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THE VELIKHOV AND ANTI-VELIKHOV EFFECTSIN THE THEORY OF MAGNETOROTATIONAL INSTABILITYA. B. Mikhailovskii a, J. G. Lominadze b;*, A. P. Churikov d,V. D. Pustovitov a, O. A. Kharshiladze aInstitute of Nulear Fusion, Russian Researh Centre �Kurhatov Institute�123182, Mosow, RussiabGeorgian National Astrophysial Observatory0160, Tbilisi, GeorgiaNodia Institute of Geophysis Georgian Aademy of Sienes0193, Tbilisi, GeorgiadSyzran Branh of Samara State Tehnial University446001, Syzran, Samara Region, RussiaReeived February 6, 2008A theory of magnetorotational instability (MRI) allowing an equilibrium plasma pressure gradient and nonax-isymmetry of perturbations is developed. This approah reveals that in addition to the Velikhov e�et drivingthe MRI due to negative rotation frequeny pro�le, d
2=dr < 0, there is an opposite e�et (the anti-Velikhove�et) weakening this driving (here, 
 is the rotation frequeny and r is the radial oordinate). It is shown thatin addition to the Velikhov mehanism, two new mehanisms of MRI driving are possible, one of whih is dueto the pressure gradient squared and the other is due to the produt of the pressure and density gradients. Theanalysis inludes both the one-�uid magnetohydrodynami plasma model and the kinetis allowing ollisionlesse�ets. In addition to the pure plasma ontaining ions and eletrons, the dust plasma is onsidered. Theharged dust e�et on stability is analyzed using the approximation of immobile dust. In the presene of dust,a term with the eletri �eld appears in the one-�uid equation of plasma motion. This eletri �eld a�etsthe equilibrium plasma rotation and also gives rise to a family of instabilities of the rotating plasma, alled thedust-indued rotational instabilities.PACS: 52.35.Bj, 94.30.q1. INTRODUCTIONAppliation of the magnetorotational instability(MRI) onept [1; 2℄ to the problem of aretiondisks [3℄ beame an important event in physis. Ithelped to resolve the long-standing puzzle of anoma-lous visosity in the disks [4℄.Paper [3℄ has stimulated numerous astrophysial in-vestigations. The original studies in this astrophysialtrend in the MRI theory are ited in [5℄. The urrentstatus of the researh and future perspetives in this�eld are summarized in review [6℄, where it was empha-sized that one of the main topis here is rapid sponta-*E-mail: j.lominadze�astro-ge.org

neous spin-up of plasma with no apparent momentuminput. In addition to the traditional areas of astrophys-ial appliations suh as star formation proesses, masstransfer between binary stars, and ative galati nu-lei, the solar dynamo [7, 8℄ was also mentioned [6℄ as aphenomenon where the angular momentum transportis an issue.It is generally aepted that the MRI drive in aperfetly onduting magnetized medium [1�3℄ is thee�et of di�erential rotation, i. e., the Velikhov e�et.Following the approah of the loal dispersion relationproposed in [3℄ and used in [5℄, one obtains the instabil-ity riterion of the axisymmetri perturbations in theform1238
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2d ln r + k2v2A < 0: (1.1)It is assumed here that the equilibrium on�guration isaxisymmetri, i. e., independent of the azimuthal angle� in the ylindrial oordinates (r; �; z). The equilib-rium magneti �eld is along the axis z, and the mediumis involved in azimuthal rotation with the angular fre-queny 
 = 
(r). Here, vA is the Alfvén veloity andk2 = k2r + k2z , where kr and kz are the radial and longi-tudinal wave numbers of the perturbations. The termd
2=d ln r desribes the mentioned Velikhov e�et. In-stability riterion (1.1) an be alled the Velikhov�Balbus�Hawley (VHB) instability riterion. It an besatis�ed only for a dereasing rotation frequeny pro-�le, d
2=d ln r < 0.One of the motivations of this paper was to elu-idate whether the Velikhov e�et is the only drivingmehanism of MRI. As a tool, we use the magnetohy-drodynami (MHD) approah going bak to the paperby Frieman and Rotenberg (FR) [9℄, whih has beene�etively applied and developed in [10�12℄.Loal instability riterion (1.1) was derived in [3℄within the so-alled loal approah, assuming that theradial dependene of a perturbation eF (r) an be ex-pressed in the form �F (r) exp(ikrr), where �F (r) is theamplitude with a negligibly weak radial dependene.The FR approah deals with two variables, oneof whih is the perturbed radial magneti �eld eBrand the other is the sum of the perturbed pressuresof the medium and the magneti �eld, denoted asp� and alled the FR variable. The MHD approahleads to a pair of �rst-order di�erential equations foreBr and p� [10�12℄, the Hameiri�Bondeson�Iaono�Bhattaharjee (HBIB) type equations. The equationfor eBr ontains the radial derivative of p�, and there-fore, when this variable is eliminated in order to obtainthe mode equation, two ontributions appear from theequation for p�. One inolves the radial derivative ofeBr, whih is aneled by a similar term in the HBIBequation for eBr. The seond is expressed in terms ofthe radial derivative of the medium equilibrium param-eters. This part, in general, should be taken into a-ount in the loal dispersion relation. As a result, itombines a loal part and a di�erential ontribution.Suh a dispersion relation an be alled the anonialdispersion relation. The ruial question is whetherthe loal dispersion relation obtained by means of theMHD approah oinides with that derived by the lo-al approah used, in partiular, in [3; 5℄. The answeris that suh a oinidene ours only in the absene ofthe di�erential part in the FR loal dispersion relation!One an say that papers [1, 2℄ were aimed at ap-

pliations to a laboratory medium. On the ontrary,paper [3℄ with an analysis of aretion disks is learlyastrophysial. Then, based on Eq. (1.1), one an sug-gest that response of the laboratory and astrophysi-al media to the MRI is idential. But the physisof the equilibrium rotation in these ases is di�erentin general. As a rule, it is assumed that the astro-physial rotation is aused by the gravitation fore [3℄.In ontrast, this fore plays no role in the laboratoryplasma. If there is no equilibrium azimuthal magneti�eld, the main reason for the plasma rotation is the pos-itive plasma pressure gradient, p00 > 0, where p0 is thepressure and the prime is the radial derivative. Then wean refer to either the simplest astrophysial situation,where the rotation is stipulated solely due to the gravi-tation fore, or the simplest laboratory ase, where theonly reason for plasma rotation is the positive plasmapressure gradient. For the �astrophysial plasma�, weuse the term �gravitation-dominated plasma�. Also, inaddition to �laboratory plasma�, the term �gravitation-free plasma� is used in what follows. This implies thatthe ase g = 0 is relevant to not only the laboratorydevies but also some spae on�gurations.In Refs. [1�3℄, the perturbations were assumed tobe inompressible, i. e., those withr � eV = 0; (1.2)where eV is the perturbed medium veloity. In the sim-plest astrophysial situation, the inompressibility as-sumption leads to the vanishing of the perturbed pres-sure ep, ep = 0: (1.3)In ontrast to this, in the laboratory ase, the sameassumption leads to a nonvanishing ep de�ned, for ax-isymmetri perturbations [1, 2℄, by the equation�ep�t + eVrp00 = 0; (1.4)where eVr is the perturbed radial veloity.Dealing with p00 6= 0, we must allow for the per-turbed mass density e�, whih, in the inompressibleapproximation, is determined by the ontinuity equa-tion �e��t + eVr�00 = 0; (1.5)where �0 is the equilibrium mass density. Thus, for thesimplest laboratory plasma, in ontrast to the simplestastrophysial senario, we should deal with e�ets of p00and, in general, the e�ets of �00.1239



