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The inconsistency between the rigid rotator and bound state models at an arbitrary number of colors, the rigid
rotator — soft rotator dilemma, and some other problems of baryon spectroscopy are discussed in the framework
of the chiral soliton approach (CSA). Consequences of the comparison of CSA results with simple quark models
are considered and the 1/N. expansion for the effective strange antiquark mass is presented, as it follows from
the CSA. Strong dependence of the effective strange antiquark mass on the SU(3) multiplet is required to fit
the CSA predictions. The difference between “good” and “bad” diquark masses, which is about 100 MeV, is
in reasonable agreement with other estimates. Multibaryons (hypernuclei) with strangeness are described and
some states of interest are also predicted within the CSA.

PACS: 12.39.Dc, 14.20.-c, 14.65.-q, 14.20.Pt

1. INTRODUCTION

In spite of (or possibly due to) recent dramatic
events with the (non)observation of narrow pentaquark
states, the studies of baryon spectra (nonstrange,
strange, and with heavy flavors) preserve their rele-
vance for accelerator physics. A discovery of baryon
states besides well-established ones (e.g., octet, de-
cuplet, and certain resonances) could help to achieve
progress in understanding the structure of hadrons.

In the absence of the complete theory of strong in-
teractions, there are different approaches and models
of hadron structure; each has some advantages and
certain drawbacks. Interpretation of hadron spectra
in terms of quark models is widely accepted; quark
models are the “most successful tool for the classifi-
cation and interpretation” (R. Jaffe) of hadron spec-
tra. These models are so widely accepted because they
probably correspond to our intuitive ideas of how a
bigger object—a baryon, for example,—can be made of
smaller ones, quarks. However, our intuition, based on
the macroscopic experience, may be totally misleading
in the world of elementary particles.

Quark models are to a large extent phenomenologi-
cal because there are no regular methods of solving the

*E-mail: kopelio@inr.ru

885

relativistic many-body problem. In a true relativistic
theory, the number of constituents (e.g., additional ¢
pairs) and their weight should not be fixed as a starting
condition, but should be obtained by means of solving
relevant relativistic equations (and the quark confine-
ment should be obtained in this way as well).

In view of this global unresolved problem, alterna-
tive approaches are of interest. In particular, the chiral
soliton approach (CSA) based on few principles rep-
resented by the model Lagrangian, has certain advan-
tages. Baryons and baryonic systems are considered on
equal footing (the look “from outside”). The CSA has
many features of a true theory, but still it is a model:
some phenomenological elements are also necessarily
present in the CSA. Results obtained within the CSA
mimic some features of baryon spectra within quark
models due to the Gell-Mann—Okubo relations for the
masses of baryons within certain SU(3) multiplet.

2. FEATURES OF THE CSA

The CSA is based on fundamental principles and in-
gredients incorporated in the truncated effective chiral
Lagrangian
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where 1, = 9,UU" is the chiral derivative, U € SU(2)
or € SU(3) is a unitary matrix depending on chi-
ral fields, m, is the pion mass, F} is the pion decay
constant taken from experiment, [.,.] denotes a com-
mutator, e is the only parameter of the model that
defines the weight of the antisymmetric term in the
Lagrangian of the 4th order in chiral derivatives (the
Skyrme term)'). Effective Lagrangian (1) can be de-
duced from the underlying QCD Lagrangian [1], with
infinitely many terms appearing this way. The terms
of higher orders in [,, are not shown in (1). The 6th-or-
der term is taken into account in a number of calcu-
lations, and it does not change the properties of mul-
tiskyrmions considerably. The mass term proportional
to F2m?2 changes the asymptotic behavior of the profile
f and the structure of multiskyrmions at large baryon
number B. In the SU(2) case,

U=cosf+i(n-7)sin f, (2)

where the unit vector n depends on two functions «
and 3, and 7 are the Pauli matrices. Three pro-
files {f, a, B}(z,y, 2) parameterize a unit vector on the
3-sphere S3.

The soliton is a configuration of chiral fields having
a topological charge identified with the baryon number
B as proposed by T. H. R. Skryme near 50 years ago:

B= sin? fsinal [(f,a,B)/(x,y,2)] d*r, (3)

22
where I'[(f,«, B)/(z,y, z)] is the Jacobian of the coordi-
nate transformation. Therefore, the quantity B shows
how many times S? is covered when integration is per-
formed over R®. We recall that surface of the unit
sphere S% equals

/sin2 fsinadf da df = 27°. (4)

Minimization of the classical mass functional M,
for each value of the baryon number provides three pro-
files {f,a,$}, and the static configuration mass, and
allows calculating binding energies of classical confi-
gurations, the moments of inertia ©, (isotopical), © ;

D In some papers, the constant F; and even the mass my
are considered to be parameters, although they are fixed by the
existing data. Such an approach is useful, however, in investi-
gating some global properties of chiral soliton models and multi-
skyrmions.

(orbital), and ©x (kaonic or strange), and some other
characteristics of chiral solitons that implicitly contain
information about the interaction between baryons and
are necessary to perform the quantization procedure,
i.e., to obtain the spectrum of baryon states with defi-
nite quantum numbers.

3. SKYRMION QUANTIZATION AND THE
SPECTRUM OF BARYONS

The observed spectrum of states is obtained by
means of a quantization procedure and depends on
quantum numbers of baryons and the above-mentioned
properties of classical configurations, the moments of
inertia, the ¥-term (T'), etc. In the SU(2) case, the
rigid rotator model (RRM) [2] is most effective and
successfull in describing the properties of nucleons, the
A-isobar, some properties of light nuclei [3], and the
so-called “symmetry energy” of nuclei with the atomic
number A < 20 [4].

