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THE VELIKHOV AND ANTI-VELIKHOV EFFECTSIN THE THEORY OF MAGNETOROTATIONAL INSTABILITYA. B. Mikhailovskii a, J. G. Lominadze b;
*, A. P. Churikov d,V. D. Pustovitov a, O. A. Kharshiladze 
aInstitute of Nu
lear Fusion, Russian Resear
h Centre �Kur
hatov Institute�123182, Mos
ow, RussiabGeorgian National Astrophysi
al Observatory0160, Tbilisi, Georgia
Nodia Institute of Geophysi
s Georgian A
ademy of S
ien
es0193, Tbilisi, GeorgiadSyzran Bran
h of Samara State Te
hni
al University446001, Syzran, Samara Region, RussiaRe
eived February 6, 2008A theory of magnetorotational instability (MRI) allowing an equilibrium plasma pressure gradient and nonax-isymmetry of perturbations is developed. This approa
h reveals that in addition to the Velikhov e�e
t drivingthe MRI due to negative rotation frequen
y pro�le, d
2=dr < 0, there is an opposite e�e
t (the anti-Velikhove�e
t) weakening this driving (here, 
 is the rotation frequen
y and r is the radial 
oordinate). It is shown thatin addition to the Velikhov me
hanism, two new me
hanisms of MRI driving are possible, one of whi
h is dueto the pressure gradient squared and the other is due to the produ
t of the pressure and density gradients. Theanalysis in
ludes both the one-�uid magnetohydrodynami
 plasma model and the kineti
s allowing 
ollisionlesse�e
ts. In addition to the pure plasma 
ontaining ions and ele
trons, the dust plasma is 
onsidered. The
harged dust e�e
t on stability is analyzed using the approximation of immobile dust. In the presen
e of dust,a term with the ele
tri
 �eld appears in the one-�uid equation of plasma motion. This ele
tri
 �eld a�e
tsthe equilibrium plasma rotation and also gives rise to a family of instabilities of the rotating plasma, 
alled thedust-indu
ed rotational instabilities.PACS: 52.35.Bj, 94.30.
q1. INTRODUCTIONAppli
ation of the magnetorotational instability(MRI) 
on
ept [1; 2℄ to the problem of a

retiondisks [3℄ be
ame an important event in physi
s. Ithelped to resolve the long-standing puzzle of anoma-lous vis
osity in the disks [4℄.Paper [3℄ has stimulated numerous astrophysi
al in-vestigations. The original studies in this astrophysi
altrend in the MRI theory are 
ited in [5℄. The 
urrentstatus of the resear
h and future perspe
tives in this�eld are summarized in review [6℄, where it was empha-sized that one of the main topi
s here is rapid sponta-*E-mail: j.lominadze�astro-ge.org

neous spin-up of plasma with no apparent momentuminput. In addition to the traditional areas of astrophys-i
al appli
ations su
h as star formation pro
esses, masstransfer between binary stars, and a
tive gala
ti
 nu-
lei, the solar dynamo [7, 8℄ was also mentioned [6℄ as aphenomenon where the angular momentum transportis an issue.It is generally a

epted that the MRI drive in aperfe
tly 
ondu
ting magnetized medium [1�3℄ is thee�e
t of di�erential rotation, i. e., the Velikhov e�e
t.Following the approa
h of the lo
al dispersion relationproposed in [3℄ and used in [5℄, one obtains the instabil-ity 
riterion of the axisymmetri
 perturbations in theform1238
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ts : : :d
2d ln r + k2v2A < 0: (1.1)It is assumed here that the equilibrium 
on�guration isaxisymmetri
, i. e., independent of the azimuthal angle� in the 
ylindri
al 
oordinates (r; �; z). The equilib-rium magneti
 �eld is along the axis z, and the mediumis involved in azimuthal rotation with the angular fre-quen
y 
 = 
(r). Here, vA is the Alfvén velo
ity andk2 = k2r + k2z , where kr and kz are the radial and longi-tudinal wave numbers of the perturbations. The termd
2=d ln r des
ribes the mentioned Velikhov e�e
t. In-stability 
riterion (1.1) 
an be 
alled the Velikhov�Balbus�Hawley (VHB) instability 
riterion. It 
an besatis�ed only for a de
reasing rotation frequen
y pro-�le, d
2=d ln r < 0.One of the motivations of this paper was to elu-
idate whether the Velikhov e�e
t is the only drivingme
hanism of MRI. As a tool, we use the magnetohy-drodynami
 (MHD) approa
h going ba
k to the paperby Frieman and Rotenberg (FR) [9℄, whi
h has beene�e
tively applied and developed in [10�12℄.Lo
al instability 
riterion (1.1) was derived in [3℄within the so-
alled lo
al approa
h, assuming that theradial dependen
e of a perturbation eF (r) 
an be ex-pressed in the form �F (r) exp(ikrr), where �F (r) is theamplitude with a negligibly weak radial dependen
e.The FR approa
h deals with two variables, oneof whi
h is the perturbed radial magneti
 �eld eBrand the other is the sum of the perturbed pressuresof the medium and the magneti
 �eld, denoted asp� and 
alled the FR variable. The MHD approa
hleads to a pair of �rst-order di�erential equations foreBr and p� [10�12℄, the Hameiri�Bondeson�Ia
ono�Bhatta
harjee (HBIB) type equations. The equationfor eBr 
ontains the radial derivative of p�, and there-fore, when this variable is eliminated in order to obtainthe mode equation, two 
ontributions appear from theequation for p�. One inolves the radial derivative ofeBr, whi
h is 
an
eled by a similar term in the HBIBequation for eBr. The se
ond is expressed in terms ofthe radial derivative of the medium equilibrium param-eters. This part, in general, should be taken into a
-
ount in the lo
al dispersion relation. As a result, it
ombines a lo
al part and a di�erential 
ontribution.Su
h a dispersion relation 
an be 
alled the 
anoni
aldispersion relation. The 
ru
ial question is whetherthe lo
al dispersion relation obtained by means of theMHD approa
h 
oin
ides with that derived by the lo-
al approa
h used, in parti
ular, in [3; 5℄. The answeris that su
h a 
oin
iden
e o

urs only in the absen
e ofthe di�erential part in the FR lo
al dispersion relation!One 
an say that papers [1, 2℄ were aimed at ap-

pli
ations to a laboratory medium. On the 
ontrary,paper [3℄ with an analysis of a

