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COMPACT VARIATIONAL WAVE FUNCTIONS FOR BOUNDSTATES IN THREE-ELECTRON ATOMIC SYSTEMSA. M. Frolov *, D. M. Wardlaw **Department of Chemistry, University of Western OntarioLondon, Ontario, Canada N6A 5B7Re
eived O
tober 20, 2008The variational pro
edure to 
onstru
t 
ompa
t and a

urate wave fun
tions for three-ele
tron atoms and ionsis developed. The pro
edure is based on the use of six-dimensional Gaussoids written in the relative four-body
oordinates r12, r13, r23, r14, r24, and r34. The nonlinear parameters in ea
h basis fun
tion have been 
arefullyoptimized. Using these variational wave fun
tions, we have determined the energies and other bound stateproperties for the ground 12S-states in a number of three-ele
tron atoms and ions. The three-ele
tron atomi
systems 
onsidered in this work in
lude the neutral Li atom and nine positively 
harged lithium-like ions: Be+,B2+, C3+; : : : , Na8+, and Mg9+. Our variational wave fun
tions are used to determine the hyper�ne stru
turesplitting and �eld shifts for some lithium-like ions. The expli
it formulas of the Q�1 expansion are derived forthe total energies of these three-ele
tron systems.PACS: 31.15.a
, 31.15.ae1. INTRODUCTIONOr main goal in this work was to develop a varia-tional pro
edure that 
an be used to 
onstru
t 
ompa
tbut relatively a

urate wave fun
tions for an arbitrarythree-ele
tron atomi
 system, i. e., an atom and/or anion. Re
ently, it was observed in numerous 
ompu-tations that variational expansions developed for thethree-ele
tron atoms and ions 
an be quite 
ompa
tand a

urate, if they are based on the use of four-body(or six-dimensional) Gaussoids [1℄ of the relative four-body 
oordinates r12, r13, r23, r14, r24, and r34. By
ompa
t and a

urate, we mean that su
h a variationalexpansion 
ontains a relatively small number of termsand that the a

ura
y of the 
omputed energies andother bound state properties is 
omparable with (oreven better than) the a

ura
y of analogous 
al
ula-tions based on the use of the Hylleraas basis set (see,e. g., [2; 3℄). Our attention to the variational expansionsbased on the use of four-dimensional Gaussoids 
an beexplained by their great 
onvenien
e in appli
ations toa signi�
ant number of atomi
 three-ele
tron problems.In this work, we try to a
hieve the best numeri
al*E-mail: afrolov�uwo.
a**E-mail: dwardlaw�uwo.
a

a

ura
y for the total (nonrelativisti
) energies of somethree-ele
tron atomi
 systems. A number of boundstate properties have also been determined. Our vari-ational results are then 
ompared with the analogousresults obtained for these systems with the use of theHylleraas basis set [2; 3℄ of 
omparable size (� 700�800 basis fun
tions). In fa
t, we 
onsider the ground12S states in a number of three-ele
tron atomi
 sys-tems that in
lude the Li atom and nine lithium-likeions: Be+, B2+, C3+; : : : , Na8+, Mg9+. We are pri-marily interested in the bound states properties of theground states (or 12S states) in these systems. We notethat ea
h of the atoms and/or ions 
onsidered is a four-body atomi
 system, i. e., it has a very heavy (
entral)nu
leus with ele
tri
 
harge +Q and three ele
trons.To determine the bound states in su
h systems,we apply the variational expansion written in six-dimensional Gaussoids [1℄. Ea
h basis fun
tion in thisvariational expansion depends on six interparti
le 
oor-dinates r12, r13, r23, r14, r24, and r34 and also 
ontainssix nonlinear parameters. We note that ea
h of theseinterparti
le 
oordinates rij = jri � rj j is translation-ally and rotationally invariant, i. e., is a s
alar that doesnot 
hange under any translation and/or rotation of thefour-body system. This means that the translations ofthe 
enter of mass separate in these 
oordinates auto-667
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ally. In parti
ular, we 
an assume that the 
enterof mass is at rest. We also note that the variationalexpansion written in six-dimensional Gaussoids [1℄ is atrue 
orrelated expansion of the wave fun
tion, i. e., allpossible interparti
le 
orrelations in a
tual four-bodywave fun
tions must be reprodu
ed 
orre
tly by thisvariational expansion if it in
ludes a large number ofbasis fun
tions.It was very interesting to �nd that our variationalwave fun
tions 
an produ
e results/energies that arequite 
omparable with the best results obtained withthe use of Hylleraas-type variational expansions forthese atoms/ions [2; 3℄. This shows the great potentialand �exibility of modern 
omputational methods basedon the use of many-dimensional Gaussoids [1℄ for a

u-rate solution of various atomi
 problems. In parti
u-lar, the 
omputed expe
tation values allow determiningthe hyper�ne stru
ture splitting and �eld 
omponent ofthe total isotope shift (�eld shift) in the three-ele
tronatomi
 systems 
onsidered in this study. The energiesof the three-ele
tron atomi
 systems obtained in thisstudy 
an be used to derive a

urate analyti
 formulasfor the Q�1 expansion.In atomi
 units, where ~ = 1, jej = 1, and me = 1,the nonrelativisti
 Hamiltonian H of the three-ele
tronatomi
 system takes the formH = �12r21 � 12r22 � 12r23 � 12Mr24 �� Qr14 � Qr24 � Qr34 + 1r12 + 1r13 + 1r23 ; (1)where rij = jri � rj j = rji are the six interpar-ti
le distan
es (relative 
oordinates), (ij) = (ji) == (12); (13); : : : ; (24); (34), and ri are the Cartesian
oordinates of the four parti
les. In this equation, thenotation �12r2i = 12p2i ; i = 1; 2; 3; 4means single-parti
le kineti
 energies. Also, in thisequation and everywhere below in this study, the sub-s
ripts 1, 2, 3 stand for three ele
trons e�, and the sub-s
ript 4 always means a heavy nu
leus with the massM (M � 1) and a positive (nu
lear) 
harge Q.Our �rst goal is to determine the total energiesand 
orresponding wave fun
tions of the ground dou-blet 2S1=2 state in the three-ele
tron atom/ion withHamiltomian (1). In other words, we need to ob-tain the highly a

