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The variational procedure to construct compact and accurate wave functions for three-electron atoms and ions
is developed. The procedure is based on the use of six-dimensional Gaussoids written in the relative four-body
coordinates 712, r13, r23, 14, r24, and r34. The nonlinear parameters in each basis function have been carefully
optimized. Using these variational wave functions, we have determined the energies and other bound state
properties for the ground 1%S-states in a number of three-electron atoms and ions. The three-electron atomic
systems considered in this work include the neutral Li atom and nine positively charged lithium-like ions: Be™,

B2+ 3, ...

Na®*, and Mg®T. Our variational wave functions are used to determine the hyperfine structure

splitting and field shifts for some lithium-like ions. The explicit formulas of the Q! expansion are derived for

the total energies of these three-electron systems.
PACS: 31.15.ac, 31.15.ae
1. INTRODUCTION

Or main goal in this work was to develop a varia-
tional procedure that can be used to construct compact
but relatively accurate wave functions for an arbitrary
three-electron atomic system, i.e., an atom and/or an
ion. Recently, it was observed in numerous compu-
tations that variational expansions developed for the
three-electron atoms and ions can be quite compact
and accurate, if they are based on the use of four-body
(or six-dimensional) Gaussoids [1] of the relative four-
body coordinates ris, 713, raoz, 14, ro4, and rzy. By
compact and accurate, we mean that such a variational
expansion contains a relatively small number of terms
and that the accuracy of the computed energies and
other bound state properties is comparable with (or
even better than) the accuracy of analogous calcula-
tions based on the use of the Hylleraas basis set (see,
e.g.,[2,3]). Our attention to the variational expansions
based on the use of four-dimensional Gaussoids can be
explained by their great convenience in applications to
a significant number of atomic three-electron problems.

In this work, we try to achieve the best numerical
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accuracy for the total (nonrelativistic) energies of some
three-electron atomic systems. A number of bound
state properties have also been determined. Our vari-
ational results are then compared with the analogous
results obtained for these systems with the use of the
Hylleraas basis set [2,3] of comparable size (~ 700-
800 basis functions). In fact, we consider the ground
128 states in a number of three-electron atomic sys-
tems that include the Li atom and nine lithium-like
ions: Bet, B2, C3*, ..., Nadt, Mg’t. We are pri-
marily interested in the bound states properties of the
ground states (or 125 states) in these systems. We note
that each of the atoms and/or ions considered is a four-
body atomic system, i.e., it has a very heavy (central)
nucleus with electric charge + and three electrons.

To determine the bound states in such systems,
we apply the variational expansion written in six-
dimensional Gaussoids [1]. Each basis function in this
variational expansion depends on six interparticle coor-
dinates 712, 113, 723, 714, 724, and rz4 and also contains
six nonlinear parameters. We note that each of these
interparticle coordinates r;; = |r; — r;| is translation-
ally and rotationally invariant, i. e., is a scalar that does
not change under any translation and/or rotation of the
four-body system. This means that the translations of
the center of mass separate in these coordinates auto-
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matically. In particular, we can assume that the center
of mass is at rest. We also note that the variational
expansion written in six-dimensional Gaussoids [1] is a
true correlated expansion of the wave function, i.e., all
possible interparticle correlations in actual four-body
wave functions must be reproduced correctly by this
variational expansion if it includes a large number of
basis functions.

It was very interesting to find that our variational
wave functions can produce results/energies that are
quite comparable with the best results obtained with
the use of Hylleraas-type variational expansions for
these atoms/ions [2, 3]. This shows the great potential
and flexibility of modern computational methods based
on the use of many-dimensional Gaussoids [1] for accu-
rate solution of various atomic problems. In particu-
lar, the computed expectation values allow determining
the hyperfine structure splitting and field component of
the total isotope shift (field shift) in the three-electron
atomic systems considered in this study. The energies
of the three-electron atomic systems obtained in this
study can be used to derive accurate analytic formulas
for the Q~! expansion.

In atomic units, where i =1, |e| = 1, and m, = 1,
the nonrelativistic Hamiltonian H of the three-electron
atomic system takes the form

1 1 1 1
H=--V}--V3-2V3--——Vi-
271 272 273 optH
1 1 1
_Q_Q_Q+_+_+_’ (]_)
14 T24 T34 r12 13 23
where 7;; = |r; —r;| = rj are the six interpar-
ticle distances (relative coordinates), (ij) = (ji) =

= (12),(13),...,(24),(34), and r; are the Cartesian
coordinates of the four particles. In this equation, the

notation 1 1

—5v$ = 5p§, i=1,2,34

means single-particle kinetic energies. Also, in this
equation and everywhere below in this study, the sub-
scripts 1, 2, 3 stand for three electrons e™, and the sub-
script 4 always means a heavy nucleus with the mass
M (M > 1) and a positive (nuclear) charge Q.

