ИЗБИРАТЕЛЬНОЕ УПРАВЛЕНИЕ СОСТОЯНИЯМИ МНОГОУРОВНЕВЫХ КВАНТОВЫХ СИСТЕМ С ПОМОЩЬЮ НЕСЕЛЕКТИВНЫХ ОПЕРАТОРОВ ПОВОРОТА

В. Е. Зобов^{а*}, В. П. Шауро^b

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

Поступила в редакцию 23 мая 2008 г.

Рассчитаны последовательности операторов неселективных поворотов, разделенных интервалами свободной эволюции, осуществляющие селективные повороты между соседними уровнями в системах с тремя, четырьмя, пятью и шестью неэквидистантными уровнями. Выполнено численное моделирование реализации полученных последовательностей на примере квадрупольных ядер с соответствующими величинами спинов, управляемых мощными неселективными радиочастотными (РЧ) импульсами, и исследованы зависимости ошибки реализации от параметров внешних и внутренних взаимодействий. Для уменьшения ошибки при недостаточно сильном РЧ-поле найдены составные неселективные РЧ-импульсы из пяти простых. Показано, что ошибка составного оператора селективного поворота может быть существенно уменьшена по сравнению с ошибкой простого одиночного селективного импульса.

PACS: 03.67.Lx

1. ВВЕДЕНИЕ

Разработка общих правил управления квантовыми системами является одной из задач современной физики. Наиболее бурный рост интереса к ней связан с приложениями к управлению химическими реакциями и к построению квантовых компьютеров [1, 2]. При манипуляции состояниями многоуровневых квантовых систем с неэквидистантным спектром энергий обычно применяют селективные операторы, которые изменяют состояния двух выбранных уровней [3–11]. Наиболее прямым способом реализации такого воздействия является настройка частоты внешнего поля, равной резонансной частоте перехода между выбранными уровнями. Амплитуда такого поля должна быть много меньше разностей частот нужного резонансного и ненужных нерезонансных переходов. При уменьшении амплитуды приходится увеличивать длительность воздействия,

однако время эксперимента ограничено временем декогеренции.

Одним из способов сокращения времени операции может стать организация селективного оператора с помощью коротких мощных неселективных воздействий, разделенных интервалами свободной эволюции под действием внутреннего взаимодействия, ответственного за неэквидистантность уровней. Применительно к квантовым вычислениям с помощью методов ЯМР такой подход продемонстрирован на системах из двух спинов I = 1/2, имеющих близкие ларморовские частоты (см., например [12]). Предложенные последовательности не годятся для неэквидистантных уровней одного спина, обусловленных квадрупольным взаимодействием, квадратичным по операторам спиновых проекций. Для них в работе [13] мы предложили свой способ, основанный на методе эффективного гамильтониана [14,15], и продемонстрировали его работу на примере трех уровней ядра со спином I = 1. Потребность в таких схе-

^{*}E-mail: rsa@iph.krasn.ru

мах связана с проведением ЯМР-экспериментов на квадрупольных ядрах в жидкокристаллических средах [5–7]. Быстрое пространственное движение молекул сужает отдельные линии в спектре ЯМР, что приводит к значительному увеличению времени декогеренции и создает благоприятные условия для реализации квантовых вычислений. Однако при этом уменьшается также и градиент кристаллического поля на квадрупольном ядре, что приводит к уменьшению неэквидистантности уровней (разницы резонансных частот отдельных линий спектра ЯМР) и создает трудности при применении простых селективных радиочастотных (РЧ) импульсов.

В настоящей работе мы распространили свой подход на четырех-, пяти- и шестиуровневые системы (со спинами 3/2, 2 и 5/2 в соответствии с формулой d = 2I + 1, d — число уровней в системе). Для уменьшения ошибки, вызванной квадрупольным взаимодействием при повороте спина неселективным РЧ-импульсом, мы нашли для такого поворота эквивалентную последовательность из пяти РЧ-импульсов. В отличие от ранее известного варианта [15,16] наш составной импульс уменьшает не только амплитудную, но и фазовую ошибку, что важно при реализации квантовых вычислений.

Структура статьи следующая. В разд. 2 описывается построение эффективного гамильтониана. В разд. 3 разобран метод его реализации с помощью РЧ-импульсов и способы уменьшения ошибки. Раздел 4 содержит результаты численного моделирования. В Приложении приведено построение составного неселективного импульса.

2. МЕТОД ПОСТРОЕНИЯ ЭФФЕКТИВНОГО ГАМИЛЬТОНИАНА ДЛЯ СОСТАВНОГО ОПЕРАТОРА СЕЛЕКТИВНОГО ПОВОРОТА

Поворот магнитного (спинового) момента на угол θ вокруг оси α задается следующим оператором:

$$\{\theta\}_{\alpha} = \exp(-i\theta I_{\alpha}), \qquad (2.1)$$

где I_{α} — оператор проекции спина на ось α . В частности, в результате поворота операторы проекций преобразуются по следующим формулам [14, 17]:

$$\exp(-i\theta I_x)I_z \exp(i\theta I_x) = I_z \cos\theta - I_y \sin\theta,$$

$$\exp(-i\theta I_y)I_z \exp(i\theta I_y) = I_z \cos\theta + I_x \sin\theta.$$
 (2.2)

Соотношение для других проекций можно получить с помощью циклической замены переменных. Эти формулы справедливы для спина любой величины.

Оператор $R_{\alpha}^{m-n}(\theta)$ селективного поворота на угол θ вокруг оси α двух состояний, соответствующих уровням m и n для d-уровневой квантовой системы, представляется матрицей $d \times d$:

$$R_{\alpha}^{m-n}(\theta) = \begin{bmatrix} E_m & 0 & 0 & 0 & 0 \\ 0 & \cos\frac{\theta}{2} & 0 & -ie^{-i\varphi}\sin\frac{\theta}{2} & 0 \\ 0 & 0 & E_{n-m-1} & 0 & 0 \\ 0 & -ie^{i\varphi}\sin\frac{\theta}{2} & 0 & \cos\frac{\theta}{2} & 0 \\ 0 & 0 & 0 & 0 & E_{d-n-1} \end{bmatrix}.$$
 (2.3)

Здесь E_k — единичная матрица размерности k. Фаза φ определяет ось поворота. При $\varphi = 0$ поворот происходит вокруг оси x ($\alpha = x$, *x*-поворот) при $\varphi = \pi/2$ — вокруг оси y ($\alpha = y$, *y*-поворот). Оператор (2.3) можно записать в экспоненциальной форме:

$$R_{\alpha}^{m-n}(\theta) = \exp(-i\theta B_{\alpha}^{m-n}), \qquad (2.4)$$

где в показателе экспоненты стоит матрица, у которой отличны от нуля только два элемента B_{ij} и B_{ji} (i = m + 1, j = n + 1).

Для возможности осуществления селективных преобразований предположим, что неэквидистантность энергетических уровней квантового магнитного момента в сильном постоянном магнитном поле B_0 осуществляется взаимодействием с гамильтонианом

$$H_q = q \left(I_z^2 - \frac{1}{3} I(I+1) \right), \qquad (2.5)$$

где q — константа взаимодействия, I — спин ядра. Такой вид имеют взаимодействие квадрупольного момента ядра с градиентом кристаллического поля, а также спин-орбитальное взаимодействие электронов в аксиально-симметричных случаях [17]. Энергию будем измерять в единицах угловой частоты и примем $\hbar = 1$.