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008Then a question arises: are the MRI developmentsin these two situations the same or di�erent? The an-swer to this question is one of the goals of this paper.With the above remarks, we should expet that thesenarios must be di�erent. We show this in formulas.The MRI in the simplest astrophysial situation hasalready been studied in detail, inluding the analysisof the MRI dependene on �, the ratio of the plasmapressure to the magneti �eld pressure (see, e. g.,Refs. [5; 13; 14℄). The reent theory of MRI in this asehas also onsidered the kineti e�ets [5; 15�19℄ inlud-ing the e�ets of plasma pressure anisotropy [15; 18; 19℄.Here, we restrit the study by the one-�uid plasmamodel only, assuming the plasma to be ideal.Thus, there is a rather wide open area in the MRItheory: a branh allowing for the pressure gradient ef-fets. The present paper is a step in its development.Another insu�iently studied area of the MRI the-ory is that with nonaxisymmetri perturbations. Cor-ret desription of suh perturbations within the MHDapproah neessitates taking the di�erential part of themode equation into aount. Closing this gap in theMRI theory is another goal of this paper.Aording to the plasma equilibrium ondition, therotation frequeny in the simplest laboratory situationis determined solely by the pressure gradient, and hene
2 = p00=r�0. In this ase, the Velikhov e�et is relatedto the pressure gradient, d
2=d ln r = d(p00=r�0)=d ln r.In the MHD approah, the Velikhov e�et is ontainedin the loal part of the mode equation, but the termwith (p00=r�0)0, i. e., with d
2=d ln r, also enters the dif-ferential part of this equation, although with the oppo-site sign. In ontrast to the Velikhov e�et, this terman be onsidered responsible for �the anti-Velikhov ef-fet�. This leads to an �annihilation� of the Velikhovand anti-Velikhov e�ets.One of the most intriguing questions of our investi-gation is whether the Velikhov e�et, predited as theonly driving mehanism of MRI for the astrophysialplasma, remains in fore in the laboratory plasma. Inother words, whether the MRI an be driven when theVelikhov and anti-Velikhov e�ets are ompletely �an-nihilated� suh that d
2=d ln r = 0. The answer isthat there are two additional driving mehanisms inthis ase, one due to the squared pressure gradient ef-fet and the other is the ross e�et of the pressure anddensity gradients.It turns out that the di�erential part of the modeequation is nonvanishing not only at p00 6= 0 but alsoat p00 = 0 if the perturbations are nonaxisymmetri,m 6= 0, where m is the azimuthal mode number. Anal-

ysis of a loally nonaxisymmetri MRI based on theproperly derived dispersion relation is also given here.We have mentioned a variety of physially di�er-ent on�gurations where a rotating plasma an be sub-jeted to a rather wide family of spei� MRIs. There-fore, it seems reasonable to develop a uni�ed theory ofMRI similar to the uni�ed theory of instabilities of non-rotating plasma dealing with the beforehand-alulatedplasma permittivity tensor and the standard generaldispersion relation written in terms of this tensor, asdesribed in our papers [20�24℄. The parameters D,C1, C2, and C3 in HBIB-type equations play the rolesimilar to that of the permittivity tensor omponents.Therefore, we all them the anonial parameters of theMHD theory. Beause an additional anonial param-eter � appears in our theory, they an also be alledthe primary anonial parameters, and � the seondaryanonial parameter. It was already mentioned that �ontains the loal and di�erential parts. These valuesdenoted by a and b an be alled the loal and dif-ferential seondary anonial parameters. Using theanonial mode equation, we derive a loal dispersionrelation in terms of D, C2, and �, whih we all theanonial loal dispersion relation.Investigation of linear and nonlinear olletive phe-nomena in a dusty plasma is a wide area of reent stud-ies in spae and laboratory plasma physis [25�35℄. A-ording to Refs. [36�38℄, this applies to fusion-orientedsystems and, �rst of all, the tokamaks, among the lab-oratory devies dealing with the dusty plasma.On the other hand, dusty plasmas are of long-lasting interest for astrophysis, in partiular, for thephysis of aretion and protoplanetary disks [39�43℄.Aording to these studies, olletive phenomena areimportant for suh disks in relation to plasma turbu-lene in them. As one of the possible andidates forgenerating suh a turbulene, the MRI was onsideredin Refs. [39�43℄. The importane of MRI was demon-strated in other astrophysial problems as well as invarious problems of applied physis. Reent plasma-physial investigations of MRI open new areas wherethis instability an be important.A �rst step in the analysis of olletive phenomenain a rotating dusty plasma was made in brief ommu-niation [44℄, where the linear problem of instability insuh a plasma was studied assuming the dust grainsheavy enough to be immobile. One of the goals of thepresent paper is to give a more detailed theory of thisinstability.Setion 2 ontains a derivation of the anonialmode equation and the anonial loal dispersion re-lation for the one-�uid plasma model. In Se. 3, we1240



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :use this dispersion relation to analyze the axisymmet-ri perturbations in this plasma model. Setion 4 ad-dresses the ollisionless plasma, and Se. 5 deals withthe dusty plasma. Disussions are given in Se. 6.2. MRI THEORY IN THE STANDARD MHDPLASMA MODEL2.1. Preliminaries2.1.1. Basi equationsWe start with the standard MHD plasma equationof motion� dVdt = �rp+�g� 14� �r B22 �(B � r)B� ; (2.1)where V is the plasma veloity, B is the magneti �eld,p is the plasma pressure, � is the plasma mass density,g is the gravity fore, andddt = ��t +V � r: (2.2)We use the Ohm law in the formE+ [V �B℄= = 0; (2.3)where E is the eletri �eld and  is the speed of light.Equation (2.3) leads to the standard freezing-in ondi-tion �B�t �r� [V �B℄ = 0: (2.4)In addition, we use the Maxwell equationr �B = 0; (2.5)the plasma ontinuity equationd�dt + �r �V = 0; (2.6)and the adiabatiity onditionddt � p��� = 0; (2.7)where � is the adiabati exponent.2.1.2. EquilibriumWe onsider a ylindrial plasma rotating in theazimuthal diretion � with the angular frequeny
 = 
(r), where r is the radial oordinate. The equi-librium magneti �eld B0 is assumed to be uniform anddireted along the ylinder axis z, B0 = (0; 0; B0), and

we assume the gravitational fore g to have only theradial omponent, g = (g; 0; 0). In aordane withOhm law (2.3), there is an equilibrium eletri �eldE0 = (E0; 0; 0) related to the rotation frequeny
 = V0=r (2.8)by E0 = �r
B0=; (2.9)where V0 = V0(r) is the azimuthal equilibrium plasmaveloity.With (2.8), it follows from the equilibrium part ofthe radial omponent of the plasma equation of motion(2.1) that r�0
2 = p00 � �0g; (2.10)where �0 and p0 are the equilibrium plasma mass den-sity and the equilibrium plasma pressure, respetively,and the prime is the radial derivative.2.1.3. Linearization of basi equationsWe linearize the basi equations assuming eah per-turbation to depend on t, �, z as exp(�i!t+im�+ikzz),where ! is the osillation frequeny, m is the azimuthalmode number, and kz is the parallel projetion of thewave vetor. In addition to m, we introdue ky � m=r,the azimuthal projetion of the wave vetor, and inaddition to !, we use the Doppler-shifted osillationfrequeny e! = ! �m
: (2.11)The (r; �; z) projetions of the perturbed plasma velo-ity eV are (eVr, eV�, eVz). Similarly, the (r; �; z) ompo-nents of the perturbed magneti �eld eB are ( eBr, eB�,eBz). The perturbed plasma mass density is denotedby e�.The (r; �) projetions of the freezing-in ondition(2.4) yield �ie! eBr � ikzB0 eVr = 0; (2.12)�ie! eB� � d
d ln r eBr � ikzB0 eV� = 0: (2.13)Maxwell equation (2.5) leads to the following relationbetween the omponents of the perturbed magneti�eld: ikz eBz + iky eB� + 1r ��r (r eBr) = 0: (2.14)1241



