ZKQT®, 2009, rom 135, BoIm. 1, cTp. 24-32

© 2009
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The standard classical method of computer simulation is used for evaluation of the inelastic cross section in
electron collisions with a highly excited (Rydberg) atom. In the course of collision, the incident and bound
electrons move along classical trajectories in the Coulomb field of the nucleus, and the scattering parameters
are averaged over many initial conditions. The reduced ionization cross section of a Rydberg atom by an electron
impact approximately corresponds to that of atoms in the ground states with valence s-electrons and coincides
with the results of the previous Monte Carlo calculations. The cross section of an atom transition between
Rydberg atom states as a result of electron impact is used for finding the stepwise ionization rate constant
of atoms in collisions with electrons or the rate constant of three-body electron—ion recombination in a dense
ionized gas because these processes are determined by kinetics of highly excited atom states. Surprising, the
limit of low electron temperatures is realized when the electron thermal energy is lower than the atom ionization
potential by about three orders of magnitude, as follows from the kinetics of excited atom states.

PACS: 36.40.-c, 36.40.Sx, 61.43.Yv, 68.35.Bs

1. INTRODUCTION

From the theoretical standpoint, an electron—atom
collision at velocities compared to typical valence elec-
tron velocities is a many-electron problem, because the
exchange between electrons gives the same contribu-
tion to the scattering cross section as the electrostatic
interaction between incident and atomic electrons. The
contribution of the exchange interaction becomes small
when velocities of an incident electron are small com-
pared to those of valence electrons. This leads to the
Born approximation [1-3], which can be extended to
lower collision energies in appropriate models for the
cross section of inelastic electron—atom collisions [4-6].
At collision energies that are comparable to the transi-
tion energy, classical models are used starting from the
Thomson model for atom ionization by electron im-
pact [7]. Although the classical approach for electron—
atom collisions is expected to be invalidated by the
quantum nature of the atom, classical models are useful
because of the identity of the classical and quantum me-
chanical Coulomb cross sections for elastic scattering
[3]. Therefore, classical models for inelastic electron—
atom scattering were attractive and were developed
(see, e.g., [7-9] for atom ionization by electron impact)
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until 1930, when Bethe proved [10] that at large colli-
sion energies, the logarithmic factor must be included
in the expression for the atom ionization cross section
by electron impact, whereas this factor is absent in the
classical expression for the ionization cross section.

This statement was of principal importance and
changed the relation to classical models of electron—
atom collisions. As was shown in [11], the logarithmic
energy dependence of the quantum cross section is de-
termined by large impact parameters of collision when
the atom ionization probability is small or zero in the
classical consideration. One can expect the validity of
the classical approach to ionization of excited atoms,
and the bridge between the classical and quantum ap-
proaches was broken by Kingston [12], who proved on
the basis of numerical calculations that the cross sec-
tions of ionization of excited atoms by electron impact
are quite close for the calculation at large collision en-
ergies in the quantum (Born approximation) and clas-
sical approaches. This means that the different energy
dependences in the classical and quantum ionization
cross sections are not of principal importance. Never-
theless, because an atom is a quantum system of elec-
trons, caution is required in applying classical methods
to electron—-atom scattering.
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We consider inelastic electron collisions with highly
excited or Rydberg atoms when the classical approach
is applicable in principle. The results have a two-fold
use. First, the results can be extended to the cases
where atom excitation is not high and the results for
Rydberg atoms can be used as model ones for various
atom transitions. Of course, this requires an additional
analysis and grounds. Second, these results are neces-
sary for the analysis of stepwise atom ionization in a
plasma or three-body recombination of electrons and
ions in a low-temperature plasma. In these cases, the
process results from many inelastic electron—atom col-
lisions and is described by the BKW (Bates, Kingston,
and McWhirter) scheme [13-15]. For low temperatures
and dense plasma, the rates of resultant processes of
stepwise atom ionization or three-body electron—ion re-
combination are determined by inelastic collisions in-
volving electrons and Rydberg atoms [16], and the cross
sections for the processes under consideration are im-
portant in these problems. Thus, the goal of this paper
is to evaluate the cross sections for collisions involving
electrons and Rydberg atoms and to use these results
in appropriate problems.

