СПИН-ВОЛНОВОЙ РЕЗОНАНС В ПЛЕНКАХ $Ge_{1-x}Mn_x$, ОБЛАДАЮЩИХ ПЕРКОЛЯЦИОННЫМ ФЕРРОМАГНЕТИЗМОМ

А. И. Дмитриев^а, Р. Б. Моргунов^{а*}, О. Л. Казакова^b, Й. Танимото^{с**}

^а Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b National Physical Laboratory, TW110LW, Teddington, United Kingdom

^cOsaka-Ohtani University, 584-8540, Tondabayashi, Japan

Поступила в редакцию 18 ноября 2008 г.

Исследованы магнитные свойства тонких пленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$ (x = 0.02, 0.04, 0.08), полученных методом ионной имплантации ионов Mn^{2+} в пластины монокристаллического Ge. Разделены вклады подсистемы диспергированных ионов Mn^{2+} , ферромагнитных кластеров $\operatorname{Ge}_3\operatorname{Mn}_5$ и ферромагнитных областей Ge, обогащенных Mn, в магнитный момент пленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$. В подсистеме диспергированных ионов Mn^{2+} , ферромагнитных кластеров $\operatorname{Ge}_3\operatorname{Mn}_5$ и ферромагнитных областей Ge, обогащенных Mn_x в магнитный момент пленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$. В подсистеме диспергированных ионов Mn^+ пленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$ при температурах ниже 10 К обнаружен спин-волновой резонанс в магнитоупорядоченном состоянии, обусловленном перколяционным ферромагнетизмом. Установлено соответствие обменных интегралов, определенных из статических и динамических измерений в пленках с перколяционным магнетизмом.

PACS: 75.75.+a, 76.50.+g

1. ВВЕДЕНИЕ

В настоящее время большой интерес вызывают разбавленные магнитные полупроводники (DMS — Diluted Magnetic Semiconductors). На практике DMS могут быть использованы в спинтронике при условии высоких температур Кюри [1-3]. До недавнего времени большая часть исследований была посвящена DMS III, V групп, низкие температуры Кюри которых затрудняют их практическое использование [4-7]. Поэтому сейчас основное внимание уделяется поиску DMS IV группы. Легирование элементарных полупроводников Ge и Si переходными металлами (преимущественно Mn), приводит к возникновению в них ферромагнитного упорядочения [8–15]. Как правило, в DMS $Ge_{1-x}Mn_x$ наблюдаются три критические температуры T_C разной природы [12–26]. Ферромагнитное упорядочение в системе диспергированных ионов Mn ($x \leq 0.1$) наблюдается при температурах $T_{C1} \leq 16$ К и объясняется существованием так называемого перколяционного ферромагнетизма, обусловленного перекрытием магнитных поляронов [16]. Перколяционный магнетизм в настоящее время мало изучен. В предыдущих работах о нем судили по суммарному магнитному моменту образца в статических измерениях [16]. Ферромагнитный резонанс, возможные спин-волновые явления и спиновая динамика этого магнитоупорядоченного состояния нового типа ранее не исследовались.

Критическая температура $T_b \approx 300$ К отвечает температуре Кюри ферромагнитных кластеров сплава Ge₃Mn₅ [12–22]. Кроме того, в системе Ge_{1-x}Mn_x может наблюдаться промежуточная температура $T_{C2} = 50$ –150 К, которая связана с образованием ферромагнитных областей Ge, обогащенных Mn [12–15, 22–26]. Области, обогащенные марганцем, Mn_nGe_m, не являются сплавом типа Ge₃Mn₅, а представляют собой диспергированные ионы Mn с локально высокой концентрацией. Ферромагнитное упорядочение в них происходит при более высоких температурах, чем в объеме образца, где концентрация Mn ниже. Вероятно присутствием областей, обогащенных ионами Mn, обусловлена высокая температура Кюри $T_C = 320$ К в