Our first goal is to determine the total energies
and corresponding wave functions of the ground dou-
blet 231/2 state in the three-electron atom/ion with
Hamiltomian (1). In other words, we need to ob-
tain the highly accurate solutions of the corresponding
Schréodinger equation HU = EVU, where E < 0 and
the bound-state wave function ¥ has the unit norm.
For our present purposes, we assume that the nonrela-
tivistic Schrodinger equation is exact. All lowest-order
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relativistic (~ a?) and QED (~ a?) corrections to the
nonrelativistic energies can be found with the use of the
“exact” nonrelativistic wave functions and perturbation
theory methods.

This work has the following structure. The method
used for construction of the approximate variational
wave functions is discussed in Sec. 2. The most diffi-
cult part of this method for the many-electron problem
is the proper antisymmetrization of the corresponding
wave functions and matrix elements arising in calcula-
tions. This problem is also considered in Sec. 2. Sec-
tion 3 contains a brief derivation of all analytic for-
mulas for the matrix elements needed in highly accu-
rate computations of four-body systems. Discussion
of various optimization strategies used to optimize the
nonlinear parameters in the variational wave functions
can be found in Sec. 4. In Sec. 5, we then discuss the
numerical results for some three-electron atomic sys-
tems obtained with the use of our method. We also
consider the hyperfine structure splitting in the ground
12S states of three-electron atoms/ions. Another inter-
esting application is related to the direct computation
of the field component of the total isotope shift. The
Q! expansion is applied to represent the energies of
all three-electron atoms/ions (ground states) discussed
in this study. Concluding remarks are given in Sec. 6.

2. THE METHOD

In general, any variational expansion of the ground
doublet 231/2 state in a three-electron atomic system
must include the two independent spin functions (or
configurations). In actual computations, such spin
functions are chosen as

X1 = afa —faa,  x2 =20af - faa — afa,

where a and [ are the one-electron spin-up and
spin-down functions, respectively (see, e.g., [4]).
other words, the wave function for the ground doublet
251 /2(L = 0) state of the three-electron atomic system
is written in the form

In

Ur—o = thr—o(4; {ri; })(aBa — Baa) +
+ ¢r=0(DB; {rij})(QozaB — faa — apfa), (2)

where 11— (A; {r;;}) and ¢r—o(B; {r;; }) are the two
independent spatial parts (radial parts) of the total
The symbols A and B indicate that
the two sets of nonlinear parameters associated with
and ¢ are optimized independently in our method. In
actual computations, the radial parts in each of the two

wave function.
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terms in Eq. (2) can be approximated with the use of
a variational expansion [1], e. g., for the ¢1—¢ part,

k
- Zaz('j)rz?j , (3)
ij

where N is the number of basis variational functions
used, C}, are the linear parameters of the variational
expansion, and {rij} is the set of relative coordinates
that are needed for a complete description of the four-
body system. In fact, for three-electron atoms/ions,
the notation {rij} stands for the six relative coordi-
nates 712, T13, T23, T14, T24, and rzy. The summation
over (ij) = (ji) in Eq. (3) is taken over all possible dif-
ferent pairs of particles. The projector P produces the
trial wave function with the correct permutation sym-
metry of all three electrons. The explicit form of the
Ps operator for a three-electron system depends on the
corresponding spin state (see below). The symbol L in
Eq. (3) is used for the total orbital angular momentum
of the system. We note that for the ground 251/2 states
considered below, we always have L = 0, S = 1/2 (total
spin), and J = 1/2 (total angular momentum).

We now discuss the permutation symmetry of the
actual wave function. The two terms in the right-hand
side of Eq. (2) must be completely antisymmetric with
respect to the coordinates of the three electrons, i.e.,
the indexes 1, 2, and 3 in our notation. This means
that A, ¥ = —¥, where ¥ is given by Eq. (2) and

N
=Py Z Cy exp
k=1

Yr=o({ri; })

Ao =é— Piy— Pi3 — Pag + Prag + Pi3» (4)

is the three-particle (electron) antisymmetrizer. Here,
é is the identity permutation, and P;; is the permu-
tation of the ith and jth particles. Analogously, the
operator pz'jk is the permutation of the ¢th, jth, and
kth particles. The same notation is used everywhere in
what follows.

After the integration over electron spin coordinates,
we find the four spatial projectors

1 . R R N ~ ~
wa = m <2€+2P12_P13_P23_P123_P132)a (5)
1/ - N . ~
’]Dw¢:§<P13—P23—P123+P132)7 (6)
1/ - N . ~
P¢¢:§(P13_P23_P123+P132)’ (7)
Py = —— <2A 2P15+Prg+Po3— Prog— P ) ®)
= e— - - ’
b 2\/§ 12 13 23 123 132

where the indexes v and ¢ correspond to the notation
used in Eq. (2). Each of these projectors produces ma-
trix elements between the two radial basis functions in
Eq. (2) with the correct permutation symmetry.

We note that the two projectors Pyg and Pgy co-
incide with each other. It can be shown that the three
projectors Pyy, Pyg, and Pye are orthogonal to each
other. We also note that in actual computations, only
the upper triangular part of the Hamiltonian and over-
lap matrices are used. Therefore, only the three pro-
jectors Pyy, Pyg, and Pge are important in computa-
tions of the ground state of all three-electron systems
considered in this study. In the next section, we derive
analytic formulas for matrix elements in the basis of
many-dimensional Gaussoids.