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008The equation of motion of perturbed plasma, Eq. (2.1),yields� ie!eVr � 2
eV� + 1�0 �ep�r � iv2AkzB0 eBr ++ v2AB0 � eBz�r � e�p00�20 = 0; (2.15)� ie!eV� + �22
 eVr + ikyep�0 � iv2AkzB0 eB� ++ iv2AB0 ky eBz = 0; (2.16)�ie!eVz = �ikzep=�0; (2.17)where v2A = B20=4��0 is the squared Alfvén veloity,�2 = (2
=r)d(r2
)=dr, and the gravity fore is ex-pressed in terms of 
 and p00 by means of (2.10).Using (2.14), we express eBz in terms of eBr and eB�:eBz = �kykz eB� + ikz �B ; (2.18)where �B = 1r ��r (r eBr): (2.19)Equations (2.12) and (2.13) allow expressing the per-turbed veloities eVr and eV� in terms of eBr and eB�:eVr = �e! eBr=kzB0; (2.20)eV� = � e! eB�kzB0 + i eBrkzB0 d
d ln r : (2.21)2.2. The Frieman�Rotenberg approah2.2.1. Basi equations of the FR approahWe introdue the FR variablep� = ep+ eBzB0=4�: (2.22)Then Eqs. (2.15) and (2.16) beomei�D0 � d
2d ln r� eBr + 2
e! eB� ++ kzB0�0 dp�dr � kzB0e�p00�20 = 0; (2.23)iD0 eB� � 2
e! eBr + ikykzB0�0 p� = 0; (2.24)

where D0 = �Ae!2; (2.25)�A = 1� k2zv2A=e!2: (2.26)It follows from (2.6) that the perturbed density sat-is�es the equatione��0 = 1kzB0 �i��B + d ln �0dr eBr�� ky eB��++ kz eVze! : (2.27)In turn, aording to (2.7), the perturbed plasma pres-sure ep is given byep = ip00kzB0 eBr ++ �02skzB0 �i�B � ky eB� + k2zB0e! eVz� ; (2.28)where 2s = �p0=�0 is the sound veloity squared. Us-ing (2.17), (2.27), and (2.28), we �nd expressions for epand e� in terms of the perturbed magneti �eld:ep = 1kzB0�s hip00 eBr + 2s�0(i�B � ky eB�)i; (2.29)e��0 = 1kzB0�s ���i ��B+��s d ln �0dr + k2zp00�0e!2� eBr��ky eB�� ; (2.30)where �s = 1� k2z2s=e!2: (2.31)Substitution of (2.30) in (2.23) yieldsi�r eBr + �� eB� � i�� �B + kzB0p0�=�0 = 0; (2.32)where�r = D0 � d
2d ln r � p00r�0 d ln �0d ln r � k2z�se!2 p020r�20 ; (2.33)�� = 2
e! + kyp00=�s�0; (2.34)�� = p00=�s�0: (2.35)1242



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :2.2.2. Canonial equations in the FR approah(the HBIB-type equations)It follows from (2.24) thateB� = � 1D0 �i2
e! eBr + kykzB0�0 p�� : (2.36)Substitution of (2.36) in (2.18) and (2.29) leads toeBz = ikz ��B + kyD0 2
e! eBr�+ k2y�0 B0p�; (2.37)ep = 1kzB0�s �i2s�0�B ++ i�p00 + 2s�0ky2
e!D0 �+ 2sD0 k2ykzB0p�� : (2.38)Using (2.37) and (2.38), we represent (2.22) in the formD�B = C1 eBr � i4�kzB0C2p�; (2.39)where D = D0(1 + �=�s); (2.40)C1 = �2ky
e!�1 + ��s�� D0�sv2A p00�0 ; (2.41)C2 = 1B20 �D0 � k2yv2A�1 + ��s�� : (2.42)Substitution of (2.36) in (2.32) yields� ip0� = �ky��D0 p� + �0��kzB0 �B �� �0kzB0 ��r � ��D0 2
e!� eBr: (2.43)Using (2.39), we eliminate �B from (2.43). Then wearrive ati4�kzB0Dp0� = �4�kzB0 �C1p� + C3 eBr: (2.44)Here,�C1 = � �4��0��C2 + ��ky �1 + ��s�� ; (2.45)C3 = 4��0�D��r � ��D0 2
e!�� ��C1� : (2.46)By means of (2.41) and (2.42), Eqs. (2.45) and (2.46)redue to

�C1 = C1; (2.47)C3 = 4��0D0 ��1+ ��s��D0� d
2d ln r� p00r�0 d ln �0d ln r ��4
2e!2D0 � 2m
e!D0 p00r�0�+ D0�sv2Ae!2 p020�20 # : (2.48)Equations (2.39) and (2.44) an be alled the anon-ial equations of the MRI theory. They were initiallyobtained in Refs. [11; 12℄. Therefore, they an also bealled the HBIB-type equations. The values D, C1, C2,and C3 are the primary anonial parameters.2.2.3. The anonial mode equation andanonial loal dispersion relationTo eliminate the value p� from our problem, weuse (2.39) to �nd4i�kzB0p� = (C1 eBr �D�B)=C2: (2.49)Then (2.44) takes the formD(D�B=C2)0 +� eBr = 0; (2.50)where � = a+ b; (2.51)a = C3 � C21=C2; (2.52)b = �Dr(C1=rC2)0: (2.53)The quantity � is the seondary anonial parameter.We all the values a and b the loal and di�erentialanonial seondary parameters, respetively.We take the funtion eBr in the formeBr = �Br(r) exp(ikrr); (2.54)where �Br(r) is a slowly varying amplitude. Then (2.50)leads to �k2rD2=C2 +� = 0; (2.55)whih is the anonial loal dispersion relation.3. AXISYMMETRIC PERTURBATIONS INTHE ONE-FLUID PLASMA MODEL3.1. Redution of the dispersion relationHere, we take ky = 0; (3.1)1243



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008whih orresponds to axisymmetri perturbations.Then Eqs. (2.41)�(2.43) redue toC1 = �p00D0=�0v2A�s; (3.2)C2 = D0=B20 ; (3.3)C3 = 4��0D0 "�1+ ��s� �D0� d
2d ln r�4
2!2D0 �� p00r�0 d ln �0d ln r �+ p020 D0�20v2A!2�s # : (3.4)It an be seen that C1 6= 0 for p00 6= 0: Turning to (2.52),we onlude that the di�erential part of the loal dis-persion relation does not vanish in this ase. Therefore,for p00 6= 0, the orret loal dispersion relation annotbe obtained by the standard loal approah [3; 5℄.3.2. The simplest astrophysial high-� plasmaThe problem statement in [1�3℄ implies the inom-pressibility approximation 2s ! 1 and the assump-tion p00 = 0. The ondition 2s ! 1 is equivalent to� ! 1. Then Eq. (3.3) for C2 remains in fore, whileEqs. (2.40), (3.2), and (3.4) redue toD = �(!2 � k2zv2A)2=k2zv2A; (3.5)C1 = 0; (3.6)C3 = �4��0(!2 � k2zv2A)2 ���!2 � k2zv2A � d
2d ln r � 4
2!2!2 � k2zv2A� : (3.7)In this ase, in aordane with (2.52) and (2.53),a = C3; (3.8)b = 0: (3.9)It then follows from (2.51) that� = C3: (3.10)Substitution of (3.5), (3.6), and (3.8) in (2.55) gives thedispersion relation!2 � k2zv2A � k2zk2 � d
2d ln r + 4
2!2!2 � k2zv2A� = 0; (3.11)where k2 = k2z + k2r . This is the Balbus�Hawley (BH)dispersion relation [3℄. It leads to the MRI riterionin (1.1).

