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SPONTANEOUS SYMMETRY BREAKING IN A SYSTEM OFSTRONGLY INTERACTING MULTICOMPONENT FERMIONS(ELECTRONS WITH SPIN AND CONDUCTING NANOTUBES)V. V. Afonin a*, V. L. Gurevih a, V. Yu. Petrov baIo�e Institute, Russian Aademy of Sienes194021, Saint Petersburg, RussiabKonstantinov Saint Petersburg Nulear Physis Institute, Russian Aademy of Sienes18830, Gathina, Leningrad region, RussiaReeived Otober 11, 2008We alulate the ground-state wave funtions for a system of multiomponent strongly interating fermions.We show that it is a state with spontaneously broken hiral symmetry that disribes a phase with a �nite densityof hiral omplexes. The number of partiles onstituting a omplex depends on the number of fermion om-ponents. For example, in the ase of two-omponent eletrons (spin), the ondensate is built of four-partileomplexes onsisting of two �right� eletrons and two �left� holes with the opposite spins.PACS: 71.10.Hf, 71.10.Pm, 73.63.Fg1. INTRODUCTION AND DISCUSSION OFRESULTSAdvanes in semiondutor tehnology have re-newed the interest in the properties of one-dimensional(1D) eletron systems. It is well known that theeletron�eletron (e�e) interation alters the propertiesof 1D systems qualitatively. For a better understand-ing of the problem, the physial question of primaryimportane must be lari�ed: what is the nature ofthe ground state of this system? The answer is usuallysought in the studies of the ground state of 1D in-terating fermions using the �density�density� orrela-tion funtions. However, this information is not diretand the results have to be interpreted. The anomaliesobtained in orrelation funtions (see, e.g., [1℄) wereusually interpreted as an example of the Peierls in-stability [2; 3℄ (the part osilating with 2pF ) and as amarginal Wigner rystal [4℄ (osillating with 4pF ).In Ref. [5℄, the ground-state wave funtion of spin-less fermions was onstruted for the exatly solubleTomonaga�Luttinger model. It has been shown thatat su�iently low temperatures, the system should be*E-mail: vasili.afonin�mail.io�e.ru

in the state that has nothing in ommon with a sys-tem undergoing the Peierls transition. It is a statewith a spontaneously broken hiral symmetry. Hene,the eletron system is a system with a long-range or-der. In the limit of in�nitely strong interation, at lowtemperatures, a �nite-density ondensate is formed. Itonsists of neutral (exiton-like) pairs of a right ele-tron and a left hole or vie versa. The uniqueness ofa 1D system requires onsidering a seond-order phasetransition in a hannel of a �nite length Lk. The pointis that the phase transition temperature vanishes as1=Lk, as it should. At the same time, we ould notuse the standard limit Lk ! 1 from the very begin-ning beause the normalizing oe�ient of the ground-state wave funtion tends to zero in this limit. (Thisphenomenon is well known as the �orthogonality atas-trophe�, see [6℄.) Hene, in passing to this limit, theresult depends, on the one hand, on the method andon the other hand, on the step at whih the limit wastaken. (This point is arefully disussed in our previouspaper [5℄.) We note that the phase transition temper-ature need not be too small. For Lk � 10�4 m, itshould be about 1 K.The multi-omponent fermions in 1D systems wereextensively disussed in the literature. In a number ofpapers [2; 3℄, separation of the spatial and spin degrees969



V. V. Afonin, V. L. Gurevih, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009of freedom was onsidered. In the present paper, wedisuss the form of the ground-state wave funtion forsuh a system. Beause the variables separate, we anexpet that the ground-state wave funtion is a diretprodut of two fators, with one of them, desribingthe spinless omponent, oinident with the ground-state wave funtion of spinless fermions. In the presentpaper, we show that an entirely di�erent situation isatually realized. Namely, the most orrelated state isthe state where the total spin vanishes. However, forn-omponent eletrons, this state onsists not of pairs(as in the ase of spinless fermions) but of point-likeneutral omplexes ontaining 2n partiles and havingthe hirality �2n.In the ordinary eletron system, n = 2, there arethe omplexes onsisting of two right eletrons and twoleft holes with opposite spins. Therefore, in aordanewith Ref. [10℄, the ground state of the system is spin-less. For the onduting nanotubes, n = 4 (Refs. [7�9℄),and the omplexes onsist of eight partiles. The om-plexes with a smaller number of partiles an have anonzero spin, but their orrelation is muh weaker. Forexample, for n = 2, the spin phase an be realized onlyas a Berezinskii�Kosterlitz�Thouless (BKT) phase, andin the limit of in�nitely strong interation, the omplexdensity tends to zero as 1=pLk. By ontrast, the spin-less phase has a �nite density in this limit.This situation is typial of many �eld-theory mod-els with an Adler anomaly (this is the ase for the Lut-tinger model as well). It is known that in suh models,the new fermion interation (�'t Hooft interation� [11℄)an appear with a vortex that is a produt of all theomponents of fermions. In many ases, the 't Hooftinteration leads to a spontaneous breakdown of thehiral invariane with 2n fermion order parameters.In partiular, this is the ase for the multiomponentShwinger model [12℄ and, as we see in what follows,for the Luttinger model in the limit of in�nitely stronginteration.For the last model, the most orrelated state is builtout of omplexes eah of whih has the maximum pos-sible number of the degrees of freedom. As a result,the state has a highest phase volume and appears tobe the most orrelated one. This state di�ers qualita-tively from a marginal Wigner rystal. Instead of analmost �rst-order phase transition, an almost seond-order phase transition ours. To manifest the break-down of the hiral symmetry in the Luttinger liquid, wehave exatly alulated the wave funtion of the groundstate in this model, Eq. (27), and expliitly demon-strated that its symmetry is less than the original sym-metry of the Hamiltonian. (This is the de�nition of

