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TWO-SITE MODEL FOR A SMALL POLARON: MASS
RENORMALIZATION AND OPTICAL CONDUCTIVITY
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The renormalization of the mass of an electron interacting with many ions of a lattice via the long-range (Froh-
lich) electron—phonon interaction and optical absorption of electrons are studied at zero temperature. lons are
assumed to be isotropic three-dimensional oscillators. The optical conductivity and the renormalized mass of
small adiabatic Frohlich polarons are calculated and compared with those of small adiabatic Holstein polarons.

PACS: 63.20.kd, 63.20.kg, 71.38.Ht, 71.38.Cn, 78.67.-n

1. INTRODUCTION

Polarons have been extensively studied since a sem-
inal paper of Landau [1]. They are divided into small
and large polarons in accordance with the size of their
wave function. In the first case, a carrier is coupled
to intramolecular vibrations and self-trapped on a sin-
gle site. Its size is the same as the size of the phonon
cloud, both are about the lattice constant (so-called
small Holstein polaron, SHP). In the case of large po-
larons, the size of the polaron is also the same as the
size of the phonon cloud, but the polaron extends over
the distance of many lattice constants.

Polarons with a very different internal structure
were introduced in [2, 3]. They were called small Froh-
lich polarons (SFP). An SFP size is about the lattice
constant, but its phonon cloud spreads over the whole
crystal. Within the model in [3], the renormalized mass
appears to be much smaller compared with that in the
canonical Holstein model [4]. Recently [5], this model
was extended to the adiabatic limit and it was found
that the SFP mass is renormalized much less than the
mass of the SHP in this limit. An electron interacting
with vibrations of a chain of ions polarized perpendic-
ular to the chain was considered in [5]. The model
was introduced in order to mimic high-7, cuprates,
where in-plane CuQOy carriers are strongly coupled to
the c-axis polarized vibrations of apical oxygen ions [6].
However, apical ions vibrate in all directions. To de-

*E-mail: yavidov@inp.uz

[ ]
[ ]
[ ]
®
Q
[ ]
[ ]
. 3
"\.
\I_"‘
<
oW =

1

S . 4
"3:3:‘>,<'_,_‘:,>-<-—"" r T *
1 2 1

X

Fig.1. Electron hops between sites 1 and 2. In our

model, i.e., in the Frohlich or extended Holstein model

(a), the electron at site 1 interacts with 3D vibrations

of ions (circles in the upper row) in the Holstein model

(b), it interacts only with 3D vibrations of a single
(m=1)ion

scribe a more realistic case, we consider an electron
hopping between two sites and interacting with three-
dimensional (3D) vibrations of ions of the chain, as
shown in Fig. 1a. In addition, we calculate the optical
conductivity of the system to show that the long-range
electron—phonon interaction qualitatively changes the
polaron hopping and the optical conductivity compared
with these in the Holstein model, Fig. 1b.

2. MASS RENORMALIZATION

We first derive an analytic expression for the renor-
malized hopping integral of an SFP in the nonadiabatic
limit and in the adiabatic limit in order to elucidate the
effect of ion’s longitudinal vibrations in the renormal-
ized hopping integral. The Hamiltonian of the model
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is [2-5]
H:He +th+He*ph7 (1)

where (h =1)
1 0 Mw?a?,
Hyn =3 (_W guz, © T) @)

is the Hamiltonian of vibrating ions,

Heprh= Y Y ¢l eifm(i) - upm (3)

i=1,2 m

describes the interaction between the electron and ions,
and
H, = —t(cica + Hoe.)

is the electron hopping energy. Here, ¢ is the bare hop-
ping integral between the neighbour sites, ci+ (¢;) is the
creation (destruction) operator of an electron on site i,
M is the mass of a vibrating ion, w is its frequency,
u,, is the displacement of an ion on site m, £, (1) is the
force between the electron on site 1 and the mth ion,
£,,(1) = const - r=3e; n, 7 is the distance between sites
i and m, and e;,, is the unit vector directed from site
i to site m. Similarly to Refs. [3,5], the renormalized

hopping integral in the nonadiabatic case is
t = texp(—¢%), (4)

where

P = g [0 (1) £a@] . ()

We can rewrite renormalized hopping integral as

t = texp(—vEp/w), (6)

where 1
—_ E 2

is the polaronic shift and
> (1) £ (2)
> (1)

