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An analytic expression for the transmission coefficient as a function of the foil thickness d describing penetra-
tion of intense femtosecond laser pulses through ultra-thin foils with the thickness of the order of 30-100 nm is
derived using the Vlasov—Boltzmann equation. It is found that the transmission of laser radiation stops at the
skin depth ¢/w,, but sharp and narrow resonances occur for the foil thickness d > ¢/w, with the transmission

coefficient T = 1.

PACS: 52.50.Jm

1. INTRODUCTION

When an intense femtosecond laser pulse impinges
on a thin foil, the crystal lattice is destroyed and a
dense plasma with a sharp boundary is produced. In
a recent experiment in [1], under the irradiation of
10 pm thick Al foils by the laser pulse with the dura-
tion 300 fs and the peak intensity 5-10'9 W /cm?, most
of free electrons inside the foil had the kinetic energy
about 100 eV. Of course, a small amount of electrons
are heated up to 100-300 keV and more due to the
inverse induced bremsstrahlung on the critical surface
and other mechanisms [2] (these are the so-called hot
electrons). But their number density is very small, of
the order of 10'? cm 3. These estimates of the energy
of cold electrons are confirmed by the numerical deriva-
tions in [3]. The ratio of the energies of cold and hot
electrons is typically about 0.01. We note that atomic
ions inside the foil do not move significantly during
femtosecond time intervals, and hence the foil surface
remains immovable. The energy of bulk electrons in a
foil of the order of 150 eV was also observed in Ref. [4]
at the peak laser intensity 10'® W/cm? and the pulse
duration 60 fs.

At the normal incidence of a linearly polarized laser
beam, the tunneling and barrier suppression ionization
of atoms or of atomic ions inside the foil produce elec-
trons ejected along the laser polarization (i.e., parallel
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to the foil surface, the z axis) with the energies esti-
mated as [5]

3R}
S w2 (2B

Here, atomic units are used, e = m, = h = 1, F}, is the
typical electric field strength inside the foil (it differs
strongly from the external laser field strength F'), w is
the laser frequency, and F; is the ionization potential of
an atom or of an atomic ion inside the foil. The typical
energy in other directions (including the z axis normal
to the foil surface) is much less, and its estimate is

Fz’n
WL,
Indeed, E./E, ~ 2, where

V2FE;

. R

is so called Keldysh parameter [5]. In the tunneling
and barrier suppression regime, the Keldysh parame-
ter is very small. In addition, in dense plasma, the
plasma frequency w, = \/4mn, is very large in compar-
ison to the laser frequency w. Here, n, ~ 1023 cm ™3
is the typical number density of free electrons inside
the foil plasma. These free electrons are added to the
free electrons with relatively small kinetic energies that
were in the metal foil before laser irradiation.

Cold electrons collide with each other and with
atomic ions during the femtosecond laser pulse. Indeed,



N. V. Bordyuh, V. P. Krainov

the time between two subsequent electron—electron col-
lisions can be estimated according to Spitzer formula
(in atomic units) as

3(2E,/3)3/?
4v/21n,In A’

where In A & 5 is the Coulomb logarithm. In particular,
we obtain 7., ~ 0.4 fs at the electron number density
ne = 10?3 cm~3 for an overdense foil plasma and the av-
eraged electron kinetic energy E, = 100 eV. Thus, the
Maxwell one-temperature distribution is established for
the electron cloud during the femtosecond laser pulse.
But for the laser intensity more than 102! W/cm?, the
energy of cold electrons increases to 10 keV and more,
and they do not collide with each other and with atomic
ions during the femtosecond laser pulse. The energy of
hot electrons is of the order of several MeV in this case,
which is confirmed by PIC simulations [6]. We note
that multiple ionization of atoms occurs at such ultra-
high laser intensities. In particular, in the experiments
in 7], the laser intensity was 4-10%° W /cm? at the pulse
duration of 700 fs. Atomic ions were produced with
high charged multiplicity in a Cu foil. Analogously, in
the experiments in [§8], the gold ions had the charge
multiplicity up to 11+ at the irradiation of Au foils by
laser with the peak intensity more than 10 W/cm?
and the pulse duration 100 fs.