spontaneous symmetry breaking). These are basiallythe main results in this paper.For a one-omponent fermion system, point-likeomplexes with more than two partiles as well as ol-lisions of suh omplexes are forbidden by the Paulipriniple. This is not the ase for multiomponentfermions. For this reason, the ground-state wave fun-tion in Eq. (27) is muh more umbersome and thealulations are more involved. Therefore, we presentthe results only for a short-range potential in the limitof in�nitely strong interation. At the same time, thephysial piture in our ase is quite similar to that ofone-omponent fermions. For instane, had we takenorretions in the reiproal strength of the interationinto aount, we would have also obtained a BKT phasefor spinless omplexes. With the strength of the inter-ation inreasing, it would be gradually transformedinto a state of a de�nite ondensate density.This paper is organized as follows. In Se. 1, wegive a brief review of our results. Setion 2 ontainsa disussion of the main di�erene between the multi-omponent problem and the spinless one in regard tothe theoretial desription and most essential steps ofthe alulation. In Se. 3, we give arguments onern-ing the appliability of our theory to nanotubes. TheAppendix is devoted to a derivation of some interme-diate results.2. DESCRIPTION OF THE APPROACH ANDTHE DERIVATION OF MAIN RESULTSOur starting point is the usual Tomonaga�LuttingerHamiltonian (see, e.g, Refs. [3; 13℄) for a system of in-terating eletrons with baksattering ignored. In thease where the interation does not hange the elet-ron spin, the Hamiltonian an be expressed through thedensity of the right (R) and left (L) eletrons% (x)� = %R;� (x) + %L;� (x)(the spin index � equals � for the spin �1=2 respe-tively) asH =X� Z dx h	̂yR;� (x) vF (�i�x) 	̂R;� (x) ++ 	̂yL;� (x) vF i�x	̂L;� (x)i++ Z dx dy % (x)V (x� y) % (y) ; (1)where vF is the Fermi veloity,970



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :	̂� (x) = exp (ipFx) 	̂R;� (x) ++ exp (�ipFx) 	̂L;� (x) ; (2)and % is the total density. For simpliity, we assumethat the interation is spin-independent (it is not tooessential for alulations). We introdue the eletronand hole operators in the usual way	̂(R;L)� (x) = 1Z0 dp2� �exp (�ipx) â(R;L)� (p) ++ exp (�ipx) b̂y(R;L)� (p)� == â(R;L)� (x) + b̂y(R;L)� (x) ; (3)where âR;+ (x) is the operator of annihilation of aneletron with spin +1=2 and b̂R;+ (x) is the operatorof annihilation of a hole with spin �1=2. To write thisinteration via a funtional integral, it is neessary tointrodue one Bose �eld � and apply a version of theHubbard�Stratonovih identity [14℄:exp24 i2 TZ0 dt 1Z�1 dp2�V (p) % (p; t) % (�p; t)35 == 1N Z D�exp24 i2 TZ0 dt 1Z�1 dp2� ��� (p; t) � (�p; t)V �1 (p)� i2 TZ0 dt 1Z�1 dp2� �� (% (p; t) � (�p; t) + % (�p; t)� (p; t))35 ; (4)where V (p) is the Fourier transform of the e�e inter-ation and the normalization fator isN = Z D��� exp24 i2 TZ0 dt 1Z�1 dp2�� (p; t) � (�p; t)V �1 (p)35 : (5)This identity shows that the theory with the e�e in-teration is equivalent to the theory of noninteratingeletrons in an external �eld �. (Had we onsidereda theory with a spin-dependent interation, we wouldhave to introdue two independent Bose �elds. The al-ulation would be more umbersome, but the physialpiture would be the same.)

Calulation of the ground-state wave funtion isgiven in detail in Ref. [5℄. It is based on the alulationof the evolution operator for the eletronsS (T ) =Xm;n jnihnj exp (�iHT )jmihmj; (6)where jni are the exat wave funtions of the Hamilto-nian in the seondary quantization representation andT is the observation time. S(T ) determines the evo-lution of an arbitrary initial wave funtion (hmj) fromthe instant t = 0 up to �nal states (at t = T ). (Hene-forth, we imply that the Shrödinger representation foroperators with time-dependent wave funtions is used.)Equation (6) suggests the general method to obtainthe wave funtions. We �rst alulate the evolutionoperator and present it as a sum of time-dependent ex-ponentials. The oe�ients in front of these exponen-tials are produts of the exat wave funtions and theiromplex onjugates. To extrat the ground-state wavefuntion, we then take the limit T !1 (we add an in-�nitesimal imaginary part to the energy). Proeedingto the Eulidean time T ! �i=�, we see that the evo-lution operator determines the density matrix for theequilibrium system at a nonzero temperature �.As in the ase of spinless eletrons (see [5℄ for thedetails), the evolution operator for the eletrons in anexternal �eld an be represented asŜ (�) = exp (S0 + ln[Det � (T ) ℄)jF ihF j: (7)Before the integration over the �elds �, the equa-tion for Ŝ (�) undergoes some hanges in omparisonwith the spinless ase. They amount to the appearaneof a fator n, the number of omponents of the eletronwave funtion, in the equation desribing the quantum�utuations in the eletron system under the ation ofthe �eld � (T ) (for the spin ase n = 2):ln [Det � (T )℄ = � n4� TZ0 dt dt1 �� 1Z�1 dp2�� (�p; t) � (p; t1) jpj exp [�ijpjvF jt�t1j℄ : (8)The operator struture of Eq. (7) is determined by theseond part of the ation, S0. Here, we should take thespin index � into aount,971