^{*}E-mail: morgunov20072007@yandex.ru

^{**}Y. Tanimoto

нанопроволоках $Ge_{1-x}Mn_x$ [8]. Поэтому наноструктурирование $Ge_{1-x}Mn_x$, приводит к тому, что размер областей, обогащенных ионами Mn^{2+} , становится равным размеру нанопроволок. Это открывает новые возможности для увеличения температур Кюри в наноструктурах DMS. Для DMS с концентрацией переходных металлов до нескольких атомных процентов сложно провести различие между пространственно-однородным сплавом и сильно неоднородным материалом, содержащим интерметаллические соединения или обогащенные металлом кластеры [23]. Однако можно ожидать, что это различие может быть выражено в разных температурах Кюри T_C .

Ранее нами были исследованы основные закономерности поглощения микроволновой мощности в пленках $Ge_{1-x}Mn_x$ (x = 0.02, 0.04, 0.08) [12–15]. Было установлено, что при высоких температурах (T > 220 K) резонансные пики соответствуют ферромагнитным кластерам Mn₅Ge₃. Низкотемпературный ферромагнитный резонанс (T < 60 K) приводит к возбуждению стоячих спиновых волн. Закономерности возникновения ферромагнитного упорядочения в пленках $Ge_{1-x}Mn_x$ не были установлены. Поэтому целью настоящей работы является разделение вкладов подсистемы диспергированных ионов Mn²⁺, ферромагнитных кластеров Ge₃Mn₅ и ферромагнитных областей Mn_nGe_m, обогащенных ионами Mn^{2+} , в магнитный момент пленок $Ge_{1-x}Mn_x$ (x = 0.02, 0.04, 0.08). Кроме того, предпринята попытка установления соответствия параметров перколяционного ферромагнетика, полученных из статических измерений (СКВИД-магнитометром) и определенных из наблюдений динамических коллективных спиновых явлений (ферромагнитного и спин-волнового резонанса).

2. МЕТОДИКА ЭКСПЕРИМЕНТОВ И ПРИГОТОВЛЕНИЯ ОБРАЗЦОВ

Пленки $Ge_{1-x}Mn_x$ (x = 0.02, 0.04, 0.08) (рис. 1) были изготовлены методом ионной имплантации ионов Mn^{2+} в пластины монокристаллического Ge. Глубина проникновения ионов Mn^{2+} в монокристаллический Ge составляла около 120 нм, а их распределение в этом слое имело профиль, близкий к гауссовому. Подробно методика приготовления пленок $Ge_{1-x}Mn_x$ (x = 0.02, 0.04, 0.08) описана ранее [27–30]. Структура пленок и степень окисления иона Mn^{2+} была исследована ранее методами просвечивающей электронной микроскопии, рентгенов-

Рис.1. Изображение поперечного сечения ионноимплантированной пленки $Ge_{0.96}Mn_{0.04}$, полученное на просвечивающем электронном микроскопе

ской дифракции, рентгеновской фотоэлектронной спектроскопии [27–30]. Было установлено, что пленки Ge_{0.98}Mn_{0.02}, Ge_{0.96}Mn_{0.04}, Ge_{0.92}Mn_{0.08} содержат кластеры Ge_3Mn_5 диаметрами соответственно 4.3 нм, 9.5 нм, 13.1 нм, а также изолированные ионы Mn⁺ в узлах кристаллической решетки Ge [27–30] (рис. 1).

Измерения намагниченности пленок проводили с помощью СКВИД-магнитометра MPMX 5XL, Quantum Design при температурах 2–320 К в постоянном магнитном поле 1 кЭ.

