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COMPACT VARIATIONAL WAVE FUNCTIONS FOR BOUNDSTATES IN THREE-ELECTRON ATOMIC SYSTEMSA. M. Frolov *, D. M. Wardlaw **Department of Chemistry, University of Western OntarioLondon, Ontario, Canada N6A 5B7Reeived Otober 20, 2008The variational proedure to onstrut ompat and aurate wave funtions for three-eletron atoms and ionsis developed. The proedure is based on the use of six-dimensional Gaussoids written in the relative four-bodyoordinates r12, r13, r23, r14, r24, and r34. The nonlinear parameters in eah basis funtion have been arefullyoptimized. Using these variational wave funtions, we have determined the energies and other bound stateproperties for the ground 12S-states in a number of three-eletron atoms and ions. The three-eletron atomisystems onsidered in this work inlude the neutral Li atom and nine positively harged lithium-like ions: Be+,B2+, C3+; : : : , Na8+, and Mg9+. Our variational wave funtions are used to determine the hyper�ne struturesplitting and �eld shifts for some lithium-like ions. The expliit formulas of the Q�1 expansion are derived forthe total energies of these three-eletron systems.PACS: 31.15.a, 31.15.ae1. INTRODUCTIONOr main goal in this work was to develop a varia-tional proedure that an be used to onstrut ompatbut relatively aurate wave funtions for an arbitrarythree-eletron atomi system, i. e., an atom and/or anion. Reently, it was observed in numerous ompu-tations that variational expansions developed for thethree-eletron atoms and ions an be quite ompatand aurate, if they are based on the use of four-body(or six-dimensional) Gaussoids [1℄ of the relative four-body oordinates r12, r13, r23, r14, r24, and r34. Byompat and aurate, we mean that suh a variationalexpansion ontains a relatively small number of termsand that the auray of the omputed energies andother bound state properties is omparable with (oreven better than) the auray of analogous alula-tions based on the use of the Hylleraas basis set (see,e. g., [2; 3℄). Our attention to the variational expansionsbased on the use of four-dimensional Gaussoids an beexplained by their great onveniene in appliations toa signi�ant number of atomi three-eletron problems.In this work, we try to ahieve the best numerial*E-mail: afrolov�uwo.a**E-mail: dwardlaw�uwo.a

auray for the total (nonrelativisti) energies of somethree-eletron atomi systems. A number of boundstate properties have also been determined. Our vari-ational results are then ompared with the analogousresults obtained for these systems with the use of theHylleraas basis set [2; 3℄ of omparable size (� 700�800 basis funtions). In fat, we onsider the ground12S states in a number of three-eletron atomi sys-tems that inlude the Li atom and nine lithium-likeions: Be+, B2+, C3+; : : : , Na8+, Mg9+. We are pri-marily interested in the bound states properties of theground states (or 12S states) in these systems. We notethat eah of the atoms and/or ions onsidered is a four-body atomi system, i. e., it has a very heavy (entral)nuleus with eletri harge +Q and three eletrons.To determine the bound states in suh systems,we apply the variational expansion written in six-dimensional Gaussoids [1℄. Eah basis funtion in thisvariational expansion depends on six interpartile oor-dinates r12, r13, r23, r14, r24, and r34 and also ontainssix nonlinear parameters. We note that eah of theseinterpartile oordinates rij = jri � rj j is translation-ally and rotationally invariant, i. e., is a salar that doesnot hange under any translation and/or rotation of thefour-body system. This means that the translations ofthe enter of mass separate in these oordinates auto-667



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 135, âûï. 4, 2009matially. In partiular, we an assume that the enterof mass is at rest. We also note that the variationalexpansion written in six-dimensional Gaussoids [1℄ is atrue orrelated expansion of the wave funtion, i. e., allpossible interpartile orrelations in atual four-bodywave funtions must be reprodued orretly by thisvariational expansion if it inludes a large number ofbasis funtions.It was very interesting to �nd that our variationalwave funtions an produe results/energies that arequite omparable with the best results obtained withthe use of Hylleraas-type variational expansions forthese atoms/ions [2; 3℄. This shows the great potentialand �exibility of modern omputational methods basedon the use of many-dimensional Gaussoids [1℄ for au-rate solution of various atomi problems. In partiu-lar, the omputed expetation values allow determiningthe hyper�ne struture splitting and �eld omponent ofthe total isotope shift (�eld shift) in the three-eletronatomi systems onsidered in this study. The energiesof the three-eletron atomi systems obtained in thisstudy an be used to derive aurate analyti formulasfor the Q�1 expansion.In atomi units, where ~ = 1, jej = 1, and me = 1,the nonrelativisti Hamiltonian H of the three-eletronatomi system takes the formH = �12r21 � 12r22 � 12r23 � 12Mr24 �� Qr14 � Qr24 � Qr34 + 1r12 + 1r13 + 1r23 ; (1)where rij = jri � rj j = rji are the six interpar-tile distanes (relative oordinates), (ij) = (ji) == (12); (13); : : : ; (24); (34), and ri are the Cartesianoordinates of the four partiles. In this equation, thenotation �12r2i = 12p2i ; i = 1; 2; 3; 4means single-partile kineti energies. Also, in thisequation and everywhere below in this study, the sub-sripts 1, 2, 3 stand for three eletrons e�, and the sub-sript 4 always means a heavy nuleus with the massM (M � 1) and a positive (nulear) harge Q.Our �rst goal is to determine the total energiesand orresponding wave funtions of the ground dou-blet 2S1=2 state in the three-eletron atom/ion withHamiltomian (1). In other words, we need to ob-tain the highly aurate solutions of the orrespondingShrödinger equation H	 = E	, where E < 0 andthe bound-state wave funtion 	 has the unit norm.For our present purposes, we assume that the nonrela-tivisti Shrödinger equation is exat. All lowest-order