Для получения селективных поворотов (2.4) с помощью неселективных операторов (2.1) мы должны преобразовать оператор H_q таким образом, чтобы получить из него эффективный (средний) гамильтониан, совпадающий с B_{α}^{m-n} (точнее, $H_{eff}t = \theta B_{\alpha}^{m-n}$). Эта задача может быть решена многими способами. Обобщим способ, предложенный нами ранее для трехуровневой системы [13], на системы с числом уровней, бо́льшим трех.

Для рассматриваемой системы при одиночных селективных РЧ-импульсах разрешены переходы только между соседними уровнями, у операторов поворота которых отличны от нуля только недиагональные элементы, ближайшие к главной диагонали $B_{i,i+1}$. Такими свойствами обладают матрицы I_x, I_y и определенные комбинации матриц, полученных из гамильтониана (2.5) преобразованием (2.2):

$$K_x\left(\frac{\pi}{2}\right) + 2K_y\left(\frac{\pi}{4}\right) = I_z I_x + I_x I_z = M_x,$$

$$2K_x\left(\frac{\pi}{4}\right) + K_y\left(\frac{\pi}{2}\right) = -(I_z I_y + I_y I_z) = M_y,$$
(2.6)

где

$$K_x(\psi) = \{\psi\}_x H_q\{\psi\}_{-x},$$

$$K_y(\psi) = \{\psi\}_y H_q\{\psi\}_{-y}.$$
(2.7)

Перечисленные операторы могут быть реализованы на практике, как будет показано далее, с помощью неселективных РЧ-импульсов, разделенных интервалами свободной эволюции.

С помощью оператора эволюции системы под действием взаимодействия (2.5) можно изменить фазы матричных элементов на величину, зависящую от состояния:

$$e^{-itH_{q}}M_{x}e^{itH_{q}} = M_{x}(t) = \begin{bmatrix} 0 & a_{12}e^{-itk_{12}} & \cdots & 0 & 0 \\ a_{21}e^{itk_{21}} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_{(d-1)d}e^{itk_{(d-1)d}} \\ 0 & 0 & \cdots & -a_{d(d-1)}e^{-itk_{d(d-1)}} & 0 \end{bmatrix},$$

$$e^{-itH_{q}}M_{y}e^{itH_{q}} = M_{y}(t) = i \begin{bmatrix} 0 & a_{12}e^{-itk_{12}} & \cdots & 0 & 0 \\ -a_{21}e^{itk_{21}} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_{(d-1)d}e^{itk_{(d-1)d}} \\ 0 & 0 & \cdots & a_{d(d-1)}e^{-itk_{d(d-1)}} & 0 \end{bmatrix},$$

$$(2.8)$$

$$k_{ij} = k_{ji} = |I_{z,ii} + I_{z,jj}|, a_{ij} = k_{ij}I_{x,ij}.$$
(2.9)

Оба оператора антисимметричны относительно своих побочных диагоналей. В обеих матрицах отличны от нуля только недиагональные элементы, ближайшие к главным диагоналям.

Комбинируя операторы (2.6) и (2.8), а также I_x и I_y , можно построить матрицу, совпадающую с точностью до коэффициента с B^{m-n}_{α} . Если взять полученный оператор в качестве эффективного гамильтониана H_{eff} , то эволюция системы под действием H_{eff} в течение времени $t^{m-n}_d(\theta)$ будет соответствовать оператору селективного поворота (2.4) между

соответствующей парой уровней системы на угол θ . Ключевую роль в реализации селективности играет разница фаз между состояниями различных уровней, возникающая в результате свободной эволюции в течение времени $t_d^{m-n}(\theta)$ под действием H_q . При этом константа q задает естественный масштаб времени и частоты. Поэтому в последующих формулах будем измерять время в единицах 1/q, а частоту в единицах q. Рассмотрим последовательно случаи с d = 3, 4, 5, 6.

1) d = 3. Эффективные гамильтонианы $H_{eff} t_3^{m-n}$ для различных поворотов кутрита, соответствующие оператору θB_{α}^{m-n} , получены в работе [13]:

$$\theta B_x^{m-n} = (\pm M_x + I_x) t_3^{m-n}, \theta B_y^{m-n} = (\mp M_y + I_y) t_3^{m-n},$$
(2.10)

$$t_3^{m-n} = \frac{\theta}{2\sqrt{2}} \,.$$

Верхний знак перед операторами соответствует переходу 0-1, нижний — переходу 1-2.

2) d = 4. Особенностью полуцелых спинов 3/2и 5/2 (d = 4 и d = 6) является отсутствие матричных элементов на побочных диагоналях в операторах M_{α} . Поэтому поворот на центральном переходе необходимо получать с помощью схемы, немного отличной от описанной выше. Рассмотрим сначала два крайних перехода:

$$\begin{aligned}
\theta B_x^{m-n} &= (\pm M_x + M_y(\tau)) t_4^{m-n}, \\
\theta B_y^{m-n} &= (\mp M_y + M_x(\tau)) t_4^{m-n}, \\
t_4^{0-1} &= t_4^{2-3} = \frac{\theta}{4\sqrt{3}}, \quad \tau = \frac{\pi}{4}.
\end{aligned}$$
(2.11)

Верхний знак перед операторами соответствует переходу 0–1, нижний — переходу 2–3.

Центральный переход можно получить с помощью следующей суммы операторов ($\alpha = x, y$):

$$\theta B_{\alpha}^{1-2} = (I_{\alpha} + I_{\alpha}(\tau))t_4^{1-2}, \qquad (2.12)$$

$$t_4^{1-2}=\frac{\theta}{4},\quad \tau=\frac{\pi}{2}$$

 d = 5. Эффективный гамильтониан *х*-поворота между состояниями 0–1 или 3–4 записывается как

$$\theta B_x^{m-n} = \left(\left[\pm M_x + I_x \right] + \left[-M_y(\tau) \pm I_y(\tau) \right] \right) t_5^{m-n}, \quad (2.13a)$$

а между состояниями 1-2 или 2-3 имеет вид

$$\theta B_x^{m-n} = \left(\left[\pm M_x + 3I_x \right] - - \left[-M_y(\tau) \pm 3I_y(\tau) \right] \right) t_5^{m-n} \quad (2.136)$$

(верхний знак перед операторами соответствует переходу 0–1 (1–2), нижний — переходу 3–4 (2–3)). В формулах (2.13)

$$t_5^{0-1} = t_5^{3-4} = \frac{\theta}{16}, \quad t_5^{1-2} = t_5^{2-3} = \frac{\theta}{8\sqrt{6}}, \quad \tau = \frac{\pi}{2}.$$

Для *у*-поворота в эффективном гамильтониане (2.13) нижние индексы x и y надо поменять местами, а знаки «±» перевернуть.