retion disks is 
learlyastrophysi
al. Then, based on Eq. (1.1), one 
an sug-gest that response of the laboratory and astrophysi-
al media to the MRI is identi
al. But the physi
sof the equilibrium rotation in these 
ases is di�erentin general. As a rule, it is assumed that the astro-physi
al rotation is 
aused by the gravitation for
e [3℄.In 
ontrast, this for
e plays no role in the laboratoryplasma. If there is no equilibrium azimuthal magneti
�eld, the main reason for the plasma rotation is the pos-itive plasma pressure gradient, p00 > 0, where p0 is thepressure and the prime is the radial derivative. Then we
an refer to either the simplest astrophysi
al situation,where the rotation is stipulated solely due to the gravi-tation for
e, or the simplest laboratory 
ase, where theonly reason for plasma rotation is the positive plasmapressure gradient. For the �astrophysi
al plasma�, weuse the term �gravitation-dominated plasma�. Also, inaddition to �laboratory plasma�, the term �gravitation-free plasma� is used in what follows. This implies thatthe 
ase g = 0 is relevant to not only the laboratorydevi
es but also some spa
e 
on�gurations.In Refs. [1�3℄, the perturbations were assumed tobe in
ompressible, i. e., those withr � eV = 0; (1.2)where eV is the perturbed medium velo
ity. In the sim-plest astrophysi
al situation, the in
ompressibility as-sumption leads to the vanishing of the perturbed pres-sure ep, ep = 0: (1.3)In 
ontrast to this, in the laboratory 
ase, the sameassumption leads to a nonvanishing ep de�ned, for ax-isymmetri
 perturbations [1, 2℄, by the equation�ep�t + eVrp00 = 0; (1.4)where eVr is the perturbed radial velo
ity.Dealing with p00 6= 0, we must allow for the per-turbed mass density e�, whi
h, in the in
ompressibleapproximation, is determined by the 
ontinuity equa-tion �e��t + eVr�00 = 0; (1.5)where �0 is the equilibrium mass density. Thus, for thesimplest laboratory plasma, in 
ontrast to the simplestastrophysi
al s
enario, we should deal with e�e
ts of p00and, in general, the e�e
ts of �00.1239



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008Then a question arises: are the MRI developmentsin these two situations the same or di�erent? The an-swer to this question is one of the goals of this paper.With the above remarks, we should expe
t that thes
enarios must be di�erent. We show this in formulas.The MRI in the simplest astrophysi
al situation hasalready been studied in detail, in
luding the analysisof the MRI dependen
e on �, the ratio of the plasmapressure to the magneti
 �eld pressure (see, e. g.,Refs. [5; 13; 14℄). The re
ent theory of MRI in this 
asehas also 
onsidered the kineti
 e�e
ts [5; 15�19℄ in
lud-ing the e�e
ts of plasma pressure anisotropy [15; 18; 19℄.Here, we restri
t the study by the one-�uid plasmamodel only, assuming the plasma to be ideal.Thus, there is a rather wide open area in the MRItheory: a bran
h allowing for the pressure gradient ef-fe
ts. The present paper is a step in its development.Another insu�
iently studied area of the MRI the-ory is that with nonaxisymmetri
 perturbations. Cor-re
t des
ription of su
h perturbations within the MHDapproa
h ne
essitates taking the di�erential part of themode equation into a

ount. Closing this gap in theMRI theory is another goal of this paper.A

ording to the plasma equilibrium 
ondition, therotation frequen
y in the simplest laboratory situationis determined solely by the pressure gradient, and hen
e
2 = p00=r�0. In this 
ase, the Velikhov e�e
t is relatedto the pressure gradient, d
2=d ln r = d(p00=r�0)=d ln r.In the MHD approa
h, the Velikhov e�e
t is 
ontainedin the lo
al part of the mode equation, but the termwith (p00=r�0)0, i. e., with d
2=d ln r, also enters the dif-ferential part of this equation, although with the oppo-site sign. In 
ontrast to the Velikhov e�e
t, this term
an be 
onsidered responsible for �the anti-Velikhov ef-fe
t�. This leads to an �annihilation� of the Velikhovand anti-Velikhov e�e
ts.One of the most intriguing questions of our investi-gation is whether the Velikhov e�e
t, predi
ted as theonly driving me
hanism of MRI for the astrophysi
alplasma, remains in for
e in the laboratory plasma. Inother words, whether the MRI 
an be driven when theVelikhov and anti-Velikhov e�e
ts are 
ompletely �an-nihilated� su
h that d
2=d ln r = 0. The answer isthat there are two additional driving me
hanisms inthis 
ase, one due to the squared pressure gradient ef-fe
t and the other is the 
ross e�e
t of the pressure anddensity gradients.It turns out that the di�erential part of the modeequation is nonvanishing not only at p00 6= 0 but alsoat p00 = 0 if the perturbations are nonaxisymmetri
,m 6= 0, where m is the azimuthal mode number. Anal-

ysis of a lo
ally nonaxisymmetri
 MRI based on theproperly derived dispersion relation is also given here.We have mentioned a variety of physi
ally di�er-ent 
on�gurations where a rotating plasma 
an be sub-je
ted to a rather wide family of spe
i�
 MRIs. There-fore, it seems reasonable to develop a uni�ed theory ofMRI similar to the uni�ed theory of instabilities of non-rotating plasma dealing with the beforehand-
al
ulatedplasma permittivity tensor and the standard generaldispersion relation written in terms of this tensor, asdes
ribed in our papers [20�24℄. The parameters D,C1, C2, and C3 in HBIB-type equations play the rolesimilar to that of the permittivity tensor 
omponents.Therefore, we 
all them the 
anoni
al parameters of theMHD theory. Be
ause an additional 
anoni
al param-eter � appears in our theory, they 
an also be 
alledthe primary 
anoni
al parameters, and � the se
ondary
anoni
al parameter. It was already mentioned that �
ontains the lo
al and di�erential parts. These valuesdenoted by a and b 
an be 
alled the lo
al and dif-ferential se
ondary 
anoni
al parameters. Using the
anoni
al mode equation, we derive a lo
al dispersionrelation in terms of D, C2, and �, whi
h we 
all the
anoni
al lo
al dispersion relation.Investigation of linear and nonlinear 
olle
tive phe-nomena in a dusty plasma is a wide area of re
ent stud-ies in spa
e and laboratory plasma physi
s [25�35℄. A
-
ording to Refs. [36�38℄, this applies to fusion-orientedsystems and, �rst of all, the tokamaks, among the lab-oratory devi
es dealing with the dusty plasma.On the other hand, dusty plasmas are of long-lasting interest for astrophysi
s, in parti
ular, for thephysi
s of a

