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We consider the Cerenkov radiation of a neutral particle with magnetic moment, and the spin-dependent con-
tribution to the Cerenkov radiation of a charged spinning particle. The corresponding radiation intensity is
obtained for an arbitrary value of spin and for an arbitrary spin orientation with respect to velocity.
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1. The problem of Cerenkov radiation of a neutral
particle with magnetic moment, moving in a medium
with the refractive index n with a velocity v > ¢/n,
was considered previously in Refs. [1-6]. The mag-
netic dipole was modeled therein classically, either by
a loop with a current or by a magnetic monopole—
antimonopole pair. The results thus obtained are
rather model dependent, and the conclusion made in
Ref. [6] is that the situation with the problem of
Cerenkov radiation by a magnetic moment is not en-
tirely clear.

In the present work, the problem is addressed as
follows. A spinning particle, charged or neutral, with
magnetic moment is treated as a point-like particle,
i.e., is described by a well-localized wave packet. As
regards the spin s, it has an arbitrary half-integer or
integer value, starting with s = 1/2. In particular, in
the limit s > 1, we arrive at the classical internal an-
gular momentum and classical magnetic moment. The
result obtained below for a neutral particle with mag-
netic moment differs considerably from all the previous
ones. As regards the spin-dependent contribution to
the Cerenkov radiation of a charged particle, the au-
thor is not aware of any previous results for it.

Certainly, the effects analyzed here are tiny, too
small perhaps to be observed experimentally. Hope-
fully, however, their investigation is of some theoretical
interest,.
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2. We start with the electric and magnetic fields
created by a point-like neutral particle with the mag-
netic moment

esg _ esg
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here and below, g is the g-factor, and o = s/s. Of
course, for s = 1/2, vector & consists of the common
spin o-matrices, and in the classical limit s > 1, o is
just a unit vector directed along s. In the particle rest
frame, the four-dimensional current density is

esg
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In the laboratory frame, in which we are working, this
Lorentz-transformed current is formally given by

jo = (70 509). 5 n(n§) 4mn - §09))

vy=1/\/1-0v%2, n=v/v

(we set ¢ = 1 throughout). Now, we have to pass in
") from the rest-frame coordinates r("f) to the labo-
ratory ones:

r(rf) = (7(56 - ’Ut)7y, Z) .
Under this Lorentz transformation,

3(xl" ) = §(y(x — vt))8(y)d(2)
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Besides the overall factor 1/7, the components of gra-
dient transform obviously as follows:

VI —vt) = %Vﬁ(r — i),

Ve — vt) =V, .6(r — vt).

Y,

The spin operators o"f) also entering j"/), transform
the same as j("/) itself:

o =(04.04.0:) =" —nmo)+m(no)) =
= (’yaérf) ) o.;rf) 3 a'grf))a
or

1
ol =0, o

Therefore, in the laboratory frame, the four-dimen-
sional current density created by the magnetic moment
(esg/2m)o is")

e

Jja(r,t) = 2?5 ((ovV), (1-v*)V x o+v(ovV)) x

x 0(r —vt). (2)

We note that this 4-current density, as well as the ini-
tial rest-frame one (1), is orthogonal to the 4-velocity
Uq: UgJo = 0. Thisis an extra check of the above trans-
formations. We note also that the current density (2)
can be conveniently rewritten as the sum of two four-
currents, each of them being conserved separately:

J ) = SHevY) (L) s —vt).  (3)
729(r,t) = %(1 —0)(0,V xa)d(x—vt). (4)

We are interested in the back-reaction of the field
created by current (2) on the spin of the particle. This
interaction is

Hy = [ it = vi)4u(e) =

Y gl -
+1
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viv-H) —vxE|, (5

where both field strengths, H and E, are taken at the
point of spin location r = vt. This is the usual inter-
action of the magnetic moment of a relativistic neutral
particle with an external electromagnetic field. In the

1) Here and below, (ovV) =0 - [v x V] = [o x v] - V, etc.

final expression, we actually omitted a term propor-
tional to the total derivative of the vector potential,
% = 6(9_1? +(v-V)A,

because a total time derivative in interaction does not
result in any observable effects. Moreover, in the
present case, the vector potential A, together with the
current creating it, depends on the combination r — vt
only, and therefore this total derivative vanishes iden-
tically.