4) *d* = 6. Эффективный гамильтониан *x*-поворота между состояниями 0–1 или 4–5 записывается как

$$\theta B_x^{m-n} = \left(\left[M_y(\tau_1) + M_y(\tau + \tau_1) \right] \pm \left[M_x + M_x(\tau) \right] \right) t_6^{m-n}, \quad (2.14a)$$

а между состояниями 1-2 или 3-4 имеет вид

$$\theta B_x^{m-n} = \left(\left[M_y(2\tau_1) - M_y(\tau + 2\tau_1) \right] \pm \left[M_x - M_x(\tau) \right] \right) t_6^{m-n} \quad (2.146)$$

(верхний знак перед операторами соответствует переходу 0–1 (1–2), нижний — переходу 4–5 (3–4)). В формулах (2.14)

$$t_6^{0-1} = t_6^{4-5} = \frac{\theta}{16\sqrt{5}}, \quad t_6^{1-2} = t_6^{3-4} = \frac{\theta}{16\sqrt{2}},$$

 $\tau = \frac{\pi}{2}, \quad \tau_1 = \frac{\pi}{8}.$

Для *у*-поворота в эффективном гамильтониане (2.14) нижние индексы x и y надо поменять местами, а знаки « \pm » перевернуть.

Центральный переход осуществляется под действием следующего оператора ($\alpha = x, y$):

$$\theta B_{\alpha}^{2-3} = \\ = \left(\left[I_{\alpha} + I_{\alpha}(\tau) \right] + \left[I_{\alpha}(\tau) + I_{\alpha}(\tau + \tau_{1}) \right] \right) t_{6}^{2-3}, \quad (2.15)$$
$$t_{6}^{2-3} = \frac{\theta}{12}, \quad \tau = \frac{\pi}{2}, \quad \tau_{1} = \frac{\pi}{4}.$$

3. ПОСТРОЕНИЕ СОСТАВНОГО ОПЕРАТОРА СЕЛЕКТИВНОГО ПОВОРОТА С ПОМОЩЬЮ НЕСЕЛЕКТИВНЫХ ОПЕРАТОРОВ

В предыдущем разделе мы формально решили задачу о преобразовании H_q в оператор $H_{eff} = \theta B_{\alpha}^{m-n}/t_d^{m-n}$, представленный в виде суммы $\sum_k H_k$. Теперь перейдем к осуществлению такого преобразования с помощью последовательности операторов поворота (2.1), разделенных интервалами свободной эволюции с гамильтонианом H_q . Подставим представление H_{eff} в виде суммы в оператор эволюции

$$\exp(-iH_{eff}t) = \exp\left(-it\sum_{k}H_{k}\right).$$
 (3.1)

Формально искомую последовательность можно получить из равенства (3.1), если переписать его правую часть в виде произведения экспонент и воспользоваться свойством экспоненциальных операторов:

$$\exp\left(e^{-i\psi I_{\alpha}}\left(-itH_{q}\right)e^{i\psi I_{\alpha}}\right) =$$

$$= e^{-i\psi I_{\alpha}}e^{-itH_{q}}e^{i\psi I_{\alpha}} = \{\psi\}_{\alpha} - t - \{\psi\}_{-\alpha},$$

$$\exp\left(e^{-itH_{q}}\left(-iM_{\alpha}\right)e^{itH_{q}}\right) =$$

$$= e^{-itH_{q}}e^{-iM_{\alpha}}e^{itH_{q}} = -t - e^{-iM_{\alpha}} - (-t) - .$$
(3.2)

Здесь и далее в выражениях для импульсных последовательностей оператор свободной эволюции в течение времени t будем записывать как «-t-».

Фактически же операторы в сумме (3.1) не коммутируют между собой, поэтому для получения импульсной последовательности, действие которой эквивалентно эволюции с гамильтонианом H_{eff} , используем формулу Троттер – Сузуки для экспоненциальных операторов [18]:

$$\exp\left(-it\sum_{k}H_{k}\right) = \left(\prod_{k}\exp\left(-\frac{iH_{k}t_{k}}{N}\right)\right)^{N} + O\left(\left(\frac{t}{N}\right)^{2}\right), \quad (3.3)$$
$$\sum_{k}t_{k} = t.$$

Для улучшения сходимости будем выполнять симметризацию произведения операторов в этой формуле. Применительно к многоимпульсной ЯМР-спектроскопии эти методы хорошо изучены и описаны в монографиях (см., например, [14,15]). Ниже отдельно рассмотрены импульсные последовательности для d = 3, 4, 5, 6.

Обратим внимание, что в формуле (3.2) встречаются операторы «обратной» свободной эволюции:

$$\exp(iH_q t). \tag{3.4}$$

Для получения такого оператора мы можем продлить время в разрешенном операторе эволюции на период *T*:

$$\exp\left(-iH_q(T-t)\right).\tag{3.5}$$

Для целых спинов (d = 3, 5) $T = 2\pi$, а для полуцелых (d = 4, 6) $T = \pi$. Это значительно увеличивает общую длительность последовательности. Возможен другой способ добиться «обратной» свободной эволюции с оператором (3.4) — с помощью составного импульса (П.11). В настоящей работе мы им не будем пользоваться, поскольку последовательности усложняются и ошибка увеличивается.

1) Случай d = 3. Для получения импульсной последовательности, осуществляющей селективный поворот на кутрите, распишем оператор M_{α} в (2.10) через операторы K_x и K_y и затем проведем симметризацию экспоненциальных операторов (3.3) по схеме ABCBA [18]:

$$\left[e^{-i\theta A/2N}e^{-i\theta B/2N}e^{-i\theta C/N}e^{-i\theta B/2N}e^{-i\theta A/2N}\right]^{N} = e^{-i\theta(A+B+C)} + O\left(\left(\frac{\theta}{N}\right)^{3}\right).$$
 (3.6)

Для *у*-поворота удобно выбрать $A = K_x$, $B = K_y$, $C = I_y$. В результате мы приходим к импульсным последовательностям, полученным ранее в работе [13]. Например, селективный *у*-поворот между состояниями 0–1 кутрита можно записать на основании (2.10) и (3.6) в виде следующей последовательности операторов:

$$\left\{\frac{\pi}{4}\right\}_{x} - \frac{\theta}{2\sqrt{2}N} - \left\{\frac{\pi}{4}\right\}_{-x} \left\{\frac{\pi}{2}\right\}_{y} - \frac{\theta}{4\sqrt{2}N} - \left\{\frac{\theta}{2\sqrt{2}N}\right\}_{-y} - \frac{\theta}{4\sqrt{2}N} - \left\{\frac{\pi}{2}\right\}_{-y} \left\{\frac{\pi}{4}\right\}_{x} - \frac{\theta}{2\sqrt{2}N} - \left\{\frac{\pi}{4}\right\}_{-x}\right]^{N} \cdot (3.7)$$

2) Случай d = 4. При построении импульсной последовательности для спина I = 3/2 важно то, что операторы в сумме (2.11) коммутируют друг с другом (так как отсутствует центральный связывающий переход). Поэтому в симметризации нуждаются только операторы M_{α} , а не вся сумма. В данном случае симметризовать будем по схеме ABA:

$$\left(e^{-i\theta A/2N}e^{-i\theta B/N}e^{-i\theta A/2N}\right)^{N} = e^{-i\theta(A+B)} + O\left(\left(\frac{\theta}{N}\right)^{3}\right), \quad (3.8)$$

где $A = K_x$, $B = K_y$. К тому же операторы (2.6) соответствуют одновременному повороту на двух крайних переходах, но в противоположных направлениях, а операторы (2.8) — в одном направлении. Это может использоваться при получении более сложных вентилей.