retion and protoplanetary disks [39�43℄.A

ording to these studies, 
olle
tive phenomena areimportant for su
h disks in relation to plasma turbu-len
e in them. As one of the possible 
andidates forgenerating su
h a turbulen
e, the MRI was 
onsideredin Refs. [39�43℄. The importan
e of MRI was demon-strated in other astrophysi
al problems as well as invarious problems of applied physi
s. Re
ent plasma-physi
al investigations of MRI open new areas wherethis instability 
an be important.A �rst step in the analysis of 
olle
tive phenomenain a rotating dusty plasma was made in brief 
ommu-ni
ation [44℄, where the linear problem of instability insu
h a plasma was studied assuming the dust grainsheavy enough to be immobile. One of the goals of thepresent paper is to give a more detailed theory of thisinstability.Se
tion 2 
ontains a derivation of the 
anoni
almode equation and the 
anoni
al lo
al dispersion re-lation for the one-�uid plasma model. In Se
. 3, we1240
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ts : : :use this dispersion relation to analyze the axisymmet-ri
 perturbations in this plasma model. Se
tion 4 ad-dresses the 
ollisionless plasma, and Se
. 5 deals withthe dusty plasma. Dis
ussions are given in Se
. 6.2. MRI THEORY IN THE STANDARD MHDPLASMA MODEL2.1. Preliminaries2.1.1. Basi
 equationsWe start with the standard MHD plasma equationof motion� dVdt = �rp+�g� 14� �r B22 �(B � r)B� ; (2.1)where V is the plasma velo
ity, B is the magneti
 �eld,p is the plasma pressure, � is the plasma mass density,g is the gravity for
e, andddt = ��t +V � r: (2.2)We use the Ohm law in the formE+ [V �B℄=
 = 0; (2.3)where E is the ele
tri
 �eld and 
 is the speed of light.Equation (2.3) leads to the standard freezing-in 
ondi-tion �B�t �r� [V �B℄ = 0: (2.4)In addition, we use the Maxwell equationr �B = 0; (2.5)the plasma 
ontinuity equationd�dt + �r �V = 0; (2.6)and the adiabati
ity 
onditionddt � p��� = 0; (2.7)where � is the adiabati
 exponent.2.1.2. EquilibriumWe 
onsider a 
ylindri
al plasma rotating in theazimuthal dire
tion � with the angular frequen
y
 = 
(r), where r is the radial 
oordinate. The equi-librium magneti
 �eld B0 is assumed to be uniform anddire
ted along the 
ylinder axis z, B0 = (0; 0; B0), and

we assume the gravitational for
e g to have only theradial 
omponent, g = (g; 0; 0). In a

ordan
e withOhm law (2.3), there is an equilibrium ele
tri
 �eldE0 = (E0; 0; 0) related to the rotation frequen
y
 = V0=r (2.8)by E0 = �r
B0=
; (2.9)where V0 = V0(r) is the azimuthal equilibrium plasmavelo
ity.With (2.8), it follows from the equilibrium part ofthe radial 
omponent of the plasma equation of motion(2.1) that r�0
2 = p00 � �0g; (2.10)where �0 and p0 are the equilibrium plasma mass den-sity and the equilibrium plasma pressure, respe
tively,and the prime is the radial derivative.2.1.3. Linearization of basi
 equationsWe linearize the basi
 equations assuming ea
h per-turbation to depend on t, �, z as exp(�i!t+im�+ikzz),where ! is the os
illation frequen
y, m is the azimuthalmode number, and kz is the parallel proje
tion of thewave ve
tor. In addition to m, we introdu
e ky � m=r,the azimuthal proje
tion of the wave ve
tor, and inaddition to !, we use the Doppler-shifted os
illationfrequen
y e! = ! �m
: (2.11)The (r; �; z) proje
tions of the perturbed plasma velo
-ity eV are (eVr, eV�, eVz). Similarly, the (r; �; z) 
ompo-nents of the perturbed magneti
 �eld eB are ( eBr, eB�,eBz). The perturbed plasma mass density is denotedby e�.The (r; �) proje
tions of the freezing-in 
ondition(2.4) yield �ie! eBr � ikzB0 eVr = 0; (2.12)�ie! eB� � d
d ln r eBr � ikzB0 eV� = 0: (2.13)Maxwell equation (2.5) leads to the following relationbetween the 
omponents of the perturbed magneti
�eld: ikz eBz + iky eB� + 1r ��r (r eBr) = 0: (2.14)1241



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 134, âûï. 6 (12), 2008The equation of motion of perturbed plasma, Eq. (2.1),yields� ie!eVr � 2
eV� + 1�0 �ep�r � iv2AkzB0 eBr ++ v2AB0 � eBz�r � e�p00�20 = 0; (2.15)� ie!eV� + �22
 eVr + ikyep�0 � iv2AkzB0 eB� ++ iv2AB0 ky eBz = 0; (2.16)�ie!eVz = �ikzep=�0; (2.17)where v2A = B20=4��0 is the squared Alfvén velo
ity,�2 = (2
=r)d(r2
)=dr, and the gravity for
e is ex-pressed in terms of 
 and p00 by means of (2.10).Using (2.14), we express eBz in terms of eBr and eB�:eBz = �kykz eB� + ikz �B ; (2.18)where �B = 1r ��r (r eBr): (2.19)Equations (2.12) and (2.13) allow expressing the per-turbed velo
ities eVr and eV� in terms of eBr and eB�:eVr = �e! eBr=kzB0; (2.20)eV� = � e! eB�kzB0 + i eBrkzB0 d
d ln r : (2.21)2.2. The Frieman�Rotenberg approa
h2.2.1. Basi
 equations of the FR approa
hWe introdu
e the FR variablep� = ep+ eBzB0=4�: (2.22)Then Eqs. (2.15) and (2.16) be
omei�D0 � d
2d ln r� eBr + 2
e! eB� ++ kzB0�0 dp�dr � kzB0e�p00�20 = 0; (2.23)iD0 eB� � 2
e! eBr + ikykzB0�0 p� = 0; (2.24)

where D0 = �Ae!2; (2.25)�A = 1� k2zv2A=e!2: (2.26)It follows from (2.6) that the perturbed density sat-is�es the equatione��0 = 1kzB0 �i��B + d ln �0dr eBr�� ky eB��++ kz eVze! : (2.27)In turn, a