urate solutions of the 
orrespondingS
hrödinger equation H	 = E	, where E < 0 andthe bound-state wave fun
tion 	 has the unit norm.For our present purposes, we assume that the nonrela-tivisti
 S
hrödinger equation is exa
t. All lowest-order

relativisti
 (� �2) and QED (� �3) 
orre
tions to thenonrelativisti
 energies 
an be found with the use of the�exa
t� nonrelativisti
 wave fun
tions and perturbationtheory methods.This work has the following stru
ture. The methodused for 
onstru
tion of the approximate variationalwave fun
tions is dis
ussed in Se
. 2. The most di�-
ult part of this method for the many-ele
tron problemis the proper antisymmetrization of the 
orrespondingwave fun
tions and matrix elements arising in 
al
ula-tions. This problem is also 
onsidered in Se
. 2. Se
-tion 3 
ontains a brief derivation of all analyti
 for-mulas for the matrix elements needed in highly a

u-rate 
omputations of four-body systems. Dis
ussionof various optimization strategies used to optimize thenonlinear parameters in the variational wave fun
tions
an be found in Se
. 4. In Se
. 5, we then dis
uss thenumeri
al results for some three-ele
tron atomi
 sys-tems obtained with the use of our method. We also
onsider the hyper�ne stru
ture splitting in the ground12S states of three-ele
tron atoms/ions. Another inter-esting appli
ation is related to the dire
t 
omputationof the �eld 
omponent of the total isotope shift. TheQ�1 expansion is applied to represent the energies ofall three-ele
tron atoms/ions (ground states) dis
ussedin this study. Con
luding remarks are given in Se
. 6.2. THE METHODIn general, any variational expansion of the grounddoublet 2S1=2 state in a three-ele
tron atomi
 systemmust in
lude the two independent spin fun
tions (or
on�gurations). In a
tual 
omputations, su
h spinfun
tions are 
hosen as�1 = ���� ���; �2 = 2��� � ��� � ���;where � and � are the one-ele
tron spin-up andspin-down fun
tions, respe
tively (see, e.g., [4℄). Inother words, the wave fun
tion for the ground doublet2S1=2(L = 0) state of the three-ele
tron atomi
 systemis written in the form	L=0 =  L=0(A;�rij	)(��� � ���) ++ �L=0(B;�rij	)(2��� � ���� ���); (2)where  L=0(A;�rij	) and �L=0(B;�rij	) are the twoindependent spatial parts (radial parts) of the totalwave fun
tion. The symbols A and B indi
ate thatthe two sets of nonlinear parameters asso
iated with  and � are optimized independently in our method. Ina
tual 
omputations, the radial parts in ea
h of the two668
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t variational wave fun
tions : : :terms in Eq. (2) 
an be approximated with the use ofa variational expansion [1℄, e. g., for the  L=0 part, L=0(�rij	) = Ps NXk=1Ck exp0��Xij �(k)ij r2ij1A ; (3)where N is the number of basis variational fun
tionsused, Ck are the linear parameters of the variationalexpansion, and �rij	 is the set of relative 
oordinatesthat are needed for a 
omplete des
ription of the four-body system. In fa
t, for three-ele
tron atoms/ions,the notation �rij	 stands for the six relative 
oordi-nates r12, r13, r23, r14, r24, and r34. The summationover (ij) = (ji) in Eq. (3) is taken over all possible dif-ferent pairs of parti
les. The proje
tor Ps produ
es thetrial wave fun
tion with the 
orre
t permutation sym-metry of all three ele
trons. The expli
it form of thePs operator for a three-ele
tron system depends on the
orresponding spin state (see below). The symbol L inEq. (3) is used for the total orbital angular momentumof the system. We note that for the ground 2S1=2 states
onsidered below, we always have L = 0, S = 1=2 (totalspin), and J = 1=2 (total angular momentum).We now dis
uss the permutation symmetry of thea
tual wave fun
tion. The two terms in the right-handside of Eq. (2) must be 
ompletely antisymmetri
 withrespe
t to the 
oordinates of the three ele
trons, i. e.,the indexes 1, 2, and 3 in our notation. This meansthat Âe	 = �	, where 	 is given by Eq. (2) andÂe = ê� P̂12 � P̂13 � P̂23 + P̂123 + P̂132 (4)is the three-parti
le (ele
tron) antisymmetrizer. Here,ê is the identity permutation, and P̂ij is the permu-tation of the ith and jth parti
les. Analogously, theoperator P̂ijk is the permutation of the ith, jth, andkth parti
les. The same notation is used everywhere inwhat follows.After the integration over ele
tron spin 
oordinates,we �nd the four spatial proje
torsP  = 12p3�2ê+2P̂12�P̂13�P̂23�P̂123�P̂132�; (5)P � = 12�P̂13 � P̂23 � P̂123 + P̂132�; (6)P� = 12�P̂13 � P̂23 � P̂123 + P̂132�; (7)P�� = 12p3�2ê�2P̂12+P̂13+P̂23�P̂123�P̂132�; (8)

