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CORRECTION TO MOLIÈRE'S FORMULAFOR MULTIPLE SCATTERINGR. N. Lee *, A. I. Milstein **Budker Institute of Nulear PhysisSiberian Branh of the Russian Aademy of Sienes630090, Novosibirsk, RussiaNovosibirsk State University630090, Novosibirsk, RussiaReeived January 14, 2009The semilassial orretion to Molière's formula for multiple sattering is derived. The onsideration is basedon the sattering amplitude obtained with the �rst semilassial orretion taken into aount for an arbitraryloalized but not spherially symmetri potential. Unlike the leading term, the orretion to Molière's formulaontains the target density n and thikness L not only in the ombination nL (areal density). Therefore, thisorretion an be referred to as the bulk density orretion. It turns out that the bulk density orretion is smalleven for high density. This result explains the wide range of appliability of Molière's formula.PACS: 12.20.-m, 34.80.Bm1. INTRODUCTIONMultiple sattering of high-energy partiles in mat-ter is a proess that plays an important role in experi-mental physis. The basis of the theoretial desriptionof this proess goes bak to Refs. [1�4℄. The theory ofmultiple sattering was further developed in numerouspubliations (see, e.g., Refs. [5, 6℄ and the referenestherein). Detailed experimental investigation of multi-ple sattering has also been performed (see Refs. [7, 8℄).The elebrated Molière's formula desribes the an-gular distribution dW=d
 for small-angle sattering. Itwas shown by Bethe in Ref. [4℄ that the simplest way toderive this formula is to use the transport equation. Asa onsequene of this equation, the angular distributiondW=d
 depends on the thikness L and the density nonly in the ombination nL, whih is the areal densityof a target. It an be expeted that the appliabilityof Molière's formula is restrited to low densities. Butexperimental results obtained for small sattering an-gles show that the deviations from Molière's formulaare small for all data available. In the present paper,*E-mail: R.N.Lee�inp.nsk.su**E-mail: A.I.Milstein�inp.nsk.su

we explain suh surprising behavior by alulating theleading bulk-density orretion to Molière's formula.We start with the expression for the small-anglesattering amplitude. This expression was obtained inRef. [9℄ in the semilassial approximation with the �rstorretion taken into aount. The appliability of thisapproximation is provided by small sattering anglesand high energy " of the partile, " � m (m is thepartile mass; the system of units with ~ =  = 1 isused). This amplitude has been obtained for an ar-bitrary loalized potential without the requirement ofits spherial symmetry. As is known, the semilassialwave funtion has a muh wider range of appliabilitythan the eikonal wave funtion. However, as was shownin Ref. [9℄, the sattering amplitude obtained with theuse of the semilassial wave funtion oinides withthat obtained in the eikonal approximation (see alsoRef. [10℄). Using the semilassial sattering ampli-tude with the �rst orretion taken into aount, wealulate the orresponding ross setion and averageit over the positions of atoms in the target. Dividingthis ross setion by the area of the target, we arrive atthe angular distribution dW=d
. The leading term ofthis distribution oinides with Molière's formula. Theorretion depends not only on the areal density nL of1125



R. N. Lee, A. I. Milstein ÆÝÒÔ, òîì 135, âûï. 6, 2009the target but also on the bulk density n alone. We dis-uss the magnitude of the orretion for di�erent targetparameters and sattering angles.2. DIFFERENTIAL PROBABILITYWe diret the z axis along the initial momentum pof the partile suh thatr = z p=p+ �:The small-angle high-energy sattering amplitude in aloalized potential V (z; �) has the form [9℄f = � i"2� Z d2� e�iq��(e�iK(�) � 1 + e�iK(�) �� " 12" 1Z�1 dx x��V (x; �)� i" 1Z�1 dx �� xZ�1 dy y (r�V (x; �)) � (r�V (y; �))#); (1)K (�) = 1Z�1 dxV (x; �) ;where q = p0 � p; p0 is the �nal momentum,r� = �=��, and �� = r2�. The seond term in braesin Eq. (1) orresponds to the orretion. For q 6= 0,the unity in the leading term an be omitted. The dif-ferential ross setion orresponding to the amplitudef and having the same auray as Eq. (1) is given byd�d
 = "22�2 Re Z d�1 d�2 exp [�iq � (�1 � �2)℄�� exp f�i [K (�1)�K (�2)℄g ��8<:1 + 12" 1Z�1 dx x��1V (x; �1)� i" 1Z�1 dx �� xZ�1 dy y (r�1V (x; �1)) � (r�1V (y; �1))9=; : (2)The total potential of atoms in the target has the formV (r) =Xi u (r� ri) ; (3)where u (r) is the potential of an individual atom, whihwe assume to be spherially symmetri. We averageover the atom positions using the presriptionhfi = Z Yi dxi d�iLS f; (4)