V. V. Afonin, V. L. Gurevih, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009S0 == Xi=R;L;� Z dx dx0 hb̂i;� (x0)G0i (x0; 0;x; �) âi;� (x) ++ âyi;� (x0)G0i (x0; T ;x; T � �) b̂yi;� (x) �� âyi;� (x0)G0i (x0; T ;x; 0) âi;� (x)�� b̂i;� (x0)G0i (x0; 0;x; T ) b̂yi;� (x)i ; (9)where G0i is the spin-independent free-partile Green'sfuntionG0R;L (x; t;x1; t1) = 12�i �� [vF (t� t1)� (x� x1)� iÆ sign (t� t1)℄�1 : (10)Behavior of the multiomponent fermions in the ex-ternal �eld is quite similar to that in the one-omponentase. An essential ompliation, however, ours af-ter the integration of the operator Ŝ (�) over � withweight (4).Two points should be indiated.1) The oe�ient n in Eq. (8) enters the equationfor the ation. Due to this oe�ient, after alulationof the integral over �, the analyti struture of the re-sulting expression beomes muh more ompliated. Asa result, integrals de�ning wave funtions of multipar-tile omplexes aquire uts instead of simple poles asin the one-omponent ase. This leads to rather um-bersome omplex wave funtions. In partiular, theomplexes are nonloal.2) The property of nonloality results in an essen-tial inrease in the number of various eletron states.A number of eletron states are forbidden for one-omponent eletrons due to the Pauli priniple. In on-trast to this, in the multiomponent ase, the number ofonneted diagrams beomes in�nite. This makes theexpression for the ground-state wave funtion ratherumbersome. However, the very fat of the existeneof the hiral phase for the in�nitely strong interationpersists.Beause of a non-Gaussian form of the �nal fun-tional integral, it is impossible to perform the integra-tion in Eq. (8) over �(x; t) in a losed form, but it ispossible to obtain an arbitrary term of the evolutionoperator by expanding it in (S0)n. This su�es forobtaining the ground-state wave funtion, beause therelevant integral is of a Gaussian type and an be easilyalulated. After the �nal integration over �, the �nalreipe of alulation of the evolution operator an bewritten as a sum of the terms (see [5℄, where similaralulation were done very arefully)

S(n)0 �â(R;L); b̂(R;L); : : :� exp �Seffn �jF ihF j: (11)Here, jF i is the Fermi �sphere� and the term S(n)0 (oneterm in the entire sum (S0)n) determines the operatorstruture of the wave funtions, i.e., a possible partileon�guration due to the e�e interation. Equation (11)is a sort of symboli expression. Indeed, the analytiequation for the e�etive ation Seffn in the nth term ofthe expansion depends expliitly on the partile on�g-uration in the preexponential fator S(n)0 . Naturally, itis di�erent for di�erent terms. We note that evolutionoperator (6) is determined suh that the initial stateexpressed through the eletron and hole annihilationoperators and the �nal state determined through thereation operators are given at di�erent times. Thismeans that in alulating the evolution operator, weshould regard the operators âyR;L (x) and âR;L (y) asantiommuting.In what follows, we give a presription to write thee�etive ation �Seffn � for a given eletron�hole on�g-uration. To write the expression for Seffn , we intro-due the following notation for the oordinates of theeletron�hole reation�annihilation operators.1. We let x (y) denote the oordinates of the right(left) partiles.2. We put a tilde on the oordinates related to an-nihilation operators (the initial state): the oordinatesof reation operators (the �nal state) have no tilde.3. We prime the hole oordinates.The e�etive ation di�ers from the ation for theone-omponent fermions only by a fator and in thelimit of strong interationV (p)�vF � 1is equal toSeff = � �nL Xm6=0 1jpmj [Rf (�p; x1 : : : ) �� Rf (p; x1 : : : ) +Ri (�p; ~x1 : : : )Ri (p; ~x1 : : : )℄�� 2�nL Xm6=0 1jpmj exp��jpmjvF� ���Rf (�p; x1 : : : )Ri (p; ~x1 : : : ) : (12)The extra fator n is the number of the fermion om-ponents. It ours beause in the Luttinger model, theexitation spetrum is [15℄!p = jpjvFs1 + nV (p)�vF : (13)Equation (12) is valid in the temperature region972



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :�hiral � �� � = ! (pmin) :The right-hand side of the last inequality is theenergy of exitations with a minimal momentum (forperiodi boundary onditions pmin = 2�=Lk) and�hiral = jpminjvF is the degeneray temperature ofthe ground state. In this temperature region, the en-ergy di�erene between the states with di�erent hi-ralities an be negleted. This means that the groundstates with a di�erent hirality beome degenerate.The origin of this inequality has been disussedin detail in [5℄. It is not sensitive to the numberof wave funtion omponents. For the temperatures�� �hiral, the last term in Eq. (12) should be omit-ted. Then the orresponding equation is also valid forthe lowest temperatures.The funtionsRi;f (p; ~x1 : : : ) in Eq. (12) depend ex-pliitly on the eletron (x : : : ) and hole (~x : : : ) oordi-nates in the preexponential fator in Eq. (11). Thesefuntions are given byRf (p; x : : : ) = Xx:::;x0:::;y:::;y0::: � (p) [exp (ipx) �� exp (ipx0)℄ + � (�p) [exp (ipy)� exp (ipy0)℄ ;Ri (p; ~x : : : ) = X~x:::;~x0:::;~y:::;~y0::: � (�p) [exp (ip~x) �� exp (ip~x0)℄ + � (p) [exp (ip~y)� exp (ip~y0)℄ : (14)
To obtain the omplete expression for the gro-und-state wave funtion, we have to onsider all theomplexes and separate their onneted parts. This isnot neessary, however, beause aording to the gen-eral theorem, the omplete wave funtion is an expo-nential of the onneted omplexes [16℄1).For one-omponent fermions, there is only one pos-sible two-partile onneted omplex. This is not soin the multi-omponent ase, where many of the sat-tering hannels are possible and hene the number ofonneted diagrams is in�nite. In priniple, the exatwave funtion of any given omplex an be alulatedby taking the Gaussian integral over �. Unfortunately,this is not enough to present the whole wave funtionof the system in a losed form, but we do not atuallyneed it to prove the existene of symmetry breaking.To verify this, it is su�ient to prove that the wavefuntion symmetry is less than that of the Hamiltonian.1) This theorem is, in fat, a purely ombinatorial statement.In �eld theory, we apply it mostly to Green's funtions. In statis-tial physis, it is known as the �rst Mayer theorem (G. E. Uh-lenbek, G. W. Ford, and E. W. Montroll, Letures in StatistialMehanis, Amerian Mathematial Soiety, Providene (1963)).