Спектры электронного спинового резонанса получены на спектрометре Varian EMX plus, оснащенном гелиевым криостатом Oxford Instruments ESR-900. Спектры электронного спинового резонанса были получены в виде зависимостей первой производной микроволновой мощности dP/dH от магнитного поля Н. Эксперименты проводились в основном при частоте микроволнового поля 9.4 ГГц и частоте модуляции 100 кГц в температурном диапазоне T = 4-300 К. Образцы помещались в пучность магнитной составляющей микроволнового поля H_{102} в прямоугольном резонаторе. Микроволновое магнитное поле было всегда перпендикулярно постоянной составляющей магнитного поля спектрометра. Угол между постоянным магнитным полем и плоскостью пленок регулировался с помощью автоматического гониометра с относительной точностью 0.1°.

	x = 0.02	x = 0.04	x = 0.08
Доля диспергированных ионов Mn, %	70	60	50
Концентрация диспергированных ионов Mn $n_i, 10^{21}$ см ^{-3}	0.6	1.1	1.8
Среднее расстояние между примесными ионами Mn r, Å	11.8	9.8	8.3
Константа обменной жесткости спиновых волн <i>D</i> , 10 ⁻⁸ Э·см ²	4.2 ± 0.3	3.4 ± 0.6	1.9 ± 0.2
Обменный интеграл J, мэВ [K]	5.8 ± 0.4 [66.7 ± 4.5]	6.8 ± 1.2 [79.3 ± 14.4]	5.2 ± 0.6 [59.9 \pm 7.2]
Энергия взаимодействия ближайших ионов Mn в решетке Ge W, K	6.7 ± 0.5	20.9 ± 3.9	22.1 ± 3.8
Радиус локализации дырок L, Å	6.1 ± 0.6	16.1 ± 3.1	12.2 ± 0.8
Температура Кюри <i>T</i> _{C1} , К	4.5	10	10
Температура Кюри <i>T</i> _{C2} , К	_	55	_
Средний диаметр кластеров Ge ₃ Mn ₅ d, нм	4.3	9.5	13.1
Температура Кюри кластеров T _b , К	266	281	292

Таблица

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На изображении пленки Ge_{1-x}Mn_x, полученном на просвечивающем электронном микроскопе (рис. 1), можно видеть кластеры сплава Ge₃Mn₅. Методом рентгеновской фотоэлектронной микроскопии обнаружены также диспергированные в кристаллической решетке Ge ионы Mn²⁺ [27–30]. Эти две подсистемы имеют различные температуры Кюри. Самая низкая критическая температура $T_{C1} < 10$ К, наблюдающаяся в пленках $\text{Ge}_{1-x}\text{Mn}_x$ (рис. 2, таблица), может соответствовать точке перколяционного перехода в ферромагнитное состояние диспергированных в кристаллической решетке Ge ионов Mn²⁺ [31-34]. В основе перколяционной модели лежит предположение о том, что косвенный обмен обусловлен локализованными носителями заряда (в случае примеси Мп-дырками) [31-34]. Обменное взаимодействие локализованных дырок с примесными ионами приводит к формированию магнитных поляронов [35, 36]. Магнитный полярон числа примесных ионов, окружающих ее. Прямое обменное взаимодействие между локализованными дырками антиферромагнитное, в то время как обменное взаимодействие между магнитными поляронами может быть ферромагнитным при больших концентрациях примесных ионов [37]. При относительно высоких температурах ориентации спинов примесных ионов, принадлежащих разным поляронам, произвольны. При понижении температуры радиус магнитных поляронов растет и при некотором значении температуры волновые функции соседних поляронов начинают перекрываться через примесные ионы, принадлежащие разным поляронам. Это взаимодействие приводит к тому, что спины примесных ионов, принадлежащих разным поляронам, упорядочиваются. В точке перколяционного перехода, когда размер кластера коррелированных поляронов достигнет размеров образца, происходит ферромагнитное упорядочение. Температура Кюри в перколяционной модели

состоит из одной локализованной дырки и большого

Рис.2. а) Зависимости магнитного момента Mпленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$ от температуры T при ориентации магнитного поля напряженностью H = 1 кЭ перпендикулярно плоскости пленки, δ) зависимости производной магнитного момента по температуре dM/dT пленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$ от температуры T при ориентации магнитного поля напряженностью H = 1 кЭ перпендикулярно плоскости пленки (стрелками указаны температуры Кюри T_{C1} , T_{C2} и температура Кюри кластеров T_b)

