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BOUND STATES AND SCATTERING LENGTHS OF THREETWO-COMPONENT PARTICLES WITH ZERO-RANGEINTERACTIONS UNDER ONE-DIMENSIONAL CONFINEMENTO. I. Kartavtsev a, A. V. Malykh a*, S. A. So�anos baJoint Institute for Nulear Researh141980, Dubna, RussiabUniversity of South Afria0003, Pretoria, South AfriaReeived August 19, 2008The universal three-body dynamis in ultraold binary gases on�ned to one-dimensional motion is studied. Thethree-body binding energies and the (2 + 1)-sattering lengths are alulated for two idential partiles of massm and a di�erent partile of mass m1, whose interation is desribed in the low-energy limit by zero-range po-tentials. The ritial values of the mass ratio m=m1 at whih three-body states our and the (2+1)-satteringlength vanishes are determined for both zero and in�nite interation strength �1 of the idential partiles. Anumber of exat results are listed and asymptoti dependenes for both m=m1 ! 1 and �1 ! �1 arederived. Combining the numerial and analyti results, we dedue a shemati diagram showing the number ofthree-body bound states and the sign of the (2 + 1)-sattering length in the plane of the mass ratio and theinteration-strength ratio. The results provide a desription of the homogeneous and mixed phases of atomsand moleules in dilute binary quantum gases.PACS: 31.15.a, 03.65.Ge, 34.50.-s1. INTRODUCTIONDynamis of few partiles on�ned in low dimen-sions is of interest in onnetion with numerous inves-tigations ranging from atoms in ultraold gases [1�7℄to nanostrutures [8�10℄. Experiments with ultraoldgases in the one-dimensional (1D) and quasi-1D trapshave reently been performed [1; 11�13℄, motivated bythe rapidly growing interest in the investigation of mix-tures of ultraold gases [14�20℄. Di�erent aspets of thethree-body dynamis in one dimension have been an-alyzed in a number of reent papers, e. g., the bound-state spetrum of two-omponent ompound in [21℄,low-energy three-body reombination in [22℄, applia-tion of the integral equations in [23℄, and variants ofthe hyperradial expansion in [24�26℄.We emphasize that the exat solutions are knownfor an arbitrary number of idential partiles with on-*E-mail: maw�theor.jinr.ru

tat interation in one dimension [27; 28℄; in partiular,it was found that the ground-state energy EN of N at-trating partiles sales as EN=EN=2 = N(N2 � 1)=6.There is a vast literature in whih the exat solution isused to analyze di�erent properties of few- and many-body systems; several examples of this approah anbe found in Refs. [29�32℄.The main parameters haraterizing the multiom-ponent ultraold gases, i. e., the masses and intera-tion strengths, an be easily tuned within wide rangesin the modern experiments, whih deal with di�erentompounds of ultraold atoms and adjust the two-bo-dy sattering lengths to arbitrary values by using theFeshbah-resonane and on�nement-resonane teh-nique [33℄. Under properly hosen sales, all the prop-erties of the system depend on two dimensionless pa-rameters, i. e., the mass ratio and the interation-strength ratio, the most important harateristis be-ing the bound-state energies and the (2 + 1)-satte-ring lengths. In partiular, knowledge of these ha-419



O. I. Kartavtsev, A. V. Malykh, S. A. So�anos ÆÝÒÔ, òîì 135, âûï. 3, 2009rateristis is essential for desribing the onentra-tion dependene and phase transitions in dilute two-omponent mixtures of ultraold gases.In this paper, the two-omponent three-body sys-tem onsisting of a partile of mass m1 and two identi-al partiles of mass m interating via a ontat (Æ-funtion) inter-partile potential is studied. In thelow-energy limit, the ontat potential is a good ap-proximation for any short-range interation and its useprovides a universal, i. e., independent of the potentialform, desription of the dynamis [23; 26; 34�37℄. Morespei�ally, it is assumed that one partile interatswith the other two via an attrative ontat intera-tion of strength � < 0, and the sign of the interationstrength �1 for the idential partiles is arbitrary. Thishoie