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A STABILIZED WARPED BRANE WORLD WITH EQUAL GRAVITY
STRENGTHS ON THE BRANES
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We discuss a stabilized brane world model with two branes, allowing a solution to the hierarchy problem due to
the warped extra dimension and having a remarkable feature: the strength of gravitational interaction is of the
same order on both branes, contrary to the case of the Randall-Sundrum model with a hierarchical difference
of the gravitational strength on the branes. The solution also admits the existence of two branes with equal

gravity strengths.
PACS: 04.50.-h

1. INTRODUCTION

Since the appearance of papers [1, 2|, where theo-
ries with warped extra dimensions were shown to al-
low a solution to the hierarchy problem, such theories
are widely discussed in the literature (see, e. g, reviews
[3, 4]). Tt turned out that the RS1 model [2] involves
a massless radion, which contradicts the experimental
data even at the classical level, and therefore this model
requires a stabilization. The first stabilization mecha-
nism was proposed in paper [5], where the size of the
extra dimension is determined by the minimum of the
effective potential of a five-dimensional scalar field. But
the backreaction of the scalar field on the background
metric is not taken into account by this mechanism.
This problem was solved in the model proposed in [6].
We note that in the method proposed in [6], the size of
the extra dimension is defined not by the minimum of
the effective four-dimensional scalar field potential but
by the boundary conditions on the branes. With an ap-
propriate choice of the model parameters, it is possible
to obtain the background solution for the metric that
is close to the original Randall-Sundrum solution [7].
This model can be considered the stabilized Randall-
Sundrum model.

The main feature of the Randall-Sundrum model
is the existence of two branes that differ significantly
in the strength of the four-dimensional gravity. In-
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deed, the four-dimensional Planck masses, defined by
the coupling constant of the massless four-dimensional
graviton, are [3, 8]

M3
M}, = — (e**F - 1)
k
for the IR brane and
M3

MI*D% e—2kL)

== (1-
for the UV brane (the terms “UV brane” and “IR brane”
are used in the same sense as in the Randall-Sundrum
model: the UV brane is the one with the stronger
gravity, and the IR brane, on which the fields of the
Standard Model are assumed to live, is the brane with
the weaker gravity), where M is the five-dimensional
Planck mass, k is the inverse anti de Sitter radius, L is
the size of the extra dimension, M ~ k ~ 1 TeV and
kL ~ 36. Obviously, for this choice of the parameters,
Mp; ~ 10'6 TeV, whereas M}, ~ 1 TeV. Therefore,
the branes are strongly different from the gravitational
standpoint, which leads to very different physics on the
branes. A question arises whether it is possible to con-
struct a stabilized brane world model with branes hav-
ing comparable (or even equal) strengths of the effective
four-dimensional gravity.

In this short paper, we discuss a stabilized brane
world model based on the background solution pre-
sented in [9, 10]. Although the solution is quite well
known, we found that it has an interesting property
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when applied to compact extra dimension. Namely,
it allows obtaining any values of the four-dimensional
Planck masses with respect to each other, retaining the
main advantages of warped brane world models: strong
five-dimensional gravity and the solution to the hier-
archy problem. In other words, there can be two IR
branes or even one IR brane and one brane with the
gravity much weaker than that on the IR brane.

2. THE MODEL

To begin, we let denote coordinates in the five-
dimensional space-time F = M, x S*,

{eVy = {a",y}, N=0,1,2,3,4, p=0,1,2,3,
with 2* = y, —L < y < L, being the coordinate pa-
rameterizing the fifth dimension with points —y and y
identified. The branes are located at the points y = 0
and y = L.

The action of the stabilized brane world model can
be written as

I
S:/d4x/dy\/—g X
I

< 23R - SN owoone - Vo) -
- [ VEn@de - [ VEin@ e )

y=0 y=L
where V(¢) is a bulk scalar field potential and
Ai(@), i = 1,2, are the brane scalar field potentials,
g = detgu,, and §,, is the metric induced on the
brane. The signature of the metric gy/n is chosen to
be (_7 +', +', +', +)

The standard ansatz for the metric and the scalar
field, which preserves the Poincaré invariance in any
four-dimensional subspace y = const, is given by

ds* = 672A(y)nwdx“dx" +dy? =

= yun(y) dzMdzN,  d(w,y) = d(y). (2)
where 7, is the flat Minkowski metric. For this ansatz,
the Einstein and the scalar field equations derived from

action (1) reduce to the system
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dV d/\1 d/\2 I 1
%+%6(y)+%6(y—L)=—4A¢ +07,
1 1
3A12 - _ Z(ANN2) =
1M (A + 5V — 2(6)%) = 0, 5

1

2

%(W V4 M0(y) + Ay — 1)

(

We consider the special class of potentials that can
aw

be represented as
2
<%>

Then the solutions of the first-order differential equa-
tions

)=

= —2M? (=34" + 6(A")) .

_1
B

1

v 24 M3

(¢) W*(9).