ording to (2.7), the perturbed plasma pres-sure ep is given byep = ip00kzB0 eBr ++ �0
2skzB0 �i�B � ky eB� + k2zB0e! eVz� ; (2.28)where 
2s = �p0=�0 is the sound velo
ity squared. Us-ing (2.17), (2.27), and (2.28), we �nd expressions for epand e� in terms of the perturbed magneti
 �eld:ep = 1kzB0�s hip00 eBr + 
2s�0(i�B � ky eB�)i; (2.29)e��0 = 1kzB0�s ���i ��B+��s d ln �0dr + k2zp00�0e!2� eBr��ky eB�� ; (2.30)where �s = 1� k2z
2s=e!2: (2.31)Substitution of (2.30) in (2.23) yieldsi�r eBr + �� eB� � i�� �B + kzB0p0�=�0 = 0; (2.32)where�r = D0 � d
2d ln r � p00r�0 d ln �0d ln r � k2z�se!2 p020r�20 ; (2.33)�� = 2
e! + kyp00=�s�0; (2.34)�� = p00=�s�0: (2.35)1242
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ts : : :2.2.2. Canoni
al equations in the FR approa
h(the HBIB-type equations)It follows from (2.24) thateB� = � 1D0 �i2
e! eBr + kykzB0�0 p�� : (2.36)Substitution of (2.36) in (2.18) and (2.29) leads toeBz = ikz ��B + kyD0 2
e! eBr�+ k2y�0 B0p�; (2.37)ep = 1kzB0�s �i
2s�0�B ++ i�p00 + 
2s�0ky2
e!D0 �+ 
2sD0 k2ykzB0p�� : (2.38)Using (2.37) and (2.38), we represent (2.22) in the formD�B = C1 eBr � i4�kzB0C2p�; (2.39)where D = D0(1 + �=�s); (2.40)C1 = �2ky
e!�1 + ��s�� D0�sv2A p00�0 ; (2.41)C2 = 1B20 �D0 � k2yv2A�1 + ��s�� : (2.42)Substitution of (2.36) in (2.32) yields� ip0� = �ky��D0 p� + �0��kzB0 �B �� �0kzB0 ��r � ��D0 2
e!� eBr: (2.43)Using (2.39), we eliminate �B from (2.43). Then wearrive ati4�kzB0Dp0� = �4�kzB0 �C1p� + C3 eBr: (2.44)Here,�C1 = � �4��0��C2 + ��ky �1 + ��s�� ; (2.45)C3 = 4��0�D��r � ��D0 2
e!�� ��C1� : (2.46)By means of (2.41) and (2.42), Eqs. (2.45) and (2.46)redu
e to

�C1 = C1; (2.47)C3 = 4��0D0 ��1+ ��s��D0� d
2d ln r� p00r�0 d ln �0d ln r ��4
2e!2D0 � 2m
e!D0 p00r�0�+ D0�sv2Ae!2 p020�20 # : (2.48)Equations (2.39) and (2.44) 
an be 
alled the 
anon-i
al equations of the MRI theory. They were initiallyobtained in Refs. [11; 12℄. Therefore, they 
an also be
alled the HBIB-type equations. The values D, C1, C2,and C3 are the primary 
anoni
al parameters.2.2.3. The 
anoni
al mode equation and
anoni
al lo
al dispersion relationTo eliminate the value p� from our problem, weuse (2.39) to �nd4i�kzB0p� = (C1 eBr �D�B)=C2: (2.49)Then (2.44) takes the formD(D�B=C2)0 +� eBr = 0; (2.50)where � = a+ b; (2.51)a = C3 � C21=C2; (2.52)b = �Dr(C1=rC2)0: (2.53)The quantity � is the se
ondary 
anoni
al parameter.We 
all the values a and b the lo
al and di�erential
anoni
al se
ondary parameters, respe
tively.We take the fun
tion eBr in the formeBr = �Br(r) exp(ikrr); (2.54)where �Br(r) is a slowly varying amplitude. Then (2.50)leads to �k2rD2=C2 +� = 0; (2.55)whi
h is the 
anoni
al lo
al dispersion relation.3. AXISYMMETRIC PERTURBATIONS INTHE ONE-FLUID PLASMA MODEL3.1. Redu
tion of the dispersion relationHere, we take ky = 0; (3.1)1243
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h 
orresponds to axisymmetri
 perturbations.Then Eqs. (2.41)�(2.43) redu
e toC1 = �p00D0=�0v2A�s; (3.2)C2 = D0=B20 ; (3.3)C3 = 4��0D0 "�1+ ��s� �D0� d
2d ln r�4
2!2D0 �� p00r�0 d ln �0d ln r �+ p020 D0�20v2A!2�s # : (3.4)It 
an be seen that C1 6= 0 for p00 6= 0: Turning to (2.52),we 
on
lude that the di�erential part of the lo
al dis-persion relation does not vanish in this 
ase. Therefore,for p00 6= 0, the 
orre
t lo
al dispersion relation 
annotbe obtained by the standard lo
al approa
h [3; 5℄.3.2. The simplest astrophysi
al high-� plasmaThe problem statement in [1�3℄ implies the in
om-pressibility approximation 
2s ! 1 and the assump-tion p00 = 0. The 
ondition 
2s ! 1 is equivalent to� ! 1. Then Eq. (3.3) for C2 remains in for
e, whileEqs. (2.40), (3.2), and (3.4) redu
e toD = �(!2 � k2zv2A)2=k2zv2A; (3.5)C1 = 0; (3.6)C3 = �4��0(!2 � k2zv2A)2 ���!2 � k2zv2A � d
2d ln r � 4
2!2!2 � k2zv2A� : (3.7)In this 
ase, in a

ordan
e with (2.52) and (2.53),a = C3; (3.8)b = 0: (3.9)It then follows from (2.51) that� = C3: (3.10)Substitution of (3.5), (3.6), and (3.8) in (2.55) gives thedispersion relation!2 � k2zv2A � k2zk2 � d
2d ln r + 4
2!2!2 � k2zv2A� = 0; (3.11)where k2 = k2z + k2r . This is the Balbus�Hawley (BH)dispersion relation [3℄. It leads to the MRI 
riterionin (1.1).