2. COMPUTER CODE FOR INELASTIC
COLLISIONS INVOLVING ELECTRONS
AND RYDBERG ATOMS

Although highly excited or Rydberg atoms have
specifics as a quantum object [17-20], we consider in-
elastic electron collisions with Rydberg atoms as a re-
sult of scattering of an incident and valence electrons
assuming the motion of electrons in the course of these
transitions to be classical. We use our experience in
other problems of Rydberg atom collisions, e.g., the res-
onant charge exchange [21] and Penning process [22] in-
volving Rydberg atoms. Therefore, our goal is to eval-
uate the cross sections for electron-excited atom inelas-
tic collisions on the basis of computer simulation; these
cross sections then give appropriate rate constants. Ini-
tially, a colliding atom is in a highly excited state, and
the transition process results from collision of two clas-
sical electrons in the field of a Coulomb center. We are
based on the standard classical Monte Carlo method
for collisions involving Rydberg atoms [21, 22] with
general peculiarities of this approach taken into ac-
count [23, 24]. In these evaluations, we analyze the
process for a certain impact parameter of the elect-
ron—atom collision that varies from zero to pme: in a
definitive manner.
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Fig.1. Positions of the Coulomb center, the incident
electron, and the bound electron in a collision of an
electron and a Rydberg atom

In considering the problem of the interaction of clas-
sical electrons in the field of a Coulomb center, we
take a certain value of the electron momentum of the
bound electron characterized by the momentum quan-
tum number [. The boundary condition is taken such
that the radial electron velocity at the initial instant
is zero, the electron distance r,(0) from the Coulomb
center at zero time is r,(0) = ro, and v,(rg) = 0. The
motion of electrons is described by the Newton equa-
tions

d2l‘i

dt?

ou e> e? e?
8501' ’

m (2.1)
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where x; = x,y, z, the origin coincides with the nucleus
location, re. is the distance between the incident and
bound electrons, and r, and r, are distances between
the nucleus and the incident or the bound atomic elec-
tron, as is shown in Fig. 1.

Because of the overall rotational symmetry of the
system, the incident electron starts from a fixed plane
with a predetermined velocity v oriented along a fixed
direction. The initial distance between the incident
electron and the ion is taken to be R ~ 200rq to take
target polarization effects into account. The impact pa-
rameter p ranges from zero to pmqz, which is equal to
few rg. If the momentum of a bound electron is zero, it
is initially located on a sphere of the radius ro = €2/.J,
where .J is atom ionization potential. The initial co-
ordinates for a bound electron with the origin at the
nucleus are given in terms of the spherical coordinates
ro,0, and ¢:

ry =rosinfcosp, 1§ =resinfsin g,

(2.2)
r§ =rocosf,

but due to the electron angular momentum, the spatial
distribution of a bound electron becomes more com-
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plex. Following [23,24], we determine the initial posi-
tion of a bound electron as

ry = Resinfcosp, rf = RYsinfsin g,
A zZ
rg = RZ cosf,

Py = —P.(sinpcosf + cos g cosf sinn), (2.3)

P{ = P.(cos ¢ cosn + sin g cos O sinn)

3

Pj = P.sinfsinn,

where R, is the distance between a bound electron and
the parent Coulomb center and P, is the electron mo-
mentum with respect to its nucleus. Superscripts “z”,
“y”, and “z” denote projections on the respective axis.
Taking a random relative direction between initial mo-
menta of the incident and bound electron, we solve the
Kepler equation

0, = u — esinu, (2.4)
where u is the eccentric angle and € is the orbit eccen-
tricity (the ratio of the quantum numbers [ and n). The
angle 6, is chosen randomly. At given values of ,, and
e, we find the angle u from Eq. (2.4). Next, knowning
the values of € and 6,,, we can calculate R, and P, as

- —(1-—
R, 2J( €cosu),
V1—€ecos2u (2:5)
P=Vv2 Y"1
1—€ecosu

where the atom ionization potential J and other elec-
tron parameters are expressed in atomic units.

It follows that Eqs. (2.1)—(2.5) contain five initial
parameters, ¢, 6, n, €, and 6,, which are taken ran-
domly for each given velocity of the incident electron
and each given impact parameter of collision before nu-
merically integrating equations of motion for electrons
moving along classical trajectories. The six parame-
ters, which are different for each trajectory, are given
below together with their ranges:

T <<,
(2.6)
0 S 4 S Pmaz-

Evidently, the classical approach is valid when the
transition energy is large compared to the energy dif-
ference between neighboring levels, and we assume this
criterion to be fulfilled. Moreover, in this analysis, we
disregard inelastic collisions with a small energy change
compared to the energy difference between neighbor-
ing levels because the classical description is not valid
in this case. We also disregard large transition ener-
gies that are close to the energy of an incident electron
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because such transitions require a large number of tra-
jectories compared to the used ones.