The energy of bulk electrons in a foil depends sig-
nificantly on the duration of the laser pulse. Using 3D
particle-in-cell simulations, the author of Ref. [9] stud-
ied ion acceleration from a foil with the thickness 12 ym
irradiated by a laser pulse at the intensity 101 W /cm?
with the pulse duration 700 fs. At the front side,
the laser ponderomotive force pushes electrons inwards.
The energy of bulk electrons in the foil was 50 keV,
and the energy of hot electrons was 2.6 MeV. Then the
two-temperature electron energy spectrum is realized
without collisions. We consider just this case here.

Tee

2. THEORETICAL APPROACH

We assume that the electron beam is monochro-
matic in all directions and

fo

=n.d (vy —Vy) 0 (v — Tz)

(where n. is the electron number density) is the dis-
tribution function at F' = 0. The integro-differential
nonrelativistic Vlasov equation for the electric field
strength Fj, = F(z) inside the foil is of the form
(see [10])
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F'"(z) = — 5 020 fdvdv.. (1)
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We replace v, — vz, U, — v, in what follows. The
plasma layer occupies the region 0 < z < d, and =z
is the direction of polarization of the linearly polarized
laser field. There is no dependence on the coordinate .
The small field correction to the electron distribution
function § f must satisfy the kinetic equation

d 0
iwdf —v.—-0f = F(z)a:jz -
i, dfo dfo

We neglect collisions between electrons and atomic
ions. We obtain ¢f from Eq. (2) by solving the first-
order inhomogeneous differential equation with respect
to z. The assumption of mirror reflection of electrons
by foil boundaries is used:

5f(2 = O,UZ) = 6.f(2 =0, _UZ)-,

0f(z=d,v,) =6f(z=d,—v,).
Substituting 0 f from Eq. (2) in the right-hand side of
Eq. (1) and assuming that all electrons have the same
velocity v, in the normal direction to the foil surface
and the same velocity v, along the laser field polariza-

tion, we then obtain the integro-differential equation
for F(z)

w-wl(1-A) y

v,

F'(z) = "B F(2) =

/sz sm{z(z—z)]—}—l(z) C®)

where

cos (wz/vs)

I(z) =

/sz cos{ (d- )},

v, is the electron velocity along the normal direction z,
and

sin (wd/v.)

2
v E
A=1- —z =1- ==
v2 E,
We introduce the notation
w w
r=—z, D=—d.
Uz Uz

Then Eq. (3) can be rewritten as
w? Av?

F”(SU) - c2w2z F(QD) =
2U§2S;A) /dx'F(x') sin (x—a') +J(x) p, (4)
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where Hence, the general solution of the inhomogeneous equa-
tion (8) can be written as
cosx .
= st/d 'F(2') cos (d —a'). (5) F(x) = Cy shsx + Cy ch sex +
. F'(D)
To obtain an ordinary differential equation, we in- + Cysinkz + Cy cos bz — snD o8t
troduce the new function F'(x) instead of the electric F(z) = Cy (143%) shsew+Cy (1+5%) chsex+
: 14
field strength F'(z): £ Oy (1-K)sinke +Cy (1 k) coske, D
~ T Fl(x) = 01%(1—}—%2) ch%x+02%(1+%2) X

F(x) = /dx'F(x') sin (x — '),
", (6)

F'(z) = /dx'F(x') cos(x —2a'),

F"(z) = F(x) = F(x),

F'(z) = FV(2) + F"(2). @

Then Eq. (4) can be rewritten in the dimensionless form

FWV(2) + 2AF"(2) — BF () = C cos z, (8)
where we set
2 2A
2A=1- 2202 5,
w2e
2 2
viw;
B=—3, 9)
o (- 4) F(D)
w2c2 sinD -’