определяется выражением

$$T_C = sSJ(L^3n_h)^{1/3} \sqrt{\frac{n_i}{n_h}} \exp\left(-\frac{0.86}{(L^3n_h)^{1/3}}\right), \quad (1)$$

где s = 1/2 — спин локализованной дырки, S = 5/2 — спин примесного иона Mn^{2+} , J — обменный интеграл, n_i — концентрация примесных ионов Mn^{2+} , n_h — концентрация локализованных дырок, L — радиус локализации дырок [33]. Вопрос происхождения локализованных состояний дырок выходит за рамки перколяционной модели. Однако известно,

7 ЖЭТФ, вып.6

что локализация может происходить из-за кулоновского взаимодействия носителей заряда с примесным ионом (в этом случае *L* есть радиус Бора *a*_B носителей заряда), это может быть локализация Андерсона и др. [38, 39]. Локализация носителей заряда и переходы металл-диэлектрик были обнаружены в Ge ранее [40–42]. Обменный интеграл *J* (таблица) мы определили по формуле

$$J = \frac{Dg\mu_B}{2Sr^2},\tag{2}$$

где g = 2 - g-фактор примесного иона Mn²⁺, μ_B — магнетон Бора, S = 5/2 — спин примесного иона Mn²⁺, r — среднее расстояние между примесными ионами Mn²⁺, D — константа обменной жесткости [43]. Наличие спин-волнового резонанса в пленках Ge_{1-x}Mn_x (x = 0.02, 0.04, 0.08) (рис. 2*a*), позволяющего определить D, было установлено ранее [12–15]. Для случая спин-волнового резонанса в перпендикулярной ориентации и гауссова распределения намагниченности по сечению неоднородной пленки выполняется следующая зависимость резонансного поля H_{res} *n*-й линии от номера спин-волновой моды k:

$$H_{res} = H_0 - \frac{D_{ex} \left[3\pi/2(k+1/4)\right]^{2/3}}{d^2}, \qquad (3)$$

где *d* — толщина пленки [44]. На рис. З*б* показана аппроксимация экспериментальной зависимости линейной функцией

$$H_{res} \sim z, \quad z = \left[\frac{3\pi}{2}\left(k + \frac{1}{4}\right)\right]^{2/3} d^{-2}.$$

Имеет место хорошее соответствие теоретических представлений с полученными экспериментальными данными для всех типов пленок $\text{Ge}_{1-x}\text{Mn}_x$. Поэтому из аппроксимации было определено значение Dдля всех них (таблица). Полученные значения для D и J близки к полученным ранее для подобных систем [33, 45]. Для оценки температуры Кюри T_{C1} по формуле (1) необходимо знать концентрацию локализованных дырок n_h и радиус локализации L. Произведение $L^3 n_h$ мы определили из аппроксимации температурной зависимости магнитного момента диспергированных ионов Mn^{2+} пленок $\text{Ge}_{1-x}\text{Mn}_x$ (x = 0.02, 0.04, 0.08) (рис. 4) по формуле, полученной в перколяционной модели:

$$M(T) = M(0) \left[1 - \exp\left(-L^3 n_n \ln^3 \frac{SW}{T}\right) \right], \quad (4)$$

где M(0) — магнитный момент при температуре $T \rightarrow 0$ K, n_h — концентрация локализованных ды-

Рис. 3. а) Спектры спин-волнового резонанса пленок $\operatorname{Ge}_{1-x}\operatorname{Mn}_x(x=0.02,\,0.04,\,0.08)$ при температуре T=4 К (постоянное магнитное поле перпендикулярно пленке), б) зависимости резонансного поля H_{res} от параметра z (см. в тексте) при температуре T=4 К (сплошными линиями показана аппроксимация, описанная в тексте)