of the parameters is onditioned by the inten-tion to onsider a su�iently rih three-body dynamis(three-body bound states exist only if � < 0).Most of the numerial and analyti results an beobtained by solving a system of hyperradial equations(HREs) [38℄. It is important that all the terms inHREs are derived analytially; the derivation methodand the analyti expressions are similar to those ob-tained in a number of problems with zero-range inter-ations [26; 36; 37℄. To desribe the dependene on themass ratio and interation-strength ratio for the three-body binding energies and the (2+1)-sattering length,the two limit ases �1 = 0 and �1 ! 1 are onsid-ered and the preise ritial values of m=m1 for whihthe three-body bound states our and the (2 + 1)-sattering length vanishes are determined. Combiningthe numerial alulations, exat analyti results, qual-itative onsiderations, and the dedued asymptoti de-pendenes, we produe a shemati phase diagram thatshows the number of the three-body bound states andthe sign of the (2 + 1)-sattering lengths in the planeof the parameters m=m1 and �1=j�j. This sign is im-portant in studying the stability of mixtures ontainingboth atoms and diatomi moleules.This paper is organized as follows. In Se. 2, theproblem is formulated, the relevant notation is intro-dued, and the method of �surfae� funtions is de-sribed; the analyti solutions, numerial results, andasymptoti dependenes are presented and disussed inSe. 3; onlusions are given in Se. 4.2. GENERAL OUTLINE AND THE METHODThe Hamiltonian of three partiles on�ned in onedimension and interating through the pairwise ontatpotentials with strengths �i is given by

H = �Xi ~22mi �2�x2i +Xi �iÆ(xjk); (1)where xi and mi are the oordinate and mass of theith partile, xjk = xj �xk, and fijkg is a permutationof f123g. To study the aforementioned two-omponentthree-body systems, we assume that partile 1 interatswith two idential partiles 2 and 3 through attrativepotentials and set m2 = m3 = m and �2 = �3 � � < 0for simpliity. The orresponding solutions are lassi-�ed by their parity and are symmetri or antisymmetriunder the permutation of idential partiles, depend-ing on whether these partiles are bosons or fermions.The even (odd) parity solutions are denoted by P = 0(P = 1).In what follows, the dependenes of the three-bodybound-state energies and the (2+1)-sattering lengthson two dimensionless parameters m=m1 and �1=j�j areinvestigated. Hereafter, we set ~ = j�j = m = 1,and therefore m�2=~2 and ~2=mj�j are the unitsof energy and length. Furthermore, we let A andA1 denote the respetive sattering lengths for theollision of the third partile with the bound pairof di�erent and idential partiles. The satteringlength is onsidered at the lowest two-body thresh-old, whih orresponds to determination of A if�1=j�j > �p2=(1 +m=m1) and A1 otherwise. Withthe hosen units, Eth = �1=2(1 + m=m1) andE0th = ��21=4 are two-body thresholds, i. e., the re-spetive bound-state energies of two di�erent and twoidential partiles.The binding energy and the sattering length aremonotoni funtions of the interation strength, andtherefore muh attention is given to alulations in twolimit ases of zero (�1 = 0) and in�nite (�1 ! 1) in-teration between idential bosons. It is interesting toreall here that due to the one-to-one orrespondeneof the solutions [39℄, all the results derived for systemsin whih the idential partiles are bosons and �1 !1are appliable to systems in whih the idential parti-les are fermions and the s-wave interation betweenthem is zero (�1 = 0) by de�nition.The numerial and analyti results are mostlyobtained by solving a system of HREs [38℄ wherethe various terms are derived analytially [26; 36; 37℄.The HREs are written using the enter-of-massoordinates � and �, whih are expressed via thesaled Jaobi variables as � sin� = x2 � x3 and� os� = (2x1 � x2 � x3) tg! given the kine-mati rotation angle ! = artgp1 + 2m=m1, withEth = � os2 !. The total wave funtion is expandedas in papers [24�26; 37℄,420