Be
ause we assume p00 = 0 in this subse
tion, dis-persion relation (3.11) des
ribes the 
ase where, a

ord-ing to equilibrium 
ondition (2.10), plasma rotation is
aused by the gravitational for
e only,r
2 = �g: (3.12)This 
an be 
alled the simplest astrophysi
al situationor the 
ase of gravitation-dominated plasma.The result of analysis of (3.11) is well known:this dispersion relation des
ribes the MRI driving ford
2=d ln r < 0, representing the Velikhov e�e
t. Mean-while, in a

ordan
e with (3.12),d
2d ln r = �d(g=r)d ln r : (3.13)In this 
ontext, the MRI driving due to the Velikhove�e
t is revealed as a result of an unstable pro�le ofgravitation for
e.We re
all that a dimensionless parameter � was in-trodu
ed in [5℄ by� � ��1 + 1k2v2A d
2d ln r� : (3.14)Then the instability region following from (3.11) isgiven by (
f. (1.1)) � > 0: (3.15)Near the instability boundary, it follows from (3.11)that !2 = �
2, where
2 = k2zv2A�=�1: (3.16)Here, �1 � 1 + 4
2=k2v2A (
f. [5℄).3.3. High-� laboratory plasmaNow we assume the gravitational �eld to be negli-gible, g = 0: (3.17)Then, a

ording to equilibrium 
ondition (2.10), therotation frequen
y is de�ned byr�0
2 = p00: (3.18)Therefore, indu
ing rotation of the laboratory mediumrequires organizing a region wherep00 > 0: (3.19)The in
ompressibility approximation 
2s ! 1 
on-sidered in Se
. 3.2 
orresponds to the 
ase where the1244
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ts : : :parameter �s be
omes in�nite. We introdu
e the quasi-in
ompressible approximation assuming the parameterk2z
2s=!2 to be large but �nite, k2z
2s=!2 � 1. Then wehave �s = �k2z
2s=!2: (3.20)As a result, instead of (3.11), we obtain the dispersionrelation!4 � k2v2A!2�L1 � k2zk2v4A�L = 0: (3.21)Here, similarly to (3.14),�L = �1+ 1k2v2A � d
2d ln r�
4r2
2s +
2 d ln �0d ln r �� (3.22)and�L1 = 1��L + 
2v2Ak2 �� �4 + 1� �d ln p0d ln r � d ln �0d ln r �� : (3.23)The supers
ript �L� means �laboratory�.Taking ! = 0, we obtain�L = 0 (3.24)for the instability boundary (
f. (3.15)) or, in the ex-pli
it form,d
2d ln r + k2v2A � 
4r2
2s +
2 d ln �0d ln r = 0: (3.25)Comparing (3.25) with (1.1) shows that the MRIdriving due to the Velikhov e�e
t remains in for
e inour model. The stabilizing term k2v2A, des
ribing themagnetoa
ousti
 e�e
t, is also revealed in our analysis.Meanwhile, we obtain one more driving me
hanism re-lated to the term with 
4 in (3.25). The term with 
2in (3.25) des
ribes an additional driving me
hanism fora negative density gradient,d ln �0=d ln r < 0: (3.26)Otherwise, the density gradient e�e
t is stabilizing. Asa whole, the MRI o

urs ford
2d ln r + k2v2A � 
4r2
2s +
2 d ln �0d ln r < 0: (3.27)Near the instability boundary, i. e., for small �L,Eq. (3.21) yields
2 = k2zv2A�L=�L(0)1 ; (3.28)

where �L(0)1 is �L1 for �L = 0, i. e.,�L(0)1 = 1 + 
2v2Ak2 �� �4 + 1� �d ln p0d ln r � d ln �0d ln r �� : (3.29)Expli
itly, Eq. (3.28) means
2 = k2zv2A�
4r4
2s � k2v2A � d
2d ln r �
2 d ln �0d ln p0����k2v2A + 4� d lnT0d ln r ��1 ; (3.30)where T0 = p0=�0 is the equilibrium plasma tempera-ture. With (3.18), the MRI 
riterion in su
h a mediumbe
omesd
2d ln r + k2v2A �1� �k2r2�2 d ln p0d ln r �� �d lnT0d ln r � (�� 1) d ln �0d ln r �� < 0: (3.31)This instability 
riterion repla
es (1.1).An important 
onsequen
e of expression (3.31) isthat the MRI in a laboratory medium 
an be driveneven in the absen
e of the Velikhov e�e
t, i. e., ford
2=d ln r = 0: (3.32)In this 
ase, the MRI is possible ifd ln T0d ln r � (�� 1) d ln �0d ln r > 0: (3.33)The analysis in this subse
tion shows that behaviorof the MRI in the simplest high-� laboratory plasmais essentially di�erent from that in the simplest high-�astrophysi
al plasma.4. COLLISIONLESS PLASMA4.1. Basi
 equationsIn the 
ase of 
ollisionless plasma, the equilibrium
ondition is (
f. (2.10))��0r
2 = �p0?0 + g�0; (4.1)where p?0 is the equilibrium perpendi
ular plasmapressure.1245
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ribe the perturbed plasma dynami
s, in-stead of (2.1), we start from the equation of motionin the form (see [19℄ and Se
. 19.1 in [45℄)�� dVdt �� == ��r � p+�g� 14� �12rB2�(B � r)B��� ; (4.2)where p = p0 + ep is the total pressure tensor. A

ord-ing to [19; 45℄,r � p = rp?+pk�p?B2 �12r?B2+�[r�B℄�B��++ BB (B � r) � 1B (pk � p?)� ; (4.3)where p? and pk are the total perpendi
ular and paral-lel pressures given by p? = p?0+ ep? and pk = pk0+ epk,pk0 is the equilibrium parallel plasma pressure, and ep?and epk are the perturbed perpendi
ular and parallelplasma pressures.The (r; �; z) proje
tions of Eq. (4.2) are(
f. Eqs. (2.15)�(2.17))�0�� ie!eVr � 2
eV��� e�(
2r + g) = � ��r ep? ++ B04� "ikz �1 + �? � �k2 � eBr � � eBz�r # ; (4.4)�0��ie!eV� + �22
 eVr� = �ikyep? ++ iB04� �kz �1 + �? � �k2 � eB� � ky eBz� ; (4.5)�ie!eVz = �ikzepk=�0; (4.6)where (�?; �k) = 8�(p?0; pk0)=B20 .Using (4.4) and (4.5) and introdu
ing the modi�edFR variable p� = ep? + B0 eBz=4�; (4.7)we arrive at (
f. (2.23), (2.24))�0kzB0 �i�D0 � d
2d ln r� eBr + 2
e! eB��� p0?0e� == ��p��r ; (4.8)�0kzB0 �iD0 eB� � 2
e! eBr� = �ikyp�; (4.9)

where D0 is given by (2.25), and (
f. (2.27))�A = 1� k2zv2Ae!2 �1 + �? � �k2 � : (4.10)We 
al
ulate the perturbed pressures ep? and epk as(see Eqs. (16.43) and (16.46) in [45℄)(ep?; epk) = M Z �v2?2 ; v2k� ef dv; (4.11)where M is the ion mass, ef is the perturbed distribu-tion fun
tion, v? and vk are the perpendi
ular and par-allel parti
le velo
ities, and dv is the volume elementin the velo
ity spa
e. A