where the indexes  and � 
orrespond to the notationused in Eq. (2). Ea
h of these proje
tors produ
es ma-trix elements between the two radial basis fun
tions inEq. (2) with the 
orre
t permutation symmetry.We note that the two proje
tors P � and P� 
o-in
ide with ea
h other. It 
an be shown that the threeproje
tors P  , P �, and P�� are orthogonal to ea
hother. We also note that in a
tual 
omputations, onlythe upper triangular part of the Hamiltonian and over-lap matri
es are used. Therefore, only the three pro-je
tors P  , P �, and P�� are important in 
omputa-tions of the ground state of all three-ele
tron systems
onsidered in this study. In the next se
tion, we deriveanalyti
 formulas for matrix elements in the basis ofmany-dimensional Gaussoids.3. MATRIX ELEMENTSThe 
omputation of the matrix elements with thefour-body (six-dimensional) Gaussoids, Eq. (3), is welldes
ribed in the literature (see, e.g., [1; 5℄). In fa
t, foran arbitrary A-body system, the universal formulas forall matrix elements 
an be obtained. These formulas
ontain the total number of parti
les A in the system asan expli
it parameter. The �rst su
h formulas were es-tablished more than 25 years ago in nu
lear few-body
al
ulations (see [1℄ and the referen
e therein). Thisis an obvious advantage of the variational expansionbased on Eq. (3) in 
omparison with other few-bodyexpansions. We now present the expli
it formulas forall matrix elements needed in 
omputations. First, weintrodu
e the 
ompa
t notation [1℄h�j = h�(k)j = exp0�� AXi>j=1�kijr2ij1A ;j�i = j�(`)i = exp0�� AXi>j=1�ìjr2ij1A ; (9)where A is the total number of parti
les in the system.In our present 
ase, A = 4. In this notation, the overlapmatrix element h�j�i be
omesh�j�i = h�(k)j�(`)i = �3(A�1)=2D�3=2; (10)where D is the determinant of the (A � 1) � (A � 1)matrix B̂ with the entriesbii = AXj(6=i)(�kij + �ìj); j(6= i) = 1; 2; : : : ; A;bii = �(�kij + �ìj); i 6= j = 1; 2; : : : ; A� 1: (11)669
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ular, for A = 4, the (k; `) entry of the B̂ ma-trix is a 3� 3 matrix. Analyti
 and/or numeri
al 
om-putation of the determinant of this matrix and all its�rst-order derivatives is straightforward.We now 
onsider the matrix elements of the poten-tial energy V . For an interparti
le potential that 
anbe written as the sum of the 
entral (pair) potentials,i. e., W =X(ij) V(ij)(rij);the analyti
 formula for the appropriate matrix ele-ments 
an be written asX(ij)h�jV(ij)(rij )j�i = 4p� h�j�i ��Xij 1Z0 V(ij)  xrDijD ! exp(�x2)x2 dx; (12)where Dij = �D��ij = �D��ij :The expli
it expressions for various interparti
le po-tentials often used in bound-state 
al
ulations 
an befound in [1℄. The formulas in [1℄ in
lude systemswith the Coulomb, Yukawa-type, exponential, os
illa-tor, and many other potentials. For all su
h 
ases, theanalyti
 expressions for lower-bound estimates (EL)were also derived for an arbitrary A-parti
le systemin [1℄.In parti
ular, matrix elements of the Coulomb po-tential energy are (in atomi
 units)X(ij)h�jVij (rij)j�i =X(ij)h�jqiqjrij j�i == 2rD� h�j�iX(ij) qiqjpDij ; (13)where (ij) = (ji) = (12), (13), (23), (14), (24), (34)and h�j�i is the overlap matrix element. In Eq. (13),the qi (i = 1; 2; : : : ; A) stand for the 
harges of the par-ti
les. The matrix elements of the kineti
 energy takethe form (in atomi
 units)h�jT j�i = 32D �� 24 AXi;j;k=1 �ik�jkmk (Dik +Djk �Dij)35 h�j�i; (14)where mi (i = 1; 2; : : : ; A) are the masses of the parti-
les and i 6= j 6= k. The symmetrization of the given

expressions to the 
ase of identi
al parti
les does notpresent any di�
ulty.In general, for an arbitrary self-adjoint operator X̂ ,the 
orresponding bound state property (or the expe
-tation value) is determined ashXi = h jX̂ j ih j i ; (15)where j i is the wave fun
tion obtained in variational
al
ulations. If X̂ = f(rij), then we �nd the followingformula for the matrix elements:h�jf(rij )j�i = h�(k)jf(rij)j�(`)i == 4p� h�j�i 1Z0 f  xrDijD ! exp(�x2)x2 dx: (16)The one-dimensional integral in the last equation 
anbe 
omputed analogously for a large number of a
tualinterparti
le potentials. In parti
ular, for f(y) = y2n�1(n = 0; 1; 2; : : : ), it follows from Eq. (16) thath�jr2n�1ij j�i = 2p� h�j�in!�DijD �(2n�1)=2 ; (17)and for f(y) = y2n (n = 0; 1; 2; : : : ), we haveh�jr2nij j�i = (2n+ 1)!!2n �DijD �n h�j�i; (18)where (2n+1)!! is the produ
t 1 � 3 � 5 � : : : � (2n+1). Inthe 
ase where f(y) = y�2 (i. e., n = �1 in Eq. (18)),the appropriate expression be
omesh�jr�2ij j�i = 2h�j�i DDij : (19)In some problems, the expe
tation values of the two-,three-, and many-parti
le delta-fun
tions are impor-tant. The analyti
 formulas for the expe
tation val-ues of various few-parti
le delta-fun
tions 
an be foundin [5℄.The formulas for matrix elements presented aboveallow 
ondu
ting highly a

urate variational 
omputa-tions, in prin
iple, for various A-body systems (A � 2)with di�erent interpati
le intera
tions. The relatedpro
edures and methods based on Eq. (3) have been ap-plied in highly a