ÆÝÒÔ, òîì 135, âûï. 3, 2009 Bound states and sattering lengths : : :	 = 1p� 1Xn=1 fn(�)�n(�; �); (2)with respet to a set of funtions �n(�; �) satisfyingthe equation � �2��2 + �2��n(�; �) = 0 (3)at �xed �, supplemented by the ondition��n(�; �)�� �����=!+0�=!�0 + 2� os!�n(!; �) = 0; (4)whih represents the ontat interation between di�er-ent partiles [26; 35; 37; 40℄. Taking the symmetry re-quirements into aount, we an onsider the variable� in the range 0 � � � �=2 and impose the boundaryonditions�(1� P ) ��n�� + P�n��=�=2 = 0 ; (5)�(1� T ) ��n�� + T�n��=0 = 0 ; (6)where P = 0 (P = 1) for even (odd) parity and T = 0(T = 1) for �1 = 0 (�1 ! 1). These boundary ondi-tions are imposed if two idential partiles are bosons,but the ase T = 1 is equally appliable if two identialpartiles are noninterating (�1 = 0) fermions.The solution of Eq. (3) satisfying boundary ondi-tions (5) and (6) an be written as�n(�; �) = Bn ��8>>>>>>>>><>>>>>>>>>:
os��n �!��2 ��P�2 � os��n��T�2 � ;� � !;os��n!�T�2 � os��n ����2��P�2 � ;� � !; (7)where the normalization onstant is given byB2n = ��2 os2 ��n �! � �2�� P�2 � �� os2 ��n! � T�2 � os!��1 d�2nd� : (8)To meet ondition (4), the eigenvalues �n(�) must sat-isfy the equation2� os! os[�n!�(�n+P )�=2℄ os(�n!�T�=2)++ �n sin[(�n + P � T )�=2℄ = 0: (9)

We note that the ase P = 1 and T = 0 is formallyequivalent to the ase P = 0 and T = 1 under thereplaement of ! with �=2� !.The expansion of the total wave funtion (2) leadsto an in�nite set of oupled HREs for the radial fun-tions fn(�),� d2d�2 � �2n(�)� 1=4�2 +E� fn(�)�� 1Xm=1 �Pmn(�)�Qmn(�) dd� � dd�Qmn(�)��� fm(�) = 0: (10)Using the method desribed in Refs. [26; 36; 37℄, we anderive analyti expressions for all the terms in Eq. (10),Qnm(�) � h�n �� �0mi = p"0n"0m"m � "n ; (11)Pnm(�) � h�0n �� �0mi == 8>>>>>>><>>>>>>>: Qnm �"0n + "0m"m � "n + 12 �"00n"0n � "00m"0m�� ;n 6= m;�16 "000n"0n + 14 �"00n"0n�2 ; n = m; (12)where "n = �2n and the prime denotes derivative withrespet to �.The obvious boundary ondition for HREs (10),fn(�) ! 0 as � ! 0 and � ! 1, was used in solv-ing the eigenvalue problem. To alulate the satteringlength A, we should impose the asymptoti boundaryondition for the �rst-hannel funtionf1(�) � � sin! �A: (13)All other boundary onditions remain the same as forthe eigenvalue problem. Condition (13) follows fromthe asymptoti form of the threshold-energy wave fun-tion as � ! 1, whih tends to the two-body bound-state wave funtion times a funtion desribing the rel-ative motion of the third partile and the bound pair.The linear dependene of the latter funtion at largedistane between the third partile and the bound pairleads to asymptoti expression (13) for the �rst-hannelfuntion in expansion (2). On the other hand, expres-sion (13) is onsistent with the asymptoti solution ofthe �rst-hannel equation in (10), in whih the long-range terms P11(�) and �1=4�2 anel eah other atlarge �.421



O. I. Kartavtsev, A. V. Malykh, S. A. So�anos ÆÝÒÔ, òîì 135, âûï. 3, 20093. RESULTS3.1. Exat solutionsThere are several examples where an analyti solu-tion of the Shrödinger equation for the systems underonsideration an be obtained. First, for a system on-taining one heavy and two light partiles (in the limitm=m1 ! 0), using the separation of variables, the so-lutions an be straightforwardly written for both zeroand in�nite interation strength between the light par-tiles. In partiular, for �1 = 0, there is a single boundstate with the binding energy E3 = �1 and the (un-normalized) wave funtion is	b = exp (�jx12j � jx13j) ; (14)and the sattering wave funtion at the threshold en-ergy Eth = �1=2 is	s = (jx12j � 1) exp(�jx13j) ++ (jx13j � 1) exp(�jx12j); (15)whih gives the (2 + 1)-sattering length A = 1. Onthe other hand, for �1 ! 1, the three-body systemis not bound, and the sattering wave funtion at thethreshold energy Eth = �1=2 is	s = jx12 exp(�jx13j)� x13 exp(�jx12j)j; (16)whih gives A = 0.Furthermore, as mentioned in the Introdution, theexat solution is known for an arbitrary number N ofidential partiles with ontat interations in one di-mension [27; 28℄, and if the interation is attrative,then there is a single bound state, whose energy equalsEN = �N(N2 � 1)=24. In partiular, for three identi-al partiles (m = m1 and �1 = �), there is only onebound state with the energy E3 = �1, and the (unnor-malized) wave funtion is	b = exp0��12 Xi<j jxij j1A ; (17)and the exat sattering wave funtion at the two-bodythreshold Eth = E0th = �1=4 is	s =Xi<j exp��12 jxij j��� 4 exp0��14Xi<j jxij j1A ; (18)