relativisti (� �2) and QED (� �3) orretions to thenonrelativisti energies an be found with the use of the�exat� nonrelativisti wave funtions and perturbationtheory methods.This work has the following struture. The methodused for onstrution of the approximate variationalwave funtions is disussed in Se. 2. The most di�-ult part of this method for the many-eletron problemis the proper antisymmetrization of the orrespondingwave funtions and matrix elements arising in alula-tions. This problem is also onsidered in Se. 2. Se-tion 3 ontains a brief derivation of all analyti for-mulas for the matrix elements needed in highly au-rate omputations of four-body systems. Disussionof various optimization strategies used to optimize thenonlinear parameters in the variational wave funtionsan be found in Se. 4. In Se. 5, we then disuss thenumerial results for some three-eletron atomi sys-tems obtained with the use of our method. We alsoonsider the hyper�ne struture splitting in the ground12S states of three-eletron atoms/ions. Another inter-esting appliation is related to the diret omputationof the �eld omponent of the total isotope shift. TheQ�1 expansion is applied to represent the energies ofall three-eletron atoms/ions (ground states) disussedin this study. Conluding remarks are given in Se. 6.2. THE METHODIn general, any variational expansion of the grounddoublet 2S1=2 state in a three-eletron atomi systemmust inlude the two independent spin funtions (oron�gurations). In atual omputations, suh spinfuntions are hosen as�1 = ���� ���; �2 = 2��� � ��� � ���;where � and � are the one-eletron spin-up andspin-down funtions, respetively (see, e.g., [4℄). Inother words, the wave funtion for the ground doublet2S1=2(L = 0) state of the three-eletron atomi systemis written in the form	L=0 =  L=0(A;�rij	)(��� � ���) ++ �L=0(B;�rij	)(2��� � ���� ���); (2)where  L=0(A;�rij	) and �L=0(B;�rij	) are the twoindependent spatial parts (radial parts) of the totalwave funtion. The symbols A and B indiate thatthe two sets of nonlinear parameters assoiated with  and � are optimized independently in our method. Inatual omputations, the radial parts in eah of the two668



ÆÝÒÔ, òîì 135, âûï. 4, 2009 Compat variational wave funtions : : :terms in Eq. (2) an be approximated with the use ofa variational expansion [1℄, e. g., for the  L=0 part, L=0(�rij	) = Ps NXk=1Ck exp0��Xij �(k)ij r2ij1A ; (3)where N is the number of basis variational funtionsused, Ck are the linear parameters of the variationalexpansion, and �rij	 is the set of relative oordinatesthat are needed for a omplete desription of the four-body system. In fat, for three-eletron atoms/ions,the notation �rij	 stands for the six relative oordi-nates r12, r13, r23, r14, r24, and r34. The summationover (ij) = (ji) in Eq. (3) is taken over all possible dif-ferent pairs of partiles. The projetor Ps produes thetrial wave funtion with the orret permutation sym-metry of all three eletrons. The expliit form of thePs operator for a three-eletron system depends on theorresponding spin state (see below). The symbol L inEq. (3) is used for the total orbital angular momentumof the system. We note that for the ground 2S1=2 statesonsidered below, we always have L = 0, S = 1=2 (totalspin), and J = 1=2 (total angular momentum).We now disuss the permutation symmetry of theatual wave funtion. The two terms in the right-handside of Eq. (2) must be ompletely antisymmetri withrespet to the oordinates of the three eletrons, i. e.,the indexes 1, 2, and 3 in our notation. This meansthat Âe	 = �	, where 	 is given by Eq. (2) andÂe = ê� P̂12 � P̂13 � P̂23 + P̂123 + P̂132 (4)is the three-partile (eletron) antisymmetrizer. Here,ê is the identity permutation, and P̂ij is the permu-tation of the ith and jth partiles. Analogously, theoperator P̂ijk is the permutation of the ith, jth, andkth partiles. The same notation is used everywhere inwhat follows.After the integration over eletron spin oordinates,we �nd the four spatial projetorsP  = 12p3�2ê+2P̂12�P̂13�P̂23�P̂123�P̂132�; (5)P � = 12�P̂13 � P̂23 � P̂123 + P̂132�; (6)P� = 12�P̂13 � P̂23 � P̂123 + P̂132�; (7)P�� = 12p3�2ê�2P̂12+P̂13+P̂23�P̂123�P̂132�; (8)