3. MATRIX ELEMENTS

The computation of the matrix elements with the
four-body (six-dimensional) Gaussoids, Eq. (3), is well
described in the literature (see, e.g., [1,5]). In fact, for
an arbitrary A-body system, the universal formulas for
all matrix elements can be obtained. These formulas
contain the total number of particles A in the system as
an explicit parameter. The first such formulas were es-
tablished more than 25 years ago in nuclear few-body
calculations (see [1] and the reference therein). This
is an obvious advantage of the variational expansion
based on Eq. (3) in comparison with other few-body
expansions. We now present the explicit formulas for
all matrix elements needed in computations. First, we
introduce the compact notation [1]

A
(o = (oz(k)| —exp | — Z afjr?j ,
i>j=1
(9)
18) =18)) = exp Z Bire
i>j=1

where A is the total number of particles in the system.
In our present case, A = 4. In this notation, the overlap
matrix element («|3) becomes

(alB) = (al

where D is the determinant of the (A — 1) x
matrix B with the entries

|5 >—7r 3(A— 1)/2D 3/2 (10)

(A-1)

k l . .
bii: (a2]+ﬂzj) ](#Z):1727"'1A7
#1)

(
bi; = (ozj+ﬂ)

(11)

<.

i£j=12...,A—1.
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In particular, for A = 4, the (k, () entry of the B ma-
trix is a 3 x 3 matrix. Analytic and/or numerical com-
putation of the determinant of this matrix and all its
first-order derivatives is straightforward.

We now consider the matrix elements of the poten-
tial energy V. For an interparticle potential that can
be written as the sum of the central (pair) potentials,

i.e.,
W = Z Vi) (Tij),
(i)

the analytic formula for the appropriate matrix ele-
ments can be written as

4
NG

X Z/VW) (x\/ DDij ) exp(—z?)z?dz, (12)
ij

where

> (o] Vi) (rij)1B) =
(if)

(alB) x

_ 0D 9D
Y dayy OBy
The explicit expressions for various interparticle po-
tentials often used in bound-state calculations can be
found in [1]. The formulas in [1] include systems
with the Coulomb, Yukawa-type, exponential, oscilla-
tor, and many other potentials. For all such cases, the
analytic expressions for lower-bound estimates (EY,)
were also derived for an arbitrary A-particle system
in [1].
In particular, matrix elements of the Coulomb po-
tential energy are (in atomic units)

S (alVij (rij)18) = Zm%ﬂm =

(i5) (i)
4iq;

D
= 2\/;@6)% Vo

where (i) = (ji) = (12), (13), (23), (14), (24), (34)
and («a|f) is the overlap matrix element. In Eq. (13),
the ¢; (i =1,2,...,A) stand for the charges of the par-
ticles. The matrix elements of the kinetic energy take
the form (in atomic units)

(13)

3
— X

(BITIa) = 55

A
aik Bk
x| Ek 1 —mk] (Dix + Djr — Dyiz) | (Bla), (14)
YILES

where m; (i =1,2,...,A) are the masses of the parti-
cles and i # j # k. The symmetrization of the given
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expressions to the case of identical particles does not
present any difficulty.

In general, for an arbitrary self-adjoint operator X'.,
the corresponding bound state property (or the expec-
tation value) is determined as

) = WIKT)

(¥[)

where |¢)) is the wave function obtained in variational
calculations. If X = f(r;;), then we find the following
formula for the matrix elements:

(15)

(@l f(rij)|B) = (@ |f(ri)|3Y) =

o0
_ 4

(ol I (

The one-dimensional integral in the last equation can
be computed analogously for a large number of actual
interparticle potentials. In particular, for f(y) = y?"~!
(n=0,1,2,...), it follows from Eq. (16) that

(2n—1)/2
) .

)

) )exp(—x2)x2 drx. (16)

j

D

2n—1
ij

2

\5>=ﬁ

(alr

(o (

and for f(y) =y®" (n=0,1,2,...), we have
M+ 1) /D \"
o) = D (D) el as)

where (2n 4 1)!!'is the product 1-3-5-...-(2n+1). In
the case where f(y) =y~ 2 (i.e., n = —1 in Eq. (18))
the appropriate expression becomes

3

(alr18) = 2al5) 5 - (19)

ij
In some problems, the expectation values of the two-,
three-, and many-particle delta-functions are impor-
tant. The analytic formulas for the expectation val-
ues of various few-particle delta-functions can be found
in [5].