For this, we analyze the simplest onneted diagramsresulting in a spontaneous breaking of the symmetry ofthe Hamiltonian. The other terms either have the sym-metry of the Hamiltonian or desribe the sattering ofthe simplest orrelated omplexes and also violate thehiral symmetry.In what follows, we restrit ourself to the ase ofa short-range interation (V (p) = V0) in the limitnV0=�vF � 1. Now we embark on analysis of the sim-plest diagrams of the evolution operator for the ele-trons having a spin. We begin with the temperatureregion �hiral � �. In this ase, the ation and there-fore the evolution operator fator, and hene we anexpliitly onsider the ground-state wave funtion j
i.(It is atually the ground state with the lowest energy,and is therefore realized at � = 0.) The simplest non-trivial diagram we should be interested in isZ dx+dx0+dx�dx0�(2�i)2 dy+dy0+dy�dy0�(2�i)2 �� âyR;+ (x+) b̂yR;+ �x0+�x0+ � x+ � iÆ âyR;� (x�) b̂yR;� �x0��x0� � x� � iÆ �� âyL;+ (y+) b̂yL;+ �y0+�y+ � y0+ � iÆ âyL;� (y�) b̂yL;� �y0��y� � y0� � iÆ �� exp[Sfeff (x+; : : : )℄jF i: (15)We see in what follows that the terms with a smallernumber of operators give a weaker orrelation thanEq. (15).The ation for this eletrons�hole on�guration isSfeff (x�; : : : ) == 12 ln Q�;�0::: (x� � y� + iÆ)�x0�0 � y0�0 + iÆ�Q�;�0::: (x0� � y� + iÆ)�x�0 � y0�0 + iÆ� : (16)In fat, it di�ers from the orresponding expression forone-omponent fermions by the fator 1=2 and by agreater number of the independent variables. The fa-tor 1=2 does not permit alulating the integral in theproblem expliitly beause it involves uts instead ofthe simple poles that our in the one-omponent ase.Nevertheless, it is possible to reognize the sponta-neous breakdown of the hiral symmetry in our system.For this, several steps are neessary. First, we have toanalyze what new bound omplexes appear as a resultof the interation. We have to take an arbitrary on-neted diagram and try to separate omplexes with asmaller number of partiles out of it. To do this, wehave to onsider all partiles in one omplex as beinglose to one another, whereas the distanes between973



V. V. Afonin, V. L. Gurevih, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009di�erent omplexes are large. If the full wave fun-tion turns into a produt of two wave funtions in thislimit, one of them depending only on the oordinatesof the �rst omplex and the other depending only onoordinates of the seond one, then the omplexes anbe onsidered new �free partiles�2) beause the prob-ability to �nd one suh omplex is independent of theposition of the other. In other words, we should repre-sent a term of the expansion of the evolution operatorwe onsider as a produt of the formZ dx+dy+2�i : : : âyR;+ (x+) : : :K (x+; : : : ; y+ : : : ; )�� ayL;+ (y+) : : :Next, we should verify that if the omplex with o-ordinates (x+; : : : ) is moved away from the omplex(y+ : : : ) over the distane of the order of Lk, then theamplitude K (x+; : : : ; y+; : : : ) tends not to zero (as isusually the ase with sattering amplitudes) but tothe fatored produt k (x+; : : : ) k1 (y+; : : : ), where eahfator depends on the variables of the respetive group.This means that the two omplexes are formed as a re-sult of the interation. If the interomplex distane islarge enough, their ontribution to the wave funtionan be represented asZ dx+p2�i : : : k (x+ : : : ) âyR;+ (x+ : : : )�� Z dy+p2�ik1 (y+ : : : ) âyL;+ (y+ : : : ) jF i:The remaining part of K (whih is K � kk1) is a on-neted diagram that desribes the interomplex sat-tering under the ondition that it tends to zero as thedistane between the omplexes inreases. The theo-rem of logarithmi onnetedness [16℄ guarantees thatthe same onneted omplexes appear in all orders withthe orret ombinatorial oe�ients and the �nal an-swer is an exponential of onneted omplexes. In par-tiular, the �rst-order termZ dx+p2�i : : : k (x+; : : : ) âyR;+ (x+) : : : jF ishould appear in the expansion of the evolution oper-ator diretly unless it is forbidden by some onserva-tion law (e.g., the hirality onservation for the lowest-temperature ase in our model). In this ase, we haveto use the projetor on the proper state as in Eq. (24)below. It permits exluding the states forbidden by aonservation law.2) We note that the analogy with a bound state is quite limi-ted. It would be more orret to write about a orrelation in themomentum spae.

Whether a symmetry breaks down depends on thesymmetry of the omplexes âyR;+ (x+) : : : If they areless symmetri than the initial Hamiltonian, the sym-metry is broken. As a result, it is possible to intro-due a nonvanishing order parameter in the less sym-metri phase (in the more symmetri phase, where theomplexes do not exist, the order parameter vanishes).More preisely, taking �utuations of the low-symmetryphase in the phase with a nonbroken symmetry into a-ount, we an see that the order parameter should notinrease with Lk in the high-symmetry phase. (Ourde�nition of the order parameter is given below inEq. (29).) The �utuations result in well-known ef-fets suh as the Aslamasov�Larkin one [17℄. Aord-ing to Landau (see [18℄), the appearane of the orderparameter is the de�nition of the seond-order phasetransition. But if the symmetries of all the onnetedomplexes and of the Hamiltonian are the same, thereare long-range orrelations without a spontaneous sym-metry breaking.By analogy with the theory of one-omponentfermions, we an assume that the simplest onneteddiagram originates from the termZ dx+dx0+2�i dy�dy0�2�i âyR;+ (x+) b̂yR;+ �x0+�x0+ � x+ � iÆ �� âyL;� (y�) b̂yL;� �y0��y� � y0� � iÆ �� exp[Sfeff (x+; : : : )℄jF i: (17)However, beause of the fator n�1, the orrespondingontribution to the ation isSfeff (x+; : : : ) == 12 ln (x+ � y� + iÆ) �x0+ � y0� + iÆ��x0+ � y� + iÆ� �x+ � y0� + iÆ� : (18)The bound hiral omplexes are determined bythe singularities of the integrand at jx0+ � y�j � d,jx+ � y0�j � d, and jx+ � y�j � Lk (where d is thewidth of the ondutor). As a result, the ontributionwe are interested in is of the order ofZ dx+dy�âyR (x+) b̂yL (x+) âyL (y�)�� b̂yR (y�) djx+ � y�j jF i:This quantity tends to 0 as jx+ � y�j ! Lk !1, butmore slowly than for a free partile3).3) This means that even in the strong interation limit, the spinphase an exist as a Kosterlitz�Thouless phase with the Thoulessonstant of the order of 1/2.974