where the indexes  and � orrespond to the notationused in Eq. (2). Eah of these projetors produes ma-trix elements between the two radial basis funtions inEq. (2) with the orret permutation symmetry.We note that the two projetors P � and P� o-inide with eah other. It an be shown that the threeprojetors P  , P �, and P�� are orthogonal to eahother. We also note that in atual omputations, onlythe upper triangular part of the Hamiltonian and over-lap matries are used. Therefore, only the three pro-jetors P  , P �, and P�� are important in omputa-tions of the ground state of all three-eletron systemsonsidered in this study. In the next setion, we deriveanalyti formulas for matrix elements in the basis ofmany-dimensional Gaussoids.3. MATRIX ELEMENTSThe omputation of the matrix elements with thefour-body (six-dimensional) Gaussoids, Eq. (3), is welldesribed in the literature (see, e.g., [1; 5℄). In fat, foran arbitrary A-body system, the universal formulas forall matrix elements an be obtained. These formulasontain the total number of partiles A in the system asan expliit parameter. The �rst suh formulas were es-tablished more than 25 years ago in nulear few-bodyalulations (see [1℄ and the referene therein). Thisis an obvious advantage of the variational expansionbased on Eq. (3) in omparison with other few-bodyexpansions. We now present the expliit formulas forall matrix elements needed in omputations. First, weintrodue the ompat notation [1℄h�j = h�(k)j = exp0�� AXi>j=1�kijr2ij1A ;j�i = j�(`)i = exp0�� AXi>j=1�ìjr2ij1A ; (9)where A is the total number of partiles in the system.In our present ase, A = 4. In this notation, the overlapmatrix element h�j�i beomesh�j�i = h�(k)j�(`)i = �3(A�1)=2D�3=2; (10)where D is the determinant of the (A � 1) � (A � 1)matrix B̂ with the entriesbii = AXj(6=i)(�kij + �ìj); j(6= i) = 1; 2; : : : ; A;bii = �(�kij + �ìj); i 6= j = 1; 2; : : : ; A� 1: (11)669



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 135, âûï. 4, 2009In partiular, for A = 4, the (k; `) entry of the B̂ ma-trix is a 3� 3 matrix. Analyti and/or numerial om-putation of the determinant of this matrix and all its�rst-order derivatives is straightforward.We now onsider the matrix elements of the poten-tial energy V . For an interpartile potential that anbe written as the sum of the entral (pair) potentials,i. e., W =X(ij) V(ij)(rij);the analyti formula for the appropriate matrix ele-ments an be written asX(ij)h�jV(ij)(rij )j�i = 4p� h�j�i ��Xij 1Z0 V(ij)  xrDijD ! exp(�x2)x2 dx; (12)where Dij = �D��ij = �D��ij :The expliit expressions for various interpartile po-tentials often used in bound-state alulations an befound in [1℄. The formulas in [1℄ inlude systemswith the Coulomb, Yukawa-type, exponential, osilla-tor, and many other potentials. For all suh ases, theanalyti expressions for lower-bound estimates (EL)were also derived for an arbitrary A-partile systemin [1℄.In partiular, matrix elements of the Coulomb po-tential energy are (in atomi units)X(ij)h�jVij (rij)j�i =X(ij)h�jqiqjrij j�i == 2rD� h�j�iX(ij) qiqjpDij ; (13)where (ij) = (ji) = (12), (13), (23), (14), (24), (34)and h�j�i is the overlap matrix element. In Eq. (13),the qi (i = 1; 2; : : : ; A) stand for the harges of the par-tiles. The matrix elements of the kineti energy takethe form (in atomi units)h�jT j�i = 32D �� 24 AXi;j;k=1 �ik�jkmk (Dik +Djk �Dij)35 h�j�i; (14)where mi (i = 1; 2; : : : ; A) are the masses of the parti-les and i 6= j 6= k. The symmetrization of the given

expressions to the ase of idential partiles does notpresent any di�ulty.In general, for an arbitrary self-adjoint operator X̂ ,the orresponding bound state property (or the expe-tation value) is determined ashXi = h jX̂ j ih j i ; (15)where j i is the wave funtion obtained in variationalalulations. If X̂ = f(rij), then we �nd the followingformula for the matrix elements:h�jf(rij )j�i = h�(k)jf(rij)j�(`)i == 4p� h�j�i 1Z0 f  xrDijD ! exp(�x2)x2 dx: (16)The one-dimensional integral in the last equation anbe omputed analogously for a large number of atualinterpartile potentials. In partiular, for f(y) = y2n�1(n = 0; 1; 2; : : : ), it follows from Eq. (16) thath�jr2n�1ij j�i = 2p� h�j�in!�DijD �(2n�1)=2 ; (17)and for f(y) = y2n (n = 0; 1; 2; : : : ), we haveh�jr2nij j�i = (2n+ 1)!!2n �DijD �n h�j�i; (18)where (2n+1)!! is the produt 1 � 3 � 5 � : : : � (2n+1). Inthe ase where f(y) = y�2 (i. e., n = �1 in Eq. (18)),the appropriate expression beomesh�jr�2ij j�i = 2h�j�i DDij : (19)In some problems, the expetation values of the two-,three-, and many-partile delta-funtions are impor-tant. The analyti formulas for the expetation val-ues of various few-partile delta-funtions an be foundin [5℄.The formulas for matrix elements presented aboveallow onduting highly aurate variational omputa-tions, in priniple, for various A-body systems (A � 2)with di�erent interpatile interations. The relatedproedures and methods based on Eq. (3) have been ap-plied in highly aurate omputations of many hundredof atomi, moleular, quasimoleular, and nulear sys-tems. In partiular, the variational methods based onthe use of many-dimensional Gaussoids were found tobe very e�etive in appliations to various few-eletronsystems. Moreover, for atomi systems with four and670