The formulas for matrix elements presented above
allow conducting highly accurate variational computa-
tions, in principle, for various A-body systems (A > 2)
with different interpaticle interactions. The related
procedures and methods based on Eq. (3) have been ap-
plied in highly accurate computations of many hundred
of atomic, molecular, quasimolecular, and nuclear sys-
tems. In particular, the variational methods based on
the use of many-dimensional Gaussoids were found to
be very effective in applications to various few-electron
systems. Moreover, for atomic systems with four and
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more electrons, the method in [1] is one of a few highly
accurate procedures that work effectively in such cases.
We note that the approach developed in [1] was based
on the method proposed in earlier work [6] (for three-
body systems). In theoretical chemistry, a similar ap-
proach has been developed in [7,8]. The last approach
is, in fact, a method different from [1], because it did
not include the integration over inter-nuclear coordi-
nates. In applications to atomic and molecular prob-
lems, the methods analogous [1] were created only in
the mid-1990s (see, e.g., [5,9,10]).

4. OPTIMIZATION OF THE NONLINEAR
PARAMETERS

In general, the optimization of the nonlinear param-
eters in the trial wave functions is an important step
in construction of highly accurate few-body wave func-
tions. For variational expansions that include many-
dimensional Gaussoids of the relative coordinates, e. g.,
Eq. (3), the optimization of nonlinear parameters plays
even a greater role, because without such an optimiza-
tion, only relatively poor total energies and very ap-
proximate wave functions can be produced. We note
that optimization of the nonlinear parameters in a few-
electron wave functions have been extensively discussed
in earlier studies (see, e.g., [11,12] and the references
therein).

We note that many different optimization strategies
are currently used to optimize the nonlinear parameters
in the trial wave functions, Eq. (3). In this section,
we briefly discuss the general principles and rules ap-
plied to the optimization of the nonlinear parameters in
few-body wave functions. First, we assume that some
trial wave function includes N nonlinear parameters
ay,Qs, ... ,an, where N > 1. In actual applications,
it is convenient to devide these parameters into a num-
ber of groups and perform numerical optimization in
each group. This also allows the application of very
powerful methods of parallel programming [13].

Second, all optimization procedures can be sepa-
rated into the two following groups: (1) methods that
can be used for fast, but approximate optimization of
the nonlinear parameters, and (2) methods that pro-
vide relatively accurate optimization of large numbers
of the nonlinear parameters. The methods of the first
group include parabolic interpolation and Brent’s op-
timization method in multidimensions [14]. These pro-
cedures allow constructing approximate wave functions
that can be considered as the first approximation to
highly accurate wave functions. The overall accuracy
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of such wave functions is drastically improved at later
stages. At these stages of the optimization procedure,
Powell’s method in multidimensions and/or the conju-
gate gradient method can be used [14]. These methods
allow optimizing large numbers of nonlinear parameters
at once. Various modifications of the simplex method
and simulated annealing method also work well for op-
timization of the nonlinear parameters in Eq. (3). In
fact, the same conclusion is true for the bound state
computations in five- and six-body systems. Our re-
sults for such systems will be published elsewhere (also
see the Conclusions).

A very important step in any optimization process
is the increase in the total number of nonlinear param-
eters. The problem is formulated as follows. We sup-
pose that we have the “original” wave function with N
carefully optimized nonlinear parameters. At the next
step, we want to increase the total number of such pa-
rameters from N to N + N, where IV 4+ Ny is the total
number of the nonlinear parameters in the “final” wave
function. The crucial question here is to find the opti-
mal strategy for the N — N + Nj increase. It is clear
that N must be smaller than N. Moreover, for small N
(10-60), the optimal value of N is approximately equal
N. For larger N (N > 300-600), the optimal value Nj
rapidly decreases, e.g., Ny &~ N/6 for N ~ 600. During
optimization of these additional Ny nonlinear parame-
ters, the numerical values of the first N such parame-
ters do not change. However, when all Ny new nonlin-
ear parameters are well optimized, then it is very useful
to perform the re-optimization of all the N+ N nonlin-
ear parameters. Combinations of different optimization
methods used for optimization and re-optimization of
the nonlinear parameters allow constructing very com-
pact and accurate variational wave functions. After a
number of similar steps, we obtain a very accurate vari-
ational wave function with a relatively large number of
nonlinear parameters (N =~ 3000-9000 and even more).
Such wave functions can be used to determine various
bound state properties in a three-electron atomic sys-
tem. The results of our variational computations are
considered below.

