ВЗАИМОСВЯЗЬ СОЛИТОННОЙ РЕШЕТКИ И ЭЛЕКТРИЧЕСКОЙ ПОЛЯРИЗАЦИИ В ОКСИДАХ RMn₂O₅

В. В. Меньшенин*

Институт физики металлов Уральского отделения Российской академии наук 620041, Екатеринбург, Россия

Поступила в редакцию 9 июня 2008 г.

Проанализированы магнитные переходы из парамагнитного состояния в несоизмеримую магнитную структуру и далее в упорядоченную фазу с антиферромагнитным дальним порядком в оксидах $\rm RMn_2O_5$ ($\rm R-$ редкоземельный ион). Показано, что переход из парамагнитной в несоизмеримую фазу связан как с обменными, так и с релятивистскими взаимодействиями и описывается помимо основного магнитного также и сопутствующим параметром порядка — электрической поляризацией вдоль оси y кристалла. В результате такого перехода появление у кристалла электрической поляризации не сопровождается изменением кристаллической симметрии.

PACS: 75.80.+q

1. ВВЕДЕНИЕ

В настоящее время возрос интерес к средам, называемым магнитоэлектриками, в которых сосуществуют и взаимосвязаны магнитные характеристики и электрическая поляризация. В таких материалах возникает возможность влияния магнитного поля на электрическую поляризацию, а электрического — на магнитные степени свободы. К магнитоэлектрикам относятся, в частности, оксиды RMn₂O₅ (R — редкоземельный ион). Эти оксиды обладают большим числом магнитных и структурных переходов, сложным и до конца не понятным магнитным состоянием.

Переход из парамагнитного состояния в манганатах RMn_2O_5 происходит в несоизмеримую магнитную структуру [1]. В соединениях $TbMn_2O_5$, например, этот переход имеет место при T = 43 K [2]. При дальнейшем снижении температуры во всех манганатах наблюдается электрическая поляризация. В оксиде $TbMn_2O_5$ температура, ниже которой экспериментально определяется наличие электрической поляризации, равна 38 K [2]. Важным является то обстоятельство, что появление электрической поляризации в тербиевом и некоторых других манганатах не сопровождается изменением кристаллической структуры, как это должно быть при собственном ферроэлектрическом переходе, где должна исчезать, как элемент симметрии, инверсия, поскольку при инверсии поляризация P меняет знак: $\overline{1}P = -P$. Последующее понижение температуры приводит к новому магнитному переходу, но теперь уже в соизмеримую антиферромагнитную структуру с волновым вектором $k = \{1/2, 0, 1/4\}$. При более низких температурах имеет место еще ряд переходов, но на них мы дальше останавливаться не будем.

Цель данного исследования состояла в анализе в рамках симметрийного подхода перехода в несоизмеримую фазу и далее в соизмеримую антиферромагнитную структуру в манганатах RMn_2O_5 , а также в выяснении причин отсутствия изменения кристаллической симметрии при появлении поляризации.

2. НЕСОИЗМЕРИМАЯ МАГНИТНАЯ СТРУКТУРА

Экспериментально установлено, что магнитный фазовый переход из парамагнитного состояния в несоизмеримую структуру происходит по звезде волнового вектора $k = \{1/2, o, \mu\}$, где μ изменяется в пределах $0.16 < \mu < 0.39$ [1, 2]. Для пространственной группы $Pbam(D_{2h}^9)$ эта звезда двухлучевая и ей соответствует двумерное проективное представ-

^{*}E-mail: menshenin@imp.uran.ru

Таблица. Проективное представление для звезды волнового вектора $k=\{1/2,o,\mu\}$ пространственной группы $Pbam(D_{2h}^9)$

Элемент симметрии	2_z	m_x	m_y
Представ- ление	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	$\left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$

ление [3]. В таблице приведен явный вид этого представления.