ÆÝÒÔ, òîì 135, âûï. 4, 2009 Compat variational wave funtions : : :more eletrons, the method in [1℄ is one of a few highlyaurate proedures that work e�etively in suh ases.We note that the approah developed in [1℄ was basedon the method proposed in earlier work [6℄ (for three-body systems). In theoretial hemistry, a similar ap-proah has been developed in [7; 8℄. The last approahis, in fat, a method di�erent from [1℄, beause it didnot inlude the integration over inter-nulear oordi-nates. In appliations to atomi and moleular prob-lems, the methods analogous [1℄ were reated only inthe mid-1990s (see, e. g., [5; 9; 10℄).4. OPTIMIZATION OF THE NONLINEARPARAMETERSIn general, the optimization of the nonlinear param-eters in the trial wave funtions is an important stepin onstrution of highly aurate few-body wave fun-tions. For variational expansions that inlude many-dimensional Gaussoids of the relative oordinates, e. g.,Eq. (3), the optimization of nonlinear parameters playseven a greater role, beause without suh an optimiza-tion, only relatively poor total energies and very ap-proximate wave funtions an be produed. We notethat optimization of the nonlinear parameters in a few-eletron wave funtions have been extensively disussedin earlier studies (see, e. g., [11; 12℄ and the referenestherein).We note that many di�erent optimization strategiesare urrently used to optimize the nonlinear parametersin the trial wave funtions, Eq. (3). In this setion,we brie�y disuss the general priniples and rules ap-plied to the optimization of the nonlinear parameters infew-body wave funtions. First, we assume that sometrial wave funtion inludes N nonlinear parameters�1; �2; : : : ; �N , where N � 1. In atual appliations,it is onvenient to devide these parameters into a num-ber of groups and perform numerial optimization ineah group. This also allows the appliation of verypowerful methods of parallel programming [13℄.Seond, all optimization proedures an be sepa-rated into the two following groups: (1) methods thatan be used for fast, but approximate optimization ofthe nonlinear parameters, and (2) methods that pro-vide relatively aurate optimization of large numbersof the nonlinear parameters. The methods of the �rstgroup inlude paraboli interpolation and Brent's op-timization method in multidimensions [14℄. These pro-edures allow onstruting approximate wave funtionsthat an be onsidered as the �rst approximation tohighly aurate wave funtions. The overall auray

of suh wave funtions is drastially improved at laterstages. At these stages of the optimization proedure,Powell's method in multidimensions and/or the onju-gate gradient method an be used [14℄. These methodsallow optimizing large numbers of nonlinear parametersat one. Various modi�ations of the simplex methodand simulated annealing method also work well for op-timization of the nonlinear parameters in Eq. (3). Infat, the same onlusion is true for the bound stateomputations in �ve- and six-body systems. Our re-sults for suh systems will be published elsewhere (alsosee the Conlusions).A very important step in any optimization proessis the inrease in the total number of nonlinear param-eters. The problem is formulated as follows. We sup-pose that we have the �original� wave funtion with Narefully optimized nonlinear parameters. At the nextstep, we want to inrease the total number of suh pa-rameters from N to N +Ns, where N +Ns is the totalnumber of the nonlinear parameters in the ��nal� wavefuntion. The ruial question here is to �nd the opti-mal strategy for the N ! N +Ns inrease. It is learthatNs must be smaller thanN . Moreover, for smallN(10�60), the optimal value ofNs is approximately equalN . For larger N (N � 300�600), the optimal value Nsrapidly dereases, e. g., Ns � N=6 for N � 600. Duringoptimization of these additional Ns nonlinear parame-ters, the numerial values of the �rst N suh parame-ters do not hange. However, when all Ns new nonlin-ear parameters are well optimized, then it is very usefulto perform the re-optimization of all the N+Ns nonlin-ear parameters. Combinations of di�erent optimizationmethods used for optimization and re-optimization ofthe nonlinear parameters allow onstruting very om-pat and aurate variational wave funtions. After anumber of similar steps, we obtain a very aurate vari-ational wave funtion with a relatively large number ofnonlinear parameters (N � 3000�9000 and even more).Suh wave funtions an be used to determine variousbound state properties in a three-eletron atomi sys-tem. The results of our variational omputations areonsidered below. 5. RESULTSResults of our alulations of the ground bound12S(L = 0) states in a number of three-eletron atomsand ions are given in Tables 1 and 2. For simpliity, inalulations performed for Tables 1 and 2, all nulearmasses were assumed to be in�nite. Table 1 ontainsthe variational energies of the ground 12S states ob-671