In the SU(3) case, different quantization models
have been developed. Probably, most common way to
obtain the spectrum of baryons is to place an estab-
lished SU(2) classical configuration (e.g., the so called
“hedgehog” for the B = 1 skyrmion) in the upper left
corner of the SU(3) matrix of chiral fields and to quan-
tize the SU(3) zero modes corresponding to rotations in
the SU(3) configuration space [5]. The following mass
formula is valid in this rigid rotator model:

K 1
Mpq.¥.1,0) = My + @0 T)
20k
J(J+1)
+ —— + (5M(p’q) Y, I), (5)
20,

where the four terms in the right-hand side are respec-
tively proportional to N., 1, N, 1, and 1, where N, is
the number of colors in the underlined QCD. This for-

mula is in fact an expansion in powers of 1/N,.. There,
[{(paanR) = C?(SUs) - IR(IR + 1) - N02B2/121

C5(SU3) = (»* +¢* +pq) /3 +p+aq,

p and ¢ are the numbers of upper and lower indices in
the spinor describing the SU(3) multiplet, Y, I, and J
are respectively the hypercharge, isospin, and spin of
the quantized state, Ir is the so called “right” isospin,
and Igr = J is the value of spin of the B = 1 state.
Somewhat of a paradox is the fact that the total split-
ting of the entire multiplet is proportional to N,.
The mass splittings M are due to the term

sin? v

2

EM ~ —ﬁﬁ(l“
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Fig.1. The Is-Y' diagrams (Y = S + 1) for
multiplets of pentaquark baryons, i.e., the antide-
cuplet with [p,q] = [0,(N. + 3)/2], the {27}-plet

with [p,q] = [2, (Ne + 1)/2], and the {35}-plet with

[p,q] = [4,(N. — 1)/2]. For N. > 3, these diagrams

should be extended within long lines, as shown in the

picture. The quark content is given for manifestly ex-

otic states denoted by full circles (components with the
maximal value of I3), when N, =3

in the Lagrangian, where v is the angle of rotation into
the “strange” direction and 3 = Fpm3 /F? —m? in-
cludes the SU(3)-symmetry violation in the flavor de-
cay constants. For the accepted values of the model
parameters, numerical values of some important char-
acteristics of the B = 1 skyrmion are I' ~ 6 GeV~!
proportional to the Y-term, the moments of inertia
O, ~ 56 GeV™', and O ~ 2-3 GeV~!. All mo-
ments of inertia and T are proportional to the number
of colors, ©® o N.,.

The multiplets of exotic baryons are shown in
Fig. 1. We recall that [p,q] = [1, (N, — 1)/2] for the
“octet”?), [p, q] = [3, (N, — 3)/2] for the “decuplet”, and
p+2¢ = N,. For exotic multiplets®) shown in Fig. 1,

2) The notations of the SU(3) multiplet in inverted commas
refer to the case of arbitrary N, > 3, without iverted commas —
to the case N. = 3.

3) This particular choice of [p, q] values is actually a result of
convention for a large-N, generalization of the model. For this
choice, the upper states within each SU(3) multiplet at arbitrary
N, coincide with those at N. = 3 (see Fig. 1).
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Table 1. “de-
cuplet”, and “antidecuplet” of baryons at an arbitrary
N = N,, for unmixed states, Y’ = S + 1. Few states
(marked by an asterisk) are shown that appear only if

Strangeness content of the “octet”,

N > 3; they are mostly states with the maximal pos-
sible value of isospin at a fixed Y’

Y"1 Cs(N) Cs(N =3)
[p,g] =[1,(N -1)/2]
(1,1/2) [ 2(N+4)/[(N + 3)(N +7)] 7/30
(0,0) 3/(N +7) 9/30
0,1) |BN+13)/[(N+3)(N+7)]| 11/30
*(—=1,3/2)[(4N + 18)/[(N + 3)(N + 7)] —
(~1,1/2) 4)(N +7) 12/30
[p,q] = [3,(N = 3)/2]
(1,3/2) | 2(N +4)/[(N+1)(N +9)] 7/24
(0,1) BN +7)/[(N + 1)(N +9)] 8/24
f(=1,5/2)| (AN +22) /(N + 1)(N +9)]|  —
(=1,1/2) | (4N +6)/[(N+ 1)(N+9)] | 9/24
+(=2,3) |BN+20)/[(N+ (N +9)]| -
(—2,0) 5/(N +9) 10/24
[p,q] = [0, (N +3)/2]
(2,0) 3/(N +9) 6/24
(1,1/2) | (4N +9)/[(N + 3)(N +9)] 7/24
0,1) | GN+9/(N+3)(N+9)]| 8/24
(=1,3/2) | (6N +9)/[(N +3)(N +9)] | 9/24
x(—=2,2) | (TN 4+9)/[(N + 3)(N +9)] -

p+2q = N. + 3. The lower index in the notation for
states indicates the isospin of the state, e.g.,

®/Z5), = 10,5 = —2,1 = 3/2),

S, =27,8=-1,1=2), Q =[27,5=-31=1),

where S is the strangeness of the state. The
“strangeness content”
1.,
Cs = ( =sin“v (7)
2 B

can be calculated exactly with the help of wave func-
tions in the SU(3) configuration space, for an arbitrary
number of colors N, [6, 7].
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Table 2. Strangeness content for unmixed states of the “{27}"-plet (spin .J = 3/2) and the “{35}"-plet (J = 5/2) of
baryons, for an arbitrary N = N, and numerically for N. = 3. As in Table 1, some states that exist only for N. > 3 (with

the maximal isospin) are marked with an asterisk

Y', 1) Cs(N) Cs(N =3)
[p.a] = 2, (N +1)/2]

(2,1) (BN + 23)/[(N + 5)(N + 11)] 32/112
(1,3/2) (4N2 4+ 65N/2 — 3/2)/[(N + 1)(N + 5)(N + 11)] 33/112
(1,1/2) (4N +24)/[(N + 5)(N + 11)] 36/112