Для построения термодинамического потенциала необходимо найти матрицы неприводимого представления D(g) пространственной группы $Pbam(D_{2h}^9)$ по проективному представлению, заданному в таблице. Используя метод, изложенный в монографии [4], находим матрицы D(g), которые для генераторов группы имеют вид

$$D(g_2) = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix},$$
$$D(g_3) = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix},$$
(1)
$$D(g_{25}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

В равенствах (1) обозначения элементов в круглых скобках приведены в соответствии со справочником [3]. Таким образом, для описания перехода в упорядоченную магнитную структуру необходимо ввести четырехкомпонентный параметр порядка, который преобразуется по найденному выше неприводимому представлению пространственной группы. Обозначим этот параметр порядка как $(\eta_1, \eta_2, \xi_1, \xi_2)$.

Найденное явным образом неприводимое представление (1) позволяет сразу установить возможность существования инвариантов Лифшица. Определяя характеры элементов антисимметричного квадрата представления и характеры векторного представления, найдем [4], что оно допускает три инварианта Лифшица.

Используя правила преобразования компонент

параметра порядка под действием элементов группы симметрии среды, можно записать термодинамический потенциал следующим образом:

$$\begin{split} \Phi &= \frac{1}{V} \int dr \left\{ r_1 \left[\left(\eta_1^2 - \xi_2^2 \right) + \left(\xi_1^2 - \eta_2^2 \right) \right] + \right. \\ &+ u_1 \left[\left(\eta_1^2 - \xi_2^2 \right)^2 + \left(\xi_1^2 - \eta_2^2 \right)^2 \right] + u_2 \eta_1 \eta_2 \xi_1 \xi_2 + \\ &+ u_2' (\eta_1^2 - \xi_2^2) (\xi_1^2 - \eta_2^2) + \\ &+ 2 \gamma_1 \left[\eta_1 \frac{\partial}{\partial z} \xi_1 - \xi_1 \frac{\partial}{\partial z} \eta_1 + \eta_2 \frac{\partial}{\partial z} \xi_2 - \xi_2 \frac{\partial}{\partial z} \eta_2 \right] + \\ &+ \gamma_{ex} \left[\frac{\partial}{\partial z} (\xi_1 - \eta_2) \frac{\partial}{\partial z} (\xi_1 + \eta_2) + \\ &+ \frac{\partial}{\partial z} (\eta_1 - \xi_2) \frac{\partial}{\partial z} (\eta_1 + \xi_2) \right] + \\ &+ W_1 \left[(\eta_1 - \xi_2)^n + (\eta_1 + \xi_2)^n + \\ &+ (\xi_1 - \eta_2)^n + (\xi_1 + \eta_2)^n \right]_{n=4k} + \\ &+ \sum_{n_1, n_2}^{|n_1 - n_2| = 4k} W_2^{n_1 n_2} \left[(\eta_1 - \xi_2)^{n_1} (\xi_1 + \eta_2)^{n_2} + \\ &+ (\xi_1 - \eta_2)^{n_2} (\xi_2 + \eta_1)^{n_1} + (\eta_1 - \xi_2)^{n_2} (\xi_1 + \eta_2)^{n_1} \right] + \\ &+ \left. \sum_{n=2k+1} i \alpha_n (\eta_1 \eta_2 - \xi_1 \xi_2)^n P_y + \frac{1}{2\kappa} P_y^2 \right\}. \end{split}$$

В равенстве (2) полагается, что от температуры зависит величина r_1 , а u_1 , u_2 , u'_2 , γ_1 , γ_{ex} , W_1 , $W_2^{n_1n_2}$, α_n , κ — некоторые константы, причем условия $u_1, u_2, u'_2 > 0$ обеспечивают положительную определенность термодинамического потенциала.

Отметим, прежде всего, что в потенциале (2) оставлен только инвариант Лифшица (слагаемое, пропорциональное константе γ_1), содержащий производные от компонент параметра порядка по координате z, поскольку звезда волнового вектора может непрерывно меняться именно вдоль этой оси. Наличие такого инварианта в выражении (2) означает, что переход из парамагнитной фазы может осуществляться только в несоизмеримую магнитную структуру. Потенциал содержит сопутствующий параметр порядка в виде компоненты электрической поляризации вдоль оси у. Поэтому появление магнитного порядка у системы должно сразу приводить и к возникновению электрической поляризации, которая, как будет видно далее, слабо зависит от пространственной координаты z в непосредственной близости от точки перехода.