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 135, âûï. 4, 2009Table 1. The total energies E in atomi units for the ground 12S states of some lithium-like systems. For all thesesystems, N = 800 in Eq. (2)E E E ELi �7:47805925 C3+ �34:7755102 F6+ �82:3303368 Mg9+ �150:136196Be+ �14:3247623 N4+ �48:3768970 Ne7+ �102:682231 � �B2+ �23:4246051 O5+ �64:2285409 Na8+ �125:284190 � �Table 2. The expetation values in atomi units of some properties for the ground bound 12S states of some three-eletron ions: N denotes the positively harged nuleus and e denotes the eletronSystem Be+ N4+ F6+ Na8+ Mg9+hreN i 1.0337900 0.50177267 0.37520415 0.29983894 0.27250821hreei 1.7556665 0.83467918 0.62096465 0.49471506 0.44911832hr2eN i 2.169235 0.4760186 0.2619051 0.1656895 0.1363986hr2eei 4.357836 0.9554660 0.5253921 0.3322342 0.2734526hr3eN i 6.22822 0.614080 0.248100 0.124094 0.092487hr3eei 13.1398 0.131745 0.534416 0.267931 0.199856hr4eN i 21.067 0.93406 0.27715 0.10961 0.07396hr4eei 45.453 2.07411 0.62001 0.24630 0.16646hr�1eN i 2.6579629 4.9088461 6.4089498 7.9089947 8.6590077hr�1ee i 1.0820108 2.1106599 2.7936624 3.4761518 3.8173010hr�2eN i 18.99849 62.76864 106.1185 160.8033 192.3956hr�2ee i 2.965660 10.67731 18.48395 28.42356 34.19330h�(1=2)r2ei 4.7749205 16.1256311 27.4434408 41.7613938 50.0453940hÆeN i 11.66345 68.41104 149.25557 277.49827 362.58613hÆeei 0.52773 3.63633 8.30797 15.8744 20.9625hÆeeN i 78.3097 3011.32 14709.58 52324.7 90034.1tained in alulations, and Table 2 inludes the expe-tation values of many bound state properties omputedfor these ions. In Table 2, we restrit ourselves to theonsideration of the following ions in their 12S states:Be+, N4+, F6+, Na8+, and Mg9+. The properties ofthe last two ions have not been onsidered previously.For the other light three-eletron atoms and ions (Li,B2+, C3+, O5+, and Ne7+), our results are very loseto the expetation values obtained in [2℄, and we do notwant to repeat them here.In general, the onvergene rates observed in ouralulations for the variational energies of the ground12S states in these ions (see Table 1) were relativelyhigh. The total energies obtained in this study havebeen determined to the auray that is quite ompa-

rable to the auray of the best variational ompu-tations performed with the use of the Hylleraas-typebasis set [2; 3℄, where the same (or omparable) num-ber of basis funtions was used (N � 700).All properties in Table 2 are given in atomi units.The physial meaning of all expetation values in Tab-le 2 is generally quite lear from the notation used, andwe have to make only a few following remarks. Thenotation hÆeN i; hÆeei, and hÆeeN i is for the expetationvalues of the eletron�nuleus, eletron�eletron, andthree-partile delta funtions. The expetation valueshÆeei and hÆeeN i have never been determined for three-eletron atomi systems in earlier studies. The ex-petation values of the three-eletron and four-partiledelta-funtions (i. e., hÆeeei and hÆeeeN i) are equal to672



ÆÝÒÔ, òîì 135, âûï. 4, 2009 Compat variational wave funtions : : :zero identially for all onsidered three-eletron atomsand ions in their 12S states. This follows from thespin symmetry of the total wave funtion. In general,the variational expansion in Eq. (3) desribes the three-eletron atoms and ions as slightly more di�use systemsthan does the Hylleraas expansion. This explains somesmall deviations of our results from the results obtainedwith the use of the Hylleraas basis set [2; 3℄. Overall,the agreement between the two groups of results anbe onsidered very good.We note that some of the expetation values givenin [2℄ were de�ned di�erently. For instane, in mod-ern works, the hr�1ee i expetation value means the av-erage eletron�eletron repulsion, i. e., the value om-puted per one eletron. The analogous notation h1=rijiused in [2℄ means the sum of three eletron�eletronrepulsions. It is, in fat, the total eletron�eletronrepulsion energy, rather than the eletron�eletron re-pulsion determined per one eletron. This means thath1=riji [2℄ = 3h1=reei (this work). Similar deviationsan be found for other bound state properties omputedin [2℄. In fat, at that time similar de�nitions were usedby many other authors, e. g., Pekeris used them for theeletron�nulear properties in the He atom.In general, our proedure has the two following ad-vantages in omparison with the Hylleraas method.First, in our omputations for Tables 1 and 2, all nu-lear masses were assumed to be in�nite. But theuse of �nite nulear masses is also very easy andstraightforward, beause it requires only a one-linehange in the ode. For instane, in some alula-tions performed for Table 1, we obtained the total ener-gy E � �14:3247607 a.u. for the 1Be+ ion. Now,using the nulear masses M(9Be+) = 16419:7014meand M(10Be+) = 18244:5534me, we �nd E(9Be+) �� �14:3238608 a.u. and E(10Be+) � �14:3239508 a.u.from the results of the diret omputations. All boundstate properties for the �nite-mass isotopes are om-puted at the same moment. Suh alulations are di-ret, simple, and do not require any omputation ofsome additional expetation values of slowly onvergentoperators. The seond advantage has an even greatervalue in atual appliations. In our method, the non-linear parameters in Eqs. (2) and (3) an be variedindependently. The linear dependene between di�er-ent radial basis funtions from the  and � families(see Eq. (2)) is very rare and an be ignored in atualomputations. In ontrast, for a Hylleraas basis set,an additional proedure must be developed for elimi-nating all linearly dependent basis funtions [15℄. Forlarge basis sets, this is not an easy task.The omputed expetation values an be used to