(0,2) (5N2 4+ 39N — 26)/[(N + 1)(N + 5)(N + 11)] 34/112

(0,1) (5N2 4+ 33N + 8)/[(N + 1)(N + 5)(N + 11)] 38/112

(0,0) 5/(N +11) 5/14

%(—1,5/2) (6N? +91N/2 —101/2)/[(N + 1)(N + 5)(N + 11)] -
(-1,3/2) (6N2 + 38N — 8)/[(N + 1)(N + 5)(N + 11)] 40/112
(—-1,1/2) (6N +7/2)/[(N + 1)(N +11)] 43/112
*(—2,3) (TN? + 52N —75)/[(N + 1)(N + 5)(N + 11)] -
(=2,1) (TN +2)/[(N + 1)(N + 11)] 46/112
[p,gl =4, (N - 1)/2]

(2,2) (BN +25)/[(N + 3)(N + 13)] 34/96
(1,5/2) (4N? +85N/3 —79)/[(N — 1)(N + 3)(N + 13)] 21/96
(1,3/2) (4N +24)/[(N + 3)(N + 13)] 36/96
%(0, 3) (N2 4+ 104N/3 —133)/[(N — 1)(N + 3)(N + 13)] -

(0,2) (5N? + 74N/3 — 67)/[(N 1)(N + 3)(N + 13)] 26/96

(0,1) (5N + 23)/[(N + 3)(N + 13)] 38/96

x(—1,7/2) (6N? + 41N — 187)/[(N — 1)(N + 3)(N + 13)] —

(-1,3/2) (6N2 4+ 21N — 55)/[(N — 1)(N + 3)(N + 13)] 31/96

(-1,1/2) (6N +22)/[(N + 3)(N + 13)] 40/96

*(—2,4) (TN? 4+ 142N/3 — 241)/[(N — 1)(N + 3)(N + 13)] -
(-2,1) (TN? 4+ 52N/3 — 43)/[(N — 1)(N + 3)(N + 13)] 36/96
(—2,0) 7/(N + 13) 42/96

*(—3,9/2) (8N2 +161N/3 —295)/[(N — 1)(N + 3)(N + 13)] -

(-3,1/2) (8N —31/3)/[(N = 1)(N + 13)] 41/96

Some examples of the values of C's at an arbitrary 24 |8]
number of colors N, taken from Ref. [?]4) are presented Co Ne ®)

in Tables 1 and 2.

At large N., approximately,

4 In the case of a “nucleon”, the strangeness content at an
arbitrary N. was first presented in Ref. [8].
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The Gell-Mann—Okubo formula holds in the form
Cs =—A(p,q)Y — B(p.q) [Y*/4—T] + C(p,q), (9)

where A(p,q), B(p,q), and C(p,q) depend on the par-
ticular SU(3) multiplet. For the “octet”, for exam-

ple [7],
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N.+2
ACEY) = 3)ch +7)
BOBY) = 7 3)2(NC +7) (10)
3
COs =5+
For the “decuplet”,
N.+2
ACHOP) = 33 1)er6 +9)
BOOOY) = = 1)2(NC +9)’ (1)
CO0p) = 5
and for the “antidecuplet”, where the relation

I = (1 — S)/2 holds for each isomultiplet, it was
possible to obtain the relations

CE{10)") = 2B({I0) = i

(12)

If we try to expand in 1/N,, then the parameter is
7/N, for the “octet”. For the “decuplet” and “antidecu-
plet”, the expansion parameter is 9/N.., and it becomes
worse for higher multiplets, the “{27}"-plet, the “{35}"-
plet, etc. Apparently, for real world with N, = 3, the
1/N, expansion does not work.

Any chain of states connected by the relation
I = C'" £Y/2 reveals a linear dependence on the hy-
percharge (strangeness). Interpretation of these results
in terms of strange quark/antiquark masses should be
done with great care. For multiplets such as the “octet”
and the “decuplet”, the CSA mimics the quark model
with the effective strange quark mass

md ~mi T [Alp.q) ¥3B(p,q)/2].  (13)

This is valid if the flavor symmetry breaking is in-
cluded in the lowest order of the perturbation theory.
At large N,

m¥# ~ mi.T/N, (14)

is too large, about 0.6-0.7 GeV, if extrapolated to
N, = 3.

If we make expansion in the RRM for the “octet” of
baryons, we obtain the contribution to the mass pro-
portional to m3,

SMy = m%{i 3 — E ,
N, N,
r 17 (15)
— 2 _
6M2 — ml\ Nc <3 Nc> 9
r 28
Mz =m3— (4 - —
= my Nc < C) 3
and for decuplet,
r
5MA:2mi—< —i>, ,
N, N,
(15')

_, I 45
s =i L (5 )

equidistantly for all four components. We note that for
the “nucleon” and “A”, these contributions to the mass
coincide in the leading and next-to-leading orders of the
1/N,. expansion, and can be regarded as the contribu-
tion of the “sea” of s5 pairs. The effective strange quark
masses estimates and their 1/N,. expansion follow from
Eq. (15) immediately (see Sec. 6).

4. THE BOUND-STATE MODEL OF
SKYRMION QUANTIZATION

In the bound-state model (BSM) [9], the antikaon
or the kaon is bound by the SU(2) skyrmion. The
mass formula for the states with strangeness S is then
given by

M= M, +ws+wz+|S|lws + AMpyps, (16)

where flavor (wg) and antiflavor (wg) excitation ener-
gies are

W — Ne(p—1) m%s’r
o 80 N, an)
e Nop+1) N, N m2T
° T 80k 40 = N’
m>2 7> msT0Or
=, /1+ -5 ~1 K — 148K -2
a TRt T TN
uN, N,  m%N, (18)
ws +wg = ~

405 40 8Ok M2’
MZ = N2/16TOk ~ N2, p~NJ~1.
The expansion of p written above does not work well

even for strangeness, but it is very useful for compari-
son of the BSM and RRM.
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The hyperfine splitting (HFS) correction depending
on the hyperfine splitting constants ¢ and ¢, the isospin
I and spin J of the state, and the “strange isospin”
Is =|S]|/2 is given by [9]

_J(J+1)
AMpyrs = 20, +
(es=D[J(J+1)=I(IT+1)]+(¢s—cs)Is(Is+1)
Les= s . (19)
0., @,rl"m%(
cs =1-— QMGK(H_l) ~1_4T§’
(20)
- O, 0,I'm?%
cs M2®K( —1)~1-38 e

The approximate equalities shown in the right-hand
sides are valid when the expansion in m3 is possible.
In this approximation, ¢s ~ c%, as mentioned in the
literature. It is a point of principle that baryon states
in the BSM are labeled by their strangeness (flavor),
spin, and isospin, but do not apriori belong to a defi-
nite SU(3) multiplet (p,q). They can be a mixture of
different SU(3) multiplets, indeed.