Beause we assume p00 = 0 in this subsetion, dis-persion relation (3.11) desribes the ase where, aord-ing to equilibrium ondition (2.10), plasma rotation isaused by the gravitational fore only,r
2 = �g: (3.12)This an be alled the simplest astrophysial situationor the ase of gravitation-dominated plasma.The result of analysis of (3.11) is well known:this dispersion relation desribes the MRI driving ford
2=d ln r < 0, representing the Velikhov e�et. Mean-while, in aordane with (3.12),d
2d ln r = �d(g=r)d ln r : (3.13)In this ontext, the MRI driving due to the Velikhove�et is revealed as a result of an unstable pro�le ofgravitation fore.We reall that a dimensionless parameter � was in-trodued in [5℄ by� � ��1 + 1k2v2A d
2d ln r� : (3.14)Then the instability region following from (3.11) isgiven by (f. (1.1)) � > 0: (3.15)Near the instability boundary, it follows from (3.11)that !2 = �2, where2 = k2zv2A�=�1: (3.16)Here, �1 � 1 + 4
2=k2v2A (f. [5℄).3.3. High-� laboratory plasmaNow we assume the gravitational �eld to be negli-gible, g = 0: (3.17)Then, aording to equilibrium ondition (2.10), therotation frequeny is de�ned byr�0
2 = p00: (3.18)Therefore, induing rotation of the laboratory mediumrequires organizing a region wherep00 > 0: (3.19)The inompressibility approximation 2s ! 1 on-sidered in Se. 3.2 orresponds to the ase where the1244



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :parameter �s beomes in�nite. We introdue the quasi-inompressible approximation assuming the parameterk2z2s=!2 to be large but �nite, k2z2s=!2 � 1. Then wehave �s = �k2z2s=!2: (3.20)As a result, instead of (3.11), we obtain the dispersionrelation!4 � k2v2A!2�L1 � k2zk2v4A�L = 0: (3.21)Here, similarly to (3.14),�L = �1+ 1k2v2A � d
2d ln r�
4r22s +
2 d ln �0d ln r �� (3.22)and�L1 = 1��L + 
2v2Ak2 �� �4 + 1� �d ln p0d ln r � d ln �0d ln r �� : (3.23)The supersript �L� means �laboratory�.Taking ! = 0, we obtain�L = 0 (3.24)for the instability boundary (f. (3.15)) or, in the ex-pliit form,d
2d ln r + k2v2A � 
4r22s +
2 d ln �0d ln r = 0: (3.25)Comparing (3.25) with (1.1) shows that the MRIdriving due to the Velikhov e�et remains in fore inour model. The stabilizing term k2v2A, desribing themagnetoaousti e�et, is also revealed in our analysis.Meanwhile, we obtain one more driving mehanism re-lated to the term with 
4 in (3.25). The term with 
2in (3.25) desribes an additional driving mehanism fora negative density gradient,d ln �0=d ln r < 0: (3.26)Otherwise, the density gradient e�et is stabilizing. Asa whole, the MRI ours ford
2d ln r + k2v2A � 
4r22s +
2 d ln �0d ln r < 0: (3.27)Near the instability boundary, i. e., for small �L,Eq. (3.21) yields2 = k2zv2A�L=�L(0)1 ; (3.28)

where �L(0)1 is �L1 for �L = 0, i. e.,�L(0)1 = 1 + 
2v2Ak2 �� �4 + 1� �d ln p0d ln r � d ln �0d ln r �� : (3.29)Expliitly, Eq. (3.28) means2 = k2zv2A�
4r42s � k2v2A � d
2d ln r �
2 d ln �0d ln p0����k2v2A + 4� d lnT0d ln r ��1 ; (3.30)where T0 = p0=�0 is the equilibrium plasma tempera-ture. With (3.18), the MRI riterion in suh a mediumbeomesd
2d ln r + k2v2A �1� �k2r2�2 d ln p0d ln r �� �d lnT0d ln r � (�� 1) d ln �0d ln r �� < 0: (3.31)This instability riterion replaes (1.1).An important onsequene of expression (3.31) isthat the MRI in a laboratory medium an be driveneven in the absene of the Velikhov e�et, i. e., ford
2=d ln r = 0: (3.32)In this ase, the MRI is possible ifd ln T0d ln r � (�� 1) d ln �0d ln r > 0: (3.33)The analysis in this subsetion shows that behaviorof the MRI in the simplest high-� laboratory plasmais essentially di�erent from that in the simplest high-�astrophysial plasma.4. COLLISIONLESS PLASMA4.1. Basi equationsIn the ase of ollisionless plasma, the equilibriumondition is (f. (2.10))��0r
2 = �p0?0 + g�0; (4.1)where p?0 is the equilibrium perpendiular plasmapressure.1245



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008To desribe the perturbed plasma dynamis, in-stead of (2.1), we start from the equation of motionin the form (see [19℄ and Se. 19.1 in [45℄)�� dVdt �� == ��r � p+�g� 14� �12rB2�(B � r)B��� ; (4.2)where p = p0 + ep is the total pressure tensor. Aord-ing to [19; 45℄,r � p = rp?+pk�p?B2 �12r?B2+�[r�B℄�B��++ BB (B � r) � 1B (pk � p?)� ; (4.3)where p? and pk are the total perpendiular and paral-lel pressures given by p? = p?0+ ep? and pk = pk0+ epk,pk0 is the equilibrium parallel plasma pressure, and ep?and epk are the perturbed perpendiular and parallelplasma pressures.The (r; �; z) projetions of Eq. (4.2) are(f. Eqs. (2.15)�(2.17))�0�� ie!eVr � 2
eV��� e�(
2r + g) = � ��r ep? ++ B04� "ikz �1 + �? � �k2 � eBr � � eBz�r # ; (4.4)�0��ie!eV� + �22
 eVr� = �ikyep? ++ iB04� �kz �1 + �? � �k2 � eB� � ky eBz� ; (4.5)�ie!eVz = �ikzepk=�0; (4.6)where (�?; �k) = 8�(p?0; pk0)=B20 .Using (4.4) and (4.5) and introduing the modi�edFR variable p� = ep? + B0 eBz=4�; (4.7)we arrive at (f. (2.23), (2.24))�0kzB0 �i�D0 � d
2d ln r� eBr + 2
e! eB��� p0?0e� == ��p��r ; (4.8)�0kzB0 �iD0 eB� � 2
e! eBr� = �ikyp�; (4.9)