It is clear that the number of such trajectories has
to be sufficiently large to obtain acceptable accuracy,
and therefore the calculation stopping criterion must be
chosen very carefully to save CPU time. We take this
limit such that the interaction potential for an incident
electron is small and check its validity by variation of
the final time. Each trajectory has been numerically
integrated using a predictor—corrector Adam’s scheme,
which is realized in the Mathematica software package
as a built-in function. The total energy conservation
was checked during simulation, and if the energy was
not conserved, the trajectory was excluded from con-
sideration.

The calculations were performed on the basis of
classical formulas. Then the cross section o, of an in-
elastic process is given by

Oq =27 (2.7)

/ pWa(p) dp,
0

where W, (p) is the probability of this transition at an
impact parameter p. The subscript “a” can be cho-
sen as ‘“ton”, “ex”, or “¢”, which corresponds to the
processes of ionization, excitation, and quenching of a

Rydberg atom by electron impact.

3. IONIZATION CROSS SECTIONS FOR
ELECTRON-RYDBERG ATOM
COLLISIONS

We first consider the ionization process in electron
collision with a Rydberg atom A that proceeds accord-
ing to the scheme

e(E)+A(J) = e(E")+e+ AT, (3.1)
where FE and E’' are the energies of the incident electron
before and after the collision, the principal quantum
number for a bound electron of a Rydberg atom is large,
n > 1, and the ionization potential is J = m.e*/2n?h2,
where m, is the electron mass and e is the electron
charge. In atomic units J = v%/2, where v = 1/n.

In evaluating the cross section of an inelastic colli-
sion, we verify the accuracy of the calculation by com-
parison of the results for different numbers of trajecto-
ries under consideration. This comparison is given in
Fig. 2, where the ionization probability W;,,, of a Ryd-
berg atom by the electron impact is given as a function
of the impact parameter p at a certain energy of the
incident electron. The difference of the results for a
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p/ro

Fig. 2.

p/ro

Dependence of the probability W;,, of ionization of a Rydberg atom by electron impact on the impact collision

parameter at the relative collision energy E/J = 1.2 (a) and E/J =5 (b); ro = ¢*/J

given impact parameter for 10000 and 20000 trajecto-
ries does not exceed 2 % and becomes small for the ion-
ization cross section after integration over the impact
parameters.

From the dimensionality consideration, we can rep-
resent the ionization cross section ¢;,, in the form

_ met E

-Z1(5).
and f(x) is a universal function for various Rydberg
states. The ionization cross section is evaluated by find-
ing the ionization probability at a given collision energy
and a given impact parameter and subsequently inte-
grating over the impact parameters. Figure 3 gives the
universal function f(z) reconstructed from the ioniza-
tion cross section. The results depend on the electron
momentum and coincide with the results of the previ-
ous evaluation [25] of the ionization cross section of a
Rydberg atom by electron impact within 1-2 %. The
experimental data in Fig. 3 relate to atoms with va-
lence s-electrons and demonstrate the possibility of us-
ing the classical approach beyond its applicability lim-
its. The approximation of computer simulation gives
the following approximate formula for ionization cross
section (3.2) in the case of zero electron momentum:

(3.2)

Tion

_5.3(x—1)

f(z) = W (3.3)

It follows that the ionization cross section of a Ryd-
berg atom by electron impact depends on the angular
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Fig.3. lonization cross section of a Rydberg atom by
electron impact. Simbols are experimental values for
atoms with one and two valence s-electrons, solid lines
describe our calculations and calculations in Ref. [25]
for zero angular momentum, dash-and-dotted lines are
the same when angular and principal quantum numbers
of a bound electron are equal, a dotted line corresponds
to the tail of the Born approximation, and a dashed
line relates to the tail of the Thomson model with the
correction due to nonzero velocities of the bound elect-
ron [8, 9]; ag is the Bohr radius

momentum of a bound electron. The ionization cross
sections are given in Fig. 3 together with the Thomson
cross section [7], the Born approximation [1-3] for the
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hydrogen atom in the ground state, and some experi-
mental data for ionization of atoms with one and two
valence s-electrons. In addition, the modified Thom-
son theory with the velocity distribution of a weakly
bound electron taken into account [8, 9] is represented
in Fig. 3 for large collision energies. The comparison
of these cross sections shows that the case of a highly
excited atom can be used for estimation of the ioniza-
tion cross sections for atoms with a weak excitation.
The cross sections for a highly excited valence electron
tends to an asymptote at very large collision energies.