The general solution of the homogeneous equa-
tion (8) is

F(x) o exp(Kx),

where the quantity K (the complex wave number) is
satisfied the equation

K*4+2AK*> - B=0. (10)

The four solutions of this equation are

—~A++\/A? +B. (11)

We introduce the notation
k=1\/A++\/A42 +B,
x=1\—-A+ \/m

The particular solution of the inhomogeneous equa-
tion (&) is

K==+

(12)

. C _ F'(D)
B = 515" = "D
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x shzex + C3k (1 — k2) cos kx —
— Cy4k (1 — k2) sin kx,
where Cy, Cs, C3, and Cy are integNration constants.
It follows from Egs. (6) that F'(0) = F'(0) = 0.
Using Eq. (14), we then obtain the relations between
these constants:

(D)
Gz +Ca = sin D
and
%Cl = —kC?,. (15)

We differentiate Eq. (14) with respect to 2 and then
set x = D. We find the second-relation for the con-
stants,

Cisch D + Cysesh D +
+ CskcoskD — CyksinkD = 0. (16)

We next consider the boundary condition for the
electric field strength at z = 0:

F(z:O)—z'gF’(zzm =2 (17)

(we set the electric field strength of the incident elec-
tromagnetic wave equal to 1, having in mind that a
part of the incident laser energy is absorbed by foil
electrons). This equation can be rewritten in terms of
the dimensionless variable x:
Fle=0)—i"F'(z =

v,

0) = 2. (18)

Substituting Eq. (14) at z = 0 in Eq. (17
third relation between the constants:

), we find the

Co(14+:2)+Cy(1-k)—2=
= i[O (1432) + Cak (1= #7)] . (19)

z

The final equation is the boundary condition for the
electric field strength at z = d:
Flz=d)+i=F'(: = d) =

3*
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or

iF(x = D)= UiF'(x = D). (20)

Substituting Eq. (14) at « = D in Eq. (20), we obtain
the fourth relation between the four constants:

iCy (14 ) sheD +iCy (1+ 5°) ch %D +
+iC3 (1 - k2) sin kD + iCy (1 — k2) coskD =

= vi [C13¢ (1+435¢%) ch 5¢D+Co3¢ (1432) sh D] +

z

+— [Cak (1=k?) cos kD—Cuk (1=k*) simn kD] . (21)

Therefore, we must solve the nonhomogeneous sys-
tem of four equations, Eqgs. (15), (16), (19), and (21)
for the four constants Cy, Csy, C3, Cy.

According to Eq. (14), the electric field strength is
F(0)=Cy (1457) +Cs (1 - k7). (22)

According to the boundary condition, the electric field
strength of the reflected electromagnetic wave is

F, =1-F(0) =1-C (14 %) —Cy (1-K*) . (23)
The reflection coefficient is
R=|F>=1-T, (24)

where T is the transmission coefficient of the electro-
magnetic radiation through the foil. These equations
were obtained and solved numerically in our previous
work [11].

In this work, we obtain the analytic expression for
the transmission coefficient T' for the first time. Omit-
ting the details of cumbersome derivations, we find

1
1422
_ayshxDsinkD + ay (ch %D coskD — 1)
as sh 2D + a4 sin kD ’
ap :k%(k2+%2)2+
B [ (152)" fe = (1= 82)" k], (D)
as =23% (14 57) (1 - k%),
az = 26% (k2 + %2) (]. - k2) 9
as = 20k (k2 —0—%2) (1 + %2) ,
B =uvs/c.

<1,

3. LIMIT CASES

In the case A =1 (E, = 0), the transmission coef-
ficient in Eq. (25) takes the simple form

9y —1
T = {1 + (522;%”2 sh w) } . (26)

In this case, s = v,wp/cw. It corresponds to the well-
known decrease in the electric field in the skin layer.
The skin depth is equal to ¢/w,.