рок, L — радиус локализации дырок, T — температура, S = 3 -спин примесного иона Mn^{2+} , W энергия обменного взаимодействия ближайших примесных ионов Mn²⁺ [31]. При низких температурах (T < 10 K) в значение магнитного момента пленок дают вклад все подсистемы: диспергированные ионы Mn²⁺, кластеры сплава Ge₃Mn₅ и ферромагнитные преципитаты Mn_nGe_m. Хорошее совпадение экспериментальной зависимости M(T) и функции (4) (рис. 4), а также значение $L^3 n_h \approx 0.09 < 1$, определенное из аппроксимации, указывают на перколяционное происхождение ферромагнетизма в пленках $Ge_{1-x}Mn_x$ (x = 0.02, 0.04, 0.08). На рис. 4 представлена температурная зависимость магнитного момента и его аппроксимация выражением (4) только для подсистемы диспергированных ионов Mn²⁺. Вклад

Рис.4. Зависимости магнитного момента M подсистемы диспергированных ионов Mn^{2+} в пленках $\mathrm{Ge}_{1-x}\mathrm{Mn}_x$ (x = 0.02, 0.04, 0.08) от температуры T при ориентации магнитного поля напряженностью H = 1 кЭ перпендикулярно плоскости пленки. Сплошными линиями показана аппроксимация с помощью перколяционной модели, описанная в тексте. На вставке пояснена процедура выделения вклада подсистемы диспергированных ионов Mn в магнитный момент пленок $\mathrm{Ge}_{0.96}\mathrm{Mn}_{0.04}$: 1 — зависимость M(T) пленок $\mathrm{Ge}_{0.96}\mathrm{Mn}_{0.04}$, 2 — экстраполяция в область низких температур, 3 — результат после вычитания — зависимость M(T) подсистемы диспергированных ионов Mn

подсистемы диспергированных ионов Mn^{2+} выделили следующим образом. Экстраполировали высокотемпературные части (T = 30-250 K) температурных зависимостей магнитного момента пленок $Ge_{1-x}Mn_x$ (x = 0.02, 0.04, 0.08) в область низких температур и вычитали из общего момента. При высоких температурах вклада ферромагнитной подсистемы диспергированных ионов Mn^{2+} нет. На вставке рис. 4 пояснена процедура выделения вклада подсистемы диспергированных ионов Mn^{2+} в магнитный момент пленок $Ge_{0.96}Mn_{0.04}$. Для других типов пленок применяли аналогичную процедуру.

Решив систему уравнений (1)–(4), мы определили радиус локализации L (таблица). Полученные значения для L близки к полученным ранее для подобных систем [33]. Отметим, что L заметно меньше, чем боровский радиус дырок $a_B \sim 75$ Å и электронов $a_B \sim 45$ Å в Ge [46]. Это означает, что носители заряда локализованы на дефектах в кристаллической решетке Ge, которые образовались в результате имплантации. Таким образом, мы установили, что измеренные значения температуры Кюри T_{C1} удовлетворительно описываются перколяционной моделью при разумных параметрах, соответствующих независимым измерениям.

В пленках Ge_{0.96}Mn_{0.04} при понижении температуры наблюдается магнитный переход при «промежуточной» температуре $T_{C2} = 55$ К (рис. 2, таблица), при которой магнитный момент пленки скачкообразно увеличивается. Подобный магнитный переход при близкой по значению «промежуточной» температуре наблюдался ранее в пленках Ge_{1-x}Mn_x с близкими значениями концентрации ионов Mn [16, 17, 25, 26]. Авторы этих работ связывают этот переход с ферромагнитным упорядочением в областях Mn_nGe_m , имеющих более высокую концентрацию Mn по сравнению с концентрацией в объеме. Недавно было установлено, что при изготовлении пленок $Ge_{1-x}Mn_x$ может происходить химическое фазовое разделение сплава на обогащенные и обедненные Mn области [20, 24, 47, 48]. Процесс формирования областей Mn_nGe_m трудно контролируем, случаен и плохо воспроизводим, поэтому «промежуточный» магнитный переход не наблюдается в плен- ${\rm Kax}~Ge_{0.98}{\rm Mn}_{0.02}, Ge_{0.92}{\rm Mn}_{0.08}.$ Промежуточный магнитный переход также отсутствовал в структурах Ge_{1-x}Mn_x с близкими концентрациями ионов Mn, которые были исследованы в работах [19–22].