ording to Se
. 16.4 in [45℄and the appendix in [23℄, the fun
tion ef 
onsists of twophysi
ally di�erent parts. One is related to the spatialinhomogeneity of the equilibrium distribution fun
tionf0, and the other is due to the plasma 
ompressibility,with ef = ef (1) + ef (2); (4.12)whereef (1) = �Xf 00; (4.13)ef (2) = Mv2?2T? �1� T?Tk + e!e!�kzvk T?Tk � f0 eBzB0 ; (4.14)with T? and Tk being the perpendi
ular and paralleltemperatures. Equation (4.14) implies that the parti-
le distribution is bi-Maxwellian.As a result, Eqs. (4.11) yield the following expres-sions for the perturbed plasma pressures:ep? = ep(1)? + ep(2)? ; (4.15)epk = ep(1)k + ep(2)k : (4.16)Here, the supers
ripts �(1)� and �(2)� denote the�MHD� and �kineti
� parts of the these perturbed fun
-tions, whi
h are respe
tively given bynep(1)? ; ep(1)k o = ifp0?0; p0k0g eBr=(kzB0); (4.17)nep(2)? ; ep(2)k o = �2p?0
?; pk0
k	 eBz=B0: (4.18)The 
oe�
ients 
? and 
k are
? = 1� T?Tk �1 + ip� e!jkz jvTk W � e!jkz jvTk�� ; (4.19)
k = 1� T?Tk (1 + 2e!2k2zv2Tk �� �1 + ip� e!jkz jvTk W � e!jkz jvTk��) ; (4.20)1246
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ts : : :where vTk =p2Tk=M is the ion parallel thermal velo
-ity and W (x) is the plasma dispersion fun
tion de�nedby [20�23℄W (x) = exp(�x2)0�1 + ip� xZ0 exp(t2) dt1A : (4.21)The fun
tion W (x) has the asymptoti
 forms [21℄W (x) = 8<: ip� x ; x� 1;1; x� 1: (4.22)A

ordingly, Eqs. (4.19) and (4.20) imply
? =8><>: 1; e! � jkz jvTk;1�T?Tk �1+ ip� e!jkz jvTk� ; e! � jkz jvTk;(4.23)
k =8>><>>: 1; e! � jkzjvTk;1�T?Tk  1+ 2ie!3jkzj3v3Tk! ; e! � jkzjvTk:(4.24)Evidently, the expressions for the kineti
 parts ofthe perturbed pressures 
an be extended to more gen-eral parti
le distributions than the bi-Maxwellian one.The expression for ef (2) in terms of f0 in [23℄ 
an thenbe used.4.2. The 
anoni
al mode equation and
anoni
al lo
al dispersion relationFollowing the pro
edure explained in Se
. 2, we ar-rive at Eq. (2.39) withD = (1 + �?
?)D0; (4.25)C1 = � �2
e!ky(1 + �?
?) + 4�p0?0B20 D0� ; (4.26)C2 = �D0 � k2yv2A(1 + �?
?)� =B20 : (4.27)In addition, we have Eq. (2.44) with�C1 = �4�p0?0D0B20 �1 + �k
k2 k2zv2Ae!2 ��� 2ky
e!(1 + �?
?); (4.28)

C3 = 4��0�D0(1 + �?
?)�D0 � d
2d ln r �� 4
2e!2D0 � p0?0
��0r �+ p0?0�0 �1 + �k
k2 k2zv2Ae!2 ��� �2
e!ky(1 + �?
?) + 4�p0?0D0B20 �� ; (4.29)where
� = d ln �0d ln r + k2zrp0k0e!2�0 ++ 2m
e!D0 �1 + �k
k2 k2zv2Ae!2 � : (4.30)We then obtain the mode equation (
f. (2.50))D "�D�BC2 �0 + ÆC1C2 �B#+� eBr = 0; (4.31)whereÆC1 = �C1 � C1 = �p0?0k2zD0�k
k=2�0e!2; (4.32)� is given by (2.51),a = C3 � C1 �C1=C2; (4.33)and b is of form (2.53). The lo
al mode equation forthe 
ollisionless plasma is given by (2.55).To some extent, the 
oe�
ient � plays the role ofthe potential energy of perturbations. Its form is es-sential for the problem 
onsidered be
ause � in
ludesall driving me
hanisms of MRI. Turning to (4.33) and(4.29), we 
an see that a, the lo
al part of �, 
ontainsthe di�erential term d
2=d ln r. This term is respon-sible for the Velikhov e�e
t. Meanwhile, the di�eren-tial part of �, i. e., b, 
an also in
lude the term withd
2=d ln r. This term in b des
ribes the anti-Velikhove�e
t.One more driving me
hanism is related to the terminvolving 
� in (4.29). It des
ribes the 
ross e�e
t ofplasma pressure and density gradients. This e�e
t isalso of di�erential nature. Therefore, as the Velikhove�e
t, it 
an also be 
ompensated by a respe
tive termin the 
oe�
ient b. An important driving me
hanismis des
ribed by the term with p02?0 in (4.29), whi
h isthe e�e
t of the squared plasma pressure gradient, seeSe
. 3.4.3. Axisymmetri
 modes in the simplestastrophysi
al plasma modelSetting p0?0 = 0 and ky = 0, we have from (4.26)and (4.28) that C1 = �C1 = 0: (4.34)1247
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ording to (3.53), b = 0 (
f. (3.9)) while, a
-
ording to (4.33), a = C3 (
f. (3.8)) and (2.51) redu
esto � = C3 (
f. (3.10)).Turning to (4.29), we �nd that in the 
ase 
onsid-ered,C3 = 4��0D0(1 + �?
?)���D0 � d
2d ln r � 4
2!2D0 � : (4.35)On the other hand, we have (3.3). As a result, disper-sion relation (2.55) redu
es toD0 � k2rv2A(1 + �?
?)� d
2d ln r � 4
2!2D0 = 0: (4.36)By means of (2.25), (4.10), and (4.19) this dispersionrelation 
an be represented in the formQA(QM � d
2=d ln r) � 4
2!2 = 0; (4.37)where QA and QM are the Alfvén and magnetoa
ousti
parts of the dispersion relation given byQA = !2 � k2zv2A�(1 + (�? � �k)=2�; (4.38)QM = !2 � v2A �k2 + k2z �? � �k2 + k2r�? �� �1� T?Tk �1 + ip� !jkz jvTk W � !jkz jvTk���� : (4.39)In the 
ase of nonrotating plasma, Eq. (4.37) splitsinto two dispersion relationsQA = 0; (4.40)QM = 0: (4.41)These dispersion relations des
ribe the Alfvén and mag-netoa
ousti
 os
illations bran
hes.We see that in the 
ase of axisymmetri
 modesin astrophysi
al plasma, in the absen
e of pressureanisotropy, the only driving me
hanism is the Velikhove�e
t des
ribed by the term with d
2=d ln r in (4.37).The analysis of (4.37) with the pressure anisotropytaken into a

ount was performed in [19℄.4.4. Axisymmetri
 modes in the simplestlaboratory plasma modelIn the 
ase of laboratory plasma, we have g = 0.For ky = 0, Eqs. (4.26) and (4.28) then yieldC1 = �r
2D0=v2A; (4.42)�C1 = �r
2D0v2A �1 + �k
k2 k2zv2A!2 � : (4.43)