Проведем для анализа термодинамического по-

тенциала (2) замену переменных вида

$$\eta_1 + \xi_2 = \rho_1 \exp(i\varphi_1), \quad \eta_1 - \xi_2 = \rho_1 \exp(-i\varphi_2), \\ \xi_1 - \eta_2 = \rho_2 \exp(i\varphi_2), \quad \xi_1 + \eta_2 = \rho_2 \exp(-i\varphi_2).$$
(3)

Рассмотрим сначала линейное по величинам ρ_1 и ρ_2 приближение, полагая выполненными условия

$$\left|\frac{\partial\rho_1}{\partial z}, \frac{\partial\rho_2}{\partial z}\right| \ll \left|\frac{\partial\varphi_1}{\partial z}, \frac{\partial\varphi_2}{\partial z}\right|,\tag{4}$$

означающие, что модули имеют более медленную зависимость от координаты z, нежели фазы [4,5]. Из равенств

$$\frac{\delta\Phi}{\delta\rho_1} = 0, \quad \frac{\delta\Phi}{\delta\rho_2} = 0 \tag{5}$$

получим систему нелинейных дифференциальных уравнений относительно фаз φ_1 и φ_2 , которая может быть линеаризована при выполнении соотношений

$$\varphi_1 = \varphi_2 + \frac{\pi}{2}(2m+1),$$
 (6)

где m — произвольное целое число. Принимая во внимание температурную зависимость коэффициента $r_1 = r_0(T - T_0)$, найдем температуру перехода в несоизмеримую фазу, которая определяется соотношением

$$T_m = T_0 + \frac{\gamma_1^2}{\gamma_{ex} r_0}.$$
(7)

Фаза φ_2 имеет следующую зависимость от координаты:

$$\varphi_2 = k_0 z, \quad k_0 = \frac{|\gamma_1|}{\gamma_{ex}}.$$
 (8)

Из равенств (7) и (8) видно, что переход в длиннопериодическую магнитную структуру обусловлен обменными и релятивистскими взаимодействиями вследствие наличия в термодинамическом потенциале инварианта Лифшица. В рассматриваемом приближении в системе возникают две модулированные магнитные структуры, фазы которых противоположны и дополнительно сдвинуты относительно друг друга на угол $\pi/2$ или $3\pi/2$. Отметим, что симметрия системы допускает существование структур типа простой спирали, поперечной спиновой волны с ориентацией магнитных моментов перпендикулярно направлению модуляции, а также структур типа продольной спиновой волны. Поляризация P_y , которая находится из условия $\partial \Phi / \partial P_y = 0$, в этом приближении (ограничиваясь только первым инвариантом) равна

$$P_y = (-1)^{m+1} \kappa \alpha_1 \rho_1 \rho_2. \tag{9}$$

Таким образом, вблизи температуры перехода в несоизмеримую магнитную структуру поляризация

Взаимная ориентация магнитных моментов и электрической поляризации

слабо зависит от координаты *z* и является малой величиной в силу малости амплитуд ρ_1 , ρ_2 . Отметим еще раз, что поляризация возникает одновременно с дальним несоизмеримым магнитным порядком.

На рисунке приведена взаимная ориентация магнитных моментов, образующих в пространстве простую спираль и локализованных на атомах Mn, получающихся размножением первого атома в позиции 4h при переходе от одной элементарной ячейки к другой, и вектора электрической поляризации ячейки при смещении вдоль оси z кристалла.

При дальнейшем понижении температуры становятся существенными более высокие гармоники, появление которых можно понять из анализа оставшихся условий минимума термодинамического потенциала:

$$\frac{\delta\Phi}{\delta\varphi_1} = 0, \quad \frac{\delta\Phi}{\delta\varphi_2} = 0, \quad \frac{\partial\Phi}{\partial P_y} = 0.$$
 (10)