whih implies that the (2 + 1)-sattering length is in-�nite, jAj ! 1, i. e., there is a virtual state at thetwo-body threshold [24℄.Further exat results an be obtained by using theabove orrespondene of the three-body solutions forthe in�nite interation strength (�1 !1) between twoidential bosons and for two noninterating fermions(�1 ! 0). For example, for three equal-mass partiles(m = m1), the exat wave funtion at the two-bodythreshold (Eth = �1=4) is given by	s == 8>>>>>><>>>>>>: exp��x132 �+ exp�x122 ���2 exp��x232 � ; x13 � 0;���exp�x132 �� exp�x122 ���� ; x13 � 0: (19)As follows from (19), the (2+1)-sattering length is in-�nite; as a matter of fat, this implies a rigorous proofof the onjeture in [21℄ that m = m1 is the exat riti-al value for the emergene of a three-body bound statein the ase of in�nite repulsion (�1 !1) between twoidential bosons.It is worthwhile to reall the exat solution for threeequal-mass partiles (m = m1) if the interation be-tween two of them is turned o� (�1 = 0) [41℄. A tran-sendental equation was derived for the ground-stateenergy, whose approximate solution gives the ratio ofthree-body and two-body energies E3=Eth � 2:08754.3.2. Numerial alulationsFor even-parity states (P = 0) and the two limitvalues of the interation strength between identialbosons, �1 = 0 and �1 ! 1, HREs (10) are solvedto determine the mass-ratio dependene of three-bodybinding energies and the (2 + 1)-sattering length A.The alulations show a su�iently fast onvergene asthe number of hannels inreases; 15-hannel results arepresented in Fig. 1. The preise ritial values of themass ratio value at whih the three-body bound statesarise (jAj ! 1) and the (2+1)-sattering length A = 0are presented in the Table and are marked by rossesin Figs. 1 and 3. The ondition that the ground-stateenergy is twie the threshold energy is important be-ause it determines whether prodution of the triatomimoleules is possible in a gas of diatomi moleules.The mass ratio value at whih E3=Eth = 2 is deter-mined to be m=m1 � 49:8335 as �1 ! 1; for theexited states, the ondition E3=Eth = 2 is satis�ed for422
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Fig. 1. Mass-ratio dependenes for the even-parity states; shown are the ratio of the three-body bound-state energies to thetwo-body threshold energy (a) and the (2+1)-sattering length A (b). Presented are the alulations for a system ontainingtwo idential bosons with zero (solid lines) and in�nite (dash-dotted lines) interation strength �1. The dash-dotted linesalso represent the results for a system ontaining two idential noninterating (�1 = 0) fermions. Enirled are the pointsat whih the exat analyti solution is knownTable. The even-parity ritial values of the mass ratio m=m1 at whih the (2 + 1)-sattering length beomes zero(marked by A = 0) and the nth three-body bound state arises (marked by jAj ! 1). Calulations are done for twovalues of the interation strength between the idential partiles, �1 = 0 and �1 !1�1 = 0 �1 !1n m=m1(A = 0) m=m1(jAj ! 1) m=m1(A = 0) m=m1(jAj ! 1)1 � � 0� 1�2 0.971 2.86954 5.2107 7.37913 9.365 11.9510 16.1197 19.02894 22.951 26.218 32.298 35.8795 41.762 45.673 53.709 57.9236 65.791 70.317 80.339 85.1597 95.032 100.151 112.179 117.5838 129.477 135.170 149.222 155.1939 169.120 175.374 191.463 197.98910 213.964 220.765 238.904 245.973� Exat.m=m1 � 130:4516 if �1 = 0 and m=m1 � 266:1805 if�1 !1.As is shown in Fig. 1, the binding energies inreasewith inreasing the mass ratio, whereas the satteringlength A has a general trend to derease with inreasingthe mass ratio on eah interval between two onseutiveritial mass ratios at whih the bound states appear.