Для *у*-поворота на состояниях 0–1 получаем последовательность

$$\left[\left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{4} \right\}_{x} \left\{ \frac{\pi}{2} \right\}_{-y} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{2} \right\}_{y} \left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{4} \right\}_{x} \right]^{N} - \frac{\pi}{4} - \left[\left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{4} \right\}_{-y} \left\{ \frac{\pi}{2} \right\}_{x} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{2} \right\}_{-x} \left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{4} \right\}_{-y} \right]^{N} - \frac{3\pi}{4} - .$$
(3.9)

Воспользовавшись свойством коммутативности операторов *z*-поворотов $\left\{\frac{\pi}{2}\right\}_{y} \left\{\frac{\pi}{4}\right\}_{\pm x} \left\{\frac{\pi}{2}\right\}_{-y}$ и $\left\{\frac{\pi}{2}\right\}_{-x} \left\{\frac{\pi}{4}\right\}_{\pm y} \left\{\frac{\pi}{2}\right\}_{x}$ с квадрупольным гамильтонианом, эту последовательность можно упростить:

$$\left[\left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{2} \right\}_{-y} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{2} \right\}_{y} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{4} \right\}_{x} \right]^{N} - \frac{\pi}{4} - \left[\left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{2} \right\}_{x} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{2} \right\}_{-x} - \frac{\theta}{4\sqrt{3}N} - \left\{ \frac{\pi}{4} \right\}_{-y} \right]^{N} - \frac{3\pi}{4} - .$$
(3.10)

Для у-поворота на состояниях 1-2 (центральный переход) получаем последовательность

$$\left[\left\{\frac{\theta}{8N}\right\}_{y} - \frac{\pi}{2} - \left\{\frac{\theta}{4N}\right\}_{y} - \frac{\pi}{2} - \left\{\frac{\theta}{8N}\right\}_{y}\right]^{N}.$$
(3.11)

3) Случай d = 5. В последовательности (3.3) эффективного гамильтониана (2.13) симметризуем сначала слагаемые в квадратных скобках аналогично трехуровневой системе, а затем всю сумму по схеме ABA. Для у-поворота на состояниях 0–1 получаем последовательность

$$\left[\operatorname{Seq}_{1} - \frac{\pi}{2} - \operatorname{Seq}_{2} - \frac{3\pi}{2} - \operatorname{Seq}_{1}\right]^{N}, \qquad (3.12)$$

$$\begin{aligned} \operatorname{Seq}_{1} &\equiv \left[\left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{32N^{2}} - \left\{ \frac{\pi}{4} \right\}_{x} \left\{ \frac{\pi}{2} \right\}_{-y} - \frac{\theta}{64N^{2}} - \left\{ \frac{\theta}{32N^{2}} \right\}_{y} - \\ &- \frac{\theta}{64N^{2}} - \left\{ \frac{\pi}{2} \right\}_{y} \left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{32N^{2}} - \left\{ \frac{\pi}{4} \right\}_{x} \right]^{N}, \end{aligned}$$

$$\begin{aligned} \operatorname{Seq}_{2} &\equiv \left[\left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{16N^{2}} - \left\{ \frac{\pi}{4} \right\}_{-y} \left\{ \frac{\pi}{2} \right\}_{x} - \frac{\theta}{32N^{2}} - \left\{ \frac{\theta}{16N^{2}} \right\}_{-x} - \\ &- \frac{\theta}{32N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-x} \left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{16N^{2}} - \left\{ \frac{\pi}{4} \right\}_{-y} \right]^{N}. \end{aligned}$$

4) Случай d = 6. Операторы в квадратных скобках в формулах (2.14) коммутируют друг с другом, поэтому необходимо симметризовать только сумму операторов внутри скобок и сами операторы M_{α} .

Для у-поворота на состояниях 0-1 получаем последовательность

$$(\operatorname{Seq}_1)^N - \frac{\pi}{8} - (\operatorname{Seq}_2)^N - \frac{7\pi}{8},$$
(3.13)

$$\begin{aligned} \operatorname{Seq}_{1} &\equiv \left[\left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-y} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{y} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{4} \right\}_{x} \right]^{N} - \frac{\pi}{2} - \\ & \left[\left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{16\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-y} - \frac{\theta}{16\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{y} - \frac{\theta}{16\sqrt{5}N^{2}} - \left\{ \frac{\pi}{4} \right\}_{x} \right]^{N} - \\ & - \frac{\pi}{2} - \left[\left\{ \frac{\pi}{4} \right\}_{-x} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-y} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{y} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{4} \right\}_{x} \right]^{N}, \end{aligned}$$

$$\begin{aligned} \operatorname{Seq}_{2} &\equiv \left[\left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{x} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-x} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{4} \right\}_{-y} \right]^{N} - \frac{\pi}{2} - \\ & \left[\left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{16\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{x} - \frac{\theta}{16\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-x} - \frac{\theta}{16\sqrt{5}N^{2}} - \left\{ \frac{\pi}{4} \right\}_{-y} \right]^{N} - \\ & - \frac{\pi}{2} - \left[\left\{ \frac{\pi}{4} \right\}_{y} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{x} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{2} \right\}_{-x} - \frac{\theta}{32\sqrt{5}N^{2}} - \left\{ \frac{\pi}{4} \right\}_{-y} \right]^{N} , \end{aligned}$$

где проведено преобразование, аналогичное (3.10).

Для *у*-поворота на состояниях 2–3 (центральный переход) получаем последовательность

$$\operatorname{Seq}_{1} - \frac{\pi}{4} - \operatorname{Seq}_{1} - \frac{3\pi}{4},$$
 (3.14)

$$\operatorname{Seq}_{1} \equiv \left[\left\{ \frac{\theta}{24N} \right\}_{y} - \frac{\pi}{2} - \left\{ \frac{\theta}{12N} \right\}_{y} - \frac{\pi}{2} - \left\{ \frac{\theta}{24N} \right\}_{y} \right]^{N}.$$

Последовательности для поворотов вокруг оси xи других переходов получаются из приведенных после замены операторов, которую легко вывести из вида выражений (2.10)-(2.15).

4. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РЕАЛИЗАЦИИ СОСТАВНОГО ОПЕРАТОРА СЕЛЕКТИВНОГО ПОВОРОТА С ПОМОЩЬЮ НЕСЕЛЕКТИВНЫХ РЧ-ИМПУЛЬСОВ

Для управления квадрупольным ядром будем прикладывать переменное радиочастотное магнитное поле. РЧ-импульс получаем при действии поля с амплитудой B_1 и частотой ω в течение конечного времени $t_p \gg 1/\omega$. Будем рассматривать РЧ-импульсы прямоугольной формы, т. е. полагаем, что РЧ-поле включается и выключается мгновенно, а на протяжении всего импульса его амплитуда постоянна. Во вращающейся с частотой ω системе координат [17] изменение состояния во времени задается оператором эволюции

$$U(t) = e^{-iHt} \tag{4.1}$$

с независящим от времени эффективным гамильтонианом *H*:

$$H = (\omega - \omega_0)I_z + q\left(I_z^2 - \frac{1}{3}I(I+1)\right) + \Omega(I_x\cos\varphi + I_y\sin\varphi). \quad (4.2)$$

Здесь $\omega_0 = \gamma B_0$ — ларморовская частота прецессии спина, $\Omega = \gamma B_1$ — амплитуда РЧ-поля. Фаза РЧ-поля φ определяет направление поля в такой системе координат. Для реализации поворота (2.1) необходимо, чтобы амплитуда РЧ-поля в выражении (4.2) была много больше разницы между резонансными частотами различных переходов, т.е. $\Omega \gg q$. Возьмем $\omega = \omega_0$, тогда для РЧ-импульса, соответствующего (2.1), получаем из (4.1)

$$P_{\alpha}(\theta) = \exp\left(-it_p(H_q + \Omega I_{\alpha})\right), \qquad (4.3)$$

где $t_p = \theta / \Omega$ — длительность импульса.