urate 
omputations of many hundredof atomi
, mole
ular, quasimole
ular, and nu
lear sys-tems. In parti
ular, the variational methods based onthe use of many-dimensional Gaussoids were found tobe very e�e
tive in appli
ations to various few-ele
tronsystems. Moreover, for atomi
 systems with four and670
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t variational wave fun
tions : : :more ele
trons, the method in [1℄ is one of a few highlya

urate pro
edures that work e�e
tively in su
h 
ases.We note that the approa
h developed in [1℄ was basedon the method proposed in earlier work [6℄ (for three-body systems). In theoreti
al 
hemistry, a similar ap-proa
h has been developed in [7; 8℄. The last approa
his, in fa
t, a method di�erent from [1℄, be
ause it didnot in
lude the integration over inter-nu
lear 
oordi-nates. In appli
ations to atomi
 and mole
ular prob-lems, the methods analogous [1℄ were 
reated only inthe mid-1990s (see, e. g., [5; 9; 10℄).4. OPTIMIZATION OF THE NONLINEARPARAMETERSIn general, the optimization of the nonlinear param-eters in the trial wave fun
tions is an important stepin 
onstru
tion of highly a

urate few-body wave fun
-tions. For variational expansions that in
lude many-dimensional Gaussoids of the relative 
oordinates, e. g.,Eq. (3), the optimization of nonlinear parameters playseven a greater role, be
ause without su
h an optimiza-tion, only relatively poor total energies and very ap-proximate wave fun
tions 
an be produ
ed. We notethat optimization of the nonlinear parameters in a few-ele
tron wave fun
tions have been extensively dis
ussedin earlier studies (see, e. g., [11; 12℄ and the referen
estherein).We note that many di�erent optimization strategiesare 
urrently used to optimize the nonlinear parametersin the trial wave fun
tions, Eq. (3). In this se
tion,we brie�y dis
uss the general prin
iples and rules ap-plied to the optimization of the nonlinear parameters infew-body wave fun
tions. First, we assume that sometrial wave fun
tion in
ludes N nonlinear parameters�1; �2; : : : ; �N , where N � 1. In a
tual appli
ations,it is 
onvenient to devide these parameters into a num-ber of groups and perform numeri
al optimization inea
h group. This also allows the appli
ation of verypowerful methods of parallel programming [13℄.Se
ond, all optimization pro
edures 
an be sepa-rated into the two following groups: (1) methods that
an be used for fast, but approximate optimization ofthe nonlinear parameters, and (2) methods that pro-vide relatively a

urate optimization of large numbersof the nonlinear parameters. The methods of the �rstgroup in
lude paraboli
 interpolation and Brent's op-timization method in multidimensions [14℄. These pro-
edures allow 
onstru
ting approximate wave fun
tionsthat 
an be 
onsidered as the �rst approximation tohighly a

urate wave fun
tions. The overall a

ura
y

of su
h wave fun
tions is drasti
ally improved at laterstages. At these stages of the optimization pro
edure,Powell's method in multidimensions and/or the 
onju-gate gradient method 
an be used [14℄. These methodsallow optimizing large numbers of nonlinear parametersat on
e. Various modi�
ations of the simplex methodand simulated annealing method also work well for op-timization of the nonlinear parameters in Eq. (3). Infa
t, the same 
on
lusion is true for the bound state
omputations in �ve- and six-body systems. Our re-sults for su
h systems will be published elsewhere (alsosee the Con
lusions).A very important step in any optimization pro
essis the in
rease in the total number of nonlinear param-eters. The problem is formulated as follows. We sup-pose that we have the �original� wave fun
tion with N
arefully optimized nonlinear parameters. At the nextstep, we want to in
rease the total number of su
h pa-rameters from N to N +Ns, where N +Ns is the totalnumber of the nonlinear parameters in the ��nal� wavefun
tion. The 
ru
ial question here is to �nd the opti-mal strategy for the N ! N +Ns in
rease. It is 
learthatNs must be smaller thanN . Moreover, for smallN(10�60), the optimal value ofNs is approximately equalN . For larger N (N � 300�600), the optimal value Nsrapidly de
reases, e. g., Ns � N=6 for N � 600. Duringoptimization of these additional Ns nonlinear parame-ters, the numeri
al values of the �rst N su
h parame-ters do not 
hange. However, when all Ns new nonlin-ear parameters are well optimized, then it is very usefulto perform the re-optimization of all the N+Ns nonlin-ear parameters. Combinations of di�erent optimizationmethods used for optimization and re-optimization ofthe nonlinear parameters allow 
onstru
ting very 
om-pa
t and a

urate variational wave fun
tions. After anumber of similar steps, we obtain a very a

urate vari-ational wave fun
tion with a relatively large number ofnonlinear parameters (N � 3000�9000 and even more).Su
h wave fun
tions 
an be used to determine variousbound state properties in a three-ele
tron atomi
 sys-tem. The results of our variational 
omputations are
onsidered below. 5. RESULTSResults of our 
al
ulations of the ground bound12S(L = 0) states in a number of three-ele
tron atomsand ions are given in Tables 1 and 2. For simpli
ity, in
al
ulations performed for Tables 1 and 2, all nu
learmasses were assumed to be in�nite. Table 1 
ontainsthe variational energies of the ground 12S states ob-671