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :We now show that the most orrelated state anbe obtained from Eq. (15). It an be split intotwo four-partile omplexes, eah with zero spin, ha-ving the hirality harges �4: âyR;+âyR;�b̂yL;+ b̂yL;� andâyL;+ âyL;� b̂yR;+b̂yR;�. (We assign the hirality +1 to aright eletron and a left hole and �1 to their ounter-parts.) The amplitude K in Eq. (15) fatores and doesnot tend to 0 as Lk ! 1: Indeed, the C-fator in theintegrand isK (x+; : : : ) = 1x0+ � x+ � iÆ 1x0� � x� � iÆ �
� 1y+ � y0+ � iÆ 1y� � y0� � iÆ �� rQ�;�0::: (x� � y� + iÆ)�x0�0 � y0�0 + iÆ�rQ�;�0::: (x0� � y� + iÆ)�x�0 � y0�0 + iÆ� : (19)We now onsider the integration regions x+ � x� �� y0� � y0+ and x0+ � x0� � y+ � y� assuming that thedistanes between these groups of variables are of theorder of Lk. Then the amplitude K tends toV+4 (x+; : : : )V�4 �x0+; : : : � = 1=q�x+ � y0+ + iÆ� �x+ � y0� + iÆ� �x� � y0+ + iÆ� �x� � y0� + iÆ��� 1=q�x0+ � y+ + iÆ� �x0+ � y� + iÆ� �x0� � y+ + iÆ� �x0� � y� + iÆ�: (20)This means that eah amplitude V depends on thevariables belonging either to the �rst or to the seondgroup. This property of the amplitude allows indenti-fying the full equation for the evolution operator of theonneted omplexes and the amplitude of interom-plex sattering that tends to zero for large interomplexdistanes.This term of the expansion, besides the hiral om-plexes, has also neutral omplexes with zero hirality,âyR;+b̂yR;+âyL;� b̂yL;� and âyR;�b̂yR;�âyL;+ b̂yL;+ . They do notviolate the symmetry of the Hamiltonian. But theyshould be isolated in order that the remaining sat-tering amplitude tend to zero in the whole region ofthe variables. This permits interpreting it as the inter-omplex sattering amplitude. The zero-hirality om-plexes are not important for the existene of a phasetransition. However, they should be taken into aountin the alulation of matrix elements beause they arenot small. To hek that they exist, we onsider theregions x+ � x0+ � y� � y0� and x� � x0� � y+ � y0+in (15). In these regions, the amplitude K tends toV0 (x+; : : : )V0 (x�; : : : ) whereV0 (x�; : : : ) = �(x0��x��iÆ) �y���y0���iÆ���1 �� �(x� � y�� + iÆ) �x0� � y0�� + iÆ��1=2 �� ��x� � y0�� + iÆ� �x0� � y0�� + iÆ���1=2 : (21)This means that this quantity an be represented as aprodut of the amplitudes eah of whih remains �niteas the distane between them tends to in�nity.It is now onvenient to introdue the interomplex

sattering amplitude Voll. By derivation, it tends tozero with the interomplex distane tending to 1:Voll (x+; : : : ) = K (x+; : : : )� V+4 (x+; : : : )�� V�4 �x0+; : : : �� V0 (x+; : : : )V0 (x�; : : : ) : (22)The ontribution to the ground-state wave funtion anbe represented in terms of these amplitudes asZ dx+dx0+dx�dx0�(2�i)2 dy+dy0+dy�dy0�(2�i)2 �� âyR;+ (x+) b̂yR;+ �x0+� âyR;� (x�)��b̂yR;� �x0�� âyL;+ (y+) b̂yL;+ �y0+� âyL;� (y�) b̂yL;� �y0���� �V+4 (x+; : : : )V�4 �x0+; : : : � ++ V0 (x+; : : : )V0 (x�; : : : ) + Voll (x+; : : : )) jF i: (23)The �rst term here desribes noninterating omplexeswith a nonzero hirality, the seond desribes 4-partileneutral omplexes, and the third (the onneted part)desribes their ollision. We are mainly interested inthe �rst term beause it is related to the hiral symme-try breakdown.The hiral omplex that we have obtained is alreadyonneted and annot be split into simpler ones. Thismeans that its wave funtion is a dereasing funtion ofthe interpartile distanes. It is shown in the Appendixthat the probability to �nd partiles of the omplex farfrom eah other is negligibly small.In addition, we should take into onsideration thatin the temperature interval � � �hiral, where thelast term in Eq. (12) need not be onsidered, there isa one-to-one orrespondene between omplexes withthe hiralities Q = 4 and Q = �4. Hene, the total975