The value of the factor v depends on the geometry
of the lattice. In our case, the distance between ions
along the chain and between sites 1 and 2 is a = 1,
and the distance from the chain and ion 1 (or 2) is
b = 1. In the nonadiabatic limit, a summation over the
whole lattice can be performed in (8) with the result
~vs3p = 0.727797; in the one-dimensional (1D) case, the
value y1 p = 0.28678 has been obtained [7]. We see that

y=1- (8)
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Fig.2. The ratio of masses of Frohlich and Holstein
small polarons as a function of the electron-phonon
coupling constant A at different values of w/t in the
nonadiabatic regime: 1 —w/t=1; 2 —w/t =2

an increase in the factor 7 in the exponent of (6) in-
creases the mass of an SFP with 3D vibrations of ions
compared to the mass of an SFP with ions vibrations
polarized perpendicular to the chain. Nevertheless, the
mass still turns out to be small compared to the mass
of a nonadiabatic SHP, because v = 1 for the SHP
(Fig. 2).

The ratio of masses of the nonadiabatic SFP with
3D vibrations of ions to the nonadiabatic SFP with
vibrations polarized perpendicular to the chain for the
same polaronic shift is given by

— E
msp _ exp <(73D YD) p) .
mip w

For t = w and A\ = 2.6, we obtain msp/mip = 10.

In the opposite adiabatic regime, we use the
Born—Oppenheimer approximation representing the
wave function as the wave function y(u,,) describing
the “vibrating” ions times the electron wave function
(Y(uy) p(u, )T with “frozen” ion displacements (T
denotes the transposed matrix and ¢ (u,,) and p(u,,)
stand for the respective electron wave functions at site
1 and site 2). Terms with the first and second deriva-
tives of the “electron” functions ¢(u,,) and ¢(u,,) are
small compared with the corresponding terms with
derivatives of x(u,,). The wave function of the “frozen”
state satisfies the equations
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- me(l)

—tp(um)+

The lowest energy is

1
=32 v
1 2
Z(Zf_ um> +t2|, (10)

where £ = f,,(1) + £,,(2) and f,, = £,,(1) — £,,(2).
The lowest enrgy plays the role of potential energy in
the equation for y(u,),

[E - th - E(um)] X(um) =0. (11)

Because of the infinite number of variables, Eq. (11)
cannot be reduced to a double-well potential prob-
lem [4]. Here, we restrict ourselves to the simple case
of three ions in the upper chain (ions m = —1,0,+1).
Even this simplified five-site model is qualitatively
different from the canonical two-site Holstein model
(Fig. 1b) and maintains the features of the long-range
Frohlich interaction. By generalizing the transforma-
tion formulas in Ref. [5],

fj__lau—la + f__lau+1a = ¢aXa,

f—_m“—la + (fj-_m - f—_1a)U0a - fLaUHa = (aYao
and
f:loz(filoz - f:la)u laa — (f—la + f+1a)u[)a -
- fila(fila - f 1oz)u+1a - (ffla + f+1a)

where g, = \/2(.](—_%04 - f—_lafj-_la + fi_lza) » = T1,Y, 2,
and introducing a new variable £ =Y, +Y), we can inte-
grate out eight of the nine vibration modes and reduce
the problem to the well-known double-well potential
problem [4]

2
<E 4w+5E + 0

S+ 5pg ~UO) (O =0, (12

Here,

2¢2 3
o€ VS By + 12 (13)
2 4
is the familiar double-well potential and p = M/2.
Standard procedure yields for energy splitting AE =
= Aexp(—g%), where

. —1
A=Y 3_E1’k3/2 1— %km
TV 4w 4w '

U =

" (msp —mip)/mip
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Fig.3. Mass of the small Frohlich polaron in units of

the band electron mass (m = 1/2ta”) with polarized

(m1p) and vector (m3sp) ion vibrations, and their rel-

ative change as functions of \ in the adiabatic regime,
t/w=>5

3E 3E -t
2 _ 2P 1.3/2 2P 1.3/2
9F = k \/ <4w k > .

Here, @ = wV/k is the renormalized phonon frequency,
k=1-1/36\% and \ = E,/2t.