This line of reasoning is generalized easily to the
case of a charged particle. For this, we supplement spin
current (2) with the following, also conserved, contri-
bution:

-th es vy
r,t) = —— ——(ovV) (1,v)d(r — vt). 6
Jo (r,1) m’*y—}—l( ) (1,v)6( ). (6)
In its turn, this current generates one more contribu-
tion to the spin interaction with the electromagnetic

field:

1 gl gl
X |:<].—;> H—7+1V(VH)—mVXE N (7)

which describes the well-known Thomas precession. In
this expression, by the same reasons as above, we also
omitted a term proportional to the total derivative
dA/dt. Finally, from now on, we work with the total
interaction

2
H:Hg—}—ch:—%a[(g—Q—}—;)H—

-(9-2)

v (-2 )enn]

and the total spin current

Ja(r.t) = jh(r,t) + i e t) =
x {<g - %) (ovV) (1,v) +

+ g(1 =) (0,V x o) } d(r—vt). (9)

Hamiltonian (8) not only generates the spin pre-
cession, including of course the Thomas effect. It also
produces the relativistic Stern—Gerlach force

F=_VH. (10)
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Obviously, this force results in the energy loss and
therefore is antiparallel to the velocity v of the spin-
ning particle. Thus, the energy loss per unit time, or
the (positive) radiation intensity, is

I=-F -v=(v-V)H. (11)

We note here that the field strengths H and E, be-
ing created by the current density j,(r,t), depend on
the noncommuting operators . Therefore, to guar-
antee that expression (11) is Hermitian, we should,
strictly speaking, properly symmetrize the products of
o-operators therein. In fact, however, the final result
(see (21) below) proves to be Hermitian automatically,
without extra effort.

3. The derivation in this section, resulting in gen-
eral expression (21) (see below) for the spectral inten-
sity, essentially follows that used in Ref. [7] in the prob-
lem of the usual Cerenkov radiation.

We calculate the radiation intensity by passing
to the Fourier transforms Hy and Eix of the field
strengths, defined as follows:

H(r — vit) = /d3k exp(ik - (r — vt))Hy,

E(r—vt) = /d3k exp(ik - (r — vt))Ey.

For our purpose, the wave vectors k are conveniently
decomposed into the components parallel to the veloc-
ity v and orthogonal to it:

k=q+nw/v, w=kv, (q-v)=0.

At the position of the point-like source, we then have

1 o0
=——/d2q/dwo.)k><Ak7 (12)

v

Ay

(VW)E(r =vi) = /dskink =

= —%/d2q / dww(wAx — kok), (13)

where ¢ and Ay are the Fourier transforms of the
electromagnetic scalar and vector potentials.
In the generalized Lorenz gauge

divA—l—% =0,

the wave equations for potentials are

82
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AA _6W = —47TJ(I' —Vt) = —471'% X
X {(g - 2—7> (vV)v + g(1 —v?*)V x cr} X
v+1

x d(r —vt), (15)

where the “dielectric constant” & should be understood
as an operator; below, we use its Fourier transform
e(w). As regards the permeability u(w), it can be put
equal to unity for the frequencies of interest to us.

For the Fourier transforms of the potentials, we now
obtain

o (o ) e
kT o (W) 2m g v4+1) k? —e(w)w?

L 27
Tz cw) 2m YT 1
(vqo)

R Em R

i es g(l—v)k x 0]+ (9= 29/(v+ 1)) v(vko)

T 272 om E? — e(w)w?

i es g(l-v)[(@+nw/v)xa]+(9-29/(y+1))v(vas)

" 272 2m

After substituting (16) and (17) in (12) and (13)
we note that

/qu—Hr/dqQ, /quqm—H),

3

¢ — [e(w) — 1/v2]w? (17)

1
/quqmqn = §6mn7r/dq2q2~

We also note that
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the explicit dependence on w into the following overall
factor for the spectral intensity:

I(w) ~ f(w)

=i /q -

The symbol 3 in this expression means that we should
sum over the signs of the frequency: both w = +|w| and
w = —|w| contribute to the intensity I(w). All other de-
pendence of the total result on w is via e(w) only; in our
problem of the Cerenkov radiation, we restrict ourself
to the frequencies corresponding to the transparency
region, i.e., to real e(w), which is an even function of
w.

dq?

(w) = 1/v?]w?