V. V. Afonin, V. L. Gurevih, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009hirality of the state is zero. The theorem of logarith-mi onnetedness states that the ground-state wavefuntion an be represented asj
i = PQ=0 �� expX� Tr" 1(2�i)2V+4 �x�; x��; y0��; y0�� �� �âyR;� (x�) âyR;�� (x��) b̂yL;�� �y0��� �� b̂yL;� (y0�) + âyL;� (y0�) âyL;�� �y0����� b̂yR;�� (x��) b̂yR;� (x�)�++ 1(2�i)2V+0 �x�; x��; y0��; y0�� �âyR;� (x�) �� b̂yR;� (x0�) âyL;�� (y��) b̂yL;�� �y0���++ âyR;�� (x��) b̂yR;�� �x0��� âyL;� (y�) b̂yL;� (y0�)� ++ 1(2�i)4Voll (x�; x��; : : : ) âyR;� (x�) âyR;�� (x��)�� b̂yL;�� �y0��� b̂yL;� (y0�) âyL;� (y�)�� âyL;�� (y��) b̂yR;�� �x0��� b̂yR;� (x0�) + : : :#; (24)where PQ=0 is the projetor on the state with zero hi-rality. The symbol Tr inludes the integrations over thepartile oordinates. The terms omitted in Eq. (24) de-

sribe ollision of three and more omplexes, while allthe elementary omplexes are present here. We notethat the omplexes with a nonzero hirality have ap-peared in the theory. Nevertheless, the wave funtionof the ground state as a whole desribes the state withQ = 0, i.e., the symmetry of the ground state is thesame as that of the Hamiltonian. The states with anonzero hirality have a higher energy (of the orderof 2�vF =Lk). Therefore, the spontaneous symmetrybreaking may our only in the region of higher tem-peratures �� �hiral, where suh an energy di�ereneis not essential. In this temperature region, the termwhere the time arguments of the Green's funtions dif-fer by T must also be onsidered in Eq. (9) for the a-tion S0. (In pratie, it is more onvenient to introduethe temperature by the replaement T ! �i=� in the�nal equations.) We then have the following nontrivialterm in the evolution operator:Tr 1(2�i)4 âyR;+ (x+) âR (~x+)~x+�x++vFT�iÆ âyR;� (x�) âR (~x�)~x��x�+vFT�iÆ �� b̂yL;+ �y0+� b̂L �~y0+�~y0+ � y0+ � vFT + iÆ b̂yL;� �y0�� b̂L �~y0��~y0� � y0� � vFT + iÆ �� exp[Sfeff ℄ (x+; : : : )jF ihF j: (25)The ation Sfeff for this on�guration is12 ln Q�;�0::: �~y0� � y0� � vFT + iÆ� (x�0 � ~x�0 � vFT + iÆ)Q�;�0::: �x� � y0� + iÆ� (~y0�0 � ~x�0 + iÆ) : (26)It is readily seen from the operator struture ofthis term that the amplitude V4 appears here auto-matially (without extrating the amplitudes of neutralomplexes and sattering hannels), as it should. Thisis a onsequene of the theorem of logarithmi onnet-edness. It guarantees the oinidene of the amplitudein this term with V4. We verify this. We onsiderthe region where the same variables with spin up andspin down are quite lose to eah other (for instane,x� � x��). Besides, the oordinates in the reationand annihilation operators are apart at the distane ofthe order of Lk (x� � ~x� � Lk � 2�vF =�). Then theC-fator in the integrand of (25) turns into the fatoredexpression V+4 (x+; : : : )V ��4 (~x+; : : : ) :This proves that the hiral four-partile omplexeswere segregated properly from a more ompliated ex-

pression (15). Suh terms in the evolution opera-tor result in the existene of the ground state witha nonzero hirality. But any state with �xed hirali-ties should be unstable under weak baksattering onestates with di�erent hiralities are degenerate. There-fore, we should onsider a superposition of all suhstates. As a result, in the same way as in the theoryof superondutivity, we have to introdue a onden-sate with a �xed phase instead of a state with a �xedhirality:j
i� = expX� Tr" 1(2�i)2V+4 �x�; x��; y0��; y0�� �� �exp (i�)âyR;� (x�) âyR;�� (x��) �� b̂yL;�� �y0��� b̂yL;� (y0�) + exp (�i�)âyL;� (y0�)�976



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :� âyL;�� �y0��� b̂yR;�� (x��) b̂yR;� (x�)�++ 1(2�i)2V+0 �x�; x��; y0��; y0�� �âyR;� (x�) �� b̂yR;� (x0�) âyL;�� (y��) b̂yL;�� �y0���++ âyR;�� (x��) b̂yR;�� �x0��� âyL;� (y�) b̂yL;� (y0�)�++ 1(2�i)4Voll (x�; x��; : : : ) âyR;� (x�) âyR;�� (x��)�� b̂yL;�� �y0��� b̂yL;� (y0�) âyL;� (y�)�� âyL;�� (y��) b̂yR;�� �x0��� b̂yR;� (x0�) + : : :#: (27)Equation (27) demonstrates that for a strongeletron�eletron interation, a spontaneous symmetrybreaking ours. The �rst two terms in the equation forthe ground-state wave funtion are not invariant underthe hiral transformation	R;L (x)! exp (�i�)	R;L; (28)while the Hamiltonian retains the invariane. Here, �is an arbitrary onstant.Suh a form of the bound state permits introduingthe order parameter. It is equal to zero in the high-sym-metry phase (� � � = !pmin) and is proportionalto Lk in the low-symmetry phase (in the low-tempera-tures region). (These statements an be proved usingordinary symmetry onsiderations or by diret analytialulation.) In our ase, the following quantity an beonsidered an order parameter:Z dx � h
jâyR;� (x) âyR;�� (x)�� b̂yL;� (x) b̂yL;�� (x) j
i�: (29)We an see from Eq. (29) why the seond-orderphase transition requires the hirality degeneray ofthe ground state. For the order parameter to be non-vanishing, it is neessary to be able to add an extrafour-partile omplex to the ground state. This re-quires the ondition � � �hiral beause the zero-hirality state has the lowest energy and the energy dif-ferene between states with di�erent hiralities is about�hiral. There is also an upper bound for existene ofthe low-symmetry phase,�� !pmin : (30)This limitation is beause the long-range order is sup-pressed by thermal exitations in one-dimensional sys-tems. In the temperature region given by (30), it an