При высоких температурах (T > 232 K) эффективный магнитный момент пленок Ge_{1-x}Mn_x $(x = 0.02, 0.04, 0.08) \ \mu_{eff} = \sqrt{8TN_aM/HN} \approx 420\mu_B$ $(N_a -$ число Авогадро, $N \approx 5 \cdot 10^{13} -$ число ионов Mn, заключенных в кластеры Ge₃Mn₅). Это на порядок выше магнитного момента $\mu_{eff} = g\sqrt{S(S+1)} \approx$ $\approx 6\mu_B \ (g = 2 - g$ -фактор ионов ${\rm Mn}^{2+}, \ S = 5/2 - g$ спин ионов Mn^{2+}) ионов $\mathrm{Mn}^{2+},$ подсчитанного в предположении, что они не взаимодействуют друг с другом, т. е. парамагнитны. Это означает, что при T = 232 К наблюдается переход кластеров Ge₃Mn₅ в суперпарамагнитное состояние. Температура, при которой этот переход наблюдается, есть температура блокировки T_{block}. Известно, что в кластерах Ge₃Mn₅ имеется одна ось легкого намагничивания, совпадающая с кристаллографической осью с кластеров [49, 50]. Уравнение для одноосной магнитной анизотропии записывается в виде

$$E_A = KV \sin^2 \theta,$$

где K — объемная плотность энергии анизотропии, V — объем кластера, θ — угол между направлением вектора магнитного момента и осью анизотропии [51]. При низких температурах ($T < T_{block}$) энергетический барьер фиксирует вектор магнитного момента кластера в одном направлении (параллельно либо антипараллельно оси анизотропии). При высоких температурах ($T > T_{block}$) из-за термических флуктуаций вектор магнитного момента кластера может переориентироваться из параллельного оси анизотропии направления в антипараллельное или наоборот. Неелем и Брауном была получена формула для характерного времени термических флуктуаций магнитного момента однодоменной частицы с одноосной магнитной анизотропией [52, 53]:

$$\tau = \tau_0 \exp\left(\frac{KV}{k_B T}\right). \tag{5}$$

Предэкспоненциальный множитель τ_0 зависит от многих параметров — температуры, гиромагнитного отношения, намагниченности насыщения, константы анизотропии, величины энергетического барьера и др. [54, 55], однако для простоты τ_0 считают постоянной величиной, равной примерно 10^9 с [52, 53, 56].

Если время измерения $\tau_{meas} \gg \tau$, то система находится в суперпарамагнитном состоянии и быстро достигает равновесной намагниченности при изменении температуры или внешнего магнитного поля. В противном случае ($\tau_{meas} \ll \tau$) при изменении внешнего магнитного поля система не успевает релаксировать к новому равновесному состоянию за время τ_{meas} и ее намагниченность не изменяется [57]. Случаю $\tau = \tau_{meas}$ в формуле (5) отвечает температура блокировки T_{block} . Для характерного времени статических магнитных измерений $\tau_{meas} \sim 100$ с [57, 58]:

$$T_{block} = \frac{KV}{25k_B}.$$
(6)

Определив температуру T_{block} и зная объем кластеров Ge₃Mn₅, мы вычислили объемную плотность энергии анизотропии $K = 0.9 \cdot 10^6$ эрг/см³, которая оказалась близка к значениям, полученным в работе [21]. Отметим, что формула (6) задает температуру T_{block} для случая нулевого магнитного поля. С увеличением напряженности магнитного поля температура T_{block} уменьшается [57], что наблюдали экспериментально для кластеров Ge₃Mn₅ в работе [22].