Формулы предыдущего раздела строго выполняются при использовании идеальных операторов неселективных поворотов (2.1). В реальном эксперименте эти операторы получаются с помощью оператора эволюции (4.3). Присутствие одновременно с РЧ-полем квадрупольного взаимодействия приводит к ошибкам, исчезающим только в пределе $\Omega \rightarrow \infty$ (см. Приложение). В частности, так как при изменении знака угла поворота (изменении направления РЧ-поля) знак квадрупольного взаимодействия с взаимодействия не изменяется, то не выполняется условие

$$P_{\alpha}(\theta)P_{-\alpha}(\theta) = 1,$$

а вследствие этого и формулы (3.2).

Другой известный способ уменьшения ошибки неселективного поворота состоит в применении составных (композитных) импульсов [15, 16]. В частности, в работе [16] предложены композитные импульсы для уменьшения ошибки поворота вследствие квадрупольного взаимодействия для ядра с I = 1. К сожалению, предложенные варианты не устраняют фазовые искажения и поэтому неэффективны для наших целей. В Приложении получены композитные импульсы, состоящие из пяти импульсов и устраняющие линейный по q/Ω вклад в ошибку для спинов произвольной величины. В общем случае для поворота на угол θ вокруг оси x последовательность записывается в виде

$$P_{-y}\left(\frac{3\pi}{2}\right) - \tau_1 - P_{-y}\left(\frac{\pi}{2}\right)P_{-x}\left(\frac{3\pi}{2}\right) - \tau_2 - P_{-x}(\psi_1)P_x(\psi_2), \quad (4.4)$$
$$b = \arcsin\left(\frac{\sqrt{2}}{2}\sin\theta\right), \quad \psi_1 = \frac{\pi}{2} - b, \quad \psi_2 = \theta - b,$$

$$\tau_1 = \frac{1}{\Omega} \left[\pi + \frac{1}{2} \left(\theta - 2b - \sin 2b + \frac{1}{2} \sin 2\theta \right) \right],$$

$$\tau_2 = \frac{1}{\Omega} \left[\pi - \sin 2b + \frac{1}{2} \sin 2\theta \right].$$
(4.5)

Для y-поворота следует нижние индексы x и y переставить местами.

В частности, для неселективного поворота относительно оси x на угол $\pi/2$ находим в (4.4)

$$\psi_1 = \psi_2 = \frac{\pi}{4}, \quad \tau_1 = \left(\pi - \frac{1}{2}\right) \frac{1}{\Omega},
\tau_2 = \frac{\pi - 1}{\Omega},$$
(4.6)

а для угла $\pi/4$ —

$$\psi_{1} = \frac{\pi}{3}, \quad \psi_{2} = \frac{\pi}{12},$$

$$\tau_{1} = \left(\frac{23}{24}\pi - \frac{\sqrt{3} - 1}{4}\right)\frac{1}{\Omega}, \quad (4.7)$$

$$\tau_{2} = \left(\pi - \frac{\sqrt{3} - 1}{2}\right)\frac{1}{\Omega}.$$

Итак, неселективный поворот спина можно реализовать с помощью простого (4.3) или составного (4.4) РЧ-импульса. Подставив эти операторы в полученные выше формулы для составных селективных поворотов, мы выполнили численное моделирование экспериментальной ситуации. Результаты расчета приведены на рисунках для различных селективных поворотов спинов разной величины в виде ошибки

$$\Delta = \frac{1}{d} \sqrt{\sum_{i,j} |U_{ij} - U_{ij}^{teor}|^2}, \qquad (4.8)$$

где U_{ij}^{teor} — элементы матрицы идеального оператора селективного поворота $R_{\alpha}^{m-n}(\theta)$ (2.3), а U_{ij} — элементы численно рассчитанной матрицы, полученной с помощью произведения операторов эволюции (4.1). Некоторые характеристики последовательностей РЧ-импульсов собраны в таблице.

На рис. 1 показаны результаты для последовательности операторов идеальных неселективных поворотов при разных θ и *I*. Этот рисунок иллюстрирует угловые зависимости величины ошибки, возникающей из-за некоммутативности операторов, составляющих H_{eff} . Видно, что эта ошибка растет при увеличении угла поворота, поэтому при больших углах придется дробить последовательности на большее число циклов (увеличивать N).

Рис.1. Зависимости ошибки составных селективных поворотов R_y^{0-1} от угла θ для различных d и различных чисел повторений N в формуле (3.3): N = 1 — штриховые линии, N = 2 — пунктирные, N = 3 — штрихпунктирные (только для d = 3). Сплошными линиями показана ошибка при использовании в составном операторе селективного поворота $R_y^{0-1}(\theta)$ составных неселективных РЧ-импульсов при $\Omega = 50q$ вместо идеальных операторов поворотов. Пунктирная линия для d = 5 и штриховая для d = 6 на рисунке совпали

Такие идеальные повороты достигаются в пределе $\Omega/q \to \infty$. При конечных значениях этого параметра, как видно на рис. 2 и 3, добавляется ошибка, обусловленная искажением оператора неселективного поворота (4.3) при одновременном действии РЧ-поля и H_q . Эту часть ошибки можно уменьшить, заменив простые импульсы в последовательностях на составные (см. рис. 2 и 3, а также рис. 1 и соответствующий рисунок работы [13]). На рис. 2 приведена ошибка селективного поворота на спинах I = 1и I = 2. На рис. 3 выполнено сравнение ошибки селективных поворотов для разных переходов спина I = 5/2. Особенностью центрального перехода является меньшая ошибка при использовании простых РЧ-импульсов в последовательности (3.15) по сравнению с составными неселективными поворотами. Причину этого легко понять с помощью рис. 5 (см. далее). Для центрального перехода угол поворота РЧ-импульсов $\pi/24$ мал и попадает в область левее пересечения линий зависимостей ошибок (т. е. простые импульсы приводят к малой ошибке, поэтому составные импульсы ее увеличивают, добавляя ошибку от дополнительных импульсов). При этом для двух других переходов в последовательностях (3.14) углы большие $(\pi/4$ и $\pi/2)$ и попадают справа