It follows from (4.30) that in the 
ase 
onsidered,
� = d ln �0d ln r + k2zrp0k0!2�0 : (4.44)Then Eq. (4.29) redu
es toC3 = 4��0D0((1 + �?
?)"D0 � d
2d ln r �� 4
2!2D0 �
2 d ln �0d ln r + k2zrp0k0!2�0 !#++ r2
4v2A �1 + �k
k2 k2zv2A!2 �� : (4.45)Using (4.45), (4.42), and (3.3), we transform (4.33)toa = 4��0D0(1 + �?
?)"D0 � d
2d ln r � 4
2!2D0 �� 
2 d ln �0d ln r + k2zrp0k0!2�0 !# : (4.46)With (4.25), (3.3), and (4.42), Eq. (2.53) yieldsb = 4��0D0(1 + �?
?) � d
2d ln r +
2 d ln �0d ln r � : (4.47)Substituting (4.46) and (4.47) in (2.51), we have� = 4��0D0(1 + �?
?) �� D0 � 4
2!2D0 �
2 k2zrp0k0!2�0 ! : (4.48)With (4.25), (3.3), and (4.48), dispersion relation (2.55)leads toD0�k2rv2A(1+�?
?)�4
2!2D0 �
2k2zrp0k0!2�0 = 0: (4.49)It 
an be seen from (4.49) that in 
ontrast to theone-�uid approa
h, both the Velikhov e�e
t and thee�e
t of plasma density gradient are not involved inthe axisymmetri
 MRI in the 
ollisionless laboratoryplasma. The reason for the di�eren
e in predi
tionsof the one-�uid MHD and the kineti
s is that theMHD implies an engagement between the perpendi
-ular and parallel plasma motion. This engagement isdes
ribed by the fa
tor �s � 1 � k2z
2s=!2 determinedby Eq. (2.31). Therefore, if we formally take �s ! 1 inEq. (2.51) for the parameter �, we arrive at the 
on-
lusion that both the Velikhov e�e
t and the e�e
t ofplasma density gradient disappear.1248
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ts : : :Here the question arises: what is reason of the 
ru-
ial di�eren
e between the astrophysi
al and laboratorysituations, with the Velikhov e�e
t presen
e in (4.36)and absen
e in (4.49)? Formally, this di�eren
e is ex-plained by the fa
t that C1 = 0 in astrophysi
s and, asa result, b = 0, while C1 6= 0 and b 6= 0 in laboratory
onditions. Physi
ally, this di�eren
e is a 
onsequen
eof the fa
t that in 
ontrast to the laboratory situations,the perturbed mass density plays no role in the astro-physi
al MRI. As a result, it does not lead to annihi-lation of the Velikhov e�e
t related to the di�erentialterm in (2.52).Similarly to (4.37), Eq. (4.49) 
an be represented inthe formQA QM � k2zp0?0p0k0!2�20 !� 4
2!2 = 0; (4.50)where QA and QM are given by (4.38) and (4.39). Theterm involving p0?0p0k0 in (4.50) des
ribes the above-mentioned driving e�e
t due to the squared plasmapressure gradient.In the 
ase of Maxwellian ions, Eq. (4.49) redu
esto(!2 � k2zv2A)(!2 � v2A �k2 � k2r� ip�jkz jvT �� W � !jkz jvT ��� p002k2z�20!2 )�� 4
2!2 = 0; (4.51)where vT = p2T=M and T = Tk = T? is the equilib-rium ion temperature. For ! � jkzjvT , it hen
e followsthat1� i p� k2rk2 �1=2 !jkz jvA ++ k2z4k2 �2 v2Ar2!2 �d ln p0d ln r �2 = 0: (4.52)For � � 1, Eq. (4.52) yields� !jkz jvT �3 = � ip2�r2k2r �d ln p0d ln r �2 : (4.53)It 
an be seen that one of the roots of this equationdes
ribes unstable perturbations.For � � 1, Eq. (4.52) be
omes!2 = �k2z�4k2 v2Tr2 �d ln p0d ln r �2 : (4.54)

This dispersion relation des
ribes an aperiodi
 instabil-ity with the growth rate
 = jkz j�1=22k vTr ����d ln p0d ln r ���� : (4.55)Thus, for arbitrary �, there is an instability with thegrowth rate independent of � for � > 1 and de
reasingas �1=2 for � � 1. It is the MRI in 
ollisionless labo-ratory plasma. Re
alling the dis
ussion in [5℄, we notethat the appearan
e of this MRI is governed by the
ollisionless gyrorelaxation e�e
t; it 
an therefore be
alled the pressure-gradient-driven gyrorelaxation MRIin 
ollisionless laboratory plasma.5. DUSTY PLASMA5.1. Basi
 equations and equilibriumTurning to Refs. [46, 47℄, we see that one of themain plasmadynami
 equations showing the presen
eof dust grains is the quasineutrality 
ondition�ene + eni � eZdnd = 0; (5.1)where ne, ni, and nd are the ele
tron, ion and dust den-sities, e is the ion 
harge, �eZd is the 
harge of the dustgrain, and Zd is the number of ex
essive (Zd > 0) or de-�
ient (Zd < 0) ele
trons on the grain. The remainingplasmadynami
 equations are taken in the approxima-tion of immobile dust, implying that the mass of ea
hgrain is in�nite and the dust velo
ity is zero.The assumption of immobile dust is valid when thefrequen
ies of interest ex
eed both the dust 
y
lotronfrequen
y and the dust plasma frequen
y. These re-stri
tions, together with knowledge of the dust 
om-position (dust material), determine the 
orrespondingsize of grains.We take the equations of motion of ions and ele
-trons in the standard form�i diVidt = eni�E+ 1
 Vi �B��rpi + �ig; (5.2)0 = �ene�E+ 1
 Ve �B��rpe; (5.3)where Vi and Ve are the ion and ele
tron velo
ities, �iis the ion mass density, di=dt = �=�t+Vi � r, and piand pe are the ion and ele
tron pressures. Adding (5.2)and (5.3), we obtain�i diVidt = e(ni � ne)E++ e
 (niVi � neVe)�B�rp+ �ig; (5.4)12 ÆÝÒÔ, âûï. 6 (12) 1249
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ause thedust is assumed to be immobile, we havee(niVi � neVe) = j; (5.5)where j is the ele
tri
 