where D0 is given by (2.25), and (f. (2.27))�A = 1� k2zv2Ae!2 �1 + �? � �k2 � : (4.10)We alulate the perturbed pressures ep? and epk as(see Eqs. (16.43) and (16.46) in [45℄)(ep?; epk) = M Z �v2?2 ; v2k� ef dv; (4.11)where M is the ion mass, ef is the perturbed distribu-tion funtion, v? and vk are the perpendiular and par-allel partile veloities, and dv is the volume elementin the veloity spae. Aording to Se. 16.4 in [45℄and the appendix in [23℄, the funtion ef onsists of twophysially di�erent parts. One is related to the spatialinhomogeneity of the equilibrium distribution funtionf0, and the other is due to the plasma ompressibility,with ef = ef (1) + ef (2); (4.12)whereef (1) = �Xf 00; (4.13)ef (2) = Mv2?2T? �1� T?Tk + e!e!�kzvk T?Tk � f0 eBzB0 ; (4.14)with T? and Tk being the perpendiular and paralleltemperatures. Equation (4.14) implies that the parti-le distribution is bi-Maxwellian.As a result, Eqs. (4.11) yield the following expres-sions for the perturbed plasma pressures:ep? = ep(1)? + ep(2)? ; (4.15)epk = ep(1)k + ep(2)k : (4.16)Here, the supersripts �(1)� and �(2)� denote the�MHD� and �kineti� parts of the these perturbed fun-tions, whih are respetively given bynep(1)? ; ep(1)k o = ifp0?0; p0k0g eBr=(kzB0); (4.17)nep(2)? ; ep(2)k o = �2p?0?; pk0k	 eBz=B0: (4.18)The oe�ients ? and k are? = 1� T?Tk �1 + ip� e!jkz jvTk W � e!jkz jvTk�� ; (4.19)k = 1� T?Tk (1 + 2e!2k2zv2Tk �� �1 + ip� e!jkz jvTk W � e!jkz jvTk��) ; (4.20)1246



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :where vTk =p2Tk=M is the ion parallel thermal velo-ity and W (x) is the plasma dispersion funtion de�nedby [20�23℄W (x) = exp(�x2)0�1 + ip� xZ0 exp(t2) dt1A : (4.21)The funtion W (x) has the asymptoti forms [21℄W (x) = 8<: ip� x ; x� 1;1; x� 1: (4.22)Aordingly, Eqs. (4.19) and (4.20) imply? =8><>: 1; e! � jkz jvTk;1�T?Tk �1+ ip� e!jkz jvTk� ; e! � jkz jvTk;(4.23)k =8>><>>: 1; e! � jkzjvTk;1�T?Tk  1+ 2ie!3jkzj3v3Tk! ; e! � jkzjvTk:(4.24)Evidently, the expressions for the kineti parts ofthe perturbed pressures an be extended to more gen-eral partile distributions than the bi-Maxwellian one.The expression for ef (2) in terms of f0 in [23℄ an thenbe used.4.2. The anonial mode equation andanonial loal dispersion relationFollowing the proedure explained in Se. 2, we ar-rive at Eq. (2.39) withD = (1 + �??)D0; (4.25)C1 = � �2
e!ky(1 + �??) + 4�p0?0B20 D0� ; (4.26)C2 = �D0 � k2yv2A(1 + �??)� =B20 : (4.27)In addition, we have Eq. (2.44) with�C1 = �4�p0?0D0B20 �1 + �kk2 k2zv2Ae!2 ��� 2ky
e!(1 + �??); (4.28)

C3 = 4��0�D0(1 + �??)�D0 � d
2d ln r �� 4
2e!2D0 � p0?0��0r �+ p0?0�0 �1 + �kk2 k2zv2Ae!2 ��� �2
e!ky(1 + �??) + 4�p0?0D0B20 �� ; (4.29)where� = d ln �0d ln r + k2zrp0k0e!2�0 ++ 2m
e!D0 �1 + �kk2 k2zv2Ae!2 � : (4.30)We then obtain the mode equation (f. (2.50))D "�D�BC2 �0 + ÆC1C2 �B#+� eBr = 0; (4.31)whereÆC1 = �C1 � C1 = �p0?0k2zD0�kk=2�0e!2; (4.32)� is given by (2.51),a = C3 � C1 �C1=C2; (4.33)and b is of form (2.53). The loal mode equation forthe ollisionless plasma is given by (2.55).To some extent, the oe�ient � plays the role ofthe potential energy of perturbations. Its form is es-sential for the problem onsidered beause � inludesall driving mehanisms of MRI. Turning to (4.33) and(4.29), we an see that a, the loal part of �, ontainsthe di�erential term d
2=d ln r. This term is respon-sible for the Velikhov e�et. Meanwhile, the di�eren-tial part of �, i. e., b, an also inlude the term withd
2=d ln r. This term in b desribes the anti-Velikhove�et.One more driving mehanism is related to the terminvolving � in (4.29). It desribes the ross e�et ofplasma pressure and density gradients. This e�et isalso of di�erential nature. Therefore, as the Velikhove�et, it an also be ompensated by a respetive termin the oe�ient b. An important driving mehanismis desribed by the term with p02?0 in (4.29), whih isthe e�et of the squared plasma pressure gradient, seeSe. 3.4.3. Axisymmetri modes in the simplestastrophysial plasma modelSetting p0?0 = 0 and ky = 0, we have from (4.26)and (4.28) that C1 = �C1 = 0: (4.34)1247



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008Then, aording to (3.53), b = 0 (f. (3.9)) while, a-ording to (4.33), a = C3 (f. (3.8)) and (2.51) reduesto � = C3 (f. (3.10)).Turning to (4.29), we �nd that in the ase onsid-ered,C3 = 4��0D0(1 + �??)���D0 � d
2d ln r � 4
2!2D0 � : (4.35)On the other hand, we have (3.3). As a result, disper-sion relation (2.55) redues toD0 � k2rv2A(1 + �??)� d
2d ln r � 4
2!2D0 = 0: (4.36)By means of (2.25), (4.10), and (4.19) this dispersionrelation an be represented in the formQA(QM � d
2=d ln r) � 4
2!2 = 0; (4.37)where QA and QM are the Alfvén and magnetoaoustiparts of the dispersion relation given byQA = !2 � k2zv2A�(1 + (�? � �k)=2�; (4.38)QM = !2 � v2A �k2 + k2z �? � �k2 + k2r�? �� �1� T?Tk �1 + ip� !jkz jvTk W � !jkz jvTk���� : (4.39)In the ase of nonrotating plasma, Eq. (4.37) splitsinto two dispersion relationsQA = 0; (4.40)QM = 0: (4.41)These dispersion relations desribe the Alfvén and mag-netoaousti osillations branhes.We see that in the ase of axisymmetri modesin astrophysial plasma, in the absene of pressureanisotropy, the only driving mehanism is the Velikhove�et desribed by the term with d
2=d ln r in (4.37).The analysis of (4.37) with the pressure anisotropytaken into aount was performed in [19℄.4.4. Axisymmetri modes in the simplestlaboratory plasma modelIn the ase of laboratory plasma, we have g = 0.For ky = 0, Eqs. (4.26) and (4.28) then yieldC1 = �r
2D0=v2A; (4.42)�C1 = �r
2D0v2A �1 + �kk2 k2zv2A!2 � : (4.43)