Изучение этих условий проведем, считая, что энергия анизотропии, пропорциональная константе W_1 , и инвариант, связанный с магнитоэлектрическими эффектами, берутся в самом низком по n приближении. Обратим внимание на то, что слагаемые пропорциональные константам W^{n_1,n_2} оказываются более высокого порядка и в рассматриваемом приближении вклада не дают. В этом случае условия (10) с учетом (4) также сводятся к двум нелинейным дифференциальным уравнениям относительно фаз φ_1 и φ_2 :

$$\gamma_{ex} \frac{\partial^{2} \varphi_{1}}{\partial z^{2}} + 2W_{1}\rho_{1}^{2} \sin 4\varphi_{1} + \frac{u_{2}}{4}\rho_{2}^{2} \left[\sin 2(\varphi_{1} - \varphi_{2}) - \sin 2(\varphi_{1} + \varphi_{2})\right] + \frac{\alpha_{1}^{2}\kappa}{4}\rho_{2}^{2} \sin 2(\varphi_{1} + \varphi_{2}) + 2\frac{\gamma_{1}\rho_{2}}{\rho_{1}}\frac{\partial\varphi_{2}}{\partial z}\cos(\varphi_{1} + \varphi_{2}) = 0,$$

$$\gamma_{ex} \frac{\partial^{2} \varphi_{2}}{\partial z^{2}} + 2W_{1}\rho_{2}^{4}\sin 4\varphi_{2} - \frac{u_{2}}{4}\rho_{1}^{2} \left[\sin 2(\varphi_{1} - \varphi_{2}) + \sin 2(\varphi_{1} + \varphi_{2})\right] + \alpha^{2}\kappa$$
(11)

$$+ \frac{\alpha_1^2 \kappa}{4} \rho_1^2 \sin 2(\varphi_1 + \varphi_2) - \\ - 2\gamma_1 \frac{\rho_1}{\rho_2} \frac{\partial \varphi_1}{\partial z} \cos(\varphi_1 + \varphi_2) = 0,$$

которые линеаризуются при выполнении равенства (6), если $\rho_1 = \rho_2$. В дальнейшем будем считать в соотношении (6) m = 1, а $\rho_1 = \rho_2 = \rho$. В окончательном виде получим уравнение для амплитуды $\varphi_2 = \varphi$ вида

$$\frac{\partial^2 \varphi}{\partial z^2} + 4\nu \sin 4\varphi = 0, \qquad (12)$$

где константа ν равна

$$\nu = \frac{1}{16} (4W_1 - u_2) \frac{\rho^2}{\gamma_{ex}}.$$
 (13)

Обозначим через ε первый интеграл уравнения (11) и введем обозначение [4] $\varepsilon = -\nu + q^2/2$. Решение равенства (11) теперь может быть представлено следующим образом:

$$\varphi = \frac{1}{2}am(2qz,k),\tag{14}$$

где am(z,k) — функция амплитуды z [6], $k = (4\nu/q^2)^{1/2}$.

Воспользовавшись разложением функции амплитуды в ряд Фурье, приведенном, например, в монографии [7], непосредственно из вида этого ряда устанавливаем, что с понижением температуры у системы помимо первой гармоники появляются и более высокие гармоники.

Функция амплитуды имеет важное свойство $am(u + 2K, k) = \pi + am(u, k),$ где K — полный

эллиптический интеграл первого рода. Предельные случаи этого решения представляют для нас интерес. При $k \to 0$ соотношение (14) сводится к равенству $\varphi = qz$, а при $k^2 \to 1$ функция амплитуды на интервале изменения аргумента z от nK/q до (n+1)K/q (n— любое целое число) остается практически постоянной, а при z = nK/q испытывает скачок на π [6]. Стремление модуля k к нулю вблизи температуры перехода в длиннопериодическую структуру видно из формулы (13), поскольку в этом случае малы величины ρ_1 , ρ_2 , а значит, малым оказывается и параметр ν . С понижением температуры амплитуды ρ_1 , ρ_2 возрастают, следовательно, увеличивается и модуль k.

Из анализа предельных случаев решения (14) вытекает, что при $k \to 0$ оно эквивалентно равенству (8). При значениях k^2 близких к единице образец разбивается на домены с однородным внутри них антиферромагнитным упорядочением. Доменные границы представляют собой солитоноподобные образования. В этом случае в системе образуется так называемая солитонная решетка [4, 8]. Однако в нашем случае имеют место две системы доменов, возникающие соответственно для углов φ_1, φ_2 .