Nevertheless, the alulations for �1 = 0 show thatA(m=m1) beomes a nonmonotoni funtion at smallm=m1. More preisely, the sattering length takes amaximum value A � 1:124 at m=m1 � 0:246. We noteagain that the mass-ratio dependene of the energy andsattering length (plotted in Fig. 1) and the ritial val-ues of the mass ratio (presented in the Table) are the423



O. I. Kartavtsev, A. V. Malykh, S. A. So�anos ÆÝÒÔ, òîì 135, âûï. 3, 2009same both for the three-body system ontaining twoidential bosons as �1 !1 and for the three-body sys-tem ontaining two idential noninterating (�1 = 0)fermions.It is interesting to note that the alulated bind-ing energy E3=Eth � 2:087719 for three equal-masspartiles (m = m1) if two idential ones do not in-terat with eah other (�1 = 0) is very lose to theresult E3=Eth � 2:08754 obtained in [41℄ from an an-alyti transendental equation (see Se. 3.1). A smalldisrepany most probably stems from the approxima-tions made in numerial solution of the transendentalequation in [41℄. The (2+1)-sattering length turns outto be small and negative, A � �0:09567, for m = m1and �1 = 0 and takes a zero value at a slightly smallermass ratio m=m1 � 0:971 (see Table).Analogously, the odd-parity (P = 1) solutions forthe three-body system ontaining two idential nonin-terating bosons (�1 = 0) were obtained. As followsfrom Eq. (9), the eigenvalues �n(�) entering HREs (10)are nonnegative, whih implies that there are no three-body bound states. The alulated dependene of thesattering length A is shown in Fig. 2; A inreasesmonotonially with inreasing the mass ratio followingthe asymptoti dependene disussed in Se. 3.3.3.3. Asymptoti dependenes3.3.1. Large attrative interation of twoidential partilesIn the limit of large attrative interation betweenthe idential partiles, �1 ! �1, the even-parity wavefuntion takes, with a good auray, the fatored form	 = �0(x23)u(y), y = (2x1 � x2 � x3) tg!, where�0(x) =pj�1j=2 exp(�j�1xj=2) is the wave funtion ofthe tightly bound pair of idential partiles with theenergy E0th = ��21=4, and u(y) desribes the relativemotion of a di�erent partile 1 with respet to thispair. Within this approximation, u(y) is a solution ofthe equation� d2dy2+2j�1j exp��r1+2mm1 j�1yj�+�214 +E��� u(y) = 0; (20)whih gives the �1-independent leading-order terms inthe asymptoti expansion of the three-body binding en-ergy " � 4=(1 + 2m=m1) and the (2 + 1)-satteringlength A1 � 14 �1 + 2mm1� : (21)

3.3.2. One light and two heavy partilesFor a large mass ratio m=m1, we an use the adia-bati and semilassial approximations, whih providea universal desription of the energy spetrum [40℄. Todesribe the three-body properties in the limit of largem=m1 ! 1 (! ! �=2 �pm1=2m), we onsider the�rst eigenvalue �1(�) � i�(�), whose large-� asymptotidependene is approximately given by� os! = �1 + (�1)P e��(��2!) ; (22)as follows from Eq. (9) for the system ontaining twoidential bosons for both �1 = 0 and �1 = 1 and,equivalently, for the system ontaining two identialnoninterating fermions.The number n of the three-body even-parity(P = 0) bound states an be determined for largem=m1 using the one-hannel approximation in (10)and the e�etive potential ��2(�)=�2 obtained fromEq. (22). In the framework of the semilassialapproximation, taking the large-� asymptoti de-pendene (22) into aount, we obtain the relationm=m1 � C(n + Æ)2 in the limit of large n and m=m1.The onstant C an be found asC = �22 24 1Z0 p2t+ t2 1 + (1� ln t)t2t(1 + t)2 dt35�2 �� 2:59; (23)where the integral is expressed by setting t == exp[��(� � 2!)℄ in the leading term of thesemilassial estimate,os! 1Z0 d��h(1 + e�(�)(��2!)i2 � 1�1=2 = �n: (24)Fitting the alulated mass-ratio dependene of theritial values at whih the bound states appear to then-dependene C(n + Æ)2 (up to n = 20, see the Ta-ble for 10 lowest values), we obtain C � 2:60 for both�1 !1 and �1 = 0, in good agreement with semilas-sial estimate (23). Simultaneously, we obtain Æ = 0:73if �1 ! 1 and Æ = 0:22 if �1 = 0 for the parameterthat determines the next-to-leading-order term of thelarge-n expansion.The asymptoti dependene of the e�etive poten-tial ��2(�)=�2 obtained from Eq. (22) allows �ndingthe leading-order mass-ratio dependene of the odd-parity (P = 1) sattering length:A = mm1r1 + m12m �ln mm1 + 2� ; (25)424