2 ЖЭТФ, вып.1

m-n	$T_p = \sum t_p$	$T_c = \sum t_c$	T_{∞}	N_S
d = 3				
0-1, 1-2	$\frac{\theta}{2\sqrt{2}\Omega} + \frac{2\pi N}{\Omega}$	$\frac{N}{\Omega} \left(4a \left(\frac{\pi}{4}\right) + 2a \left(\frac{\pi}{2}\right) + a \left(\frac{\theta}{2\sqrt{2}N}\right) \right)$	$\frac{3\theta}{2\sqrt{2}}$	7N
d = 4				
0-1, 2-3	$\frac{3\pi N}{\Omega}$	$\frac{4N}{\Omega}\left(a\left(\frac{\pi}{4}\right) + a\left(\frac{\pi}{2}\right)\right)$	$\frac{3\theta}{2\sqrt{3}} + \pi$	8N
1-2	$\frac{\theta}{2\Omega}$	$\frac{N}{\Omega} \left(2a \left(\frac{\theta}{8N} \right) + a \left(\frac{\theta}{4N} \right) \right)$	πN	3N
d = 5				
0-1, 3-4	$\frac{\theta}{8\Omega} + \frac{6\pi N^2}{\Omega}$	$\frac{N^2}{\Omega} \left(12a\left(\frac{\pi}{4}\right) + 6a\left(\frac{\pi}{2}\right) + 2a\left(\frac{\theta}{32N^2}\right) + a\left(\frac{\theta}{16N^2}\right) \right)$	$\frac{3\theta}{8} + 2\pi N$	$21N^{2}$
1-2, 2-3	$\frac{3\theta}{8\Omega} + \frac{6\pi N^2}{\Omega}$	$\frac{N^2}{\Omega} \left(12a\left(\frac{\pi}{4}\right) + 6a\left(\frac{\pi}{2}\right) + 2a\left(\frac{3\theta}{32N^2}\right) + a\left(\frac{3\theta}{16N^2}\right) \right)$	$\frac{3\theta}{4\sqrt{6}} + 2\pi N$	$21N^{2}$
d = 6				
0-1, 4-5	$\frac{9\pi N^2}{\Omega}$	$\frac{12N^2}{\Omega}\left(a\left(\frac{\pi}{4}\right) + a\left(\frac{\pi}{2}\right)\right)$	$\frac{3\theta}{4\sqrt{5}} + \pi(2N+1)$	$24N^{2}$
1-2, 3-4	$\frac{9\pi N^2}{\Omega}$	$\frac{12N^2}{\Omega}\left(a\left(\frac{\pi}{4}\right) + a\left(\frac{\pi}{2}\right)\right)$	$\frac{3\theta}{4\sqrt{2}} + \pi(2N+1)$	$24N^{2}$
2-3	$\frac{\theta}{3\Omega}$	$\frac{2N}{\Omega} \left(2a \left(\frac{\theta}{24N} \right) + a \left(\frac{\theta}{12N} \right) \right)$	$\pi(2N+1)$	6N

Таблица. Характеристики составных операторов селективных поворотов $R^{m-n}_{lpha}(heta)$ для различных d

Примечание. N_S — число операторов неселективных поворотов (простых или составных) в последовательности, $T_p = \sum t_p$ — суммарная длительность простых неселективных РЧ-импульсов, $T_c = \sum t_c$ — суммарная длительность составных неселективных РЧ-импульсов, T_{∞} — суммарная длительность интервалов свободной эволюции.

от пересечения. Естественно, что в пределе $\Omega \to \infty$ ошибки двух последовательностей для каждого перехода достигают общего предельного значения ошибки для последовательности из идеальных операторов неселективных поворотов. Та же особенность наблюдается у центрального перехода спина I = 3/2.

На рис. 4 для I = 3/2 показана зависимость ошибки от длительностей селективных ($\pi/2$) операторов поворота — простого ($T_S = t_p = \theta/\Omega$) и составного — для двух переходов 0–1 и 1–2. Составной оператор получен двумя способами: во-первых, с помощью последовательности простых неселективных импульсов, во-вторых, с помощью той же последовательности с составными неселективными операторами поворота (4.4). Формулы для длительностей последовательностей приведены в таблице. Соответствующие пары кривых сходятся при $T_S \to T_{\infty}$, где T_{∞} — предельное значение суммарной длительности, которое определяется суммарной длительностью интервалов свободной эволюции и достигается в пределе $\Omega \to \infty$. Для перехода 0–1 $T_{\infty} = 1.433\pi$, а для перехода 1–2 $T_{\infty} = N\pi$, поскольку особенностью центрального перехода является неизменность длительности интервалов свободной эволюции $\tau = \pi/2$ при увеличении N. Минимальное значение ошибки Δ_{∞} связано с некоммутативностью операторов и уменьшается при переходе от N = 1 к N = 2 для обоих переходов в равной степени. При этом для перехода 1–2 время T_{∞} удваивается.

Рис.2. Зависимости ошибки составных селективных поворотов $R_y^{0-1}(\pi/2)$ и $R_y^{1-2}(\pi/2)$ для d = 3,5 от обратной величины амплитуды неселективных РЧ-импульсов. Сплошными линиями показаны зависимости при использовании составных неселективных РЧ-импульсов, штриховыми — простых. Кривые для обоих переходов при d = 3 совпадают, а при d = 5 переход 1–2 выделен пунктирной линией. На вставке увеличена область вблизи нуля, где ошибка достигает предельного значения

Рис.3. Зависимости ошибки составных селективных поворотов $R_y^{m-n}(\pi/2)$ для d = 6 от обратной величины амплитуды неселективных РЧ-импульсов. Сплошными линиями показаны зависимости при использовании простых импульсов, другими линиями — составных импульсов. Цифры у кривых — соответствующие переходы m-n. На вставке увеличена область вблизи нуля, где ошибка достигает предельного значения

При конечных Ω длительность последовательностей увеличивается на суммарную длительность РЧ-импульсов простых T_p или составных T_c неселективных поворотов (см. таблицу). Показанные на рис. 4 зависимости можно понять в предположении, что в рассматриваемой области $\Omega/q \rightarrow \infty$ ошибки (П.7) или (П.8) (см. Приложение) РЧ-импульсов складываются. Для простых импульсов

$$\Delta_p = \Delta_{\infty} + qI(I+1) \sum t_p f_p \approx \\ \approx \Delta_{\infty} + (T_S - T_{\infty})b_p, \quad (4.9)$$

где b_p — некоторая константа. Здесь мы приближенно вынесли f_p из-под знака суммы и воспользовались тем, что $T_p = \sum t_p = T_S - T_\infty$. Линейную зависимость от T_S мы видим на рис. 4. Параллельность пунктирных прямых свидетельствует о близости соответствующих коэффициентов. Для составных неселективных РЧ-импульсов при фиксированном значении Ω длительность и ошибка одного такого импульса слабо зависят от угла, поэтому суммарная ошибка определяется их числом N_S :

Рис. 4. Зависимости ошибки реализации селективных поворотов $R_y^{m-n}(\pi/2)$ для d = 4 от длительности РЧ-импульса $(T_S = t_p)$ или от общей длительности импульсной последовательности. Показаны значения для переходов 0–1 (штриховые линии), 1–2 (сплошные) при использовании составных неселективных импульсов $(T_S = T_\infty + T_c)$. Пунктирные линии соответствуют последовательностям из простых неселективных импульсов $(T_S = T_\infty + T_p)$. Для поворота простым селективных импульсов ($T_S = T_\infty + T_p$). Для поворота простым селективные значения быстро ос-

циллирующей ошибки [13]

$$\Delta_c = \Delta_{\infty} + q^2 I^2 (I+1)^2 \sum t_c^2 f_c \approx$$
$$\approx \Delta_{\infty} + (T_S - T_{\infty})^2 b_c / N_S, \quad (4.10)$$

поскольку $t_c \approx (T_S - T_\infty)/N_S$. Здесь b_c — некоторая константа. Соответствующее изменение вида парабол при изменении N_S наблюдается на рис. 4.