4. ВЫВОДЫ

Разделены вклады в магнитный момент пленок $\text{Ge}_{1-x}\text{Mn}_x$ (x = 0.02, 0.04, 0.08) от подсистемы диспергированных ионов Mn^{2+} , ферромагнитных кластеров Ge_3Mn_5 и ферромагнитных преципитатов Mn_nGe_m (областей, обогащенных Mn). Установлено, что самая низкая критическая температура T_{C1} , наблюдающаяся в пленках $\text{Ge}_{1-x}\text{Mn}_x$ (x = 0.02, 0.04, 0.08), соответствует точке перколяционного перехода в ферромагнитное состояние диспергированных в кристаллической решетке Ge ионов Mn²⁺. В этой низкотемпературной области был обнаружен спин-волновой резонанс и из него определены параметры обменного взаимодействия, согласующиеся с оценками, проведенными из аппроксимации статических измерений.

Промежуточная температура T_{C2} отвечает ферромагнитному упорядочению в областях Mn_nGe_m , имеющих более высокую концентрацию Mn по сравнению с концентрацией диспергированных ионов Mn^{2+} в Ge. Высокотемпературный переход соответствует переходу кластеров Ge₃Mn₅ в ферромагнитное состояние при температуре T_b .

ЛИТЕРАТУРА

- 1. T. Dietl, Nature Mater. 2, 646 (2003).
- 2. S. Picozzi, Nature Mater. 3, 349 (2004).
- A. H. MacDonald, P. Schiffer, and N. Samarth, Nature Mater. 4, 195 (2005).
- A. Ney, J. S. Harris, and S. S. P. Parkin, J. Phys.: Condens. Matter 18, 4397 (2006).
- V. F. Motsnyi, P. Van Dorpe, W. Van Roy et al., Phys. Rev. B 68, 245319 (2003).
- J. Wang, G. A. Knodaparast, J. Kono et al., J. Mod. Opt. 51, 2771 (2004).
- B. Sun, D. Jiang, Z. Sun. et al., J. Appl. Phys. 100, 083104 (2006).
- O. Kazakova, J. S. Kulkarni, J. D. Holmes et al., Phys. Rev. B 72, 094415 (2005).
- 9. Б. Моргунов, А. И. Дмитриев, Ү. Тапітото и др., ФТТ 49, 285 (2007).
- R. B. Morgunov, A. I. Dmitriev, Y. Tanimoto et al., J. Magn. Magn. Mater. **310**, 824 (2007).
- R. B. Morgunov, Y. Tanimoto, I. B. Klenina et al., J. Magn. Magn. Mater. **316**, 210 (2007).
- R. Morgunov, M. Farle, M. Passacantando et al., Phys. Rev. B 78, 045206 (2008).
- O. Kazakova, R. Morgunov, and J. Kulkarni, Phys. Rev. B 77, 235317 (2008).
- 14. Р. Б. Моргунов, М. Фарле, О. Л. Казакова, ЖЭТФ 134, 141 (2008).