determine various atomi properties. In general, thenumerial values of these properties are known fromnumerous experiments. There are many interestingatomi properties in three-eletron ions, but we restritourselves to the omputation of the �eld omponent ofthe total isotope shift, whih is determined for some ofthe three-eletron ions mentioned in this study. Thehyper�ne struture splitting is omputed for some ofthese ions that have nonzero nulear spin. Another a-tual problem is the appliation of the Q�1 expansionto represent the total energies of these ions.5.1. Field shiftHere, we onsider the �eld omponent of the to-tal isotope shift in three-eletron atoms/ions. We notethat in many works, the �eld omponent of the totalisotope shift is also alled the �eld shift, for brevity.The �eld shift is related to the extended nulear hargedistribution that produes the non-Coulomb �eld at thedistanes lose to the nuleus. In general, the largestdeviations between the point Coulomb and atual po-tentials an be found at the distanes lose to theatomi nuleus, i. e., for distanes r � re � � � a0,where re = e2me2 = �2a0 � 2:81794093 fmis the lassial eletron radius and � = �a0 isthe Compton wave length. Here and below, � == 7:297352568 � 10�3 is the �ne struture onstant anda0 � 5:29177249 �10�11 m is the Bohr radius. It is learthat the �eld shift is important only for s(` = 0) ele-trons, whih have a �nite probability to be within thenulear volume. The general theory of the �eld shifthas been disussed extensively in a number of works(see, e. g., [16�18℄).In our previous work [19℄, we obtained the followingexpression for the �eld shift (in atomi units) in lightatoms and ions:EfsM = 2�3 Q�e(0)R2�+3�+5 = 2�5 Q�e(0)R2 1+�=31+�=5 == 2�5 Q�4hÆ(reN )i�Rre�2 �; (20)where Q is the nulear harge and R is the nulearradius. The parameter � and the related fator� = 1 + �=31 + �=5 � 1in these equations desribe the atual harge/protondistribution in the nuleus [13℄. All numerial values4 ÆÝÒÔ, âûï. 4 673



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 135, âûï. 4, 2009Table 3. The nulear sizes, �eld shifts EfsM , nulear spin I (~), and nulear magneti moment �N for the 6Li and 7Liatoms and for some three-eletron ions (in atomi units)Ion (hR2i)1=2, fm EfsM Ion I �N HFS6Li 2.56 3:47372 � 10�8 6Li 0.82205 1 �4552:76977Li 2.41 2:89818 � 10�8 7Li 3.25644 3=2 �16031:27309Be+ 2.519 8:37010 � 10�8 9Be+ �1:1776 3=2 14662.037110Be+ 2.45 4:514187 � 10�7 14N4+ 0.40376 1 �33151:814011B2+ 2.37 4:086263 � 10�7 15N4+ �0:28319 1=2 31002.781214N4+ 2.54 1:097511 � 10�7 19F6+ 2.62887 1=2 �627940:29615N4+ 2.580 2:13881 � 10�6 22Na8+ 1.746 3 �452393:55819F6+ 2.900 3:03744 � 10�6 23Na8+ 2.21752 3=2 �656646:54724Mg9+ 3.08 4:75319 � 10�6 25Mg9+ �0:85545 5=2 297797.145for the physial onstants used in this study were ho-sen from [20; 21℄. In general, the nulear radius R � reand its value depends on the total number of nuleonsA in the nuleus (R / A1=3). In other words, the �eldshift formally orresponds to the �4-orretion to theenergy levels, i. e., to the seond-order relativisti or-retion. The values of the �eld shifts omputed for thedi�erent three-eletron ions an be found in Table 3.All nulear sizes used in our present omputations werehosen from [22℄. In alulations performed for Table 3,we have seleted zero value for the parameter � (� = 1),i. e., the uniform (r-independent) proton density distri-bution is assumed in eah of the nulei.
5.2. Hyper�ne splittingIn the doublet 2S states of any three-eletronatomi system, the spin of the outermost eletron mayinterat with the nulear spin IN in the ases whereIN 6= 0. For three-eletron atomi systems with anonzero nulear spin, it is possible to observe the di�er-ene between the two states with the respetive totalangular momenta IN � 1=2 and IN + 1=2. Here andbelow, IN = max jIN j is the nulear spin. Suh a dif-ferene between the two energies is alled the hyper�nestruture splitting, or hyper�ne splitting for brevity.For the 2S states in three-eletron atomi systems withthe nonzero nulear spin IN , the following expression(Fermi�Segré formula) for the hyper�ne splitting HFSholds in the lowest-order approximation [23℄