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 135, âûï. 4, 2009Table 1. The total energies E in atomi
 units for the ground 12S states of some lithium-like systems. For all thesesystems, N = 800 in Eq. (2)E E E ELi �7:47805925 C3+ �34:7755102 F6+ �82:3303368 Mg9+ �150:136196Be+ �14:3247623 N4+ �48:3768970 Ne7+ �102:682231 � �B2+ �23:4246051 O5+ �64:2285409 Na8+ �125:284190 � �Table 2. The expe
tation values in atomi
 units of some properties for the ground bound 12S states of some three-ele
tron ions: N denotes the positively 
harged nu
leus and e denotes the ele
tronSystem Be+ N4+ F6+ Na8+ Mg9+hreN i 1.0337900 0.50177267 0.37520415 0.29983894 0.27250821hreei 1.7556665 0.83467918 0.62096465 0.49471506 0.44911832hr2eN i 2.169235 0.4760186 0.2619051 0.1656895 0.1363986hr2eei 4.357836 0.9554660 0.5253921 0.3322342 0.2734526hr3eN i 6.22822 0.614080 0.248100 0.124094 0.092487hr3eei 13.1398 0.131745 0.534416 0.267931 0.199856hr4eN i 21.067 0.93406 0.27715 0.10961 0.07396hr4eei 45.453 2.07411 0.62001 0.24630 0.16646hr�1eN i 2.6579629 4.9088461 6.4089498 7.9089947 8.6590077hr�1ee i 1.0820108 2.1106599 2.7936624 3.4761518 3.8173010hr�2eN i 18.99849 62.76864 106.1185 160.8033 192.3956hr�2ee i 2.965660 10.67731 18.48395 28.42356 34.19330h�(1=2)r2ei 4.7749205 16.1256311 27.4434408 41.7613938 50.0453940hÆeN i 11.66345 68.41104 149.25557 277.49827 362.58613hÆeei 0.52773 3.63633 8.30797 15.8744 20.9625hÆeeN i 78.3097 3011.32 14709.58 52324.7 90034.1tained in 
al
ulations, and Table 2 in
ludes the expe
-tation values of many bound state properties 
omputedfor these ions. In Table 2, we restri
t ourselves to the
onsideration of the following ions in their 12S states:Be+, N4+, F6+, Na8+, and Mg9+. The properties ofthe last two ions have not been 
onsidered previously.For the other light three-ele
tron atoms and ions (Li,B2+, C3+, O5+, and Ne7+), our results are very 
loseto the expe
tation values obtained in [2℄, and we do notwant to repeat them here.In general, the 
onvergen
e rates observed in our
al
ulations for the variational energies of the ground12S states in these ions (see Table 1) were relativelyhigh. The total energies obtained in this study havebeen determined to the a

ura
y that is quite 
ompa-

rable to the a

ura
y of the best variational 
ompu-tations performed with the use of the Hylleraas-typebasis set [2; 3℄, where the same (or 
omparable) num-ber of basis fun
tions was used (N � 700).All properties in Table 2 are given in atomi
 units.The physi
al meaning of all expe
tation values in Tab-le 2 is generally quite 
lear from the notation used, andwe have to make only a few following remarks. Thenotation hÆeN i; hÆeei, and hÆeeN i is for the expe
tationvalues of the ele
tron�nu
leus, ele
tron�ele
tron, andthree-parti
le delta fun
tions. The expe
tation valueshÆeei and hÆeeN i have never been determined for three-ele
tron atomi
 systems in earlier studies. The ex-pe
tation values of the three-ele
tron and four-parti
ledelta-fun
tions (i. e., hÆeeei and hÆeeeN i) are equal to672
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t variational wave fun
tions : : :zero identi
ally for all 
onsidered three-ele
tron atomsand ions in their 12S states. This follows from thespin symmetry of the total wave fun
tion. In general,the variational expansion in Eq. (3) des
ribes the three-ele
tron atoms and ions as slightly more di�use systemsthan does the Hylleraas expansion. This explains somesmall deviations of our results from the results obtainedwith the use of the Hylleraas basis set [2; 3℄. Overall,the agreement between the two groups of results 
anbe 
onsidered very good.We note that some of the expe
tation values givenin [2℄ were de�ned di�erently. For instan
e, in mod-ern works, the hr�1ee i expe
tation value means the av-erage ele
tron�ele
tron repulsion, i. e., the value 
om-puted per one ele
tron. The analogous notation h1=rijiused in [2℄ means the sum of three ele
tron�ele
tronrepulsions. It is, in fa
t, the total ele
tron�ele
tronrepulsion energy, rather than the ele
tron�ele
tron re-pulsion determined per one ele
tron. This means thath1=riji [2℄ = 3h1=reei (this work). Similar deviations
an be found for other bound state properties 
omputedin [2℄. In fa
t, at that time similar de�nitions were usedby many other authors, e. g., Pekeris used them for theele
tron�nu
lear properties in the He atom.In general, our pro
edure has the two following ad-vantages in 
omparison with the Hylleraas method.First, in our 
omputations for Tables 1 and 2, all nu-
lear masses were assumed to be in�nite. But theuse of �nite nu
lear masses is also very easy andstraightforward, be
ause it requires only a one-line
hange in the 
ode. For instan
e, in some 
al
ula-tions performed for Table 1, we obtained the total ener-gy E � �14:3247607 a.u. for the 1Be+ ion. Now,using the nu
lear masses M(9Be+) = 16419:7014meand M(10Be+) = 18244:5534me, we �nd E(9Be+) �� �14:3238608 a.u. and E(10Be+) � �14:3239508 a.u.from the results of the dire
t 
omputations. All boundstate properties for the �nite-mass isotopes are 
om-puted at the same moment. Su
h 
al
ulations are di-re
t, simple, and do not require any 
omputation ofsome additional expe
tation values of slowly 
onvergentoperators. The se
ond advantage has an even greatervalue in a
tual appli
ations. In our method, the non-linear parameters in Eqs. (2) and (3) 
an be variedindependently. The linear dependen
e between di�er-ent radial basis fun
tions from the  and � families(see Eq. (2)) is very rare and 
an be ignored in a
tual
omputations. In 
ontrast, for a Hylleraas basis set,an additional pro
edure must be developed for elimi-nating all linearly dependent basis fun
tions [15℄. Forlarge basis sets, this is not an easy task.The 
omputed expe
tation values 
an be used to