1dW
¢'(y) = sign(y) 5 —

2 do (4)
A'(?J) = sign(y)WW(gz&)

solve Egs. (3) in the bulk [6, 11].
We consider a linear function W (¢) as suggested in
papers [9, 10]:

a? a?

8 24M3

W(¢) = ag, ¢ (5)

Using equations (4), we obtain the corresponding back-
ground solution

Q aly
¢ = §\y| T4
a? L 2 (6)
= 96017 <y|_7> el

where L, and C' are integration constants treated as
parameters.

For the equations of motion to be also valid on the
branes, we can take the brane potentials \;(¢), i = 1,2,
in the form

M () =W (o) + B (60— 1), (7)

Ao () = =W (0) + B3 (¢ — 62)” . (8)

It is easy to verify that the equations of motion are
satisfied if

Bly=0 = 01,

Oly=1. = P2,

which means that
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L= (11)
L = 2(¢2 - ¢1) (12)
(0]

(we suppose that ¢; < 0, i.e., L1 > 0). Thus, we see
that the size of the extra dimension is fixed. The pa-
rameters a, ¢; 2, and 2 of the potentials, when made
dimensionless by the fundamental five-dimensional en-
ergy scale M of the theory, do not contain a hierarchical
difference. We note again that the fixation of the size
of the extra dimension is caused by the boundary con-
ditions on the branes, in contrast to the case discussed
in [5], where the size of the extra dimension is deter-
mined by the minimum of an effective four-dimensional
scalar field potential.

We suppose that we live on the brane at y = L and
L < Ly. In order to have Galilean four-dimensional
coordinates on this brane [3, 8], we choose the warp
factor such that

672A|y:L _ 1’

c=-(t-%)

Because the wave function of the massless tensor gravi-
ton in the extra dimension is proportional to e =24 [7],
a standard technique (see, e. g., [4] for the details) gives
an expression for the four-dimensional Planck mass on
our brane

i.e.,

L
2 2
2 _ ar3 —2A4 5 _ r3 (2L — L)
Mp =M /e dy =M 2€Xp{7192M3
-L

L 2
></ a2 Ll d _
Py e VT v=
0
2 2
3 a?(2L — Ly)
=M 2exp{7192]w3

(2L—L1)/2 ,

a 5 N
X / exp{—my }dyN
—L1/2

oo
2 2 2
a3 a?(2L—Ly) a 9 B
~ M°2exp {7192]\43 exXp\ ~ o3V dy =

—oC
2/487 M3 2(2L — Iy)?
= 32v48T M~ exp u (13)
a 192M3
and
5MP/4 (2L — Ly)?
Mp; ~ M 14
Pt Ja Xp{ 384017 } (14)

We suppose that all fundamental parameters of the the-

ory lie in the TeV range. To solve the hierarchy prob-

lem, i.e., to have Mp; ~ 10'6 TeV, we should take
CM(QL — Ll) 4¢2

S = e S 120, (15)

With these values of the parameters (and if L and
L, are of the same order), the approximation used
in (13) is very good. We also note that four-dimensional
Planck mass (14) depends mainly on ¢, not ¢;.

We now discuss some properties of this solution. On
the second brane,

5
exp(—24)[,—o = exp {_@ [L(L; — L)]} <1
for L < L;. We compare this behavior of the warp
factor with that in the RS1 model. In the RS1 model
(as well as in the stabilized case [6]), if we live on the
IR brane, there exists the UV brane, where gravity is
much stronger. In the case of background solution (6),
the gravity on our brane is weak in comparison with the
bulk gravity strength, but the gravity on the brane at
y = 0 is even weaker. Thus, we have no UV brane as a
physical object in this model. In the RS1 model, the ex-
ponent A(y) takes its smallest value at the point where
the UV brane is located, whereas in the case of solution
(6), the analogous point y = L;/2 lies in the bulk, i.e.,
the massless tensor graviton, whose wave function in
the extra dimension is proportional to e 24, is local-
ized in the bulk (see the Figure for the case L; = L).
This can lead to interesting consequences for the effects
of shadow matter (localized on the mirror brane) on our
brane and in the case of universal extra dimensions.

It is not difficult to calculate the four-dimensional
Planck mass on the brane at y = 0. For this,
we pass to Galilean four-dimensional coordinates on
that brane, which means that the integration constant
in solution (6) for A(y) should be taken such that

A(y)‘yz(] = 07 i'e'a

a? L\> 12
A—Wl(@"ﬂ iy R

Carrying out the calculations analogous to those pre-
sented above, we obtain

505/ a?L?
M ~ M —— — L 1
Pl Ja eXp{384M3}’ (17)
whence
a’L (L — L)
M}, =M _ 1
Pl Pl €XD { YW } (18)
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a

Mp; ~ @exp{kL}

b:

< 5 e { i)
y=1L

Warp factors in the Randall-Sundrum model (dashed line, a) and in the model under discussion (solid line, b). The branes are
located at the points y = 0, y = L of the extra dimension. The formulas for the four-dimensional Planck masses in Galilean

coordinates on each brane for both cases are presented (in case b, we consider L

to lie in the TeV range; the hierarchy problem is solved due to the exponential factors exp(kL) = exp {

We note that Mp; and Mp, were calculated in four-
dimensional coordinates, which are Galilean on the re-
spective branes at y = L and y = 0, not in a four-di-
mensional coordinate system common for both branes.