5. RESULTS

Results of our calculations of the ground bound
12S(L = 0) states in a number of three-electron atoms
and ions are given in Tables 1 and 2. For simplicity, in
calculations performed for Tables 1 and 2, all nuclear
masses were assumed to be infinite. Table 1 contains
the variational energies of the ground 125 states ob-
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Table 1. The total energies E in atomic units for the ground 125 states of some lithium-like systems. For all these
systems, N = 800 in Eq. (2)
E E E E
Li —7.47805925 c3t —34.7755102 Fo+ —82.3303368 Mg+ —150.136196
Be™ —14.3247623 N4+ —48.3768970 Ne™* —102.682231 — —
B2t —23.4246051 05+ —64.2285409 Nadt —125.284190 — —
Table 2. The expectation values in atomic units of some properties for the ground bound 12 states of some three-
electron ions: N denotes the positively charged nucleus and e denotes the electron
System Be™ N4+ F6+ Na8+ Mg+
(ren) 1.0337900 0.50177267 0.37520415 0.29983894 0.27250821
(ree) 1.7556665 0.83467918 0.62096465 0.49471506 0.44911832
(rZn) 2.169235 0.4760186 0.2619051 0.1656895 0.1363986
(ree) 4.357836 0.9554660 0.5253921 0.3322342 0.2734526
(rin) 6.22822 0.614080 0.248100 0.124094 0.092487
(rd.) 13.1398 0.131745 0.534416 0.267931 0.199856
(rin) 21.067 0.93406 0.27715 0.10961 0.07396
(re.) 45.453 2.07411 0.62001 0.24630 0.16646
<7';]\1,> 2.6579629 4.9088461 6.4089498 7.9089947 8.6590077
(ro.h) 1.0820108 2.1106599 2.7936624 3.4761518 3.8173010
<7"5_1\27> 18.99849 62.76864 106.1185 160.8033 192.3956
(r..2) 2.965660 10.67731 18.48395 28.42356 34.19330
(—(1/2)V2) 4.7749205 16.1256311 27.4434408 41.7613938 50.0453940
(0en) 11.66345 68.41104 149.25557 277.49827 362.58613
(Oee) 0.52773 3.63633 8.30797 15.8744 20.9625
(Oeen) 78.3097 3011.32 14709.58 52324.7 90034.1

tained in calculations, and Table 2 includes the expec-
tation values of many bound state properties computed
for these ions. In Table 2, we restrict ourselves to the
consideration of the following ions in their 125 states:
Bet, N4t FO+ Nalt, and Mg®t. The properties of
the last two ions have not been considered previously.
For the other light three-electron atoms and ions (Li,
B2+, C3F, 0°F, and Ne’™), our results are very close
to the expectation values obtained in [2], and we do not
want to repeat them here.

In general, the convergence rates observed in our
calculations for the variational energies of the ground
125 states in these ions (see Table 1) were relatively
high. The total energies obtained in this study have
been determined to the accuracy that is quite compa-

rable to the accuracy of the best variational compu-
tations performed with the use of the Hylleraas-type
basis set [2, 3], where the same (or comparable) num-
ber of basis functions was used (N ~ 700).

All properties in Table 2 are given in atomic units.
The physical meaning of all expectation values in Tab-
le 2 is generally quite clear from the notation used, and
we have to make only a few following remarks. The
notation (den ), (Oce), and (deen) is for the expectation
values of the electron—nucleus, electron—electron, and
three-particle delta functions. The expectation values
(0ee) and (deen) have never been determined for three-
electron atomic systems in earlier studies. The ex-
pectation values of the three-electron and four-particle
delta-functions (i.e., (dece) and (decen)) are equal to
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zero identically for all considered three-electron atoms
and ions in their 12S states. This follows from the
spin symmetry of the total wave function. In general,
the variational expansion in Eq. (3) describes the three-
electron atoms and ions as slightly more diffuse systems
than does the Hylleraas expansion. This explains some
small deviations of our results from the results obtained
with the use of the Hylleraas basis set [2,3]. Overall,
the agreement between the two groups of results can
be considered very good.

We note that some of the expectation values given
in [2] were defined differently. For instance, in mod-
ern works, the (r_.!) expectation value means the av-
erage electron—electron repulsion, i.e., the value com-
puted per one electron. The analogous notation (1/r;;)
used in [2] means the sum of three electron—electron
repulsions. It is, in fact, the total electron—electron
repulsion energy, rather than the electron—electron re-
pulsion determined per one electron. This means that
(1/ri;) [2] = 3(1/ree) (this work). Similar deviations
can be found for other bound state properties computed
in [2]. In fact, at that time similar definitions were used
by many other authors, e. g., Pekeris used them for the
electron—nuclear properties in the He atom.

In general, our procedure has the two following ad-
vantages in comparison with the Hylleraas method.
First, in our computations for Tables 1 and 2, all nu-
clear masses were assumed to be infinite. But the
use of finite nuclear masses is also very easy and
straightforward, because it requires only a one-line
change in the code. For instance, in some calcula-
tions performed for Table 1, we obtained the total ener-
gy E ~ —14.3247607 a.u. for the ®Be™ ion. Now,
using the nuclear masses M (Be™) = 16419.7014 m,
and M (1°Bet) = 18244.5534 m,, we find E(°Be™) ~
~ —14.3238608 a.u. and E(19Bet) ~ —14.3239508 a.u.
from the results of the direct computations. All bound
state properties for the finite-mass isotopes are com-
puted at the same moment. Such calculations are di-
rect, simple, and do not require any computation of
some additional expectation values of slowly convergent
operators. The second advantage has an even greater
value in actual applications. In our method, the non-
linear parameters in Eqs. (2) and (3) can be varied
independently. The linear dependence between differ-
ent radial basis functions from the ¢ and ¢ families
(see Eq. (2)) is very rare and can be ignored in actual
computations. In contrast, for a Hylleraas basis set,
an additional procedure must be developed for elimi-
nating all linearly dependent basis functions [15]. For
large basis sets, this is not an easy task.