In the limit of a thick foil, when sh »>D > 1 and
ch D > 1, it follows from Eq. (25) that

1
" 1+ (aysinkD + ay coskD)? Ja2’

(27)

Hence, resonances also occur for sufficiently thick foils,
where T" = 1. The distance between neighboring res-
onances is determined by the condition KAD = 7, or
Ad =~ 7v,/w. Of course, in practice, resonances dis-
appears with increasing the foil thickness d because of
the absorption of laser radiation. The resonance ab-
sorption in a foil on the critical surface can be very
efficient [12].

4. ABSORPTION OF RADIATION

In each collision of an electron with an atomic
ion with the charge multiplicity Z, the electron en-
ergy increases on average by the ponderomotive en-
ergy F72 /4w?  This is the so-called inverse induced
bremsstrahlung. The rate of electron—ion collisions is

_ 3(2Ein/3)*?
- 427 Z%n. In A’

In addition, an electron can elastically collide with the
foil surface. In each collision, its energy also increases
by F7?,/4w?. The rate of electron—surface collisions is
Tes & d/vy. In the tau-approximation, kinetic equation
(2) for the distribution function 6 f becomes

Tei

| A0
wdf — vzgdf = F(Z)avx
_ip 9fo _, 0fo] _0f
wF(Z) [”’”avz U'z@vm T’

where 7 is the collision time, i.e., the minimum value
among T.; and 7.s. Hence, the above solution must be
modified by the substitution w — w — i/7 under the
condition w7 > 1. In the nonrelativistic case 2 < 1,
Eq. (27) can be simplified to

1

T = — .
1+ (a2 /a3) sin®(kwd/v,)
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Dependence of the transmission coefficient on the dimensionless foil thickness D = dw/v. in the case where E, = 0 (a),
E. (b), 2E. (c), and 6E. (d)

The transmission coefficient T 1 when kD
= kwd/v, = Nm (N =1,2,...). After the substitution
w — w —1/7, we obtain

1
1+ (a?/a3) sh* (kD Jwr)

(28)

in the vicinity of these resonances. Hence, resonances in
the transmission coefficient 7" disappear with increasing
their number N because of the absorption of radiation.

We can generalize Eq. (25) by taking into account

869

that Eq. (28) is valid in the vicinity of resonances, while
outside the resonances, the transmission coefficient be-
comes very small as D increases:

1
T=— .
1+ a22sh”*(kD/wr)

(29)

In the numerical example, we consider the typical
case where E, = 1.6 keV, i.e., 3 = v,/c = 0.08. The
photon energy of a Ti:Sapphire laser is hiw = 1.5 eV.
In the Figure, the transmission coefficient T derived
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in accordance with Eq. (29) is presented as a function
of the dimensionless foil thickness D = wd/v, at vari-
ous values of the parameter A =1 — E,/E, and with
wr =2at7=11fs. InFig. a (A =1, E, = 0), the
curve is described by Eq. (26), as it should be. The
transmission of laser radiation is depleted at the skin
depth ¢/w,. In other curves, where E, is nonzero, the
transmission of laser radiation is also depleted at the
skin depth c¢/wy, but sharp and narrow resonances oc-
cur where the transmission coefficient T is sufficiently
high at d > ¢/w,.

In conclusion, we predict a nonmonotonic behavior
of the transmission coefficient, with maxima and
minima, as a function of the ultra-thin foil thickness.
In contrast to the results in Ref. [10], this behavior can
also be observed for the isotropic velocity distribution
of heated electrons in foil plasma (A = 0, E, = E.,
Fig. b). Our results can be used, for example, for
exact determination of the thickness of ultra-thin foils
based on the measurements of resonant transmission
coefficient at the penetration of femtosecond laser
pulses, or for determination of the velocity distribution
of heated electrons inside the foil plasma.
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