be negleted; this ondition is independent of the num-ber of fermion omponents and is disussed in detailin [5℄. Hene, the temperature region�hiral � �� � (31)is the region where the broken symmetry phase exists.3. CARBON NANOTUBESConduting arbon nanotubes may give one moreexample of multiomponent eletrons. The theory de-veloped above an be generalized to this ase. We on-sider one-dimensional onduting tubes and the e�e in-teration suh that it an be rewritten in the densi-ty�density form (f. Eq. (1)). This means that thebakward and inter-omponent (see below) satteringan be negleted. Following Ref. [19℄, we an visualizea nanotube as a ylinder onstruted of a monoatomilayer of graphite. Graphite has a lattie of adjoiningregular hexagons, with the angle between the neigh-boring basis vetors a and b being 2�=3. Choosing theoordinates �1 and �2 suh that the 0�1 axis is parallelto the vetor a and the 0�2 axis is perpendiular to a,we an represent these vetors asa = a(1; 0); b = a��1=2;p3=2� : (32)Here, a is the lattie onstant, equal to dp3, d =1.44Åbeing the interatomi distane [20℄.The irumferential vetor L an be written asL = naa+ nbb; (33)where na and nb are integers.The eletron e�etive Hamiltonian for a graphitesheet is H = �0 h�h 0 � : (34)It an be expanded in the viinity of the pointsP = 4�3a (�1; 0); P0 = 4�3a (1; 0) (35)up to the �rst order in the small deviations p and p0from the values respetively given by the �rst and theseond equation in (35),h(P;p) = e�i� (p? � ipz) ;h(P0;p0) = ei� (�p0? � ip0z) ; (36)where  = (p3=2)0a, 0 � 3 eV (see Eqs. (21)and (22)) is the transfer integral between the neighbo-ring � orbitals, and � is the angle between the vetors L10 ÆÝÒÔ, âûï. 5 977



V. V. Afonin, V. L. Gurevih, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009and a. The subsripts z and ? refer to the omponentsof p relative to the diretion of L, pz ? L and p?kL,suh that pz(p?) is parallel (perpendiular) to the axisof the tube.The spetrum near the point P is given byE(P;p) = �qp2z + p2?; (37)where the upper (lower) sign orresponds to the on-dution (valene) band in this equation. The spet-rum near the P0 point is obtained by the replaementp! p0.The eletron wave funtion 	(r) must satisfy theyli boundary ondition	(r) = 	(r+ L); (38)and hene the disrete values of p? and p0? are givenby (see Ref. [19℄)p? = 2�jLj �n� �3� ; p0? = 2�jLj �n+ �3� ; (39)where n = 0;�1;�2; : : : , jLj = apn2a + n2b � nanb,and � = 0 or �1 is determined by representing thesum na+nb as 3N + � (with N being an integer). Thenanotubes are ondutive (metalli) for the ombina-tion n = � = 0 (40)and we onsider this ase in what follows. In otherwords, there are two oni bands in suh tubes, i.e.,the points �PP with �P = �1. The large phase or-responding to the quasimomentum �PP should be ex-trated in the same way as this was done in Eq. (2). Inaddition, we assume that due to the presene of gateeletrodes, the Fermi level is well above (or below) thepoints �PP (f. Ref. [8℄). As a result, we have a theo-ry with four-omponent fermions. There are two extrabranhes orresponding to two values of �P . In eahof them, there are analogues of R- and L-partiles. Toestablish a orrespondene between the present modeland the Luttinger model, we should be able to negletthe transitions both between di�erent branhes (dif-ferent values of �P ) and between R- and L-partileswithin the same branh. As indiated in Ref. [21℄,nanotubes have relatively large radii that enompassN � 1 atoms. Therefore, the only e�e sattering thatis important in this limit is the forward sattering witha small quasimomentum transfer. The matrix elementdesribing the baksattering within a band as well asthe P$ P0 sattering aquire an extra small fator of

the order of 1=N . This is why these types of satter-ing an be negleted. This means that we an use theresults obtained in Se. 2. Repeating the arguments inthat setion for n = 4, we onlude that a ondensateis formed in the ground state. It onsists of the 8-pletsof the formâyR;�;�P (x) âyR;��;�P (x) b̂yL;�;�P (x) b̂yL;��;�P (x) �� âyR;�;��P (x) âyR;��;��P (x) b̂yL;�;��P (x) �� b̂yL;��;��P (x) :Their hirality is �8.4. CONCLUSIONWe have demonstrated that the ground-state wavefuntion of the system of 1D n-omponent eletronsonsists of point-like neutral omplexes ontaining 2npartiles and having the hirality �2n. It is essentialto distinguish between three temperature regions:1) The lowest temperature region � � �hiral == 2�vF =Lk. Here, the numbers of the omplexes withopposite hiralities are equal. Hene, the hirality ofthe state is zero and this is a state without symme-try breaking (see Eq. (24)). We an say that the size ofthe system is too small for the existene of a long-rangeorder.2) The intermediate region 2�vF =Lk � � �� 2�vF =Lk. Here, the states with di�erent hiralitiesare degenerate in energy (vF = vFp1 + nV0=�vF is therenormalized exitation veloity, see Eq. (13)). This al-lows onstruting a symmetry-breaking wave funtion,Eq. (27), although the Hamiltonian has no symmet-ry-breaking term. This means that adding a hiralomplex to the ondensate does not ost any energy.(An analogous property is imperative for any systemwith a seond-order phase transition.) Therefore, thedegeneray is possible only if the size of the system islarge enough and Lmink � 2�vF =�. A speimen an beonsidered in�nite with regard to symmetry breakingif its size is bigger than Lmink .3) In the high-temperature region � � � == 2�vF =Lk, the thermal exitations destroy the phasewith a long-range order. The unique property of a 1Deletron system is that the phase transition tempera-ture tends to zero in an in�nite sample. This is notthe ase for a 3D system. As it should, the upper tem-perature border of the hiral phase oinides with thetemperature region where power-law orrelators exist.To verify this statement, we reall that at a �nite tem-perature, the orrelators derease exponentially at dis-978