The computed expectation values can be used to
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determine various atomic properties. In general, the
numerical values of these properties are known from
numerous experiments. There are many interesting
atomic properties in three-electron ions, but we restrict
ourselves to the computation of the field component of
the total isotope shift, which is determined for some of
the three-electron ions mentioned in this study. The
hyperfine structure splitting is computed for some of
these ions that have nonzero nuclear spin. Another ac-
tual problem is the application of the Q' expansion
to represent the total energies of these ions.

5.1. Field shift

Here, we consider the field component of the to-
tal isotope shift in three-electron atoms/ions. We note
that in many works, the field component of the total
isotope shift is also called the field shift, for brevity.
The field shift is related to the extended nuclear charge
distribution that produces the non-Coulomb field at the
distances close to the nucleus. In general, the largest
deviations between the point Coulomb and actual po-
tentials can be found at the distances close to the

atomic nucleus, i.e., for distances r ~ r. < A < ao,
where
o2
re = 5 = a’ag ~ 2.81794093 fm
MeC

is the classical electron radius and A aag 1S
the Compton wave length. Here and below, a
= 7.297352568 - 1072 is the fine structure constant and
ag ~ 5.29177249-10~ " m is the Bohr radius. It is clear
that the field shift is important only for s(¢ = 0) elec-
trons, which have a finite probability to be within the
nuclear volume. The general theory of the field shift
has been discussed extensively in a number of works
(see, e.g., [16-18]).

In our previous work [19], we obtained the following
expression for the field shift (in atomic units) in light
atoms and ions:

.2 A3 2 14)/3
Bl = T Q0BT = %Qpe(O)RQIIA% -
2
- Zaatoean (£) & 20

where @) is the nuclear charge and R is the nuclear
radius. The parameter A and the related factor

_1+A3

5_1+)\/5~

in these equations describe the actual charge/proton
distribution in the nucleus [13]. All numerical values
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Table 3.  The nuclear sizes, field shifts E/, nuclear spin I (h), and nuclear magnetic moment uy for the °Li and "Li
atoms and for some three-electron ions (in atomic units)
Ton ((R2))'/2, fm Elf Ton I [N Hrs
SLi 2.56 3.47372-10°8 SLi 0.82205 1 —4552.7697
"Li 241 2.89818 - 108 "Li 3.25644 3/2 —16031.2730
‘Bet 2.519 8.37010 - 1078 ‘Bet —1.1776 3/2 14662.0371
10Bet 2.45 4.514187- 107" HANAF 0.40376 1 —33151.8140
g2+ 2.37 4.086263 - 10~ 7 15N+ —0.28319 1/2 31002.7812
LN+ 2.54 1.097511- 1077 19p6+ 2.62887 1/2 —627940.296
B\ 2.580 2.13881-107¢ 22Nabt 1.746 3 —452393.558
19p6+ 2.900 3.03744 - 1076 B Nabt 2.21752 3/2 —656646.547
Mg+ 3.08 4.75319 - 1076 BMg+ —0.85545 5/2 297797.145
. . . i 8
o o [30.51) T goneral, e muclont s & TS = 5 HmNOean 3N}
and its value depends on the total number of nucleons % 1 [F(F+1)—In(In+1) - S(S+1)], (21)
A in the nucleus (R oc A'/3). In other words, the field 2
shift formally corresponds to the a*-correction to the where (3(ren)) = (don) is the electron-nuclear delta-

energy levels, i.e., to the second-order relativistic cor-
rection. The values of the field shifts computed for the
different three-electron ions can be found in Table 3.
All nuclear sizes used in our present computations were
chosen from [22]. In calculations performed for Table 3,
we have selected zero value for the parameter A (§{ = 1),
i.e., the uniform (r-independent) proton density distri-
bution is assumed in each of the nuclei.

5.2. Hyperfine splitting

In the doublet 2S states of any three-electron
atomic system, the spin of the outermost electron may
interact with the nuclear spin Iy in the cases where
In # 0. For three-electron atomic systems with a
nonzero nuclear spin, it is possible to observe the differ-
ence between the two states with the respective total
angular momenta Iy — 1/2 and Iy + 1/2. Here and
below, In = max |In| is the nuclear spin. Such a dif-
ference between the two energies is called the hyperfine
structure splitting, or hyperfine splitting for brevity.
For the 25 states in three-electron atomic systems with
the nonzero nuclear spin Iy, the following expression
(Fermi—Segré formula) for the hyperfine splitting Hpg
holds in the lowest-order approximation [23]
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function computed for the considered electron state,
the total electron spin S = 1/2 for the doublet states,
In is the nuclear spin (Iny > 1/2), and F = |F|, where
F is the total angular momentum operator for the
whole three-electron atom/ion (i.e., electrons plus the
nucleus). For S = 1/2 and a nuclear spin Ix # 0, the
hyperfine splitting can be observed between the states
with FF=1Iy —1/2and F = Iy +1/2.

