i0)] 72 |F). (A2)

To find the characteristic size of a neutral complex, we
consider the matrix element

(Dolaky, _ (2-) ar— (22)a} | (1) ars (21)|Do).

It is equal to

10%*
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~1

T | (7. -7 —id) " (§, — i, —i) " x

1
X

x (F_+i6) (=74 +i6)
X (= =24 —i0) (2= — 24 + 77— —§' _ié)]lﬂ x
X [(zo =24 ="y —i0) (2= — 24 + 7' — i‘s)]il/z

x (& —i6) " (=g —i6) ' x
. =1 ~1 V1172
X [(z =24 +i6) (2= — 24 + 3 —§, +i0)] 77 x
X [(2= — 24 — g, +1i0) x

x (2 =z +3 +i0)] | (A3)

(Tr" means that we integrate over all variables except
Za). The exact expression for this matrix element for
arbitrary values of AZ = z, —z_ is rather cumbersome
and noninformative. It suffices to prove that the most
probable is the particle configuration where AZ ~ d.
For this, we note that for AZ ~ ¢, all the integrals
in (A.3) converge and are dominated by the regions of
the order of §. We show that for AZ > 4, matrix el-
ement (A.3) has an additional small factor §/AZ. For
instance, we consider the integration over ' . Only the

factor
v

(22 — 24 + 3 — g, +1i6)
\/(z_—z+—|—53’,+i6)

in the integrand has a singularity in the lower half-pla-
ne. The rest of the integrand is independent of AZ
and has singularities only in the upper half-plane. In
the leading approximation in 6/AZ, (A.4) tends to 1
(AZ > §, while the region ' ,§’ giving the leading
contribution to the integral is of the order of §). Hence,
in this approximation, the integral of (A.3) vanishes.
It is nonzero only in the next approximation due to
\/(azL +id0) /(- —2z4) < 1.
Hence, the probability to find the electrons at a large

distance is small. The most probable is a 4-plet where
these particles are at a distances about d.

(A.4)

the factors of the type
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