The mass of the adiabatic SFP with polarized (per-
pendicular to the chain) and 3D vibrations of ions is
plotted in Fig. 3. The relative change in the adiabatic
SFP mass, (msp —mip)/mip, is also plotted in Fig. 3.
The magnitude of the mass change of the SFP in pass-
ing from polarized phonons to isotropic phonons is even
higher in the adiabatic limit. For A = 1.5 and ¢ = 5w,
we have mgp/mip & 377. It follows that the longitudi-
nal (parallel to the chain) component of ion vibrations
increases the SFP mass compared with the SHP mass,
as expected [7,8]. Nevertheless, the net contribution
of all vibrations provides much a lighter adiabatic SFP
than the adiabatic SHP even with the 3D vibrations of
ions (Fig. 4).

3. OPTICAL CONDUCTIVITY

Optical conductivity of both small [9-13] and
large [14-20] polarons have been studied extensively.
In our case of the adiabatic small polaron, the optical
absorption is a nearly adiabatic process, and hence we
can apply the familiar Franck—Condon principle. Here,
we adopt a general formula for the optical conductivity
of small polarons, which at zero temperature (T' = 0)
is written as [21]
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Fig.4. The ratio of the SFP mass to the SHP mass as
a function of X in the adiabatic regime: 1 — ¢/w = 5;
2—t/w=10

(70t2

BN e

X exp [—

o(v)

(v—4E,)?

(2 2Eamph)2]’ (14

where o9 is a constant, wy, is the phonon frequency, v
is the photon frequency, and F, is an activation energy
for the hopping process. The main difference between
polarons with the Holstein and the Frohlich interac-
tions is that in the former case, the electron deforms
only the site where it sits, while in the latter case, it
also deforms many neighboring sites. This difference
can be seen in diagonal transitions of a polaron from
site to site, which ensures a lighter polaron in the Froh-
lich model, and in the optical absorption spectra. Due
to the photon absorption, the SHP hops to an unde-
formed site, and E, = E,/2. But the SFP hops to a
deformed neighbouring site, and hence E, = vE,/2.
As a result, the optical conductivities of the SHP
and SFP are very different, as is shown in Fig. 5. In
our model, the optical conductivity of the SFP has a
more asymmetric Gaussian shape. It is also different
from the one in Refs. [14-20], where large Frohlich po-
larons were studied using the effective mass approx-
imation, with detailed crystal structure being irrele-
vant. The optical conductivity of large polarons has
an asymmetric shape with a threshold at the optical
phonon frequency w,;,. This shape also depends on the

o, arb. units
1‘0 T T T T

0.5

Fig.5. Optical conductivity of the SFP (curves 1 and

2) and SHP curves (3 and 4) as functions of v at

E, =1 eV for wp, = 0.1 eV (curves 1 and 4) and
wph = 0.5 eV (curves 2 and 3)

many-body (polaron—polaron) interactions [19] and on
the magnitude of the polaron coupling constant [15, 20]

e? [2m*wpp,
Ay =
P 2hw,né ho

is the effective mass of an electron,

where m*
£l =g} —651, and £, and gg are the high-frequency
and static dielectric constants of the lattice. It was
established that optical conductivity spectra of large
Frohlich polarons exhibit relaxed state peaks at
moderate and large values of a,, [15].

However, recent quantum Monte Carlo simulations
showed that in the strong-coupling regime, peaks due to
relaxed excited states are “washed out” by large broad-
ening of these states [20], and optical conductivity spec-
tra of large polarons obtained in [15] are restricted to
the region 0 < a; < 6. In our discrete model, the op-
tical conductivity is different, its gross features being
more reminiscent of the canonical shape of the large-
polaron optical conductivity [14, 15].

4. CONCLUSION

We have solved an extended Holstein model with
a long-range Frohlich interaction generalized for the
3D vibrations. The small adiabatic Frohlich polaron is
found to be many orders of magnitude lighter than the
small Holstein polaron in both the nonadiabatic (see
Fig. 2) and adiabatic (see Fig. 4) regimes even with
isotropic vector vibrations of ions. The component
of ion vibrations parallel to the chain gives rise to a

1176



MITD, Tom 135, BHII. 6, 2009

Two-site model for a small polaron ...

larger increase in the SFP mass, in agreement with
Refs. [7,8]. But the common effect of all vibrations
provides a much smaller renormalization of the SFP
mass compared with that of the SHP mass. Optical
conductivity of small-size Frohlich adiabatic polarons
has been analyzed and compared with the Holstein
model.
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