We now apply formula (21) to evaluate the hy-
perfine splitting in the 12S(L = 0) states of the
three-electron atomic systems. In atomic units, we
have up 1/2, g. = —2.002319304386 [20], and
un = up(me/M,), where M, = 1836.15267261m. [20].
For light nuclei with Iy # 0, we also have gn = un/In,
where the product uy = gnIn is the so-called nuclear
magnetic moment [20]. The values of py and Iy for
various nuclei can be found in data tables. Finally, we
find (in MH?7)

Hpg = —400.11870397143(5(ren)) x

« PN
Iy

F(F+1)—In(Iy + 1)

- Z ) (22)
where F' = Iy —1/2, In 4+ 1/2 and (0(ren)) = (den)
(in a.u.) is the expectation value of the electron—
nucleus delta-function.  To transform the results
from atomic units to MHz, the conversion factor
1l a.u. =6.57968392061 MHz must be used. To produce
these formulas, we used the fact that in atomic units,
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Table 4.

The coefficients of the Q™" expansion constructed for the total energies of the ground 1?5 states in three-

electron ions, Eq. (2). Expansions with N =4, 5, and 6 terms are considered. The results shown in the right column are
obtained with the use of data in [32] for the first ten systems (Li-Mg®™")

as —1.1248490528 ~1.1250404995
ar 1.0192512593 1.0240427795
ag —0.3805253825 —0.4220687503
by —~0.0949183497 0.0532880241
bs - —0.1846549797
by - -

—1.1249892386
1.0223950181
—0.4020425473
—0.0617188349
0.1278835626
—0.3222436143

—1.1249895979
1.0224083939
—0.4022271767
—0.0605633054
0.1245391345
—0.3186502304

the Bohr magneton equals 1/2 exactly. Also, in these
equations, gy = un/In, where the nuclear magnetic
moment uy is expressed in the nuclear magnetons

eh Me

D) = Mo,
mpc My

where g is the Bohr magneton. The maximal value
of the nuclear moment p is presented in the tables of
nuclear data (see, e. g., [21] and the references therein).

We note that the splitting between the two levels
with F'= Iy +1/2 and F = Iy — 1/2 is written as (in
MHz)

Hpg = —400.11870397143(5(ron)) X

o AN Q2In +1)

A (29)

where Iy # 0 and (d(ren)) is expressed in atomic
units. Our theoretically predicted values of the hyper-
fine splitting for some of the three-electron atoms/ions
in their 125 states can be found in Table 3. The agree-
ment with the known experimental values for hyperfine
splittings in the 6Li and "Li atoms is quite good for the
first approximation (see a discussion in [24], which also
contains an extensive collection of references for the
Li atom calculations). The formulas for the hyperfine
splitting in Eqs. (21)—(23) correspond to the lowest-
order approximation. To obtain a better approxima-
tion, one needs to determine various corrections to the
Fermi—Segré formula, which are discussed, e. g., in [16].

5.3. The Q~! expansion of the total energies

The accurate ground-state energies of the lithium
atom and positively charged lithium-like ions obtained
in this study allow producing the explicit formulas for
the Q! expansion (Z~! expansion) of the total en-
ergies E(Q) of these systems. In other words, we con-
sider the Q! expansion of the eigenvalues E(Q), where
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HY = E(Q)Y and the Hamiltonian H is taken in the
form of Eq. (1) with M = oo. In this case, the to-
tal energies of three-electron atoms/ions are analytic
functions of the nuclear charge @ only. For the ground
128 states in lithium-like systems, the expansion for
the energy function E(Q) can be written as a Laurent
expansion of the form (here and below, @ > 3)

EQ)=aQ’ +a;Q +ap+ 0 Q" +
+ Q72+ 3Q P+ 0 Q7 ..., (24)

where numerical values of the coefficients as, aq, ag,
b1, bo, b3,... must be determined from the results of
numerical computations. We note that the principal
part of the expansion in Eq. (24) includes only integer
powers of @~ '. Such an expansion essentially follows
from the Poincaré theorem (see, e.g., [25]) applied to
the Schrodinger equation with Hamiltonian (1). For
degenerate bound states, the expansion analogous to
Eq. (24) must also include noninteger powers of @ (so-
called Puiseux series [26]). The analogous Q~' (or
Z~1) expansions were found to be very useful for the
two-electron ions (see, e.g., [27,28]).

The coefficients as, a1, ag, b1, ba, ... in formula (24)
can be determined numerically from the results of ac-
curate computations performed for a number of three-
electron atomic systems. To compute the coefficients
as,ai, ag, by, by, ... in Eq. (24), we have used our best
variational results obtained for all three-electron ions
(ground states) mentioned in Table 1. Only for the
ground 125 state of the ®Li atom, we have used the
most accurate energy known from the modern litera-
ture E(*Li) = —7.4780606323904 a.u. [29]. Paper [29]
also contains most of the recent references for highly ac-
curate computations of the 125 state in the *°Li atom.
The coefficients in Eq. (24) determined with these en-
ergies can be found in Table 4. In our calculations, we
used Eq. (24) with four, five, and six unknown coef-
ficients. In principle, the more accurate results (ener-

4*
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gies) expected to be obtained in future variational com-
putations of three-electron ions ought to provide better
numerical accuracy for all coefficients in Eq. (24).

