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�ERENKOV RADIATION OF A SPINNING PARTICLEI. B. Khriplovi
h *Budker Institute of Nu
lear Physi
sSiberian Bran
h of Russian A
ademy of S
ien
es630090, Novosibirsk, RussiaNovosibirsk University630090, Novosibirsk, RussiaRe
eived August 11, 2008We 
onsider the �erenkov radiation of a neutral parti
le with magneti
 moment, and the spin-dependent 
on-tribution to the �erenkov radiation of a 
harged spinning parti
le. The 
orresponding radiation intensity isobtained for an arbitrary value of spin and for an arbitrary spin orientation with respe
t to velo
ity.PACS: 01.55.+b, 41.60.Bq1. The problem of �erenkov radiation of a neutralparti
le with magneti
 moment, moving in a mediumwith the refra
tive index n with a velo
ity v > 
=n,was 
onsidered previously in Refs. [1�6℄. The mag-neti
 dipole was modeled therein 
lassi
ally, either bya loop with a 
urrent or by a magneti
 monopole�antimonopole pair. The results thus obtained arerather model dependent, and the 
on
lusion made inRef. [6℄ is that the situation with the problem of�erenkov radiation by a magneti
 moment is not en-tirely 
lear.In the present work, the problem is addressed asfollows. A spinning parti
le, 
harged or neutral, withmagneti
 moment is treated as a point-like parti
le,i. e., is des
ribed by a well-lo
alized wave pa
ket. Asregards the spin s, it has an arbitrary half-integer orinteger value, starting with s = 1=2. In parti
ular, inthe limit s � 1, we arrive at the 
lassi
al internal an-gular momentum and 
lassi
al magneti
 moment. Theresult obtained below for a neutral parti
le with mag-neti
 moment di�ers 
onsiderably from all the previousones. As regards the spin-dependent 
ontribution tothe �erenkov radiation of a 
harged parti
le, the au-thor is not aware of any previous results for it.Certainly, the e�e
ts analyzed here are tiny, toosmall perhaps to be observed experimentally. Hope-fully, however, their investigation is of some theoreti
alinterest.*E-mail: khriplovi
h�inp.nsk.su

2. We start with the ele
tri
 and magneti
 �elds
reated by a point-like neutral parti
le with the mag-neti
 moment esg2m = esg2m�;here and below, g is the g-fa
tor, and � = s=s. Of
ourse, for s = 1=2, ve
tor � 
onsists of the 
ommonspin �-matri
es, and in the 
lassi
al limit s � 1, � isjust a unit ve
tor dire
ted along s. In the parti
le restframe, the four-dimensional 
urrent density isj(rf)� = (0; j(rf)) = esg2m �0;r� �(rf)� Æ(r(rf)): (1)In the laboratory frame, in whi
h we are working, thisLorentz-transformed 
urrent is formally given byj� = �
v(n � j(rf)); j(rf)�n(n � j(rf))+
n(n � j(rf))� ;
 = 1=p1� v2; n = v=v(we set 
 = 1 throughout). Now, we have to pass inj(rf) from the rest-frame 
oordinates r(rf) to the labo-ratory ones: r(rf) = (
(x� vt); y; z) :Under this Lorentz transformation,Æ(r(rf)) = Æ(
(x� vt))Æ(y)Æ(z) == 1
 Æ(x� vt)Æ(y)Æ(z) = 1
 Æ(r� vt):51 4*
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h ÆÝÒÔ, òîì 135, âûï. 1, 2009Besides the overall fa
tor 1=
, the 
omponents of gra-dient transform obviously as follows:r(rf)x Æ(r� vt) = 1
rxÆ(r� vt);r(rf)y;z Æ(r� vt) = ry;zÆ(r� vt):The spin operators �(rf), also entering j(rf), transformthe same as j(rf) itself:� = (�x; �y ; �z) = �(rf)�n(n��(rf))+
n(n��(rf)) == (
�(rf)x ; �(rf)y ; �(rf)z );or �(rf)x = 1
 �x; �(rf)y;z = �y;z:Therefore, in the laboratory frame, the four-dimen-sional 
urrent density 
reated by the magneti
 moment(esg=2m)� is1)jg�(r; t) = esg2m �(�vr); (1�v2)r� �+v(�vr)� �� Æ(r � vt): (2)We note that this 4-
urrent density, as well as the ini-tial rest-frame one (1), is orthogonal to the 4-velo
ityu�: u�j� = 0: This is an extra 
he
k of the above trans-formations. We note also that the 
urrent density (2)
an be 
onveniently rewritten as the sum of two four-
urrents, ea
h of them being 
onserved separately:j1g� (r; t) = esg2m (�vr) (1;v) Æ(r � vt); (3)j2g� (r; t) = esg2m (1� v2) (0;r� �) Æ(r� vt): (4)We are interested in the ba
k-rea
tion of the �eld
reated by 
urrent (2) on the spin of the parti
le. Thisintera
tion isHg = Z drjg�(r� vt)A�(r) == esg2m� �H� 