determine various atomi
 properties. In general, thenumeri
al values of these properties are known fromnumerous experiments. There are many interestingatomi
 properties in three-ele
tron ions, but we restri
tourselves to the 
omputation of the �eld 
omponent ofthe total isotope shift, whi
h is determined for some ofthe three-ele
tron ions mentioned in this study. Thehyper�ne stru
ture splitting is 
omputed for some ofthese ions that have nonzero nu
lear spin. Another a
-tual problem is the appli
ation of the Q�1 expansionto represent the total energies of these ions.5.1. Field shiftHere, we 
onsider the �eld 
omponent of the to-tal isotope shift in three-ele
tron atoms/ions. We notethat in many works, the �eld 
omponent of the totalisotope shift is also 
alled the �eld shift, for brevity.The �eld shift is related to the extended nu
lear 
hargedistribution that produ
es the non-Coulomb �eld at thedistan
es 
lose to the nu
leus. In general, the largestdeviations between the point Coulomb and a
tual po-tentials 
an be found at the distan
es 
lose to theatomi
 nu
leus, i. e., for distan
es r � re � � � a0,where re = e2me
2 = �2a0 � 2:81794093 fmis the 
lassi
al ele
tron radius and � = �a0 isthe Compton wave length. Here and below, � == 7:297352568 � 10�3 is the �ne stru
ture 
onstant anda0 � 5:29177249 �10�11 m is the Bohr radius. It is 
learthat the �eld shift is important only for s(` = 0) ele
-trons, whi
h have a �nite probability to be within thenu
lear volume. The general theory of the �eld shifthas been dis
ussed extensively in a number of works(see, e. g., [16�18℄).In our previous work [19℄, we obtained the followingexpression for the �eld shift (in atomi
 units) in lightatoms and ions:EfsM = 2�3 Q�e(0)R2�+3�+5 = 2�5 Q�e(0)R2 1+�=31+�=5 == 2�5 Q�4hÆ(reN )i�Rre�2 �; (20)where Q is the nu
lear 
harge and R is the nu
learradius. The parameter � and the related fa
tor� = 1 + �=31 + �=5 � 1in these equations des
ribe the a
tual 
harge/protondistribution in the nu
leus [13℄. All numeri
al values4 ÆÝÒÔ, âûï. 4 673
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lear sizes, �eld shifts EfsM , nu
lear spin I (~), and nu
lear magneti
 moment �N for the 6Li and 7Liatoms and for some three-ele
tron ions (in atomi
 units)Ion (hR2i)1=2, fm EfsM Ion I �N HFS6Li 2.56 3:47372 � 10�8 6Li 0.82205 1 �4552:76977Li 2.41 2:89818 � 10�8 7Li 3.25644 3=2 �16031:27309Be+ 2.519 8:37010 � 10�8 9Be+ �1:1776 3=2 14662.037110Be+ 2.45 4:514187 � 10�7 14N4+ 0.40376 1 �33151:814011B2+ 2.37 4:086263 � 10�7 15N4+ �0:28319 1=2 31002.781214N4+ 2.54 1:097511 � 10�7 19F6+ 2.62887 1=2 �627940:29615N4+ 2.580 2:13881 � 10�6 22Na8+ 1.746 3 �452393:55819F6+ 2.900 3:03744 � 10�6 23Na8+ 2.21752 3=2 �656646:54724Mg9+ 3.08 4:75319 � 10�6 25Mg9+ �0:85545 5=2 297797.145for the physi
al 
onstants used in this study were 
ho-sen from [20; 21℄. In general, the nu
lear radius R � reand its value depends on the total number of nu
leonsA in the nu
leus (R / A1=3). In other words, the �eldshift formally 
orresponds to the �4-
orre
tion to theenergy levels, i. e., to the se
ond-order relativisti
 
or-re
tion. The values of the �eld shifts 
omputed for thedi�erent three-ele
tron ions 
an be found in Table 3.All nu
lear sizes used in our present 
omputations were
hosen from [22℄. In 
al
ulations performed for Table 3,we have sele
ted zero value for the parameter � (� = 1),i. e., the uniform (r-independent) proton density distri-bution is assumed in ea
h of the nu
lei.
5.2. Hyper�ne splittingIn the doublet 2S states of any three-ele
tronatomi
 system, the spin of the outermost ele
tron mayintera
t with the nu
lear spin IN in the 
ases whereIN 6= 0. For three-ele
tron atomi
 systems with anonzero nu
lear spin, it is possible to observe the di�er-en
e between the two states with the respe
tive totalangular momenta IN � 1=2 and IN + 1=2. Here andbelow, IN = max jIN j is the nu
lear spin. Su
h a dif-feren
e between the two energies is 
alled the hyper�nestru
ture splitting, or hyper�ne splitting for brevity.For the 2S states in three-ele
tron atomi
 systems withthe nonzero nu
lear spin IN , the following expression(Fermi�Segré formula) for the hyper�ne splitting HFSholds in the lowest-order approximation [23℄