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Fig. 2. Mass-ratio dependene of the (2+1)-satteringlength A for odd-parity states (P = 1) of a system on-taining two idential noninterating bosons (�1 = 0).The numerial alulation (solid lines) is omparedwith the large-mass-ratio asymptoti behavior given byEq. (25) (dash-dotted lines). The dependene orre-sponding to large A > 15 is shown in the insetwhere  � 0:5772 is the Euler onstant. The on-vergene of the alulated dependene A(m=m1) toasymptoti dependene (25) is shown in Fig. 2 in thease of two idential noninterating bosons (�1 = 0).3.4. Mass-ratio and interation-strength ratiodependenesColleting the numerial and the exat analyti re-sults, the asymptoti expressions, and qualitative argu-ments, we obtain a shemati phase diagram that de-pits the number of three-body bound states and thesign of the (2 + 1)-sattering lengths in the m=m1 ��1=j�j plane (Fig. 3).The plane of parameters is divided into two partsby a dotted line, �1=j�j = �p2=(1 +m=m1), withthe low-energy three-body properties being essentiallydi�erent in the upper and lower parts, where therespetive two-body threshold is determined by thebound-state energy of two di�erent and idential par-tiles. The lines representing the ondition jAj = 1or jA1j = 1 (arising for the three-body bound state)separate areas with di�erent numbers of bound states,and the ondition A = 0 or A1 = 0 splits eah area intotwo parts of di�erent signs of the sattering lengths.It an be proved rigorously that in the upper partof the diagram (above the dotted line), the num-ber n of three-body bound states inreases and the(2+1)-sattering length A dereases as the interationstrength �1 dereases, while in the lower part (below
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Fig. 3. Shemati phase diagram for the even-paritystates of two idential bosons and a di�erent third par-tile. The dotted line marks the border between twoareas where the lowest two-body threshold is set bythe energy of two di�erent and two idential partiles.The number of three-body bound states is marked byn in the orresponding areas separated by solid lines.The sign of the (2 + 1)-sattering lengths A and A1is marked by � and the orresponding areas are sepa-rated by dashed lines. The rosses show the alulatedritial values of the mass ratio (listed in the Table).Enirled are the points at whih the exat analytisolution is knownthe dotted line), n inreases and A1 dereases as themass ratio m=m1 dereases. The proof is based on therepresentation in whih the lowest two-body thresholdis respetively independent of �1 and m1 in the formerand latter ase. The required onlusion follows fromthe monotoni dependene of the Hamiltonian on �1and m1. A shemati phase diagram demonstrated inFig. 3 is drawn by using a striter assumption on thepositive slope of the lines that show where the three-body bound states arise (jAj ! 1) and where the(2+ 1)-sattering lengths vanish (A = 0 and A1 = 0 inthe upper and lower parts of the �1=j�j �m=m1 plane,respetively). Tentatively, this assumption seems toorretly re�et the general trend; nevertheless, we notethat the slope of the isolines of onstant satteringlength is not positive in general. In partiular, A isnot a monotoni funtion of the mass ratio for �1 = 0,as shown in Fig. 2; this implies a nonmonotoni depen-dene of the onstant-A isolines in the viinity of thepoint (m=m1 = 0, �1=j�j = 0).For a su�iently large repulsion �1 and a small massratio m=m1, the three-body bound states do not exist.The limit m=m1 ! 0 (a 1D analogue of the helium425



O. I. Kartavtsev, A. V. Malykh, S. A. So�anos ÆÝÒÔ, òîì 135, âûï. 3, 2009atom with ontat interations between partiles) wasdisussed in [42℄, where the binding energy as a fun-tion of the repulsion strength between light partileswas alulated and the ritial value of the repulsionstrength for whih the three partiles beome unboundwas determined. Reently, a very preise ritial value�1=j�j � 2:66735 was found in [21℄. The boundary ofthe n = 0 area (shown in the upper left orner in Fig. 3)extends from the point (m=m1 = 0, �1=j�j � 2:66735)to the point (m=m1 = 1, �1 !1), as was onjeturedin [21℄ and proved in Se. 3.1 by using the exat solu-tion at the seond of these points. Taking this result,the above-disussed monotoni dependene on �1, andthe exat solution for three idential partiles into a-ount, we ome to an interesting onlusion that thereis exatly one bound state (n = 1) of three