 + 1 v(v �H)� v �E� ; (5)where both �eld strengths, H and E, are taken at thepoint of spin lo
ation r = vt. This is the usual inter-a
tion of the magneti
 moment of a relativisti
 neutralparti
le with an external ele
tromagneti
 �eld. In the1) Here and below, (�vr) = � � [v �r℄ = [� � v℄ � r, et
.

�nal expression, we a
tually omitted a term propor-tional to the total derivative of the ve
tor potential,dAdt = �A�t + (v � r)A;be
ause a total time derivative in intera
tion does notresult in any observable e�e
ts. Moreover, in thepresent 
ase, the ve
tor potential A, together with the
urrent 
reating it, depends on the 
ombination r� vtonly, and therefore this total derivative vanishes iden-ti
ally.This line of reasoning is generalized easily to the
ase of a 
harged parti
le. For this, we supplement spin
urrent (2) with the following, also 
onserved, 
ontri-bution:jth� (r; t) = �esm 

 + 1(�vr) (1;v) Æ(r� vt): (6)In its turn, this 
urrent generates one more 
ontribu-tion to the spin intera
tion with the ele
tromagneti
�eld:Hth = Z drjth� (r� vt)A�(r) = esm� ����1�1
�H� 

 + 1 v(v �H)� 

+1v �E� ; (7)whi
h des
ribes the well-known Thomas pre
ession. Inthis expression, by the same reasons as above, we alsoomitted a term proportional to the total derivativedA=dt. Finally, from now on, we work with the totalintera
tionH = Hg +Hth = � es2m� ��g � 2 + 2
�H �� (g � 2) 

 + 1 v(v �H)��g � 2

 + 1�v �E� (8)and the total spin 
urrentj�(r; t) = jg�(r; t) + jth� (r; t) = es2m ����g � 2

 + 1� (�vr) (1;v) ++ g(1� v2) (0;r� �)� Æ(r� vt): (9)Hamiltonian (8) not only generates the spin pre-
ession, in
luding of 
ourse the Thomas e�e
t. It alsoprodu
es the relativisti
 Stern�Gerla
h for
eF = �rH: (10)52
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leObviously, this for
e results in the energy loss andtherefore is antiparallel to the velo
ity v of the spin-ning parti
le. Thus, the energy loss per unit time, orthe (positive) radiation intensity, isI = �F � v = (v � r)H: (11)We note here that the �eld strengths H and E, be-ing 
reated by the 
urrent density j�(r; t), depend onthe non
ommuting operators �. Therefore, to guar-antee that expression (11) is Hermitian, we should,stri
tly speaking, properly symmetrize the produ
ts of�-operators therein. In fa
t, however, the �nal result(see (21) below) proves to be Hermitian automati
ally,without extra e�ort.3. The derivation in this se
tion, resulting in gen-eral expression (21) (see below) for the spe
tral inten-sity, essentially follows that used in Ref. [7℄ in the prob-lem of the usual �erenkov radiation.We 
al
ulate the radiation intensity by passingto the Fourier transforms Hk and Ek of the �eldstrengths, de�ned as follows:H(r� vt) = Z d3k exp(ik � (r� vt))Hk;E(r� vt) = Z d3k exp(ik � (r� vt))Ek:For our purpose, the wave ve
tors k are 
onvenientlyde
omposed into the 
omponents parallel to the velo
-ity v and orthogonal to it:k = q+ n!=v; ! = kv; (q � v) = 0:At the position of the point-like sour
e, we then have(vr)H(r = vt) = Z d3k i!Hk == �1v Z d2q 1Z�1 d! !k�Ak; (12)