We note that contemporary semiempirical models
for evaluation of the cross section of atom ionization
by electron impact start from the limit of large ener-
gies of the incident electrons; in this limit, these mod-
els amount to the Born approximation. This applies
to the Deutsch-Mérk [5, 6] and McQuire [4] models,
which give an accuracy of the ionization cross section
evaluation of approximately 20 % at its maximum, as
follows from comparison of the results. The accuracy
of such models is the better, the higher is the colli-
sion energy. On the contrary, the results of ionization
of Rydberg atoms by electron impact, being used for a
model of nonexcited or weakly excited atom ionization,
are better for not large collision energies.

4. CROSS SECTIONS OF INELASTIC
COLLISIONS BETWEEN ELECTRONS AND
RYDBERG ATOMS

The process of transition between discrete levels of
a Rydberg atom as a result of collision with an electron
has a self-dependent meaning. We first consider pro-
cesses of excitation and quenching of a Rydberg atom
in the framework of the Thomson model, which allows
highlighting the peculiarities of this process, which pro-
ceeds according to the scheme

e(E) + A(J) = e(E') + A(J"), (4.1)

where E and E' are the energies of the free electron
before and after the collision, and J and J' are the
binding energies of the initially bound electron before
and after the collision. As above, the atom ionization
potential is given by
R,
J==

where Ry = m.e?/2h? is the Rydberg energy (i.e., the
ionization potential of the hydrogen atom in the ground
state), and we assume that n > 1, which allows using
the classical description of this electron. Correspond-
ingly, the final state is characterized by J' > 0 for a
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transition between discrete levels; introducing the prin-
cipal number n’ of the final state, we have

n12

J =

It is interesting to compare the results of numer-
ical simulation for an inelastic electron collision with
a Rydberg atom and the results of the simple Thom-
son model, where the interaction of colliding electrons
with a Coulomb center is ignored during a strong
electron interaction. In the framework of the Thom-
son model, when the interaction of electrons with the
Coulomb center is taken into account only before and
after the collision, we characterize the collision process
by a change Ae of the energy of the incident electron.
According to the Rutherford formula for a motionless
bound electron, we then have the cross section [26]

retdAe

do = EAe?

(4.2)
if the exchange energy lies between Ae and Ae + dAec.
We note that because a bound electron has zero en-
ergy in the Thomson model, the quenching process is
impossible in it.

On the basis of the Thomson model, we find the
excitation cross section oe,(E,e1 — E — Ag,e9) for
the transition of a bound electron from the state with
the energy £; = Ry/n? into a state with the energy
g2 = Ry/n3 (the energy exchange between electrons is
Ae = g9 — &1). Correspondingly, the Thomson model
gives the following excitation cross section for the tran-
sition from an initial highly excited state with the bind-
ing energy €; into a group of highly excited states with
the binding energy es:

met A,y

Oca(E,e1 = E— Az, e9) = Feig, (4.3)
where
Ape — ¥ Ry @. (4.4)
(n2 —1/2)>  (n2+1/2)>  n3

In terms of principal quantum numbers, expres-
sion (4.3) for the excitation cross section becomes

me'Ay  2me'n?

" neERy’

(4.5)

Tex = E6162
where the transition proceeds into a group of states
with the principal quantum number ny. This expres-
sion also demonstrates the character of the scaling law
for transitions between two bound atom states by elec-
tron impact.
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Fig.4. Excitation cross sections of a Rydberg atom by electron impact at the relative collision energies E/J = 1.2 (a) and
E/J =5 (b); black histograms correspond to numerical evaluations and white histograms relate to the Thomson model

Figure 4 gives the histograms for computer simu-
lation of the cross section of an inelastic collision be-
tween an electron and a Rydberg atom when the en-
ergy exchange is found in a given range. We note that
the classical description restricts the exchange energy
from below, and we exclude collisions with very small
exchange energies from calculations. As can be seen
from Fig. 4, the results correspond more or less to the
Thomson model. By analogy with formula (4.5), using
the scaling of the cross section for inelastic collisions,
we represent the cross section of this transition in the

form
Ae E
F{—, =).
( J '<7>

For the Thomson model, F'(z, y) = 1. According to
the results of computer simulation, this function can be
approximated as