equal-masspartiles, irrespetive of the interation strength �1.There is exatly one bound state (n = 1) also for asu�iently large attration between idential partiles,whereas a seond bound state appears for m > m1 andj�1j < 1 (as shown in Fig. 3). Therefore, the satteringlength A1 hanges from the positive value given by (21)at �1 ! �1 to the negative one as �1 inreases. Thestrip areas orresponding to n > 1 are loated at highervalues of the mass ratio with the large-n asymptoti de-pendene n /pm=m1. In eah parameter area orre-sponding to n bound states, the sattering lengths takeall the real values, tending to in�nity at the boundarywith the n�1 area and to minus in�nity at the bound-ary with the n+ 1 area.4. CONCLUSIONThe three-body dynamis of ultraold binary gaseson�ned to 1D motion is studied. In the low-energylimit, the desription is universal, i. e., independent ofthe details of the short-range two-body interations,whih an be taken as a sum of ontat Æ-funtionpotentials. Thus, the three-body energies and the(2 + 1)-sattering lengths are expressed as universalfuntions of two parameters, the mass ratio m=m1 andthe interation-strength ratio �1=j�j. The mass-ratiodependenes of the binding energies and the satteringlength are numerially alulated for even and odd par-ity and the aurate ritial values of the mass ratio atwhih the bound states arise and the sattering lengthvanishes are determined. It is rigorously proved thatm=m1 = 1 is the exat boundary above whih at leastone bound state exists (as onjetured in [21℄); the re-lated onlusion is the existene of exatly one boundstate for three equal-mass partiles independently ofthe interation strength between the idential parti-les. Asymptoti dependenes of the bound-state num-

ber and the sattering length A in the limitm=m1 !1and of the binding energy and the sattering length A1in the limit �1 ! �1 are determined. Based on thenumerial alulations, analyti results, and qualita-tive onsiderations, a shemati diagram is drawn thatshows the number of the three-body bound states andthe sign of the (2 + 1)-sattering length as a funtionof the mass ratio and the interation-strength ratio.The obtained qualitative and quantitative results onthe three-body properties provide a �rm base for thedesription of the equation of state and phase separa-tion in dilute binary mixtures of ultraold gases. In par-tiular, the sign of the (2+1)-sattering lengths essen-tially ontrols the transition between the homogeneousand mixed phases of atoms and diatomi moleules.The ondition E3=Eth > 2 de�nes the parameter areawhere the prodution of the triatomi moleules is en-ergetially favorable in a gas of diatomi moleules.The analysis of the phase diagram in Fig. 3 impliesthat there remain interesting problems deserving fur-ther eluidation. These inlude the problem of the non-monotoni dependene of the onstant-A isolines in the�1=j�j �m=m1 plane, the behavior of the lines separat-ing the positive and negative sattering lengths withinthe n = 1 area, and the desription of the beak formedby the lines separating the n = 1 and n = 2 areasin the viinity of the exat solution for three identialpartiles (�1 = � and m = m1).One should disuss the onnetion of the present re-sults with those that take the �nite interation radiusRe and (quasi)-1D geometry into aount. Finding theorretions due to a �nite interation radius is not atrivial task, but one expets that the orretions shouldbe small for all alulated values if Re=a and Re=a1are small, where a and a1 are the two-body satteringlengths. On the other hand, for su�iently tight trans-verse on�nement, one expets that the main ingredientis the relation between the 3D and quasi-1D two-bodysattering lengths established in [33℄. Moreover, therole of the transverse on�nement does not simply re-due to renormalization of the sattering lengths; thefull-sale three-body alulations are needed to deter-mine the energy spetrum and the sattering data inthe (quasi)-1D geometry.It is worthwhile to mention that more few-bodyproblems are of interest in binary mixtures. In partiu-lar, the low-energy three-body reombination plays animportant role in the kineti proesses, and the elastiand inelasti ross setions for ollisions of either di-atomi moleules or atoms on triatomi moleules areneeded to desribe the properties of moleular om-pounds.426
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