A quite peculiar case is L = Ly. For this choice
of the parameters, the warp factor has equal values on
both branes, and we have two equal branes from the
gravitational standpoint! Simultaneously, the hierar-
chy problem is also solved in this case because of the
quadratic behavior of the function A(y) and the corre-
sponding behavior of the warp factor (see the Figure).
The peculiar feature of the model is that the hierarchy
problem appears to be solved for both branes, contrar-
ily to the case of the RS1 model, in which the hierarchy
problem is solved only for brane at y = L.

The branes in this case are not only gravitationally
equivalent but also have the same negative tension (en-
ergy density), which is characteristic of the IR brane
in the RS1 model. If not only the gravitational con-
stants on both branes are of the same order but also
the properties of the shadow matter are analogous to
those of the ordinary matter on our brane, the shadow
matter, in principle, may account for a part of dark
matter. Indeed, there are some indications that not
all the dark matter is collisionless (see, e.g., short re-
view [12]). There may also be processes of interac-
tion between ordinary and shadow matter through the
Kaluza—Klein gravitons, which is of interest for the col-
lider phenomenology. However, such possibilities rely
on the unknown properties of the shadow matter and
are nothing but assumptions, and justifying them re-
quires a more detailed and thorough investigation.
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L). All the parameters are supposed
2L2 } N 1016

«Q
384 M3
We now discuss the stability of this background so-

lution under small fluctuations of the fields. For this,
we consider the linearized theory. The physical degrees
of freedom in five-dimensional brane world models sta-
bilized by the scalar field were described in [7] in the
general case of a stabilizing scalar field potential. It
was shown that if a background solution of field equa-
tions (3) exists in the form given in (2) and if the size
of the extra dimension is fixed by boundary conditions
on the branes, then the tensor sector of Kaluza—Klein
excitations does not contain tachyons or fields with the
wrong sign of the kinetic term (ghosts). As regards
the scalar sector, it does not contain tachyons, ghosts,
and massless (from the four-dimensional point of view)
modes if [7]

1 d*\ ¢">
= - — > 0,

(2 d¢? o' y=0+e 1
1d?\y ¢ (19)
= — > 0.

<2 d¢? ¢'> y=L ¢

We note that conditions (19) do not involve the bulk
potential V(¢), and it may be unbounded from below
as in Eq. (5).

It is easy to find that for the scalar field configu-
ration satisfying Eq. (4) and potentials given by (7)
and (8), conditions (19) reduce to f, > 0 and are
satisfied. Therefore, the model under consideration is
indeed stable, at least perturbatively.

It is also worth mentioning that in the case of grav-
itationally equivalent branes, there exists another in-
teresting possibility to stabilize the size of the extra
dimension. There is a good reason to guess that the
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branes are equivalent initially, i.e., the scalar field po-
tentials on the branes are of the same form. Namely,
the (fine-tuned) brane potentials can be chosen to be

nonpolynomial,
< > 1/3

with p > 0. From the boundary conditions on the
branes, which follow from Eqs. (3), we then easily ob-

tain
9,\1/3
L:L1:4<—§> .
(%

Stability conditions (19) are satisfed for the choice of
the potentials in (20).

As regards the wave functions, coupling constants,
and masses of the tensor and scalar Kaluza—Klein
modes, it seems that it is impossible to solve the corre-
sponding equations of motion analytically in the case
of background solution (6) (except for the tensor zero
mode, which is proportional to e~24). But it is quite
obvious that masses of the lowest excitations are of the
order of 1/L (because the model is stabilized, there is
no massless radion), and the corresponding coupling
constants should also be expressed through the fun-
damental parameters of the theory. Hence, all these
parameters should lie in the TeV energy range, as it
usually happens in the brane world models.

pa’

4

p
Ty

A12(0) (20)

(21)

3. CONCLUSION

In this paper, we have discussed a stabilized brane
world model allowing a solution to the hierarchy
problem on both branes, contrary to the case of the
Randall-Sundrum-type models, in which a solution to
the hierarchy problem can be obtained only for one
brane. The stability of the model under fluctuations of
metric and scalar field is provided by conditions (19),
which are valid for any brane world model with the
action of form (1), stabilized by a scalar field [7]. We
also show that if the branes are assumed to have an
equal structure, namely, the brane potential to be the
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same on both branes, then there also exists a solution
with a fixed size of the extra dimension. In this case,
the four-dimensional Planck masses on both branes
appear to be equal.
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