6. CONCLUSION

We have computed the ground bound 125 states
in various three-electron atomic systems. The systems
discussed in this study include the neutral Li atom and
Bet, B2+, C3*,...Na®t, Mgt ions. The variational
wave functions used in this study are represented as
the sums of six-dimensional Gaussoids written in the
four-body relative coordinates ri2, r13, T23, ri4, To4,
and r34. The overall accuracy of our results is quite
comparable with the accuracy produced by the best
Hylleraas-type expansions with the comparable num-
ber of basis functions (N & 700-800). Such a conclu-
sion was quite unexpected, because the actual conver-
gence rate of any Hylleraas-type expansion is signifi-
cantly higher than the analogous convergence rate for
the three-dimensional Gaussoids.

In fact, at the beginning of this project, we expected
that our best results would be substantially different
from the results obtained with the use of exponential
and/or Hylleraas basis functions. Such a difference can
be found, e.g., when exponential and/or Hylleraas ba-
sis functions and three-dimensional Gaussoids are ap-
plied to the bound-state computations in two-electron
atomic system, e. g., to the ground 1' S state of the *He
atom. For instance, in our calculations of the ground
1S state of the He atom in [30] we obtained the total
energy

E =-2903724377034119 58311034 a.u.,

where 21 decimal digits are stable. By using the vari-
ational expansion based on six-dimensional Gaussoids
in relative coordinates (with 4000 terms), it is very dif-
ficult to obtain even 12 correct decimal digits. But for
three-electron atomic systems, the overall accuracy of
our results was quite comparable with the accuracy pro-
duced by the Hylleraas expansions of comparable size,
i.e., if the same (or approximately the same) number
of basis vectors are used.

There are three different reasons that can be used to
explain this result. First, we have varied all nonlinear
parameters in each basis function and for each spin con-
figuration used in calculations. In calculations with the
Hylleraas basis set, this is impossible to achieve due to
the rapidly increasing linear dependence between ba-
sis vectors. Second, the overall convergence rate of
Hylleraas basis set is relatively low for three-electron
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atomic systems, e.g., it cannot be compared with the
case of two-electron atoms and ions. The gap in conver-
gence rates observed for our six-dimensional Gaussoids
and the Hylleraas basis set is much smaller for three-
electron systems than for two-electron atoms and ions.
Third, in the current version of the Hylleraas method,
the variation of nonlinear parameters is very primitive
and nonaccurate. Moreover, it is impossible to vary the
nonlinear parameters in each Hylleraas basis function.
Also, the nonlinear parameters in radial basis functions
used with the second spin configuration cannot be var-
ied as real independent parameters. If these problems
with the Hylleraas basis set can be fixed, then, proba-
bly, the gap observed for convergence rates of the two
methods will be restored.

On the other hand, in some recent calculations, the
Hylleraas basis set included very large (> 3500) [31]
and extremely large (N > 10.000) [29] numbers of ra-
dial basis functions. The accuracy of such complex cal-
culations is obviously better than our current accuracy
achieved with only 700-800 (different) basis functions.
However, we note that the area of applications for the
Hylleraas basis set is very restricted. It cannot be used,
in principle, for arbitrary four-body system, e.g., for
bi-positronium Pss, the dtuu molecule and/or the 'Hy
molecule. Our variational expansion based on Eq. (3)
works successfully for an arbitrary four-body system.

By using our compact and accurate wave functions
determined in this study, we have obtained the nu-
merical values of some atomic properties that can be
measured in modern experiments. In particular, for all
three-electron systems mentioned in this work, we eval-
uate the field component of the total isotopic shift. The
hyperfine structure splittings for the ground (doublet)
128 states are also determined numerically for nuclei
that have a nonzero nuclear spin. An analytic formula
for the Q! expansion is derived to represent the total
energies of the three-electron atomic systems.

We note that our current procedure can easily be
generalized to the four-electron atomic systems (atoms
and ions). The trial wave functions constructed for
the ground 1'S¢ states in the four-electron atoms/ions
contain two independent spin configurations [31]

x1 = apaf + pafa — paaf — affa,
Y2 = 2aaff+28aa—LaaB—affa—Lafa—afal.

Our current variational energy of the ground state in
the O** ion computed with 700 radial basis functions
(400 + 300) is —68.411508315 a.u. This energy is
much better than the value obtained in [33]. The
generalization of our method to the P-, D-, F-, and
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other bound states with L > 1 in the three- and four-
electron atomic systems is straightforward. However,
highly accurate computations of the ground doublet
Py, and ?Py), states of the five-electron B atom is
not an easy task due to a very complex permutation
symmetry of the five-electron wave function. But, in
principle, our computer codes work for an arbitrary
six-body system, and hence there appears to be no
barrier to the application of this approach to the B
atom.

It is a pleasure to acknowledge the Natural Sciences
and Engineering Research Council of Canada for finan-
cial support in the form of a Discovery Grant.
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