_ 2metn?
" noERy

Oex

(4.6)

F(z,y) = 1.9z + 0.15y. (4.7)

We also separately analyzed quenching of a Ryd-
berg atom in collision with an electron; histograms for
such collisions are given in Fig. 5. We note that the
Thomson model does not admit the quenching process
in principle, because the problem of inelastic scattering
of an electron on an atom is reduced there to scatter-
ing of the incident and valence motionless electrons.
But the quenching cross section o, can be expressed
through the excitation cross section o¢, on the basis of
the detailed balance principle [27] as

og/magy "
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Fig.5. Quenching cross sections of a Rydberg atom

by electron impact at the relative collision energy

E/J = 1.2; black histograms correspond to numeri-

cal evaluations, white histograms are obtained based

on the principle of detailed balance from the excitation
cross sections

0ex(E,e1 = E — Ac,e9) =
92 (E — Ae)

== ————0,(E—Ac,e5 = E,e1),

" i (4.8)

where g1 ~ 1/e; and g ~ 1/ey are the statistical
weights of the corresponding states. Formulas (4.5)
and (4.6) give
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Ae

5 (4.9)

2 4,2
- we'n} F(

E — Ac¢
~ ni(E - As)Ry

J

for the quenching of a Rydberg atom state with the
principal quantum number ns with the transition into
a group of Rydberg states with the principal quantum
number n;.

Thus, we obtain classical expressions for the cross
section of excitation and quenching of Rydberg atom
states by electron impact when the final state is also
a Rydberg one. The accuracy is worse for transitions
with the energy change of the order of the ionization
potential because it requires larger statistics. Never-
theless, the accuracy of the cross section evaluation is
better than several percent. Of course, these results
are not valid for transitions between neighboring levels
because the classical approach is not applicable in this
case. The results can be used for transitions between
excited atom states as a result of collisions with elec-
trons. They can be extended to the cases of the ground
and low excited atom states, where the classical ap-
proach is taken as a model. But this requires a special
analysis, and it is necessary to divide the cross sections
of excitation (4.6), (4.7) and quenching (4.9) into par-
tial cross sections with transitions between states with
a given angular electron momentum. The above in-
tegral cross sections are used in what follows for the
analysis of a stepwise atom ionization in a dense low-
temperature plasma. This process, as well as the de-
tailed opposite one, are determined by kinetics of tran-
sitions between excited atom states.

5. STEPWISE ATOM IONIZATION AND
THREE-BODY ELECTRON-ION
RECOMBINATION IN
LOW-TEMPERATURE PLASMA

We consider the process of a stepwise atom ioniza-
tion in a dense ionized gas at low electron tempera-
tures. Then the radiative processes involving excited
atoms are not important, and atom ionization results
from many successive transition between atom excited
states in collisions with electrons. The rate constant
of the ionization process in this limit is given by the
asymptotic formula [28]

10

gi Mee J
=C= exp | = |,
9o 12T, 7 (T)
where g; and g, are the statistical weights of the ion
and the atom and T, is the electron temperature. The
rate constant of the detailed opposite process of three-
body electron—ion recombination

kstep (5.1)

30

2e+ AT e+ A (5.2)
at low electron temperatures is given by [16]
(10
K=A—" (5.3)
207

The numerical coefficients in these formulas, as follows
from various approximations, are [29]

C=15-10%"2 4=02-10%"2 (5.4)

Below, we determine these coefficients on the basis of
the above classical rate constants of inelastic collisions
involving electrons and Rydberg atoms.

In analyzing stepwise ionization as the kinetics of
excited atom states and the detailed opposite process
of three-body electron—ion recombination, we are based
on the BKW scheme [13-15]. Ignoring radiative tran-
sitions of excited atoms because they are located in a
dense low-temperature plasma, we reduce the problem
to the analysis of the kinetic equation in the space of ex-
cited energy levels. This equation for the distribution
function f,, has the following form in the stationary
case:

dfn

7 =0=Nezijkmfi—

_Nefnzkni_NefnkZ)n‘ (55)
2

Here, N, is the number density of electrons, the distri-
bution function f, includes bound states denoted by n
and i, kn; (kin) is the rate constant of transition be-
tween bound states n (i) and i (k) as a result of colli-
sions with free electrons, and £, is the ionization rate
constant by electron impact when an atom is found in
a state n. We ignore opposite free-bound transitions
because of a small number density of electrons in the
ideal plasma under consideration.