For flavor (negative strangeness or beauty, positive
charm), the HFS correction disappears if myx = 0, and
we can rewrite the mass formula for flavored states as

N, J(J+1) m2T
M(I,J,S)~ M c K
(I J.S)» Ma+ g -+ g — T3

><{2+S|—Ni[J(J+1)—I(I+1)+Is(fs+1)]}. (21)
c
It is clear from this expression that the energy is
minimal when the “strange isospin” is maximal, i.e.,
Is = —S/2. For the decuplet isospin I = (3 + S)/2
and Is(Is + 1) — I(I + 1) = —5(3 4+ 2S5)/4, therefore,
equidistant location of the decuplet components is re-
produced.

In this way, for the “octet” and the “decuplet”, we
obtain the contributions depending on m¥:

I\’FC NC
r 4
SMz =m2— (4 — — 22
s =i (1-5) (22)
SM —2m2£~6M
A = KNCN N

It is instructive to compare the total splitting of the
“octet” and “decuplet” in the BSM and in the RRM:

I 4

r 1
Ao (81 RRM) = e - (2= 7).

In the BSM, mass splittings are bigger than in the
RRM.

It follows already from this comparison that the
RRM used for prediction of pentaquarks [10] is different
from the BSM model used in [11]>) to disavow the ©.

For antiflavor (positive strangeness or beauty, or
negative charm), the changes ws — wg and c¢s — cg
should be made in Eqgs. (16) and (19). It is crucially
important that the hyperfine splitting constants are dif-
ferent for the antiflavor; they can be obtained by means
of the change y1 — —pu in the above formulas (see, e.g.,
a detailed evaluation in Ref. [7]):

O
s =1-— 1) ~
€3 205 (n+1)
Or 0,I'm2
~ ]. — @ ’ +4% + O(m‘}\’),
K c (24)
cg=1+ On (n+1)~
o /J/QG)I\’
€] 0,I'm2
~l+2-C — 247" K L O(mi,
+ @K Nc2 + (mk)a

and even an approximate equality of the type ¢s ~ c%
does not hold for positive strangeness.

Ag a result, the mass formula for antiflavored states
becomes

N(1+S) JJ+1)
M(I ~ M,
(I,J,S >0) |+ 105 50, +
1
+—[I(IT4+1)=J(J+1)+3Is(Is +1)] +
20k
m3. T

+ {2+S|+N1[J(J+1)—I(I+1)—

Ne

— TIs(Is + 1)] } (25)

5) Intense discussion of the CSA predictions validity for exotic
baryon states was initiated in Ref. [12]. However, the explicit dif-
ference between the RRM and BSM in the next-to-leading terms
in the 1/N, expansion of contributions ~ m?2, which is discussed
here, was not established in Ref. [12].
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For antiflavor (positive strangeness, etc.), the term
proportional to 1/0x in Eq. (25) is large even for
small m3,:

JU+D 1
20, @ 20g
X [=J(J + 1)+ I(I + 1) + 3Is(Is + 1)].

AM§ ps(mg = 0) =

(18")

This contribution to the position of the baryon mass
agrees with the result of the RRM.

The case of exotic S = +1 ©-hyperons is especially
interesting. For O € “{10}", we have J =1/2, [ =0,

and
3 _
Kr( ) |
For ©f € {27}, we have J = 3/2, I = 1, and

il (357

For ©F € {35}, J =5/2 and I = 2, and the contribu-
tion to the mass is

AN.+3
10,

3 9

Moy, j=1/2 = Mo+ NNz

+

2N.+1
4®I\

n 15
80,

3 7
NN2

Me, j=3/2 = Ma+

2N, —1 35
M - = M, - 4+ —
©,,7=5/2 el 10, + S0, +
3 5
r (2
+ my <N N2> (26)

The terms proportional to 1/©f agree with those
obtained in the RRM for the antidecuplet, the {27}-
and {35}-plets (the terms proportional to K (p,q,J) in
the RRM mass formula). This means that, indeed, we
can interprete these positive-strangeness states as be-
longing to definite SU(3) multiplets-the antidecuplet
and the {27}- and {35}-plets®), at least when the ex-
pansion of x4 made above is possible.

We also compare the contributions proportional to
m% T with the mass splitting correction from the RRM:
3 27 )

SMEFIL, = mET <Fc N

f(2-5).
f(2-2).

6) Obtaining other components of these multiplets within the
BSM is an unresolved problem, however. Evaluations performed
in the literature are not sufficient for this purpose. For exam-
ple, the strange isospin, which is unique for the states with the
strangeness S = =+1, is uncertain for the components of exotic
multiplets different from the S =1 states [7].

32
N. N2

2

Mgy ) = mi (27)

3 2
N, N?

2

6M®27J 5/2 = =my
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and again, as for the “octet” and the “decuplet”, con-
siderable difference is observed between the RRM and
BSM results.

The addition to the BSM result of a term allowed
by the normal ordering ambiguity for the operators of
(anti)strangeness production present in BSM (see dis-
cussion of this point in Ref. [6]),

T
AMBsv—RRM = —Gm%’m@ +15)),

(28)
brings the RRM and BSM results into agreement, for
nonexotic as well as exotic S = +1 states. But this
procedure does not look quite satisfactory: if we be-
lieve in the RRM, why should we need the BSM at all?
Anyway, the RRM and BSM in their accepted form are
different models.