На рис. 4 для сравнения приведена ошибка (4.8) поворота в результате обычного селективного прямоугольного РЧ-импульса. Точками показаны только минимальные значения, которые достигаются при выполнении условия изменения фазы нерезонансных уровней на 2π за время $T_S = t_p = \theta/\Omega$. При изменении длительности импульса ошибка быстро растет (см. [13]). Видно, что применение составных операторов селективного поворота позволяет уменьшить ошибку при том же времени (или уменьшить время при той же ошибке). Указанные свойства наблюдаются и в системах с большим числом уровней.

В качестве конкретного примера обратимся к экспериментальной работе [6], в которой реализовано управление состояниями кутрита с помощью методов ЯМР. Бралось ядро дейтерия (I = 1), частично ориентированное в жидкокристаллической матрице при комнатной температуре. Спектр ЯМР дейтерия [6] состоял из двух линий, соответствующих параметру $q = 120 \,\Gamma$ ц в (2.5). Авторы применяли как селективные, так и неселективные РЧ-импульсы. Для неселективных РЧ-импульсов прямоугольной формы выполняется условие $\Omega/q \approx 100$. При этих значениях параметров находим по формулам, приведенным в таблице, для составного селективного поворота на угол $\pi/2$ при N = 1:

$$T_{\infty} = 2.2$$
 мс, $T_{\infty} + T_p = 2.3$ мс,
(4.11) $T_{\infty} + T_c = 3.9$ мс.

В работе [6] длительность простого селективного РЧ-импульса гауссовой формы для поворота на угол $\pi/2$ была 6 мс. Хотя при взятых из работы параметрах длительность составного селективного импульса (4.11) оказалась меньше всего в 1.5–2 раза, но ошибка выполнения операции будет существенно меньшей, как можно заключить, например, из сравнения рис. 2 настоящей работы с результатами для гауссового импульса на рис. 1 работы [13].

В своих расчетах мы использовали РЧ-импульсы прямоугольной формы, которые позволили наиболее просто продемонстрировать теоретические идеи. К сожалению, РЧ-импульсы реальных ЯМР-спектрометров не бывают идеальными, что приводит к увеличению ошибки при увеличении их числа. С целью уменьшения таких ошибок [15] на практике используют импульсы более сложной формы или составные импульсы. Переход к ним не затронет качественных выводов предложенного подхода, хотя и приведет к усложнению формул и расчетов. Эти уточнения связаны с характеристиками конкретного прибора, поэтому при выполнении эксперимента соответствующие расчеты придется делать в процессе настройки.

В другой работе [7] этой же группы экспериментаторов рассмотрено квадрупольное ядро ²³Na (I = 3/2) с четырьмя уровнями в жидкокристаллической матрице. По числу РЧ-импульсов, необходимых для реализации составного селективного поворота, случай четырех уровней не сложнее предыдущего (см. таблицу), а для центрального перехода даже проще. Однако в этом случае наблюдается большее расщепление спектра ЯМР, поскольку квадрупольный момент натрия больше, чем у дейтерия, почти в 50 раз. Поэтому имеют место более благоприятные условия для применения простых селективных импульсов. Для обеспечения условий применения составных селективных импульсов, описанных выше, придется увеличить амплитуду РЧ-поля по сравнению со случаем ядер дейтерия или нагреть образец для уменьшения параметра порядка жидкого кристалла.

5. ЗАКЛЮЧЕНИЕ

Для уменьшения ошибки обычного селективного РЧ-импульса приходится уменьшать его амплитуду и увеличивать длительность. При выбранной длительности $t_p \sim 1/q$ ошибка конечна. Изменение формы короткого импульса уменьшает ее несущественно [13]. Выше показано, что ошибку селективного поворота можно уменьшить теоретически до нуля, если осуществлять поворот с помощью последовательности мощных неселективных РЧ-импульсов, разделенных интервалами свободной эволюции под действием квадрупольного взаимодействия. Из-за присутствия таких интервалов суммарная длительность последовательности T_S не может быть сделана меньше некоторого предельного значения T_{∞} , зависящего от величины квадрупольного взаимодействия (q и I), а также от устройства последовательности. Другими словами, при $T_S > T_\infty$ теория позволяет добиться предела $\Delta \rightarrow 0$ с помощью составных селективных импульсов, тогда как для простого селективного импульса $\Delta \to 0$ только при $T_S \to \infty$. Принципиальная возможность такого уменьшения ошибки важна для квантовых вычислений, поскольку только при величине Δ , меньшей некоторого критического значения, можно применять процедуру исправления ошибки [1].

В заключение заметим, что полученные последовательности неселективных операторов поворота могут быть полезны не только для квадрупольных ядер, рассмотренных выше, но и для электронных спинов, управляемых микроволновыми или лазерными импульсами, в системах со слабым аксиально-симметричным спин-орбитальным взаимодействием.

Один из авторов (В. П. Ш.) благодарит фонд «Династия» за финансовую поддержку.

ПРИЛОЖЕНИЕ

Составной неселективный импульс

В основу построения составного импульса положим свойство гамильтониана (2.5), вытекающее из свойства суммы квадратов операторов трех проекций:

$$I_x^2 + I_y^2 + I_z^2 - I(I+1) = 0.$$
 (II.1)

Отсюда понятен выбор для компенсации ошибки двух пар операторов по концам интервалов свободной эволюции в последовательности (4.4). Пятый импульс необходим для формирования нужного суммарного поворота. Под действием прямоугольного импульса (4.3) оператор I_z меняется не мгновенно, а по формулам (2.2), где $\theta = \Omega t$, поэтому для параметров получены более сложные соотношения (4.5).

Итак, пусть к магнитному моменту ядра приложено изменяющее во времени сильное РЧ-поле (4.2). При q = 0 оператор эволюции принимает вид

$$U_{0}(t) \equiv \{\theta\}_{\alpha} = \hat{T} \exp\left(i \int_{0}^{t} \Omega(\tau) \left[I_{x} \cos \varphi(\tau) + I_{y} \sin \varphi(\tau)\right] d\tau\right). \quad (\Pi.2)$$

При $q \neq 0$, ограничившись первым порядком по малой величине q/Ω , получаем

$$U(t) = U_0(t) \left[1 - i \int_0^t U_0^{-1}(\tau) H_q U_0(\tau) \, d\tau \right]. \quad (\Pi.3)$$

На основании (2.2) представим временную зависимость оператора магнитного момента в следующем виде:

$$U_0^{-1}(\tau)I_z U_0(\tau) = \mu_x(\tau)I_x + \mu_y(\tau)I_y + \mu_z(\tau)I_z.$$
(II.4)

После подстановки этого выражения в формулу (П.3) из условия обращения в нуль интеграла в скобках получаем систему из шести уравнений:

$$\frac{1}{t} \int_{0}^{t} \mu_{\alpha}^{2}(\tau) d\tau = \frac{1}{3}, \quad \alpha = x, y, z, \qquad (\Pi.5)$$

$$\int_{0}^{t} \mu_{x}(\tau)\mu_{z}(\tau) d\tau = \int_{0}^{t} \mu_{x}(\tau)\mu_{y}(\tau) d\tau =$$
$$= \int_{0}^{t} \mu_{y}(\tau)\mu_{z}(\tau) d\tau = 0. \quad (\Pi.6)$$