(vr)E(r = vt) = Z d3ki!Ek == �1v Z d2q 1Z�1 d!!(!Ak � k�k); (13)where �k and Ak are the Fourier transforms of theele
tromagneti
 s
alar and ve
tor potentials.In the generalized Lorenz gaugedivA+ �"̂��t = 0;the wave equations for potentials are"̂���� "̂ �2��t2 � = �4�j0(r� vt) == �4� es2m �g � 2

 + 1� (�vr)Æ(r � vt); (14)�A� "̂ �2A�t2 = �4�j(r� vt) = �4� es2m ����g � 2

 + 1� (�vr)v + g(1� v2)r� ���� Æ(r� vt); (15)where the �diele
tri
 
onstant� "̂ should be understoodas an operator; below, we use its Fourier transform"(!). As regards the permeability �(!), it 
an be putequal to unity for the frequen
ies of interest to us.For the Fourier transforms of the potentials, we nowobtain�k = i2�2 1"(!) es2m �g � 2

 + 1� (vk�)k2 � "(!)!2 == i2�2 1"(!) es2m �g � 2

 + 1��� (vq�)q2 � ["(!)� 1=v2℄!2 ; (16)Ak = i2�2 es2m g(1� v2)[k� �℄ + (g � 2
=(
 + 1))v(vk�)k2 � "(!)!2 == i2�2 es2m g(1� v2)[(q+ n!=v)� �℄ + (g � 2
=(
 + 1))v(vq�)q2 � ["(!)� 1=v2℄!2 : (17)After substituting (16) and (17) in (12) and (13),we note thatZ d2q ! � Z dq2; Z d2q qm ! 0; Z d2q qmqn = 12Æmn� Z dq2q2:We also note that53
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h ÆÝÒÔ, òîì 135, âûï. 1, 20091Z�1 d! !q2q2 � ["(!)� 1=v2℄!2 == 1Z�1 d! !�1 + ["(!)� 1=v2℄!2q2 � ["(!)� 1=v2℄!2� == 1Z�1 d!!3["(!)� 1=v2℄q2 � ["(!)� 1=v2℄!2 :Then the integral over q2 is 
onveniently 
ombined withthe expli
it dependen
e on ! into the following overallfa
tor for the spe
tral intensity:I(!) � f(!) == �iX!3 Z dq2q2 � ["(!)� 1=v2℄!2 : (18)The symbolP in this expression means that we shouldsum over the signs of the frequen
y: both ! = +j!j and! = �j!j 
ontribute to the intensity I(!). All other de-penden
e of the total result on ! is via "(!) only; in ourproblem of the �erenkov radiation, we restri
t ourselfto the frequen
ies 
orresponding to the transparen
yregion, i. e., to real "(!), whi
h is an even fun
tion of!. We now analyze the expressionf(!) = �iX!3 Z dq2q2 � ["(!)� 1=v2℄!2entering result (18). The poles of its integrand ob-viously 
orrespond to the vanishing four-momentumsquared of a photon in the medium. Here, how-ever, we should retain a small imaginary part in "(!):Im "(!) > 0 for ! > 0, and Im "(!) < 0 for ! < 0. Inother words, the poles of the integrand in f(!) tend tothe real axis from above for ! > 0, and from below for! < 0. Therefore, their 
ontributions to the integralare i� and �i�, respe
tively. The real part of the in-tegral is an even fun
tion of ! (together with Re "(!)),and therefore its 
ontributions to the sum f(!) 
an
el.Returning to the poles, their 
ontributions to f(!) arei�!3 and �i�(�!)3 = i�!3, where ! is positive fromnow on. Thus, f(!) = 2�!3;Quite straightforward (although rather tedious)transformations now result in the following expressionsfor (vr)H and (vr)E:

(vr)H(r = vt) = es2m !3d!2v �����? ��g � 2 + 2
��"� 1v2�+ 2g
2v2 � ���k g
2 �"� 1v2�� ; (19)(vr)E(r = vt) = es2m !3d!2v �� ��g � 2