The rotation—vibration approach [13] attempts to
unify the RRM and BSM in some way, with @ having
been confirmed with a somewhat higher energy and a
considerable width (P ~ 50 MeV)7).

5. THE ROLE OF CONFIGURATION MIXING

Conﬁguration mixing due to the term proportional
to m2.T'sin? v in the Lagrangian is important [14] be-
cause, for example, the Ag/, state from the decu-
plet of baryons is mixed with the A’3/2 state from the
{27}-plet, and as a result, the splitting between these
states becomes larger: the mass of Az, decreases, and
the mass of A’3/2 increases (Fig. 2). Similar mixing oc-
curs for other baryon states that have equal values of
strangeness and isospin but belong to different SU(3)
multiplets.

For the antidecuplet, the mixing slightly decreases
the total splitting and pushes the N* and ¥* states
toward higher energy. Mixing with components of the
octet is important. An apparent contradiction with the
simplest assumption of the equality of masses of strange

7) The RRM-BSM alternative is not properly resolved in the
literature. In some cases involving an ambiguity, the priority is
given to the RRM (see, e.g., [13, Sect. 3 and 4]). The HFS cor-
rection in [13] has the form different from ours. According to
Eq. (3.21) in [13], it is

AMg = 1/2@,.—4— [CSJ(J—l—l)-I—(I—CS)I(I-I—I)-I—CS(Cs—l)/4} s
the last term being completely different from ours in Eq. (19). In
view of this, the authors of [13] stated: “The comparison with the
RR approximation suggests that these quartic terms contribute
9/80 k to the mass of the S = 1 baryons”. According to our BSM
formulas, we have (¢g — c¢g)Is(Is + 1)/204] n2 =0 = 9/80k in
agreement with the RRM, and there is no need to correct the
BSM formulas “by hand”.
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Fig.2. Influence of the configuration mixing [14] on

the mass splitting within the antidecuplet and decuplet
of baryons, the RRM (the version described in [15]).
For the decuplet, the data are shown by black dots

quarks and antiquarks, ms = mj, then occurs (see the
next section).

For the decuplet, the mixing increases the total
splitting considerably, but an approximate equidis-
tancy remains!®) Mixing with the components of the
{27}-plet is important because, for example, A € {10}
after mixing with A* € {27} moves to a lower value of
mass.

A note regarding the quark model should be made:
states with different numbers of ¢ pairs can mix,
and such mixing should be taken into account.
the diquark—diquark—antiquark picture proposed in
Ref. [16], the mixing of pentaquark states with the
ground-state baryon octet should be included because
strong interactions do not preserve the number of
quark—antiquark pairs present in a hadron. This mix-
ing pushes the pentaquark states towards higher energy
and changes the whole picture of relative positions of
baryon states. Without this mixing, the diquark pic-
ture in [16] looks artificial, whereas within the CSA,
this problem is resolved in a natural way.

In

We conclude this section with the following dis-
cussion of the case of large values of the mass
mp, which, besides mpg, can also be mp or mp.
When this mass is large enough, the expansion of
pu in (17) cannot be made, and we instead have
p = mp /My = 4mp\/TOg /N,.. This linear dependence
of u and of the flavor excitation energies wp and g on
the mass mp, given by (17), is quite reasonable, but it

8) Therefore, the statement made in several papers that the
approximate equidistancy within the decuplet of baryons is an
argument that the configuration mixing is negligible, is not cor-
rect.
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is not possible to uniquely ascribe the quantized states
to definite irreducible representations of SU(3), as we
did in Sec. 4. It is a challenging problem to obtain such
a linear-in-mp behavior of the flavored state energies
within the rigid (RRM) or soft (SRM) rotator model.
Probably, the strong configuration mixing that should
occur in this case would be able to reduce the quadratic
dependence on mp (or linear in T') and to convert it to
a linear dependence. Numerical calculations with the
configuration mixing program arranged by H. Walliser
and used in [15] confirm this point, but an analytic
proof is desirable.

6. COMPARISON OF CSA RESULTS WITH
THE SIMPLE QUARK MODEL

It is possible to compare the CSA results with ex-
pectations from the simple quark model in the pen-
taquark approximation (projection of the CSM on the
quark model). The masses mg, mz and the mass mg; of
the s§ pair come into play, as presented in Table 3 for
pure states (without mixing). Examples of wave func-
tions of pentaquarks in the diquark—diquark—antiquark
picture given in [16] are as follows (see also [6,17,18]):

Qp € {10} ~ [ud][ud]3,

where [ud] is a diquark with zero isospin (an antitriplet
in SU(3) flavors; see also the next section). Other
states can be obtained, e.g., by acting with the op-
erator U~ that transforms a d-quark into an s-quark
(U=d = 5s)and 3 — d (U3 —d) and with the
well-known isotopic I* operators. For example,

N** € {10} ~ [V25{[us][ud]} — d[ud][ud])]/V3, ...

®/=35), € {10} ~ [sd][sd]u, . .. .
) E;ﬂ € {10} ~ [su][su)d.

For larger N., the number of diquarks, equal to
Np = (N. + 1)/2, increases, and additional s3 pairs
appear in wave functions of some states?).

For the antidecuplet at an arbitrary N., according

9) The standard assumption is that the baryon number of the
quark is equal to 1/N.. We also accept the relation between
hypercharge and strangeness in the form Y = S + N.B/3 (see,
e.g., [12]). We note that the quantity Y’ in Fig. 1 and Tables 1
and 2 is by definition Y/ = § + 1. The wave function of the
“pentaquark” in this case is ©g € “{10}” ~ [ud] ... [ud]s with the
number (Ne + 1)/2 of [ud] diquarks, etc.
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Table 3.