(18)

We now analyze the expression

i) /q > = [e(

entering result (18). The poles of its integrand ob-
viously correspond to the vanishing four-momentum
squared of a photon in the medium. Here, how-
ever, we should retain a small imaginary part in e(w):
Ime(w) > 0 for w > 0, and Ime(w) < 0 for w < 0. In
other words, the poles of the integrand in f(w) tend to
the real axis from above for w > 0, and from below for
w < 0. Therefore, their contributions to the integral
are im and —im, respectively. The real part of the in-
tegral is an even function of w (together with Ree(w)),
and therefore its contributions to the sum f(w) cancel.
Returning to the poles, their contributions to f(w) are
imw? and —in(—w)? = inw?, where w is positive from
now on. Thus,

dq?
w) — 1/v?]w?

flw) = 2m0?,

Quite straightforward (although rather tedious)
transformations now result in the following expressions
for (vV)H and (vV)E

54

x[vxeol], (20)

here and below, o, and o are the components of the
vector o, orthogonal and parallel to the velocity v.

Substituting these expressions in (8) and (10), we
obtain at the final general result for the spectral inten-
sity of Cerenkov radiation by a spinning particle:

I(W)dwz(ﬁ) {l(g—?—l—%)Z X

) i)
gz (nZ(w) - v%) af} (21)

2
+_
Ty

2 w3dw
2v

Few remarks on this result are in order.

First, the formal singularity of (21) in v should
not worry us: anyway, Cerenkov radiation occurs for
v > 1/n only. Second, as distinct from the com-
mon Cerenkov radiation, the contribution to the energy
loss due to o does not vanish here at the threshold
v = 1/n. Finally, it is not exactly clear at first glance
whether the structure

2\° 1
s (-2)-
i v
2 \? 1 2g°
— —94 = 2_ =
(1-2+55) (=5)+ 3%

at o2 is positive definite (as it should be for arbitrary g
and v!). To prove that it is, we note that the discussed
quadratic function of g is certainly positive definite as
g — oo for v > 1/n. On the other hand, the discrimi-
nant d of this quadratic form is negative definite:

2 1 2
d=—1:%; (1__> |

n2v?
Therefore, quadratic form (22) is indeed positive defi-
nite.

(22)
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Of course, in the case of a charged spinning par-
ticle, the common Cerenkov radiation occurs as well
(and is strongly dominating quantitatively). But don’t
we have then some combined effect, a Cerenkov-type
radiation of the first order in spin? By symmetry rea-
sons, it is practically obvious that such an effect should
not exist, but we present somewhat more quantitative
arguments. The effect could arise due to the Lorentz
force

F=¢(E+vxH),

with E and H generated by spin current density (9).
However, the magnetic contribution ev x H to the en-
ergy loss —vF vanishes trivially. As regards the cor-
responding electric contribution —ev - E(r = vt) to
the energy loss, it can be demonstrated explicitly with
formulas (16) and (17) that it also vanishes. Equally
explicitly, it can be demonstrated that the contribu-
tion to the energy loss due to Stern—Gerlach force (11),
but now with H and E generated by the common con-
vection current j,(r,t) = e(1,v)d(r — vt), vanishes as
well.

4. In conclusion, we consider some particular cases
of general result (21).

We start with a neutral particle with a finite mag-
netic moment . Ase — 0, g — oo, and yu = esg/2m —
— const, we obtain

2,.3
Hw 2 1 2
I(w)dw = d - — =
(w)dw 5y w[(n 2 v +
1 2 9 1 9 1 9
+F+W>0’L+$<n—v—2>0’|:|. (23)

For s = 1/2 (i.e., for the Dirac neutrino with a mass

and magnetic moment) = o’ 2 2 and

2

» O o° — 0;
(0 -n)? = 02 = 1. Therefore, it follows from (23)
that

z
1 1
do|(n®— = -0+ = | +
v v2 n?

1/, 1 2
o () ] e
In the classical limit s > 1, radiation intensity (23)
becomes
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where 6 is the angle between the spin and velocity.
The opposite limit is that of a charged particle with
the vanishing g-factor. The effect here is finite and is

given by
-G =R () (5) -
() (g oo

We finally mention the case g = 2 (applicable for
instance, to an electron if its small anomalous magnetic
moment is neglected). Here,

Iw)dw

es \2 2w3dw 1 , 1

1 N 1 2 N
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