Легко проверить, что составной импульс (4.4) удовлетворяет этим уравнениям. Условие $(\Pi.2)$ выполняется при любом b, поскольку при q = 0 идеальные повороты

$$P_{-x}(\psi_1) = \left\{\frac{\pi}{2} - b\right\}_{-x}, \quad P_x(\psi_2) = \{\theta - b\}_x$$

Рис. 5. Сравнение ошибок реализации простых и составных неселективных *у*-поворотов: d = 3 (сплошные линии), 4 (штриховые), 5 (пунктирные), 6 (штрихпунктирные). *a*) Зависимости от обратной величины амплитуды РЧ-импульсов при угле поворота $\pi/2$. Параболические кривые соответствуют составному импульсу, прямые линии — простому. δ) Зависимости от угла θ при амплитуде РЧ-импульсов $\Omega = 50q$ для простых (возрастающие кривые) или составных (слабо меняющиеся линии) импульсов

осуществляются в противоположные стороны вокруг одной оси. Величина этого параметра определяется из последнего равенства в (П.6). Положительный вклад в интеграл от двух последних импульсов должен компенсировать отрицательный вклад от третьего импульса. После чего выполнение условий (П.5) достигается выбором продолжительности интервалов свободной эволюции τ_1 и τ_2 .

Зависимости ошибки (4.8) от q/Ω и θ для простого и составного неселективных РЧ-импульсов показаны на рис. 5 для спинов разной величины. Для простого импульса зависимость от q/Ω линейная, для составного — квадратичная. Зависимость Δ от угла θ для простого импульса близка к линейной, тогда как для составного импульса такая зависимость практически отсутствует. Кроме того, при увеличении *I* ошибка растет из-за усиления квадрупольного взаимодействия. Качественно зависимости ошибок от этих параметров можно выразить следующими формулами соответственно для простого и составного импульсов:

$$\Delta_p = qt_p I(I+1)f_p, \tag{\Pi.7}$$

$$\Delta_c = q^2 t_c^2 I^2 (I+1)^2 f_c, \qquad (\Pi.8)$$

где f_p и f_c — функции, близкие к константам, при $\Omega/I(I+1) > 5q$ практически не зависящие от Ω и слабо (около 10%) зависящие от параметров d и θ . Так, например, при $\theta = \pi/2$ и при изменении d от 3 до 6 функция f_c принимает значения $1.11 \cdot 10^{-3}$, 1.33 · 10⁻³, 1.10 · 10⁻³, 0.9 · 10⁻³, а f_p — 0.1, 0.099, 0.093, 0.087. Ошибка растет при увеличении длительностей импульсов t_p и t_c , которые обратно пропорциональны амплитуде РЧ-поля:

$$t_p = \theta / \Omega, \quad t_c = a(\theta) / \Omega.$$
 (II.9)

Зависимость $a(\theta)$ определяется формулами (4.4), (4.5) и показана на рис. 6. Если t_p линейно зависит от угла θ , то зависимость t_c значительно слабее, поскольку главный вклад в его величину составляют длительности двух $3\pi/2$ -импульсов и одного $\pi/2$ -импульса.

Соотношение (П.1) позволяет добиться обращения знака перед квадрупольным взаимодействием в эффективном гамильтониане. С этой целью перепишем его в виде

$$-q\left[I_{z}^{2} - \frac{I(I+1)}{3}\right] = q\left[I_{x}^{2} + I_{y}^{2} - \frac{2I(I+1)}{3}\right]$$

и изменим в соответствии с этим условия (П.5). В этом случае, подставив в формулу (4.4) $\psi_1 = \pi/2$, $\psi_2 = 0$ и

$$\tau_2 = \tau_1 = t + \frac{\pi}{\Omega},\tag{\Pi.10}$$

можно получить $-tH_{q}$.

Для уменьшения ошибки симметризуем последовательность по примеру известной сужающей последовательности WHH-4 [14]

Рис. 6. Зависимость от угла θ параметра a, определяющего в формуле (П.9) длительность составного неселективного РЧ-импульса

$$P_x\left(\frac{\pi}{2}\right) - \tau_1 - P_y\left(\frac{3\pi}{2}\right) - \tau_2 - P_y\left(\frac{\pi}{2}\right) - \tau_1 - P_x\left(\frac{3\pi}{2}\right), \quad (\Pi.11)$$

где $2\tau_1 = t - \pi/\Omega$, $\tau_2 = t$. Здесь для устранения ошибки от конечной длительности мы применили два $3\pi/2$ -импульса, вместо одинакового увеличения угла поворота всех импульсов до $\beta > \pi/2$, предложенного в работе [14]. Наш подход позволяет получить универсальные условия для τ_1 и τ_2 вместо необходимости решения трансцендентного уравнения для β всякий раз при изменении t и Ω . Были предложены и другие последовательности для обращения времени [15, 19]. При достаточно большой амплитуде Ω основной вклад в ошибку происходит из-за некоммутативности (I_x)² и (I_y)² при I > 1. Эту ошибку можно устранить по формуле Троттер – Сузуки, разбивая t на N участков.

ЛИТЕРАТУРА

 К. А. Валиев, А. А. Кокин, Квантовые компьютеры: надежды и реальность, НИЦ «Регулярная и хаотическая динамика», Ижевск (2001).

- А. Л. Фрадков, О. А. Якубовский (ред.), Управление молекулярными и квантовыми системами, Институт компьютерных исследований, Москва-Ижевск (2003).
- А. Р. Кессель, В. Л. Ермаков, Письма в ЖЭТФ 70, 59 (1999); 71, 443 (2000).
- A. Muthukrishnan and C. R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000).
- A. K. Khitrin and B. M. Fung, Phys. Rev. A 64, 032306 (2001).
- R. Das, A. Mitra, V. Kumar, and A. Kumar, Int. J. Quant. Inf. 1, 387 (2003).
- 7. R. Das and A. Kumar, Phys. Rev. A 68, 032304 (2003).
- A. B. Klimov, R. Guzman, J. C. Retamal, and C. Saavedra, Phys. Rev. A 67, 062313 (2003).
- G. K. Brennen, D. P. O'Leary, and S. S. Bullock, Phys. Rev. A 71, 052318 (2005).
- В. Е. Зобов, А. С. Ермилов, Письма в ЖЭТФ 83, 539 (2006).
- А. С. Ермилов, В. Е. Зобов, Опт. и спектр. 103, 994 (2007).
- 12. M. D. Bowdrey and J. A. Jones, Phys. Rev. A 74, 052324 (2006).
- **13**. В. Е. Зобов, В. П. Шауро, Письма в ЖЭТФ **86**, 260 (2007).
- 14. У. Хеберлен, М. Меринг, *ЯМР высокого разрешения* в твердых телах, Мир, Москва (1980).
- 15. Р. Эрнст, Д. Боденхаузен, А. Вокаун, *ЯМР в одном* и двух измерениях, Мир, Москва (1990).
- 16. M. H. Levitt, D. Suter, and R. R. Ernst, J. Chem. Phys. 80, 3064 (1984).
- **17**. Ч. Сликтер, Основы теории магнитного резонанса, Мир, Москва (1981).
- 18. N. Hatano and M. Suzuki, arXiv:math-ph/0506007.
- W.-K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B 3, 684 (1971).