It follows from (4.30) that in the ase onsidered,� = d ln �0d ln r + k2zrp0k0!2�0 : (4.44)Then Eq. (4.29) redues toC3 = 4��0D0((1 + �??)"D0 � d
2d ln r �� 4
2!2D0 �
2 d ln �0d ln r + k2zrp0k0!2�0 !#++ r2
4v2A �1 + �kk2 k2zv2A!2 �� : (4.45)Using (4.45), (4.42), and (3.3), we transform (4.33)toa = 4��0D0(1 + �??)"D0 � d
2d ln r � 4
2!2D0 �� 
2 d ln �0d ln r + k2zrp0k0!2�0 !# : (4.46)With (4.25), (3.3), and (4.42), Eq. (2.53) yieldsb = 4��0D0(1 + �??) � d
2d ln r +
2 d ln �0d ln r � : (4.47)Substituting (4.46) and (4.47) in (2.51), we have� = 4��0D0(1 + �??) �� D0 � 4
2!2D0 �
2 k2zrp0k0!2�0 ! : (4.48)With (4.25), (3.3), and (4.48), dispersion relation (2.55)leads toD0�k2rv2A(1+�??)�4
2!2D0 �
2k2zrp0k0!2�0 = 0: (4.49)It an be seen from (4.49) that in ontrast to theone-�uid approah, both the Velikhov e�et and thee�et of plasma density gradient are not involved inthe axisymmetri MRI in the ollisionless laboratoryplasma. The reason for the di�erene in preditionsof the one-�uid MHD and the kinetis is that theMHD implies an engagement between the perpendi-ular and parallel plasma motion. This engagement isdesribed by the fator �s � 1 � k2z2s=!2 determinedby Eq. (2.31). Therefore, if we formally take �s ! 1 inEq. (2.51) for the parameter �, we arrive at the on-lusion that both the Velikhov e�et and the e�et ofplasma density gradient disappear.1248



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :Here the question arises: what is reason of the ru-ial di�erene between the astrophysial and laboratorysituations, with the Velikhov e�et presene in (4.36)and absene in (4.49)? Formally, this di�erene is ex-plained by the fat that C1 = 0 in astrophysis and, asa result, b = 0, while C1 6= 0 and b 6= 0 in laboratoryonditions. Physially, this di�erene is a onsequeneof the fat that in ontrast to the laboratory situations,the perturbed mass density plays no role in the astro-physial MRI. As a result, it does not lead to annihi-lation of the Velikhov e�et related to the di�erentialterm in (2.52).Similarly to (4.37), Eq. (4.49) an be represented inthe formQA QM � k2zp0?0p0k0!2�20 !� 4
2!2 = 0; (4.50)where QA and QM are given by (4.38) and (4.39). Theterm involving p0?0p0k0 in (4.50) desribes the above-mentioned driving e�et due to the squared plasmapressure gradient.In the ase of Maxwellian ions, Eq. (4.49) reduesto(!2 � k2zv2A)(!2 � v2A �k2 � k2r� ip�jkz jvT �� W � !jkz jvT ��� p002k2z�20!2 )�� 4
2!2 = 0; (4.51)where vT = p2T=M and T = Tk = T? is the equilib-rium ion temperature. For ! � jkzjvT , it hene followsthat1� i p� k2rk2 �1=2 !jkz jvA ++ k2z4k2 �2 v2Ar2!2 �d ln p0d ln r �2 = 0: (4.52)For � � 1, Eq. (4.52) yields� !jkz jvT �3 = � ip2�r2k2r �d ln p0d ln r �2 : (4.53)It an be seen that one of the roots of this equationdesribes unstable perturbations.For � � 1, Eq. (4.52) beomes!2 = �k2z�4k2 v2Tr2 �d ln p0d ln r �2 : (4.54)

This dispersion relation desribes an aperiodi instabil-ity with the growth rate = jkz j�1=22k vTr ����d ln p0d ln r ���� : (4.55)Thus, for arbitrary �, there is an instability with thegrowth rate independent of � for � > 1 and dereasingas �1=2 for � � 1. It is the MRI in ollisionless labo-ratory plasma. Realling the disussion in [5℄, we notethat the appearane of this MRI is governed by theollisionless gyrorelaxation e�et; it an therefore bealled the pressure-gradient-driven gyrorelaxation MRIin ollisionless laboratory plasma.5. DUSTY PLASMA5.1. Basi equations and equilibriumTurning to Refs. [46, 47℄, we see that one of themain plasmadynami equations showing the preseneof dust grains is the quasineutrality ondition�ene + eni � eZdnd = 0; (5.1)where ne, ni, and nd are the eletron, ion and dust den-sities, e is the ion harge, �eZd is the harge of the dustgrain, and Zd is the number of exessive (Zd > 0) or de-�ient (Zd < 0) eletrons on the grain. The remainingplasmadynami equations are taken in the approxima-tion of immobile dust, implying that the mass of eahgrain is in�nite and the dust veloity is zero.The assumption of immobile dust is valid when thefrequenies of interest exeed both the dust ylotronfrequeny and the dust plasma frequeny. These re-stritions, together with knowledge of the dust om-position (dust material), determine the orrespondingsize of grains.We take the equations of motion of ions and ele-trons in the standard form�i diVidt = eni�E+ 1 Vi �B��rpi + �ig; (5.2)0 = �ene�E+ 1 Ve �B��rpe; (5.3)where Vi and Ve are the ion and eletron veloities, �iis the ion mass density, di=dt = �=�t+Vi � r, and piand pe are the ion and eletron pressures. Adding (5.2)and (5.3), we obtain�i diVidt = e(ni � ne)E++ e (niVi � neVe)�B�rp+ �ig; (5.4)12 ÆÝÒÔ, âûï. 6 (12) 1249



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008where p = pi + pe is the plasma pressure. Beause thedust is assumed to be immobile, we havee(niVi � neVe) = j; (5.5)where j is the eletri urrent density. Then, with (5.1),Eq. (5.4) redues to� dVdt = endZdE+ 1 [j�B℄�rp+ �g: (5.6)Here, in orrespondene with the one-�uid approah,we have hanged the notation as �i ! �, Vi ! V,di=dt! d=dt. By means of the identity1 [j�B℄ = � 14� �r B22 � (B � r)B� ; (5.7)Eq. (5.6) is transformed into (f. (2.1))� dVdt = endZdE� 14� �r B22 � (B � r)B���rp+ �g: (5.8)In the sope of the one-�uid approah, the equationof motion for eletrons in (5.3) is transformed as fol-lows. The eletron veloity Ve is taken to be equal tothe ion veloity Vi,Ve = Vi � V: (5.9)The term with the eletron pressure gradient is ne-gleted. Then Eq. (5.3) takes the form of Eq. (2.3). TheOhm law in form (2.10) leads to the standard freezing-in ondition (2.4). In addition, we use Maxwell equa-tion (2.5), plasma ontinuity equation (2.6), and adia-batiity ondition (2.7). Then the presene of the dustis revealed in our model only through the term withthe eletri �eld in plasma equation of motion (5.8).It follows from the equilibrium part of the radialprojetion of Eq. (5.8) that (f. (2.10))r�0
(
�
d) = p00 � �0g; (5.10)where 
d is the dust-indued e�etive rotation fre-queny de�ned by
d = !BiZdnd=n0: (5.11)It seems to be important that, aording to (5.10),a dusty plasma olumn rotates even in the absene ofthe gravity fore and the plasma pressure gradient: atg = 0 and p00 = 0, we have
 = 
d: (5.12)

Another important partiular ase of the dustyplasma equilibrium is the gravitation-free plasma,g = 0, in the presene of a plasma pressure gradientp00 6= 0. Then Eq. (5.10) givesr�0
(
�
d) = p00: (5.13)The presene of dust allows the equilibrium of suhplasma to our not only for p00 > 0 but also for nega-tive plasma pressure gradient, p00 < 0.5.2. Derivation of the mode equation and loaldispersion relationBy means of the Ohm law, we �nd the expressionsfor the perturbed eletri �elds:eEr = �(r
 eBz +B0 eV�)=; (5.14)eE� = B0 eVr=; (5.15)eEz = r
 eBr=: (5.16)Then the perturbed plasma equation of motion in (5.8)yields (f. (2.15)�(2.17))� ie!eVr � 2
eV� + 1�0 �ep�r � iv2AkzB0 eBr + v2AB0 � eBz�r ++ 
d eV� + r
 eBzB0 !�� e��0 �p00�0 + r

d� = 0; (5.17)� ie!eV� + �22
 eVr + ikyep�0 � iv2AkzB0 eB� ++ iv2AB0 ky eBz �
d eVr = 0; (5.18)�ie!eVz = r
d
 eBr=B0 � ikzep=�0: (5.19)We introdue the FR variable p� de�ned by (2.22).Then Eqs. (5.17) and (5.18) beomei�D0 � d
2d ln r +
d d
d ln r� eBr + e!(2
�
d) eB� ++ kzB0�0 dp�dr + ir

d�B �� kzrB0e��0 �

d + p00�0� = 0; (5.20)iD0 eB� � (2
�
d)e! eBr + ikykzB0�0 p� = 0; (5.21)where D0 is given by (2.25) and (2.26).1250