We now determine the rate constant of stepwise
atom ionization by electron impact and the rate con-
stant of the opposite three-body process of electron—ion
recombination in the framework of the above model.
In considering this process in a dense low-temperature
plasma, we neglect radiative processes involving excited
atoms. As a result, the transitions under consideration
result from the kinetics of transitions between excited
atom states in electron—atom collisions. Thus, these
rates follow from the analysis of the kinetic equation
for the atom distribution function over states.

We find the rate constant ks, of the atom stepwise
ionization in a plasma from the balance equation

dN,
dt

= NoNekstep, (5.6)
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where Ny is the number density of atoms in the ground
state. Comparing equation (5.6) with that expressed
through the atom distribution function, we have

NONekstep = NernkZ)n~ (57)

It follows that the rate constant of stepwise atom ion-
ization is expressed through the distribution function
of atoms over excited states, f,, that follows from a
solution of BKW kinetic equation (5.5), and this equa-
tion is based on the rate constants of inelastic atom
transitions due to electron impact that were evaluated
above.

In solving kinetic equation (5.5), we note that the
transitions between bound electron states establish
thermodynamic equilibrium between states, whereas
transitions from bound to free states violate thermody-
namic equilibrium because of the absence of opposite
processes. Hence, thermodynamic equilibrium occurs
for bound atom states with large ionization potentials
J (J > T.). For these states, the distribution function
fn is given by the Boltzmann formula

En

.fn = gnNO exp <__> )

o (5.8)

where F, is the excitation energy for this state, g, is
the statistical weight of this state, and g, = n? for an
electron located in the Coulomb center. The ionization
potential .J,, for a state n is

Jn =Jo — Ep, (5.9)
where .J is the ionization potential for the ground atom
state. Along with boundary condition (5.8) for states
with a relatively high ionization potential, we have

fan—=0, n— o (5.10)

for highly excited states because these states are de-
stroyed as a result of ionization processes.

To solve Eq. (5.5) for the distribution function f,,
we represent it in the form

> kinfi

kZ)n + anl

This equation can be solved numerically by consecutive
approximations. The resultant distribution function f,
with boundary conditions (5.8) and (5.10) is given in
Fig. 6. We then use Eq. (5.7) we find the rate con-
stant of stepwise ionization and the rate constant K of
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Fig.6. Relation of the distribution function f,, for pop-

ulation of highly excited electron states of atoms to the

Boltzmann distribution function fp in the course of

stepwise ionization or three-body electron—ion recom-
bination

three-body electron—ion recombination on the basis of
the principle of detailed balance. We represent the re-
combination rate constant in the form of relation (5.3)

A(T,)et®

miPT
In the limit of low electron temperatures T,, the re-
combination rate constant depends on the temperature
as K o T2 [16], and therefore the function A(T)

tends to a constant in the limit of low temperatures.
Figure 7 gives the dependence A(T,) for the process

Y

K= (5.12)

2¢+HT = e+ H*

with the evaluations [14, 15] for the hydrogen plasma
and in the case where the hydrogen-atom states with
n = 2 are used as the ground state in the electron kinet-
ics along the excited levels. These evaluations use the
classical rate constants by Gryzinski, which are based
on some additional unrealistic assumptions. We note
that, surprisingly, the limit of low electron tempera-
tures T, /.J — 0 starts from T, /.J ~ 1073,

6. CONCLUSION

The problem of electron—-atom collisions is a many-
electron problem because the exchange interaction
involving electrons is of importance as well as the
Coulomb and electrostatic interactions with partici-
pation of electrons and the core. Therefore, inelas-
tic electron-atom collisions are studied on the basis
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A
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T., K

Fig. 7. Function A(T.) defined according to Eq. (5.12).
Solid curve corresponds to present numerical evalua-
tions in terms of the BKW scheme [14, 15] for a hy-
drogen plasma, filled circles relates to numerical eval-
uations for a hydrogen plasma, empty circles are nu-
merical evaluations [14, 15] for an alkali metal plasma

of transparent models. This problem simplifies in the
cases where the exchange interaction is not important,
e.g., at large collision velocities when the Born approx-
imation holds [1-3], or for transitions between states
of a highly excited atom when the classical descrip-
tion of the collision problem applies. In this paper, we
formulate the classical case of inelastic electron—atom
collisions using the standard Monte Carlo method and
integrating the equation of motion of electrons along
trajectories.
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