- R. Morgunov, Y. Tanimoto, and O. Kazakova, Sci. Technol. Adv. Mater. 9, 024207 (2008).
- 16. A. P. Li, J. Shen, J. R. Thompson, and H. H. Weitering, Appl. Phys. Lett. 86, 152507 (2005).
- Y. D. Park, A. T. Hanbicki, S. C. Erwin et al., Science 295, 651 (2002).
- 18. S. Cho, S. Choi, S. C. Hong et al., Phys. Rev. B 66, 033303 (2002).
- Y. D. Park, A. Wilson, A. T. Hanbicki et al., Appl. Phys. Lett. 78, 2739 (2001).
- 20. T. Devillers, M. Jamet, A. Barski et al., Phys. Rev. B 76, 205306 (2007).
- 21. S. Ahlers, D. Bougeard, N. Sircar et al., Phys. Rev. B 74, 214411 (2006).
- 22. C. Jaeger, C. Bihler, T. Vallaitis et al., Phys. Rev. B 74, 045330 (2006).
- 23. В. Н. Меньшов, В. В. Тугушев, Письма в ЖЭТФ
 87, 497 (2008).
- 24. J. S. Kang, G. Kim, S. C. Wi et al., Phys. Rev. Lett. 94, 147202 (2005).
- 25. H. Li, Y. Wu, Z. Guo et al., J. Appl. Phys. 100, 103908 (2006).
- C. Bihler, C. Jaeger, T. Vallaitis et al., J. Appl. Phys. 88, 112506 (2006).
- 27. L. Ottaviano, M. Passacantando, A. Verna et al., J. Appl. Phys. 100, 063528 (2006).
- 28. L. Ottaviano, M. Passacantando, S. Picozzi et al., Appl. Phys. Lett. 88, 061907 (2006).
- 29. L. Ottaviano, M. Passacantando, S. Picozzi et al., Appl. Phys. Lett. 90, 1 (2007).
- 30. M. Passacantando, L. Ottaviano, F. D. Orazio et al., Phys. Rev. B 73, 195207 (2007).
- **31**. И. Я. Коренблит, Е. Ф. Шендер, УФН **126**, 233 (1978).
- 32. V. I. Litvinov and V. K. Dugaev, Phys. Rev. Lett. 86, 5593 (2001).
- 33. A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
- 34. A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210 (2003).
- **35**. Э. Л. Нагаев, ЖЭТФ **56**, 1013 (1969).
- 36. T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982).

- 37. P. A. Wolff, R. N. Bhatt, and A. C. Durst, J. Appl. Phys. 79, 5196 (1996).
- 38. В. Ф. Гантмахер, В. Т. Долгополов, УФН 178, 1 (2008).
- **39**. В. Ф. Гантмахер, Электроны в неупорядоченных средах, Физматлит, Москва (2005), с. 232.
- **40**. А. И. Вейнгер, А. Г. Забродский, Т. В. Тиснек и др., ФТП **42**, 1301 (2008).
- 41. А. И. Вейнгер, А. Г. Забродский, Т. В. Тиснек и др., ФТП 41, 812 (2007).
- 42. А. И. Вейнгер, А. Г. Забродский, Т. В. Тиснек, ФТП
 34, 45 (2000).
- **43**. C. Kittel, *Introduction to Solid Physics*, Wiley, New York (1971), p. 689.
- 44. B. Hoekstra, R. P. Stapele, and J. M. Robertson, J. Appl. Phys. 48, 382 (1977).
- 45. S. T. B. Goennenwein, T. Graf, T. Wassner et al., Appl. Phys. Lett. 82, 730 (2003).
- **46**. Л. Д. Богомолова, В. Н. Лазуркин, И. В. Чепелева, УФН **83**, 433 (1964).
- 47. A. P. Li, C. Zeng, K. van Benthem et al., Phys. Rev. B 75, 201201 (2007).

- 48. M. Jamet, A. Barski, T. Devillers et al., Nature Mater.
 5, 653 (2006).
- 49. Y. Tawara and K. Sato, J. Phys. Soc. Jpn. 18, 773 (1963).
- 50. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 70, 235205 (2004).
- 51. I. S. Jacobs and C. P. Bean, *Magnetism*, Academic Press, New York (1963), p. 350.
- 52. W. F. Brown, Phys. Rev. 130, 1677 (1963).
- 53. W. F. Brown, J. Appl. Phys. 30, 130 (1959).
- 54. W. T. Coffey, D. S. Crothers, J. L. Dormann et al., J. Magn. Magn. Mater. 145, 263 (1995).
- 55. W. T. Coffey, D. S. Crothers, J. L. Dormann et al., Phys. Rev. B 52, 15951 (1995).
- 56. D. Leslie-Pelecky and R. D. Rieke, Chem. Mater. 8, 1770 (1996).
- 57. С. П. Губин, Ю. А. Кокшаров, Г. Б. Хомутов и др., Успехи химии 74, 539 (2005).
- 58. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120 (1959).