Для цилиндрического образца при значениях k^2 близких к единице значение термодинамического потенциала как функции параметра q ($q \neq 0$) равно

$$\Phi = \Phi_0 + \frac{S}{V} \left[u_2' \frac{\rho_1^2 \rho_2^2}{8q^2} + \frac{\gamma_{ex}}{4} (\rho_1^2 + \rho_2^2) + \frac{W_1}{q^2} (\rho_1^4 + \rho_2^4) - \frac{\alpha_1^2 \kappa}{8} \frac{\rho_1^2 \rho_2^2}{q^2} \right] \ln(\operatorname{ch} 2qd), \quad (15)$$

где S — основание цилиндра, V — объем, d — его длина. Условие $\partial \Phi / \partial q = 0$, определяющее значение величины q, соответствующее минимальному значению Φ , приводит к соотношению

$$\operatorname{ch} 2qd = Aq^{-2} + B, \tag{16}$$

где

$$A = \frac{1}{8} \left(u_2' \rho_1^2 \rho_2^2 + 8W_1 [\rho_1^4 + \rho_2^4] - \alpha_1^2 \kappa \rho_1^2 \rho_2^2 \right),$$

$$B = \frac{\gamma_{ex}}{4} (\rho_1^2 + \rho_2^2).$$
 (17)

Из равенств (16), (17) получаем, что несоизмеримая фаза реализуется, если выполняется неравенство

$$q < \frac{1}{2d} \operatorname{arch} B. \tag{18}$$

Из условия $\partial \Phi / \partial P_y = 0$, а также равенства $\varphi_1 + \varphi_2 = \pi/2$ следует, что пространственное распределение поляризации снова определяется равенством (9) при m = 1. Температура, при которой впервые удается определить наличие в образце поляризации, соответствует появлению в нем доменной магнитной структуры.

Дальнейшее понижение температуры после формирования в системе солитонной решетки приводит к тому, что параметр k становится равным единице. В этом случае интервал изменения координаты z, в котором функция $\operatorname{am}(2qz,k)$ остается постоянной, стремится к бесконечности. Существование доменных границ, разделяющих магнитные домены, теперь становится энергетически невыгодным [4,8]. Солитонная решетка исчезает и осуществляется переход в состояние с однородным магнитным упорядочением по всему образцу.

При достижении параметром k значения равного единице образец и при исчезновении несоизмеримой магнитной структуры обладает отличной от нуля поляризацией, задаваемой равенством (9), в отсутствие внешнего электрического поля. Величина поляризации в этом случае достигает наибольшей величины в силу максимального значения амплитуд ρ_i (i = 1, 2). Температура, при которой происходит полный распад солитонной решетки, соответствует второму магнитному переходу в соизмеримую антиферромагнитную структуру.

Возвратимся снова к системе уравнений (11). Предполагая, что выполняются условия

$$W_1 \rho_1^2 \gg \left| \gamma_1 \frac{\rho_1}{\rho_2} \frac{\partial \varphi_2}{\partial z} \right|, \quad W_2 \rho_2^2 \gg \left| \gamma_1 \frac{\rho_2}{\rho_1} \frac{\partial \varphi_1}{\partial z} \right|, \quad (19)$$

можно пренебречь последними слагаемыми в этих равенствах. В этом случае уравнения (11) можно линеаризовать, если положить $\varphi_1 = \varphi_2 = \pi/2$, а $\rho_1 = \rho_2$. Тогда решение системы (11) снова сведется к решению уравнения (12), где параметр ν теперь равен

$$\nu = \frac{1}{16} (4W_1 - \alpha_1^2 \kappa) \frac{\rho^2}{\gamma_{ex}}.$$
 (20)

В этой ситуации при возникновении солитонной решетки из условия $\partial \Phi = \partial P_y = 0$ следует, что пространственное распределение электрической поляризации должно характеризоваться, в отличие от рассмотренного выше случая, доменной структурой. При этом, поскольку для функции cn(z,k) выполняется равенство cn(2qz+2K,k) = -cn(2qz,k), где K полный эллиптический интервал первого рода, векторы поляризации внутри соседних электрических доменов ориентированы противоположно друг другу, при этом внутри доменов поляризация отлична от нуля. В коллинеарной антиферромагнитной фазе поляризация равна

$$P_y = -\alpha_1 \kappa \rho^2 \frac{1}{\operatorname{ch}(2qz)}.$$
(21)