 + 1� 1" �"� 1v2�+ 2g(1� v2) 1v2 ��� [v � �?℄; (20)here and below, �? and �k are the 
omponents of theve
tor �, orthogonal and parallel to the velo
ity v.Substituting these expressions in (8) and (10), weobtain at the �nal general result for the spe
tral inten-sity of �erenkov radiation by a spinning parti
le:I(!)d! = � es2m�2 !3d!2v ("�g � 2 + 2
�2 ���n2(!)� 1v2���g�2+ 2
+1�2�v2� 1n2(!)�++ 2g2
4v2 #�2? + g2
3 �n2(!)� 1v2��2k) : (21)Few remarks on this result are in order.First, the formal singularity of (21) in v shouldnot worry us: anyway, �erenkov radiation o

urs forv � 1=n only. Se
ond, as distin
t from the 
om-mon �erenkov radiation, the 
ontribution to the energyloss due to �? does not vanish here at the thresholdv = 1=n. Finally, it is not exa
tly 
lear at �rst glan
ewhether the stru
ture�g � 2 + 2
�2�n2 � 1v2����g � 2 + 2
 + 1�2�v2 � 1n2�+ 2g2
4v2 (22)at �2? is positive de�nite (as it should be for arbitrary gand 
!). To prove that it is, we note that the dis
ussedquadrati
 fun
tion of g is 
ertainly positive de�nite asg ! 1 for v � 1=n. On the other hand, the dis
rimi-nant d of this quadrati
 form is negative de�nite:d = �4" v2
2 �1� 1n2v2�2 :Therefore, quadrati
 form (22) is indeed positive de�-nite.54
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leOf 
ourse, in the 
ase of a 
harged spinning par-ti
le, the 
ommon �erenkov radiation o

urs as well(and is strongly dominating quantitatively). But don'twe have then some 
ombined e�e
t, a �erenkov-typeradiation of the �rst order in spin? By symmetry rea-sons, it is pra
ti
ally obvious that su
h an e�e
t shouldnot exist, but we present somewhat more quantitativearguments. The e�e
t 
ould arise due to the Lorentzfor
e F = e(E+ v �H);with E and H generated by spin 
urrent density (9).However, the magneti
 
ontribution ev �H to the en-ergy loss �vF vanishes trivially. As regards the 
or-responding ele
tri
 
ontribution �ev � E(r = vt) tothe energy loss, it 
an be demonstrated expli
itly withformulas (16) and (17) that it also vanishes. Equallyexpli
itly, it 
an be demonstrated that the 
ontribu-tion to the energy loss due to Stern�Gerla
h for
e (11),but now with H and E generated by the 
ommon 
on-ve
tion 
urrent j�(r; t) = e(1;v)Æ(r � vt), vanishes aswell.4. In 
on
lusion, we 
onsider some parti
ular 
asesof general result (21).We start with a neutral parti
le with a �nite mag-neti
 moment �. As e! 0, g !1, and � = esg=2m!! 
onst, we obtainI(!)d! = �2!32v d! ��n2 � 1v2 � v2 ++ 1n2 + 2
4v2��2? + 1
3 �n2 � 1v2��2k� : (23)For s = 1=2 (i. e., for the Dira
 neutrino with a massand magneti
 moment), �2? = �2 � �2z = 2 and(� � n)2 = �2z = 1. Therefore, it follows from (23)thatI(!)d! = �2!3v d! ��n2 � 1v2 � v2 + 1n2� ++ 12
3 �n2 � 1v2�+ 2
4v2 � : (24)In the 
lassi
al limit s � 1, radiation intensity (23)be
omesI(!)d! = �2!32v d! ��n2 � 1v2 � v2 ++ 1n2 + 2
4v2� sin2 � + 1
3 �n2 � 1v2� 
os2 �� ; (25)

where � is the angle between the spin and velo
ity.The opposite limit is that of a 
harged parti
le withthe vanishing g-fa
tor. The e�e
t here is �nite and isgiven byI(!)d! = � es2m�2 2!3d!v "�
�1
 �2�n2� 1v2� �� � 

 + 1�2�v2 � 1n2�#�2?: (26)We �nally mention the 
ase g = 2 (appli
able forinstan
e, to an ele
tron if its small anomalous magneti
moment is negle
ted). Here,I(!)d! = � es2m�2 2!3d!v �� 1
2 �n2 � 1v2� �� 1(
 + 1)2 �v2 � 1n2�+ 2
4v2 ��2? ++ 1
3 �n2 � 1v2��2k� : (27)The author is grateful to A. A. Pomeransky for theinterest in the work and extremely useful dis
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