Contributions of the strange quark (antiquark) masses (for N. = 3) and calculation results within the RRM

without and with the configuration mixing (respectively the first and the second lines of numbers [15]). For each value
of strangeness, the states with the largest isospin value are considered here

_ — 1 — — 3
M).20) | [@h15) | {000 | |@0.-13)
ms 2msz/3 ms + msz/3 2mg
564 655 745 836
600 722 825 847
3 3
ms ms§/2 ms 2m 3ms
733 753 772 889 1005
749 887 779 911 1048
5 3 1
|{35}/272> {35}71,5 ‘{35}70,2> {35}7_175 ‘{35}7_27” {35}/_3,5
ms 0 mg 2ms 3ms 4ms
1152 857 971 1084 1197 1311
1122 853 979 1107 1236 1367

to Fig. 1 and Table 1, any state with strangeness S has
the isospin I = (1 — S)/2 and its mass is

M({10},S,1 = (1-5)/2) = M({10},S = 1,1 = 0)+
(1 — S)Nc
(Ne +3)(Ne +9)°

+m3T (29)
Interpretation of this relation in terms of the quark
model is not straightforward. Simple relations can be
obtained from Table 3 for the effective s-quark and an-
tiquark masses mg and mjz and from the total splitting
of the antidecuplet (N, = 3)

[2ms — msligy = myT/8, (30)

which numerically equals 272 MeV for the parameters
accepted in [15] (I ~ 6.31 GeV~1). For an arbitrary
number of colors, this relation should be rewritten as

[(Ne + 1)ms — 2mE]{ﬁ} =mxN.T/(Ne +9). (30

Configuration mixing decreases this quantity to
247 MeV (see Table 3). Relation (30) is the only rela-
tion that can be obtained, according to Table 3. If we
assume that the strange quark mass in the antidecuplet
is the same as in the decuplet, ms({10}) = m({10}),
then the strange antiquark mass should be negative if

the configuration mixing is not included: m3({10}) =
= —mgs({10}). This relation looks unrealistic. We
note that if the mass of the s-antiquark within the
antidecuplet were equal to that of the s-quark (we call
this variant the simplistic model), then this splitting
would be much smaller, just equal to ms &~ 130 MeV.
A natural resolution of this contradiction is to allow
the masses of the strange quark/antiquark within the
antidecuplet to be different from those within the
decuplet and other multiplets.

It is remarkable that configuration mixing pushes
the splitting towards the simplistic quark model, where
the splitting of the antidecuplet should be about myg,
because mz ~ m,. If we assume that the s-quark mass
in {10} is about 150 MeV, as in the decuplet, then
the strange antiquark within {10} should be very light,
with the mass about 30-50 MeV.

For the components of the {27}-plet with strange-
ness S < —1, the relation

M({27},8,1=(5+9)/2) =
= M{27},8=—-1,1=2)—
(S+1) (N2 = N, +18)
(Ne + 1)(Ne + 5)(N, + 11)

—m3T (31)

893



V. B. Kopeliovich

MITD, Tom 135, BHIm. 5, 2009

holds, and for N, = 3, we obtain m%/ ({27}) =~
~ 3m3.I'/56 ~ 117 MeV, which increases to 135 MeV
when the configuration mixing is included.

From splittings within the {27}-plet between com-
ponents with Y’ > 0, we also obtain

[ms — ms]gary = m%T /56, (32)

which is numerically equal to 39 MeV [15] and reduces
to 30 MeV when the configuration mixing is included.

It is interesting that when the configuration mixing
is not included, then the mass of the strange quark—an-
tiquark pair equals mgs = (ms+ms)/2 both for the an-
tidecuplet and {27}-plet. This relation is in fact a con-
sequence of the Gell-Mann—Okubo relation. For an ar-
bitrary N,., the interpretation of formula (31) in terms
of effective quark/antiquark masses becomes more dif-
ficult, because additional ss pairs are present in simple
wave functions.

We now consider the highest (in multiplicity) pen-
taquark. The remarkable property of the {35}-plet is
that the lowest-mass state is not the state with the
highest value of hypercharge, Y’ = 2, but the state
in the middle of the multiplet, which has Y’ = 1,
S =0, and I = 5/2. In the pentaquark approxima-
tion (N. = 3), this state contains neither a strange
quark/antiquark, nor an $3 pair, and has the numeri-
cally smallest strangeness content among all baryons
considered here. As can be seen from Table 3, the
mass of the s3 pair does not enter the masses of all the
{35}-plet components with the largest isospin values.
The masses of these states with S < 0 are connected
by the relation

=M <{35},S=0,I=

ro | W

M ({35},5,1: g +

5

2

>_

S (N2 +12-11N,/3)

—m2 33
G R § G A 1§ I S
and hence, for N. = 3, the quantity
5
m({35}) = m%\,r% ~ 114 MeV (34)

can be considered the effective strange quark mass in
this case. Configuration mixing increases this quantity
to 130 MeV (see Table 3).

From the difference between the masses of the S =1
and S = 0 states, we can extract the effective strange
antiquark mass
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mslgas) = mﬁ\,rg ~ 205 MeV, (35)
which is a remarkably large value. Configuration mix-
ing slightly reduces this quantity to 270 MeV.

For an arbitrary N,., we can obtain some informa-
tion about the behavior of the strange antiquark mass
for the “antidecuplet”, the “{27}"-plet, and the “{35}"-
plet if we make some assumption about the contribu-
tion of the strange quark sea, in particular, that it is
the same as for the “nucleon” and the “A”-isobar (coin-
ciding in the leading and next-to-leading orders of the
1/N,. expansion; see Table 1). In this way, from the
RRM, we obtain (with the contribution of the sea of s5
pairs subtracted)

i~ (157
[ms] oy ~ mjé;l“ <1 - ]lv—?:> , (36)
[ms]{3sy ~ m]?;cf <1 — ]lv—lc> ;

and within the BSM
[ms]i1ay ~ m]?ir <1 - A%) :
[ms]any ~ m]?;;r <1 - Nlc> , (37)
[ms]as) ~ mjé;l“ < - Nic> .

It thus follows that numerical results shown in Table 3
can be understood qualitatively from this expansion,
although the extrapolation back to the real N, = 3
world is not possible. It is also worth noting that the
changes of the effective s-antiquark mass from the an-
tidecuplet to the {35}-plet are equal within the RRM
and the BSM, although the mass itself is smaller in the
RRM, in the next-to-leading order of the 1/N, expan-
sion.