ÆÝÒÔ, òîì 135, âûï. 5, 2009 Spontaneous symmetry breaking in a system : : :tanes longer than vF =�. In order not to reah theregion within the speimen where the asymptoti be-havior is exponential, the size of the speimen has to besmaller than vF =� or, in other words, the temperaturemust be suh that �� vF =Lk.For a real hannel, the temperature � is not sosmall. For vF � 107 m/s and Lk � 10�4 m, we have� � 1 K (vF =vF ).In summary, in the system of interating multiom-ponent fermions, the most orrelated state onsists ofspinless point-like neutral omplexes eah ontaining2n parttiles with hiralities �2n. In the limit of thein�nitely strong interation, the density of the om-plexes is �nite. The phase with a broken symmetryexists in the temperature region �hiral � �� �.We disuss an e�et that ould indiate the existen-e of the hiral phase. Beause of the harge neutralityof the ondensate, it is di�ult to believe that an e�etspei� for the broken-symmetry system an be foundin experiment assoiated with harge transfer. At thesame time, the ondensate annot transfer heat butan transfer energy. This means that an e�et similarto the thermomehanial e�et in super�uid heliummay be expeted (dereasing the temperature of thesample with inreasing the super�uid mass [22℄). Inthis onnetion, we note that hiral omplexes an beadded to the ondensate using an external eletri �eldwith a nonzero topologial number (see Refs. [23; 24℄).V. V. A. and V. L. G. are grateful for a partial sup-port of this work to the Russian Foundation for BasiResearh (Grant � 06-02-16384).APPENDIXCharateristi dimensions of orrelatedomplexesThe simplest way to prove the existene of a boundhiral omplex and to determine its harateristi di-mensions is to onsider the state with a single hiralomplex:j�i == Tr24 âyR;+(x+)âyR;�(x�)b̂yL;�(y0�)b̂yL;+(y0+)qQ�;�0=�(x� � y0�0 + iÆ)(x� � y0�0 + iÆ)35�� jF i: (A.1)

For instane, we an alulate the probability to �ndan eletron with spin up at a distane jz+ � z�j > dfrom the eletron with spin down ash�jâyR;+ (z+) aR;+ (z+) âyR;� (z�) âR;� (z�) j�i:Moving all the reation operators to the right andall the annihilation operators to the left, we obtainA2=jz+ � z�j2, where A is a onstant equal toZ dx�(1 + x)2 + �2��1=2 �(1� x)2 + �2��1=2 ;where � is an in�nitesimal parameter. This means thatthe most probable is the partile on�guration wherejz+ � z�j � d (to obtain a physial parameter, weshould replae, as usual, Æ by d). In other words,the right and left eletrons with opposite spins are al-ways near one another, forming a hiral omplex. Inthis sense, the hiral 4-plets are point-like entities, asthe RL-pairs for one-omponent fermions. In the sameway, we an estimate the distanes between all the par-tiles belonging to a four-partile omplex.The same alulation for a neutral four-partileomplex is somewhat more umbersome. The statewith a single neutral pair is desribed by the wave fun-tionj�0i = Tr"âyR;� (x�) b̂yR;� �x0�� âyL;+ (y+) b̂yL;+ �y0+��� �x0� � x� � iÆ��1 �y+ � y0+ � iÆ��1 �� �(x� � y+ + iÆ) �x0� � y0+ + iÆ��1=2 �� ��x� � y0+ + iÆ� �x0� � y+ + iÆ���1=2 jF i: (A.2)To �nd the harateristi size of a neutral omplex, weonsider the matrix elementh�0jâyR;� (z�) aR;� (z�) âyL;+ (z+) âL+ (z+) j�0i:It is equal to979 10*



V. V. Afonin, V. L. Gurevih, V. Yu. Petrov ÆÝÒÔ, òîì 135, âûï. 5, 2009Tr0"�~x0� � ~x0� � iÆ��1 �~y0+ � ~y0+ � iÆ��1 �� �~x0� + iÆ��1 ��~y0+ + iÆ��1 �� �(z� � z+ � iÆ) �z� � z+ + ~x0� � ~y0+ � iÆ��1=2 �� ��z� � z+ � ~y0+ � iÆ� �z� � z+ + ~x0� � iÆ���1=2 �� �~x0� � iÆ��1 ��~y0+ � iÆ��1 �� �(z� � z+ + iÆ) �z� � z+ + ~x0� � ~y0+ + iÆ��1=2 �� ��z� � z+ � ~y0+ + iÆ� �� �z� � z+ + ~x0� + iÆ���1=2# (A.3)(Tr0 means that we integrate over all variables exeptz�). The exat expression for this matrix element forarbitrary values of �Z = z+�z� is rather umbersomeand noninformative. It su�es to prove that the mostprobable is the partile on�guration where �Z � d.For this, we note that for �Z � Æ, all the integralsin (A.3) onverge and are dominated by the regions ofthe order of Æ. We show that for �Z � Æ, matrix el-ement (A.3) has an additional small fator Æ=�Z. Forinstane, we onsider the integration over ~x0�. Only thefator q�z� � z+ + ~x0� � ~y0+ + iÆ�q�z� � z+ + ~x0� + iÆ� (A.4)in the integrand has a singularity in the lower half-pla-ne. The rest of the integrand is independent of �Zand has singularities only in the upper half-plane. Inthe leading approximation in Æ=�Z, (A.4) tends to 1(�Z � Æ, while the region ~x0�; ~y0+ giving the leadingontribution to the integral is of the order of Æ). Hene,in this approximation, the integral of (A.3) vanishes.It is nonzero only in the next approximation due tothe fators of the type q�~x0� + iÆ� = (z� � z+) � 1.Hene, the probability to �nd the eletrons at a largedistane is small. The most probable is a 4-plet wherethese partiles are at a distanes about d.REFERENCES1. K. B. Efetov and A. I. Larkin, Zh. Eksp. Theor. Fiz.69, 764 (1975).2. J. Voit, Rep. Prog. Phys. 57, 977 (1994).
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