orresponding to the dilute gas approximation. As aresult, we obtaindWd
 = � d�Sd
� = "22�2 Re Z d�e�iq�� ��(FN1 � iN" FN�11 F2 � iN (N � 1)" FN�21 F3); (5)whereF1 = Z d�1S exp f�i [� (�1)�� (�1��)℄g ;F2 = L4 Z d�1S exp f�i [� (�1)�� (�1��)℄g�� [(r�1� (�1)) � (r�1� (�1)) + i��1� (�1)℄ ++ 1Z�1 dx xZ�1 dy y Z d�1S �� exp f�i [� (�1)� � (�1 � �)℄g �� (r�1u (x;�1)) � (r�1u (y;�1)) ;F3 = 1Z�1 dx 1Z�1 dy ZZ d�1S d�2S �� exp f�i [� (�1) �� � (�1 � �) + � (�2)� � (�2 � �)℄g ��"L6 � (x� y)24L #�� (r�1u (x;�1)) � (r�2u (y;�2)) :
(6)

Here, � (�) = 1Z�1 dx u (x;�) ;and hene K (�) =Xi � (�� �i) :We next pass to the limit N;S !1 and N=S = nL == onst. In this limit,FN1 = �1 + Z d�1S [exp f�i [� (�1) �� � (�1 � �)℄g � 1℄�N ! exp ��nL Z d�1 �� (1� exp f�i [� (�1)� � (�1 � �)℄g) � : (7)Substituting Eqs. (6) and (7) in Eq. (5), we �nally ob-tain1126
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 = "2(2�)2 Z d�e�iq�� �� exp��nL Z d�1 [1� os (� (�1)� � (�1 � �))℄����1� nL" 1Z�1 dx Z d�1 �� sin (� (�1)� � (�1 � �))�1 � r�1u2 (x;�1)�� n2L" Z d�1 os (� (�1)� � (�1 � �))�1� (�1)�� Z d�2 sin (� (�2)� � (�2 � �))r�2� (�2)�: (8)In deriving this formula, we used integration by parts.As a result, all terms proportional to L in F2 and F3,Eq. (6), vanish.It is onvenient to rewrite Eq. (8) in another form.The di�erential in the momentum transfer Q ross se-tion d�=dQ of high-energy sattering on one atom,alulated in the semilassial approximation with the�rst orretion taken into aount, satis�es the rela-tion [10, 9℄Z d2Q �1� eiQ��� d�dQ == Z d�1 241� os (� (�1)� � (�1 � �)) ++ 1" 1Z�1 dx sin (� (�1)�� (�1��))�� �1 � r�1u2 (x;�1)35 : (9)Using this relation, we obtaindWd
 = "2(2�)2 Z d�e�iq�� �� exp��nL Z d2Q �1� eiQ��� d�dQ����1�n2L" Z d�1 os (� (�1)�� (�1��))�1� (�1)�� Z d�2 sin (� (�2)� � (�2 � �))r�2� (�2)� (10)with the same auray as in Eq. (8). The leadingterm dWM=d
 in Eq. (10), orresponding to unity inbraes, oinides with Molière's formula. The orre-tion dWC=d
 desribes the e�et of the bulk density ofthe target and has not been known so far.

3. DISCUSSIONWe disuss the magnitude and the struture of theorretion obtained. At a �xed areal density nL (thenumber of target atoms per unit area), the orretionbehaves as n (or L�1), and inreases as L dereases.Estimations show that the relative magnitude of theorretion is the largest when the leading ontributionto the integral over � in Eq. (10) omes from the re-gion � � a, where a is the sreening radius of the atom,a � aBZ�1=3, aB is the Bohr radius, and Z is the nu-lear harge number. This ondition is satis�ed whenq � nLa, where q is the momentum transfer. In thisase, the orretion has the relative orderÆ = �dWMd
 ��1 dWCd
 � Z�na3"a R;R = (Z�)2 nLa2; (11)where � = 1=137 is the �ne struture onstant. Usingthe estimates("a)�1 � (ma)�1 � �Z1=3 � 1;Z�na3 . Z�a�3B �aBZ�1=3�3 = �� 1;we obtain Æ . 10�3Rm" :The upper bound for Æ inreases with R. However,when R� 1, both the leading term and the orretionare suppressed by the fator exp [�bR℄ ; where b � 1is some numerial onstant. Therefore, in the wholeregion interesting from the experimental standpoint, Ris not too big and hene Æ is very small.To onlude, we have alulated the volume den-sity orretion to Molière's formula and estimated themagnitude of the orretion. It turns out to be verysmall for all reasonable values of parameters. There-fore, Molière's formula remains very aurate even fora high density of the target.The work was supported by the RFBR (grants�� 08-02-91969, DFG GZ 436 RUS 113/769/0-2).REFERENCES1. S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24(1940).2. S. Goudsmit and J. L. Saunderson, Phys. Rev. 58, 36(1940).1127
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