HFS = 8��23 �B�NgegNhÆ(reN )i �� 12 [F (F + 1)� IN (IN + 1)� S(S + 1)℄ ; (21)where hÆ(reN )i = hÆeN i is the ele
tron�nu
lear delta-fun
tion 
omputed for the 
onsidered ele
tron state,the total ele
tron spin S = 1=2 for the doublet states,IN is the nu
lear spin (IN � 1=2), and F = jFj, whereF is the total angular momentum operator for thewhole three-ele
tron atom/ion (i. e., ele
trons plus thenu
leus). For S = 1=2 and a nu
lear spin IN 6= 0, thehyper�ne splitting 
an be observed between the stateswith F = IN � 1=2 and F = IN + 1=2.We now apply formula (21) to evaluate the hy-per�ne splitting in the 12S(L = 0) states of thethree-ele
tron atomi
 systems. In atomi
 units, wehave �B = 1=2, ge = �2:002319304386 [20℄, and�N = �B(me=Mp), whereMp = 1836:15267261me [20℄.For light nu
lei with IN 6= 0, we also have gN = �N=IN ,where the produ
t �N = gNIN is the so-
alled nu
learmagneti
 moment [20℄. The values of �N and IN forvarious nu
lei 
an be found in data tables. Finally, we�nd (in MHz)HFS = �400:11870397143hÆ(reN)i �� �NIN �F (F + 1)� IN (IN + 1)� 14� ; (22)where F = IN � 1=2, IN + 1=2 and hÆ(reN )i = hÆeN i(in a.u.) is the expe
tation value of the ele
tron�nu
leus delta-fun
tion. To transform the resultsfrom atomi
 units to MHz, the 
onversion fa
tor1 a.u. = 6:57968392061MHz must be used. To produ
ethese formulas, we used the fa
t that in atomi
 units,674
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t variational wave fun
tions : : :Table 4. The 
oe�
ients of the Q�1 expansion 
onstru
ted for the total energies of the ground 12S states in three-ele
tron ions, Eq. (2). Expansions with N = 4, 5, and 6 terms are 
onsidered. The results shown in the right 
olumn areobtained with the use of data in [32℄ for the �rst ten systems (Li�Mg8+)a2 �1:1248490528 �1:1250404995 �1:1249892386 �1:1249895979a1 1:0192512593 1.0240427795 1.0223950181 1.0224083939a0 �0:3805253825 �0:4220687503 �0:4020425473 �0:4022271767b1 �0:0949183497 0.0532889241 �0:0617188349 �0:0605633054b2 � �0:1846549797 0.1278835626 0.1245391345b3 � � �0:3222436143 �0:3186502304the Bohr magneton equals 1=2 exa
tly. Also, in theseequations, gN = �N=IN , where the nu
lear magneti
moment �N is expressed in the nu
lear magnetonse~2mp
 = memp�0;where �0 is the Bohr magneton. The maximal valueof the nu
lear moment �N is presented in the tables ofnu
lear data (see, e. g., [21℄ and the referen
es therein).We note that the splitting between the two levelswith F = IN + 1=2 and F = IN � 1=2 is written as (inMHz)HFS = �400:11870397143hÆ(reN)i �� �N (2IN + 1)IN ; (23)where IN 6= 0 and hÆ(reN )i is expressed in atomi
units. Our theoreti
ally predi
ted values of the hyper-�ne splitting for some of the three-ele
tron atoms/ionsin their 12S states 
an be found in Table 3. The agree-ment with the known experimental values for hyper�nesplittings in the 6Li and 7Li atoms is quite good for the�rst approximation (see a dis
ussion in [24℄, whi
h also
ontains an extensive 
olle
tion of referen
es for theLi atom 
al
ulations). The formulas for the hyper�nesplitting in Eqs. (21)�(23) 
orrespond to the lowest-order approximation. To obtain a better approxima-tion, one needs to determine various 
orre
tions to theFermi�Segré formula, whi
h are dis
ussed, e. g., in [16℄.5.3. The Q�1 expansion of the total energiesThe a

urate ground-state energies of the lithiumatom and positively 
harged lithium-like ions obtainedin this study allow produ
ing the expli
it formulas forthe Q�1 expansion (Z�1 expansion) of the total en-ergies E(Q) of these systems. In other words, we 
on-sider the Q�1 expansion of the eigenvalues E(Q), where

H	 = E(Q)	 and the Hamiltonian H is taken in theform of Eq. (1) with M = 1. In this 
ase, the to-tal energies of three-ele
tron atoms/ions are analyti
fun
tions of the nu
lear 
harge Q only. For the ground12S states in lithium-like systems, the expansion forthe energy fun
tion E(Q) 
an be written as a Laurentexpansion of the form (here and below, Q � 3)E(Q) = a2Q2 + a1Q+ a0 + b1Q�1 ++ b2Q�2 + b3Q�3 + b4Q�4 + : : : ; (24)where numeri
al values of the 
oe�
ients a2, a1, a0,b1, b2, b3; : : : must be determined from the results ofnumeri
al 
omputations. We note that the prin
ipalpart of the expansion in Eq. (24) in
ludes only integerpowers of Q�1. Su
h an expansion essentially followsfrom the Poin
aré theorem (see, e. g., [25℄) applied tothe S
hrödinger equation with Hamiltonian (1). Fordegenerate bound states, the expansion analogous toEq. (24) must also in
lude noninteger powers of Q (so-
alled Puiseux series [26℄). The analogous Q�1 (orZ�1) expansions were found to be very useful for thetwo-ele
tron ions (see, e. g., [27; 28℄).The 
oe�
ients a2; a1; a0; b1; b2; : : : in formula (24)
an be determined numeri
ally from the results of a
-
urate 
omputations performed for a number of three-ele
tron atomi
 systems. To 
ompute the 
oe�
ientsa2; a1; a0; b1; b2; : : : in Eq. (24), we have used our bestvariational results obtained for all three-ele
tron ions(ground states) mentioned in Table 1. Only for theground 12S state of the 1Li atom, we have used themost a

urate energy known from the modern litera-ture E(1Li) = �7:4780606323904 a.u. [29℄. Paper [29℄also 
ontains most of the re
ent referen
es for highly a
-
urate 
omputations of the 12S state in the 1Li atom.The 
oe�
ients in Eq. (24) determined with these en-ergies 
an be found in Table 4. In our 
al
ulations, weused Eq. (24) with four, �ve, and six unknown 
oef-�
ients. In prin
iple, the more a

urate results (ener-675 4*
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ted to be obtained in future variational 
om-putations of three-ele
tron ions ought to provide betternumeri
al a