HFS = 8��23 �B�NgegNhÆ(reN )i �� 12 [F (F + 1)� IN (IN + 1)� S(S + 1)℄ ; (21)where hÆ(reN )i = hÆeN i is the eletron�nulear delta-funtion omputed for the onsidered eletron state,the total eletron spin S = 1=2 for the doublet states,IN is the nulear spin (IN � 1=2), and F = jFj, whereF is the total angular momentum operator for thewhole three-eletron atom/ion (i. e., eletrons plus thenuleus). For S = 1=2 and a nulear spin IN 6= 0, thehyper�ne splitting an be observed between the stateswith F = IN � 1=2 and F = IN + 1=2.We now apply formula (21) to evaluate the hy-per�ne splitting in the 12S(L = 0) states of thethree-eletron atomi systems. In atomi units, wehave �B = 1=2, ge = �2:002319304386 [20℄, and�N = �B(me=Mp), whereMp = 1836:15267261me [20℄.For light nulei with IN 6= 0, we also have gN = �N=IN ,where the produt �N = gNIN is the so-alled nulearmagneti moment [20℄. The values of �N and IN forvarious nulei an be found in data tables. Finally, we�nd (in MHz)HFS = �400:11870397143hÆ(reN)i �� �NIN �F (F + 1)� IN (IN + 1)� 14� ; (22)where F = IN � 1=2, IN + 1=2 and hÆ(reN )i = hÆeN i(in a.u.) is the expetation value of the eletron�nuleus delta-funtion. To transform the resultsfrom atomi units to MHz, the onversion fator1 a.u. = 6:57968392061MHz must be used. To produethese formulas, we used the fat that in atomi units,674



ÆÝÒÔ, òîì 135, âûï. 4, 2009 Compat variational wave funtions : : :Table 4. The oe�ients of the Q�1 expansion onstruted for the total energies of the ground 12S states in three-eletron ions, Eq. (2). Expansions with N = 4, 5, and 6 terms are onsidered. The results shown in the right olumn areobtained with the use of data in [32℄ for the �rst ten systems (Li�Mg8+)a2 �1:1248490528 �1:1250404995 �1:1249892386 �1:1249895979a1 1:0192512593 1.0240427795 1.0223950181 1.0224083939a0 �0:3805253825 �0:4220687503 �0:4020425473 �0:4022271767b1 �0:0949183497 0.0532889241 �0:0617188349 �0:0605633054b2 � �0:1846549797 0.1278835626 0.1245391345b3 � � �0:3222436143 �0:3186502304the Bohr magneton equals 1=2 exatly. Also, in theseequations, gN = �N=IN , where the nulear magnetimoment �N is expressed in the nulear magnetonse~2mp = memp�0;where �0 is the Bohr magneton. The maximal valueof the nulear moment �N is presented in the tables ofnulear data (see, e. g., [21℄ and the referenes therein).We note that the splitting between the two levelswith F = IN + 1=2 and F = IN � 1=2 is written as (inMHz)HFS = �400:11870397143hÆ(reN)i �� �N (2IN + 1)IN ; (23)where IN 6= 0 and hÆ(reN )i is expressed in atomiunits. Our theoretially predited values of the hyper-�ne splitting for some of the three-eletron atoms/ionsin their 12S states an be found in Table 3. The agree-ment with the known experimental values for hyper�nesplittings in the 6Li and 7Li atoms is quite good for the�rst approximation (see a disussion in [24℄, whih alsoontains an extensive olletion of referenes for theLi atom alulations). The formulas for the hyper�nesplitting in Eqs. (21)�(23) orrespond to the lowest-order approximation. To obtain a better approxima-tion, one needs to determine various orretions to theFermi�Segré formula, whih are disussed, e. g., in [16℄.5.3. The Q�1 expansion of the total energiesThe aurate ground-state energies of the lithiumatom and positively harged lithium-like ions obtainedin this study allow produing the expliit formulas forthe Q�1 expansion (Z�1 expansion) of the total en-ergies E(Q) of these systems. In other words, we on-sider the Q�1 expansion of the eigenvalues E(Q), where

H	 = E(Q)	 and the Hamiltonian H is taken in theform of Eq. (1) with M = 1. In this ase, the to-tal energies of three-eletron atoms/ions are analytifuntions of the nulear harge Q only. For the ground12S states in lithium-like systems, the expansion forthe energy funtion E(Q) an be written as a Laurentexpansion of the form (here and below, Q � 3)E(Q) = a2Q2 + a1Q+ a0 + b1Q�1 ++ b2Q�2 + b3Q�3 + b4Q�4 + : : : ; (24)where numerial values of the oe�ients a2, a1, a0,b1, b2, b3; : : : must be determined from the results ofnumerial omputations. We note that the prinipalpart of the expansion in Eq. (24) inludes only integerpowers of Q�1. Suh an expansion essentially followsfrom the Poinaré theorem (see, e. g., [25℄) applied tothe Shrödinger equation with Hamiltonian (1). Fordegenerate bound states, the expansion analogous toEq. (24) must also inlude noninteger powers of Q (so-alled Puiseux series [26℄). The analogous Q�1 (orZ�1) expansions were found to be very useful for thetwo-eletron ions (see, e. g., [27; 28℄).The oe�ients a2; a1; a0; b1; b2; : : : in formula (24)an be determined numerially from the results of a-urate omputations performed for a number of three-eletron atomi systems. To ompute the oe�ientsa2; a1; a0; b1; b2; : : : in Eq. (24), we have used our bestvariational results obtained for all three-eletron ions(ground states) mentioned in Table 1. Only for theground 12S state of the 1Li atom, we have used themost aurate energy known from the modern litera-ture E(1Li) = �7:4780606323904 a.u. [29℄. Paper [29℄also ontains most of the reent referenes for highly a-urate omputations of the 12S state in the 1Li atom.The oe�ients in Eq. (24) determined with these en-ergies an be found in Table 4. In our alulations, weused Eq. (24) with four, �ve, and six unknown oef-�ients. In priniple, the more aurate results (ener-675 4*