3. ЗАКЛЮЧЕНИЕ

В данном исследовании фазовых переходов в рамках симметрийного подхода показано, что в оксидах RMn₂O₅ переход из парамагнитного состояния в несоизмеримую магнитную структуру обусловлен не только обменными, но и релятивистскими взаимодействиями, благодаря наличию в термодинамическом потенциале инварианта Лифшица. Этот переход помимо основного четырехкомпонентного параметра порядка характеризуется также наличием сопутствующего параметра P_y — проекции вектора электрической поляризации. В этом случае появление у системы ниже температуры перехода в несоизмеримую магнитную структуру электрической поляризации не сопровождается изменением кристаллической симметрии вследствие того, что ниже этой температуры пространственная инверсия исчезает как элемент симметрии из-за возникновения дальнего магнитного порядка. Это и наблюдается в эксперименте, когда в отсутствие дополнительных ядерных рефлексов при рассеянии нейтронов, указывающих на изменение кристаллической симметрии, наблюдается появление электрической поляризации [2]. Незначительная величина этой поляризации обусловлена малостью амплитуд компонент магнитного параметра порядка. Отсюда следует вывод о том, что, по нашему мнению, нет необходимости менять группу, описывающую кристаллохимическую симметрию манганатов, как это предлагается в некоторых работах.

Ниже точки перехода в несоизмеримую магнитную структуру формируется магнитная солитонная решетка, сопровождающаяся, как выше уже сказано, образованием электрических доменов. Из симметрии системы следует, что направление электрической поляризации оказывается перпендикулярным осям спиралей. Именно в этой области температур и удается впервые экспериментально измерить поляризацию среды. Соизмеримая магнитная фаза возникает при температуре, ниже которой энергетически невыгодно существование солитонной решетки [4, 8]. Пространственное распределение поляризации в соизмеримой магнитной фазе однородно по образцу.

Для экспериментального подтверждения рассматривавшегося выше механизма перехода в длиннопериодическую, а затем в коллинеарную антиферромагнитную фазу целесообразно провести нейтронографические исследования с целью обнаружения дополнительных магнитных рефлексов с периодичностью 4k. Эти рефлексы обусловлены наличием магнитной анизотропии, которая совместно с обменными взаимодействиями и приводит к формированию солитонной решетки. Обнаружение указанных рефлексов будет являться одним из подтверждений наличия такой решетки. Отметим теперь то обстоятельство, что переход из несоизмеримой в соизмеримую магнитную фазу на основе солитонной решетки не может быть фазовым переходом второго рода [4]. Проведение калориметрического анализа с целью определения наличия теплоты перехода позволит сделать заключение о типе перехода.

В соизмеримой фазе, как следует из формулы (21), при определенных условиях пространственное распределение поляризации может иметь форму статического солитона. Солитон поляризации в данном случае может оказаться устойчивым, поскольку неоднородное распределение имеет место вдоль оси *z* кристалла, тогда как поляризация ориентирована вдоль оси *y*, что нарушает его одномерность. Экспериментально установленное существование солитона поляризации может представлять интерес для процессов передачи информации.

ЛИТЕРАТУРА

- А. М. Кадомцева, С. С. Кротов, Ю. Ф. Попов и др., ЖЭТФ 127, 343 (2005).
- G. R. Blake, L. C. Chapon, P. G. Radaelli et al., Phys. Rev. B 71, 214402 (2005).
- 3. О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- Ю. А. Изюмов, В. Н. Сыромятников, Фазовые переходы и симметрия кристаллов, Наука, Москва (1984).
- 5. И. Е. Дзялошинский, ЖЭТФ 47, 992 (1964).
- **6**. Е. Янке, Ф. Эмде, Ф. Леш, *Специальные функции*, Наука, Москва (1977), с. 118.
- 7. Э. Т. Уиттекер, Дж. Н. Ватсон, *Курс современного* анализа, Физматгиз, Москва (1963), с. 402.
- Л. Н. Булаевский, Д. И. Хомский, ЖЭТФ 74, 1863 (1978).