ura
y for all 
oe�
ients in Eq. (24).6. CONCLUSIONWe have 
omputed the ground bound 12S statesin various three-ele
tron atomi
 systems. The systemsdis
ussed in this study in
lude the neutral Li atom andBe+, B2+, C3+; : : :Na8+, Mg9+ ions. The variationalwave fun
tions used in this study are represented asthe sums of six-dimensional Gaussoids written in thefour-body relative 
oordinates r12, r13, r23, r14, r24,and r34. The overall a

ura
y of our results is quite
omparable with the a

ura
y produ
ed by the bestHylleraas-type expansions with the 
omparable num-ber of basis fun
tions (N � 700�800). Su
h a 
on
lu-sion was quite unexpe
ted, be
ause the a
tual 
onver-gen
e rate of any Hylleraas-type expansion is signi�-
antly higher than the analogous 
onvergen
e rate forthe three-dimensional Gaussoids.In fa
t, at the beginning of this proje
t, we expe
tedthat our best results would be substantially di�erentfrom the results obtained with the use of exponentialand/or Hylleraas basis fun
tions. Su
h a di�eren
e 
anbe found, e. g., when exponential and/or Hylleraas ba-sis fun
tions and three-dimensional Gaussoids are ap-plied to the bound-state 
omputations in two-ele
tronatomi
 system, e. g., to the ground 11S state of the1Heatom. For instan
e, in our 
al
ulations of the ground11S state of the 1He atom in [30℄ we obtained the totalenergyE = �2:903 7243 7703 4119 5831 1034 a.u.;where 21 de
imal digits are stable. By using the vari-ational expansion based on six-dimensional Gaussoidsin relative 
oordinates (with 4000 terms), it is very dif-�
ult to obtain even 12 
orre
t de
imal digits. But forthree-ele
tron atomi
 systems, the overall a

ura
y ofour results was quite 
omparable with the a

ura
y pro-du
ed by the Hylleraas expansions of 
omparable size,i. e., if the same (or approximately the same) numberof basis ve
tors are used.There are three di�erent reasons that 
an be used toexplain this result. First, we have varied all nonlinearparameters in ea
h basis fun
tion and for ea
h spin 
on-�guration used in 
al
ulations. In 
al
ulations with theHylleraas basis set, this is impossible to a
hieve due tothe rapidly in
reasing linear dependen
e between ba-sis ve
tors. Se
ond, the overall 
onvergen
e rate ofHylleraas basis set is relatively low for three-ele
tron

atomi
 systems, e. g., it 
annot be 
ompared with the
ase of two-ele
tron atoms and ions. The gap in 
onver-gen
e rates observed for our six-dimensional Gaussoidsand the Hylleraas basis set is mu
h smaller for three-ele
tron systems than for two-ele
tron atoms and ions.Third, in the 
urrent version of the Hylleraas method,the variation of nonlinear parameters is very primitiveand nona

urate. Moreover, it is impossible to vary thenonlinear parameters in ea
h Hylleraas basis fun
tion.Also, the nonlinear parameters in radial basis fun
tionsused with the se
ond spin 
on�guration 
annot be var-ied as real independent parameters. If these problemswith the Hylleraas basis set 
an be �xed, then, proba-bly, the gap observed for 
onvergen
e rates of the twomethods will be restored.On the other hand, in some re
ent 
al
ulations, theHylleraas basis set in
luded very large (� 3500) [31℄and extremely large (N � 10:000) [29℄ numbers of ra-dial basis fun
tions. The a

ura
y of su
h 
omplex 
al-
ulations is obviously better than our 
urrent a

ura
ya
hieved with only 700�800 (di�erent) basis fun
tions.However, we note that the area of appli
ations for theHylleraas basis set is very restri
ted. It 
annot be used,in prin
iple, for arbitrary four-body system, e. g., forbi-positronium Ps2, the dt�� mole
ule and/or the 1H2mole
ule. Our variational expansion based on Eq. (3)works su

essfully for an arbitrary four-body system.By using our 
ompa
t and a

urate wave fun
tionsdetermined in this study, we have obtained the nu-meri
al values of some atomi
 properties that 
an bemeasured in modern experiments. In parti
ular, for allthree-ele
tron systems mentioned in this work, we eval-uate the �eld 
omponent of the total isotopi
 shift. Thehyper�ne stru
ture splittings for the ground (doublet)12S states are also determined numeri
ally for nu
leithat have a nonzero nu
lear spin. An analyti
 formulafor the Q�1 expansion is derived to represent the totalenergies of the three-ele
tron atomi
 systems.We note that our 
urrent pro
edure 
an easily begeneralized to the four-ele
tron atomi
 systems (atomsand ions). The trial wave fun
tions 
onstru
ted forthe ground 11Se states in the four-ele
tron atoms/ions
ontain two independent spin 
on�gurations [31℄�1 = ���� + ���� � ���� � ����;�2 = 2����+2������������������������:Our 
urrent variational energy of the ground state inthe O4+ ion 
omputed with 700 radial basis fun
tions(400 + 300) is �68:411508315 a.u. This energy ismu
h better than the value obtained in [33℄. Thegeneralization of our method to the P -, D-, F -, and676
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t variational wave fun
tions : : :other bound states with L � 1 in the three- and four-ele
tron atomi
 systems is straightforward. However,highly a

urate 
omputations of the ground doublet2P1=2 and 2P3=2 states of the �ve-ele
tron B atom isnot an easy task due to a very 
omplex permutationsymmetry of the �ve-ele
tron wave fun
tion. But, inprin
iple, our 
omputer 
odes work for an arbitrarysix-body system, and hen
e there appears to be nobarrier to the appli
ation of this approa
h to the Batom.It is a pleasure to a
knowledge the Natural S
ien
esand Engineering Resear
h Coun
il of Canada for �nan-
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