We summarize our results for the first two terms of
the 1/N. expansion of the effective strange quark and
antiquark masses in Table 4. The “octet” and “decu-
plet” of baryons do not contain valent ss pairs, and the
mass difference between the components is defined en-
tirely by the valent strange quarks. The mass my is
defined as half the total splitting for the “octet” and
1/3 of the total splitting for the “decuplet”.

A strong dependence of the s-antiquark mass on the
multiplet is required when we project the CSA results
on simple quark model: it is presently unclear whether
it is an artefact of the CSA or is physically significant.
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Table 4.

First terms of the 1/N. expansion for the effective strange quark and antiquark masses within different SU(3)

multiplets, in units m%I'/N.. Empty spaces are left in the cases of theoretical uncertainty. The assumption concerning

the sea of strange quarks/antiquarks, described in the text, should be kept in mind

{8}

{10}

{10}

{27}

{35}

1—8/N.

1—11/N,

1-2/N,

1-5/N,

1—15/N.

1—13/N.

1—11/N,

1—9/N, 1—7/N, 1—5/N.,

The effect of the configuration mixing on the contri-
bution of mg, mz, and my; to baryon states should be
included in a more detailed consideration.

7. DIQUARKS MASS DIFFERENCE
ESTIMATES

The diquark mass differences can be roughly esti-
mated using results obtained from the CSA. As was
suggested by Wilczek [17], the singlet in the spin di-
quark [g1q2], which is an antitriplet 3z in flavor, is
called the “good” diquark dp, and the triplet in the
spin diquark (q1¢2), which is 6z in flavor, is called the
“bad” diquark d;. Both good and bad diquarks are
antitriplets in color. As was shown in the preceding
section, the wave function for pentaquarks from the
antidecuplet can be written in terms of diquark wave
functions [16, 18] as

Qo € {10} ~ [ud][ud]s, ...,

/25,

€ {10} ~ [sd][sd]a . . .

It is not possible to build the {27}- and {35}-plets
from good diquarks only; that the bad diquarks are
needed is well illustrated by these examples of wave

functions of positive-strangeness baryons:

0Y € {27} ~ (dd)[ud]3, ©OF € {27} ~ (ud)[ud]3,

07T € {27} ~ (uu)[ud]z, ©5 € {35} ~ (dd)(dd)3,
09 € {35} ~ (ud)(dd)s, ...,
07t € {35} ~ (uu)(uu)s.
It seems to be natural to ascribe the difference of
the rotation energies for different multiplets, given by
the term proportional to K (p, ¢, Igr) in expression (5),

to the difference of masses of bad and good diquarks.
Because the bad diquark is heavier, this is an obvious
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reason why ©; is heavier than 0, and ©5 is even heav-
ier.

From the difference of the {27}-plet and antidecu-
plet masses, it follows

3

M(dy) — M(dy) = 50, ~%0. ~ 100 MeV. (38)
From the {35}-plet and {27}-plet mass difference,
5
M (dy) — M(do) =~ 0. 200~ 250 MeV.  (39)

This result seems to be qualitatively acceptable, in
agreement with previous estimates [17] and, e.g., lat-
tice calculations [19], but this picture is too naive. In
particular, the interaction between diquarks may be
important, which makes the @, (J = 5/2) even heav-
ier.

8. THE RIGID ROTATOR -SOFT ROTATOR
DILEMMA

The RRM is a limit case of the rotator model when
deformations of skyrmions under rotation in the SU(3)
configuration space are totally neglected. In the SRM,
opposite to the RRM, it is supposed that the soliton is
deformed under the influence of flavor symmetry break-
ing forces: the static energy minimization is made at
a fixed value of v. The dependence of static charac-
terstics of skyrmions on v is taken into account in the
quantization procedure.

Static characteristics of skyrmions depend on v, the
angle of rotation into the “strange” direction. It is most
important for “strange”, or kaonic inertia moments:

/(1 — cos f) [Ff\ - E(Ff\ — F?) x

2
M)} d3r.  (40)

r2

1
6]\’ = §

1
X (2—cosf)sin2v+—2<f'2+
e
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Fig.3. Comparison of the RRM and SRM predictions
for the masses of exotic baryons, the antidecuplet and
the {27}-plets. Not all states are shown for the SRM.
The code for the SRM used here was provided in [20]

It is a decreasing function of sin?». The RRM cor-
responds to ¥ = 0, the maximal value of the kaonic
inertia moment © g and relatively low values of masses
of exotic baryons (0, ®/Z3/,, etc.). Within the SRM,
the masses of baryons from the antidecuplet and the
{27}-plet are considerably greater than in the RRM,
mostly due to the smaller value of @ (see Fig. 3). The
truth is somewhere between the RRM and SRM, but
making reasonable calculations seems to be unrealistic
presently because the properties of baryonic matter are
not known, in particular, the response of matter to the
flavor symmetry breaking forces.

9. STRANGE MULTIBARYONS OR
HYPERNUCLEI

The great advantage of the CSA is that multibaryon
states (nuclei, hypernuclei, etc.) can be considered
on equal footing with the B = 1 case. The ratio-
nal map approximation proposed in Ref. [21] simplifies
this work considerably and allows easily calculating all
static characteristics of multiskyrmions necessary for
the spectrum evaluation. In particular, the B-number
dependence of the quantities of interest has been es-
tablished, ©; ~ B and ©; ~ B? for B < 20-30. Some
kind of the “bag model” for multibaryons can be ob-
tained with the help of this ansatz, starting with an
effective Lagrangian [22].

Ordinary nuclei and hypernuclei (ground states)
can be assigned to definite SU(3) multiplets, as shown
in Fig. 4 for baryon numbers 3 and 4. In a version
of the BSM, it is possible to describe the total binding
energies of light hypernuclei in a qualitative, even semi-
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Fig.4. a) The location of the isoscalar state (shown by

a double circle) with an odd B-number, J =1/2,3/2

and |S| = 1 in the upper part of the I3-Y diagram.

b) The same for isodoublet states with even B (J = 0).