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :The expressions for ep and e� in terms of the per-turbed magneti �eld are (f. (2.29), (2.30))ep = 1kzB0�s �i�p00 + k2z2s�0r
d
e!2 � eBr ++ 2s�0 �i�B � ky eB��� ; (5.22)e��0 = 1kzB0�s �i ��B +��s d ln �0dr + k2zp00�0e!2 ++ k2zr

de!2 � eBr�� ky eB�� ; (5.23)where �s is given by (2.31). We see that ep and e� de-pend on the dust presene through their dependene oneVz , whih, in aordane with (5.19), depends on 
d.Substitution of (5.23) in (5.20) yields (2.32) with�r = D0� d
2d ln r+
d d
d ln r��

d+ p00r�0� d ln �0d ln r �� rk2z�se!2 �

d + p00r�0�2 ; (5.24)�� = e!(2
�
d) + m�s �

d + p0r�0� ; (5.25)�� = 1�s �p00�0 + k2z2se!2 r

d� : (5.26)We note that aording to (5.26), in the ase of pureplasma with p00 = 0, the oe�ient �� vanishes. Thepresene of dust leads to a nonvanishing �� even forp00 = 0 if the plasma temperature is �nite, 2s 6= 0.It follows from (5.21) that (f. (2.36))eB� = � 1D0 �ie!(2
�
d) eBr + kykzB0�0 p�� : (5.27)Substitution of (5.27) in (2.18) and (5.22) leads toeBz = ikz ��B + kyD0 e!(2
�
d) eBr�++ k2y�0 B0p�; (5.28)ep = 1kzB0�s �i2s�0�B + i �p00 + k2z2s�0r

de!2 ++ 2s�0kye!D0 (2
� 
d)�+ 2sD0 k2ykzB0p�� : (5.29)

With (5.28) and (5.29), Eq. (2.22) is represented inform (2.39) with D and C2 given by (2.40), (2.42), andC1 = �kye!(2
�
d)�1 + ��s��� D0�sv2A �p00�0 + 2sk2zr

de!2 � : (5.30)It follows from (5.30) that, in aordane with (2.41),in the ase of axisymmetri modes (ky = 0) and thevanishing plasma pressure gradient (p00 = 0), we haveC1 = 0 in the pure plasma. In ontrast, in the dusty�nite-temperature plasma, this is a �nite quantity:(C1)ky=0; p00=0 = �D02sk2zr

d�sv2Ae!2 : (5.31)This is a onsequene of a nonzero �� (see the ommentafter (5.26)).Substitution of (5.27) in (2.32) yields (f. (2.43))� ip0� = �ky��D0 p� + �0��kzB0 �B �� �0kzB0 ��r � ��D0 e! (2
�
d)� eBr: (5.32)Then we arrive at (2.44), with �C1 = C1 (f. Eq. (2.47))andC3 = 4��0D0��1+ ��s��D0� d
2d ln r+
d d
d ln r ��� p00r�0 +

d� d�0d ln r � (2
�
d)2D0 e!2 �� me!D0 (2
�
d)

d�+ r2�sv2Ae!2 �D0 p00�20 � 2

d �� p00r�0 k2zv2A � k2zv2A(1 + �)
2
2d�� : (5.33)The anonial mode equation in the dusty plasma turnsout to be the same as in the ase of pure plasma (see(2.50)) with � given by (2.51)�(2.53). The same appliesto the anonial loal dispersion relation (see (2.55)).5.3. Axisymmetri modes in a high-� dustyplasma with p00 = 0For � � 1, ky = 0, p00 = 0, and �0 = onst, we havethe expressions for D and C2 in (3.5) and (3.3), andEq. (5.33) then yieldsC3 = �4��0D0� D0k2zv2A �D0 � d
2d ln r ++ 
d d
d ln r � (2
�
d)2!2D0 �+ r2v2A
2
2d� ; (5.34)1251 12*
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2d ln r ++ 
d d
d ln r � (2
�
d)2!2!2 � k2zv2A � : (5.35)Next, in aordane with (2.53),b = 4��0k2zv2A (!2 � k2zv2A)2 d(

d)d ln r : (5.36)It then follows from (2.51) that� = � 4��0k2zv2A (!2 � k2zv2A)2 �!2 � k2zv2A � d
2d ln r �� 
 d
dd ln r � (2
�
d)2!2!2 � k2zv2A � : (5.37)As a result, we obtain the loal dispersion relation!2 � k2zv2A � k2zk2 � d
2d ln r +
 d
dd ln r ++ (2
�
d)2!2!2 � k2zv2A � = 0: (5.38)Taking 
d = 0 in (5.38) yields the standard MRIriterion, i. e., the VHB instability riterion given by(1.1). It follows from (5.38) that for 
d 6= 0, the insta-bility ours ford
2d ln r +
 d
dd ln r + k2v2A < 0: (5.39)This is a generalization of the VHB instability riterionto the ase of dusty plasma.In the ase of gravitation-free dusty plasma (g = 0and 
 = 
d), Eq. (5.39) redues to32 d
2dd ln r + k2v2A < 0: (5.40)This instability riterion looks as being independent of�, but, in aordane with the above-said, it is valid forhigh � only. It shows that for the instability to develop,the pro�le of 
d(r) must be dereasing, d
2d=d ln r < 0.5.4. Axisymmetri modes in a low-� dustyplasma with p00 = 0For ky = 0, � = 0, p00 = 0, and �0 = onst, disper-sion relation (2.55) redues to [44℄(!2 � k2zv2A)�!2 � k2v2A � d
2d ln r +
d d
d ln r �� r2k2z
2
2d!2 �� !2(2
�
d)2 = 0: (5.41)

With (5.41), for 
d 6= 0, it seems natural to introduethe parameter�d � � �1 + 1k2v2A � d
2d ln r �
d d
d ln r�� (5.42)instead of � given by (3.14). Then (5.41) beomes(!2 � k2zv2A)�!2 + k2v2A�d � r2k2z
2�2d!2 ��� !2(2
�
d)2 = 0: (5.43)In the approximation (
; !) � kzvA and�d � kzvA, Eq. (5.43) beomes quadrati in !2:!4 + !2k2v2A�d � r2k2z
2
2d = 0: (5.44)It an be seen that this equation desribes unstableperturbations at any sign of �d. Their growth rate isgiven by2 � �!2 == 12 �k2v2A�d +qk4v4A�2d + 4r2k2z
2
2d� : (5.45)The ase �d < 0 orresponds to the dust-indued rota-tional instability (DRI). For small 
d, it follows from(5.45) that the growth rate of this instability is deter-mined by [44℄2 = �r2k2z
2
2d=k2v2A�d: (5.46)It seems important that the DRI is driven even forsu�iently large wave numbers, in partiular, fork2v2A � jd
2=d ln rj.In the absene of gravitation fore, the rotation fre-queny 
 is equal to the e�etive dust-indued rota-tion frequeny 
d (see (5.12)). Then dispersion relation(5.41) redues to(!2 � k2zv2A)�!2 � k2v2A � 12 d
2dd ln r � r2k2z
4d!2 ��� !2
2d = 0: (5.47)For ! � (kzvA; kvA), this gives (f. (5.44))� !kzvA�4 ��k2v2A
2d + 12 d ln
2dd ln r �� !kzvA�2 �� r2
2dv2A = 0: (5.48)For a uniform dust-indued rotation frequeny,d
d=dr = 0, this yields� !kzvA�4 � !2k2k2z
2d � r2
2dv2A = 0: (5.49)1252



ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008 The Velikhov and anti-Velikhov e�ets : : :It an be seen that the two roots of this dispersion rela-tion are imaginary, and hene !2 = �2, where  is thegrowth/deay rate. These roots are given by (f. (5.45))2k2z =sr2
2dv2A +�k2v4A2
2d �2 � k2v4A2
2d : (5.50)They are relevant to the simplest ase of theabove-mentioned DRI. In the long-wavelength limitkvA � 
d, it hene follows that2 = k2zrvAj
dj: (5.51)In the opposite short-wavelength limit kvA � 
d,Eq. (5.50) leads to (f. (5.46))2 = k2zr2
4d=v2Ak2: (5.52)Therefore, di�erential plasma rotation is not needed forappearane of the DRI.6. DISCUSSIONThe present paper shows that the MRI propertiesare in general di�erent in astrophysial and laboratoryases beause the respetive equilibrium onditions aredi�erent. In the simplest astrophysial situation, therotation is aused by the gravitation fore, but a posi-tive plasma pressure gradient is required for produinga similar laboratory equilibrium. Therefore, these twoases must be distinguished in the MRI theory.We have derived the mode equation desribingperturbations in a one-�uid rotating plasma ylinderimmersed in a parallel uniform magneti �eld (seeEq. (2.50)). This equation is expressed in terms of theprimary anonial parameters D, C1, C2, and C3 givenby (2.40)�(2.42), and (2.48), and the seondary anon-ial parameters �, a, and b (see (2.51)�(2.53)). Usingthis equation, we obtained the anonial loal disper-sion relation (2.55).The parameter a ontains the term involvingd
2=dr, whih desribes the Velikhov e�et as well asthe e�ets of the pressure and density gradients. Themost important feature of the parameter b is that itinvolves the derivative (p00=r�0)0, whih desribes theanti-Velikhov e�et in laboratory plasma. The param-eter b also ontains the terms proportional to the pres-sure and density gradients, whih ontribute to theMRI drive, and the terms nonvanishing for m 6= 0,whih are important for studying the nonaxisymmetriMRI in both astrophysial and laboratory onditions.For axisymmetri perturbations in the simplest astro-physial plasma, we obtain zero b (see (3.9)).

The axisymmetri perturbations in the simplest as-trophysial and laboratory plasmas are desribed bythe respetive dispersion relations (3.11) and (3.21).They aordingly lead to instability boundaries givenby (1.1) and (3.25). Equation (3.25) inludes threemehanisms of the MRI drive. These mehanisms areshown expliitly in (3.31).The axisymmetri MRI in the simple astrophysialplasma, in both high-� and low-� ases, an be hara-terized by the dimensionless parameter � introduedin [5℄ (see (3.14)). In ontrast, the laboratory high-� plasma is desribed by the parameter �L de�nedby (3.22).We have shown that desription of MRI within theollisionless plasma model requires alulation of theprimary anonial parameters D, C1, �C1, C2, and C3.They are given by (4.25)�(4.29). With these parame-ters, we obtain anonial mode equation (4.31) with theseondary anonial parameter � expressed in terms ofthe above quantities. In turn, � is a sum of loal anddi�erential parts expressed in terms of the seondaryanonial parameters a and b. The parameter a rep-resents the main driving mehanism of MRI, the Ve-likhov e�et, related to the derivative d
2=d ln r. Be-sides, it inludes two additional driving mehanisms,the perpendiular plasma pressure gradient squaredand the produt of the pressure and density gradients(see (3.15)). It turns out that the same e�ets butwith the opposite sign are ontained in the parameterb, whih an be alled �the anti-driving term�. In parti-ular, b inludes the anti-Velikhov e�et, whih weakensor an ompletely suppress the d
2=d ln r drive.Comparing the obtained kineti anonial modeequation with the one-�uid equation presented inSe. 2, we see that in ontrast to the one-�uid modeldealing with the anonial parameters D, C1, C2, andC3, the kinetis ontains the additional anonial pa-rameter �C1 6= C1.The parameter � is ruial for the problem on-sidered beause it inludes all the driving mehanismsof MRI. We have analyzed them for the axisymmetrimodes in astrophysial and laboratory plasmas. It isshown that the axisymmetri MRI in the astrophysialplasma behaves the same as predited by the eletro-dynami approah [5℄. Then, with the mehanisms dueto the plasma inhomogeneity (i. e., without the plasmapressure anisotropy e�ets), the only reason for thisinstability an be the Velikhov e�et [1, 3℄.For laboratory plasma, the axisymmetri modes aredesribed by dispersion relation (4.50). The Velikhove�et is absent in this dispersion relation. Instead, the1253



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008e�et of squared plasma pressure gradient is demon-strated.Aording to our analysis, in the laboratory plasmawith isotropi pressure, a pressure-gradient-drivenMRIan our. There are two varieties of this instabilityharaterized by dispersion relations (4.53) and (4.55).We have elaborated a mathematial tehnique toanalyze the MRI in a dusty plasma in the approxima-tion of immobile dust grains. A basis of our analysisis the plasma equation of motion in (5.8). This equa-tion di�ers from the standard one desribing the pureplasma by the presene of the eletri �eld. This �eldmodi�es the equilibrium plasma rotation (see (5.10))and in�uenes the perturbations (see (5.17)�(5.19)).Both these e�ets lead to modi�ation of the primaryanonial parametersD, C1, C2, and C3 (see (5.30) and(5.33)). We have derived the anonial mode equationin the presene of dust and the loal dispersion relation.We have restrited our analysis to only the loalmodes, assuming them to be axisymmetri. The non-loal modes and the nonaxisymmetri variety of theloal modes have been studied in Refs. [48℄ and [49℄,respetively.As a whole, we have advaned the MRI theory to-wards more omplete understanding of the relevantphenomena and indiated a new, modern trend in thistheory. The present paper gives a rather broad basisfor further theoretial study of MRI in astrophysialand laboratory plasmas.In addition to the uni�ed MHD theory of MRI andrelated instabilities in a rotating plasma, it seems inter-esting to elaborate the uni�ed eletromagneti theoryof suh instabilities. This was the topi of Ref. [50℄.Aording to [16℄, the MRI and related instabilitiesin the kineti plasma model are important, in parti-ular, for understanding the mehanisms of the radioand X-ray soure Sagitarius A� in our Galaxy. Theone-�uid and kineti instabilities also seem relevant tolaboratory experiments aimed at reproduing the as-trophysial instabilities [6, 51℄.In the present paper, both the one-�uid and kinetiregimes are onsidered for the magnetized plasma withthe ion ylotron frequeny larger than the osillationfrequeny and the plasma rotation frequeny. A weakmagnetization implies the so-alled Hall regime, whihwas broadly analyzed in astrophysis [52�63℄ withinboth the MHD and eletrodynami approahes.Aording to Ref. [64℄, the eletron inertia should insome ases be allowed in astrophysis. The eletrody-nami theory of axisymmetri modes with the eletroninertia has been developed in Refs. [63; 65℄.We have restrited ourselves to the linear approx-
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