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 135, âûï. 4, 2009gies) expeted to be obtained in future variational om-putations of three-eletron ions ought to provide betternumerial auray for all oe�ients in Eq. (24).6. CONCLUSIONWe have omputed the ground bound 12S statesin various three-eletron atomi systems. The systemsdisussed in this study inlude the neutral Li atom andBe+, B2+, C3+; : : :Na8+, Mg9+ ions. The variationalwave funtions used in this study are represented asthe sums of six-dimensional Gaussoids written in thefour-body relative oordinates r12, r13, r23, r14, r24,and r34. The overall auray of our results is quiteomparable with the auray produed by the bestHylleraas-type expansions with the omparable num-ber of basis funtions (N � 700�800). Suh a onlu-sion was quite unexpeted, beause the atual onver-gene rate of any Hylleraas-type expansion is signi�-antly higher than the analogous onvergene rate forthe three-dimensional Gaussoids.In fat, at the beginning of this projet, we expetedthat our best results would be substantially di�erentfrom the results obtained with the use of exponentialand/or Hylleraas basis funtions. Suh a di�erene anbe found, e. g., when exponential and/or Hylleraas ba-sis funtions and three-dimensional Gaussoids are ap-plied to the bound-state omputations in two-eletronatomi system, e. g., to the ground 11S state of the1Heatom. For instane, in our alulations of the ground11S state of the 1He atom in [30℄ we obtained the totalenergyE = �2:903 7243 7703 4119 5831 1034 a.u.;where 21 deimal digits are stable. By using the vari-ational expansion based on six-dimensional Gaussoidsin relative oordinates (with 4000 terms), it is very dif-�ult to obtain even 12 orret deimal digits. But forthree-eletron atomi systems, the overall auray ofour results was quite omparable with the auray pro-dued by the Hylleraas expansions of omparable size,i. e., if the same (or approximately the same) numberof basis vetors are used.There are three di�erent reasons that an be used toexplain this result. First, we have varied all nonlinearparameters in eah basis funtion and for eah spin on-�guration used in alulations. In alulations with theHylleraas basis set, this is impossible to ahieve due tothe rapidly inreasing linear dependene between ba-sis vetors. Seond, the overall onvergene rate ofHylleraas basis set is relatively low for three-eletron

atomi systems, e. g., it annot be ompared with thease of two-eletron atoms and ions. The gap in onver-gene rates observed for our six-dimensional Gaussoidsand the Hylleraas basis set is muh smaller for three-eletron systems than for two-eletron atoms and ions.Third, in the urrent version of the Hylleraas method,the variation of nonlinear parameters is very primitiveand nonaurate. Moreover, it is impossible to vary thenonlinear parameters in eah Hylleraas basis funtion.Also, the nonlinear parameters in radial basis funtionsused with the seond spin on�guration annot be var-ied as real independent parameters. If these problemswith the Hylleraas basis set an be �xed, then, proba-bly, the gap observed for onvergene rates of the twomethods will be restored.On the other hand, in some reent alulations, theHylleraas basis set inluded very large (� 3500) [31℄and extremely large (N � 10:000) [29℄ numbers of ra-dial basis funtions. The auray of suh omplex al-ulations is obviously better than our urrent aurayahieved with only 700�800 (di�erent) basis funtions.However, we note that the area of appliations for theHylleraas basis set is very restrited. It annot be used,in priniple, for arbitrary four-body system, e. g., forbi-positronium Ps2, the dt�� moleule and/or the 1H2moleule. Our variational expansion based on Eq. (3)works suessfully for an arbitrary four-body system.By using our ompat and aurate wave funtionsdetermined in this study, we have obtained the nu-merial values of some atomi properties that an bemeasured in modern experiments. In partiular, for allthree-eletron systems mentioned in this work, we eval-uate the �eld omponent of the total isotopi shift. Thehyper�ne struture splittings for the ground (doublet)12S states are also determined numerially for nuleithat have a nonzero nulear spin. An analyti formulafor the Q�1 expansion is derived to represent the totalenergies of the three-eletron atomi systems.We note that our urrent proedure an easily begeneralized to the four-eletron atomi systems (atomsand ions). The trial wave funtions onstruted forthe ground 11Se states in the four-eletron atoms/ionsontain two independent spin on�gurations [31℄�1 = ���� + ���� � ���� � ����;�2 = 2����+2������������������������:Our urrent variational energy of the ground state inthe O4+ ion omputed with 700 radial basis funtions(400 + 300) is �68:411508315 a.u. This energy ismuh better than the value obtained in [33℄. Thegeneralization of our method to the P -, D-, F -, and676
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