The case of light hypernuclei AH and sHe is presented

as an example. The lower parts of diagrams with
Y < B — 3 are not shown here
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Fig.5. Total binding energies of light hypernuclei. Tri-

angles, correspond to experimental data; circles, are

the theoretical results in a version of the BSM applied

to multiskyrmions [23]. The figure is taken from the
second reference in [4]

quantitative agreement with data [23]. The collective
motion of the multiskyrmion in the SU(3) collective
coordinates space is taken into account. The results of
such estimates within the rigid oscillator model (a vari-
ant of the bound state model) are presented in Fig. 5,
and a quite satisfactory qualitative agreement with the
existing data on total binding energies is observed.

For B = 2, more detailed investigations have been
performed. The lowest multiplets of dibaryons are
shown in Fig. 6: the left figure shows the antidecu-
plet of the J = 1 dibaryons, the I = 0 deuteron being
the nonstrange state; the right figure shows the J =0
{27}-plet, the I = 1 nucleon-nucleon scattering state
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B

2, {10}, J

Fig.6. The I3-Y diagram of multiplets of dibaryons,

B = 2: the J =1 antidecuplet (not to be mixed with

the antidecuplet of pentaquarks, B = 1) and the J =0

{27}-plet. Virtual levels (scattering states) are shown

in brackets, e.g., (AN) is a scattering state that ap-
pears as a near-threshold enhancement

being the upper (nonstrange) component. There is also
a {35}-plet with the NA-like nonstrange upper com-
ponent (isospin I = 2) and a {28}-plet with a AA-like
upper component (isospin I = 3). The {28}-plet con-
tains the state with S = —6 (di-Omega). The {35}-plet
and the {28}-plet are not shown in Fig. 6.

Calculations of the spectrum of strange dibaryons
were performed [24] in the SRM, which is more relevant
in the B = 2 case than in the B = 1 case. When the
N N-scattering state was fitted to be in the right place
(the deuteron binding energy is then about 30 MeV),
all strange and multistrange dibaryons are above the
threshold by few tens of megaelectronvolt, and hence
can appear as near-threshold enhancements in scatter-
ing cross sections of baryons with appropriate quantum
numbers. These results are in qualitative agreement
with quark model calculations [25].

Multibaryons with positive strangeness or beauty
(or negative charm) have also been predicted within a
similar approach [26].

Rotational excitations of any state have the addi-
tional energy I+ 1)

20,

Excited states with J = 2% have the energy by 2/0
greater than the energy of the J = 1{10}. The state
with S = —1, I = 1/2, J¥ = 2% can be interpreted as
an NN K state with the binding energy about 100 MeV.
For the B =2 {27}-plet, J = 1 states have the energy
by 1/0; ~ 60 MeV greater than J = 0 ground states.

The orbital inertia rapidly increases with increas-
ing the baryon (atomic) number, @ ; ~ BP, where p is
between 1 and 2. Therefore, the number of rotational
states becomes larger for large baryon numbers. Some
of them can be interpreted as deeply bound anti-kaon

AE = . (41)
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states intensively discussed in [27] and other papers.
More detailed investigations of this issue are necessary.

10. SUMMARY AND CONCLUSIONS

We can summarize our discussion as follows.

The parameter of the 1/N, expansion is large in the
case of the baryon spectrum, the extrapolation to real
world is not possible in this way, and conclusions made
in the limit N, — oo may not be valid in the real world.
Rigid (as well as soft) rotator and bound state models
coincide in the first order of the 1/N, expansion, but
differ in the next orders.

Configuration mixing is important, according to
the RRM, and substantially affects the effective quark
masses within the simple quark model.

Transition to the SRM from the RRM may be cru-
cial, leading to an increase in the masses, especially for
exotic states.

There is a correspondence between the chiral soli-
ton RRM and quark model predictions for pentaquark
spectra in the negative-S sector of {27}- and {35}-plets:
the effective mass of the strange quark is about
135-130 MeV and slightly smaller for {35}-plet.

For positive strangeness components, the link be-
tween the CSA and the quark model requires a strong
dependence of the effective § mass on a particular
SU(3) multiplet. The 1/N, expansion for the effective
strange antiquark mass provides different results in the
rotator and bound state models in the next-to-leading
order, but the changes in the effective mass mj in pass-
ing from one multiplet to another are the same for the
RRM and BSM. Configuration mixing pushes spectra
towards the simplistic model, which is a nice property,
but the reasons for this are not clear presently. Di-
quarks mass difference estimates from the CSA seem
to be reasonable.

To conclude, we state that chiral soliton mod-
els, based on few principles and ingredients incorpo-
rated in an effective Lagrangian, allow a qualitative, in
some cases even a quantitative description of various
chracteristics of baryons and nuclei, from the ordinary
(S = 0) nuclei to the known hypernuclei. This suggests
that predictions of pentaquark states, as well as multi-
baryons with strangeness, are of interest. The existence
of pentaquarks themself is without any doubt, although
very narrow pentaquarks may not exist. Wide, even
very wide pentaquarks should exist, and searches for
pentaquarks remain a topical problem.

However, problems are encountered in trying to
project the CSA results on quark models: a strong de-
pendence of the strange antiquark mass on the SU(3)
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multiplet and a difference in the masses of “bad” and
“good” diquarks, which is not unique in naive picture,
at least.

In view of theoretical uncertainties, experimental
investigations are of crucial importance. In particular,
experiments at the J-PARC accelerator (50 GeV)
can provide a great chance to shed more light on the
puzzles of baryon spectroscopy.

The author is indebted to H. Walliser and A. Shun-
deruk for the fruitful collaboration. Helpful discus-
sions with T. Cohen, R. Jaffe, I. Klebanov, N. Manton,
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of the work, as well as the useful remarks by R. Faustov
are thankfully acknowledged.
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