urrent density. Then, with (5.1),Eq. (5.4) redu
es to� dVdt = endZdE+ 1
 [j�B℄�rp+ �g: (5.6)Here, in 
orresponden
e with the one-�uid approa
h,we have 
hanged the notation as �i ! �, Vi ! V,di=dt! d=dt. By means of the identity1
 [j�B℄ = � 14� �r B22 � (B � r)B� ; (5.7)Eq. (5.6) is transformed into (
f. (2.1))� dVdt = endZdE� 14� �r B22 � (B � r)B���rp+ �g: (5.8)In the s
ope of the one-�uid approa
h, the equationof motion for ele
trons in (5.3) is transformed as fol-lows. The ele
tron velo
ity Ve is taken to be equal tothe ion velo
ity Vi,Ve = Vi � V: (5.9)The term with the ele
tron pressure gradient is ne-gle
ted. Then Eq. (5.3) takes the form of Eq. (2.3). TheOhm law in form (2.10) leads to the standard freezing-in 
ondition (2.4). In addition, we use Maxwell equa-tion (2.5), plasma 
ontinuity equation (2.6), and adia-bati
ity 
ondition (2.7). Then the presen
e of the dustis revealed in our model only through the term withthe ele
tri
 �eld in plasma equation of motion (5.8).It follows from the equilibrium part of the radialproje
tion of Eq. (5.8) that (
f. (2.10))r�0
(
�
d) = p00 � �0g; (5.10)where 
d is the dust-indu
ed e�e
tive rotation fre-quen
y de�ned by
d = !BiZdnd=n0: (5.11)It seems to be important that, a

ording to (5.10),a dusty plasma 
olumn rotates even in the absen
e ofthe gravity for
e and the plasma pressure gradient: atg = 0 and p00 = 0, we have
 = 
d: (5.12)

Another important parti
ular 
ase of the dustyplasma equilibrium is the gravitation-free plasma,g = 0, in the presen
e of a plasma pressure gradientp00 6= 0. Then Eq. (5.10) givesr�0
(
�
d) = p00: (5.13)The presen
e of dust allows the equilibrium of su
hplasma to o

ur not only for p00 > 0 but also for nega-tive plasma pressure gradient, p00 < 0.5.2. Derivation of the mode equation and lo
aldispersion relationBy means of the Ohm law, we �nd the expressionsfor the perturbed ele
tri
 �elds:eEr = �(r
 eBz +B0 eV�)=
; (5.14)eE� = B0 eVr=
; (5.15)eEz = r
 eBr=
: (5.16)Then the perturbed plasma equation of motion in (5.8)yields (
f. (2.15)�(2.17))� ie!eVr � 2
eV� + 1�0 �ep�r � iv2AkzB0 eBr + v2AB0 � eBz�r ++ 
d eV� + r
 eBzB0 !�� e��0 �p00�0 + r

d� = 0; (5.17)� ie!eV� + �22
 eVr + ikyep�0 � iv2AkzB0 eB� ++ iv2AB0 ky eBz �
d eVr = 0; (5.18)�ie!eVz = r
d
 eBr=B0 � ikzep=�0: (5.19)We introdu
e the FR variable p� de�ned by (2.22).Then Eqs. (5.17) and (5.18) be
omei�D0 � d
2d ln r +
d d
d ln r� eBr + e!(2
�
d) eB� ++ kzB0�0 dp�dr + ir

d�B �� kzrB0e��0 �

d + p00�0� = 0; (5.20)iD0 eB� � (2
�
d)e! eBr + ikykzB0�0 p� = 0; (5.21)where D0 is given by (2.25) and (2.26).1250
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ts : : :The expressions for ep and e� in terms of the per-turbed magneti
 �eld are (
f. (2.29), (2.30))ep = 1kzB0�s �i�p00 + k2z
2s�0r
d
e!2 � eBr ++ 
2s�0 �i�B � ky eB��� ; (5.22)e��0 = 1kzB0�s �i ��B +��s d ln �0dr + k2zp00�0e!2 ++ k2zr

de!2 � eBr�� ky eB�� ; (5.23)where �s is given by (2.31). We see that ep and e� de-pend on the dust presen
e through their dependen
e oneVz , whi
h, in a

ordan
e with (5.19), depends on 
d.Substitution of (5.23) in (5.20) yields (2.32) with�r = D0� d
2d ln r+
d d
d ln r��

d+ p00r�0� d ln �0d ln r �� rk2z�se!2 �

d + p00r�0�2 ; (5.24)�� = e!(2
�
d) + m�s �

d + p0r�0� ; (5.25)�� = 1�s �p00�0 + k2z
2se!2 r

d� : (5.26)We note that a

ording to (5.26), in the 
ase of pureplasma with p00 = 0, the 
oe�
ient �� vanishes. Thepresen
e of dust leads to a nonvanishing �� even forp00 = 0 if the plasma temperature is �nite, 
2s 6= 0.It follows from (5.21) that (
f. (2.36))eB� = � 1D0 �ie!(2
�
d) eBr + kykzB0�0 p�� : (5.27)Substitution of (5.27) in (2.18) and (5.22) leads toeBz = ikz ��B + kyD0 e!(2
�
d) eBr�++ k2y�0 B0p�; (5.28)ep = 1kzB0�s �i
2s�0�B + i �p00 + k2z
2s�0r

de!2 ++ 
2s�0kye!D0 (2
� 
d)�+ 
2sD0 k2ykzB0p�� : (5.29)

With (5.28) and (5.29), Eq. (2.22) is represented inform (2.39) with D and C2 given by (2.40), (2.42), andC1 = �kye!(2
�
d)�1 + ��s��� D0�sv2A �p00�0 + 
2sk2zr

de!2 � : (5.30)It follows from (5.30) that, in a

ordan
e with (2.41),in the 
ase of axisymmetri
 modes (ky = 0) and thevanishing plasma pressure gradient (p00 = 0), we haveC1 = 0 in the pure plasma. In 
ontrast, in the dusty�nite-temperature plasma, this is a �nite quantity:(C1)ky=0; p00=0 = �D0
2sk2zr

d�sv2Ae!2 : (5.31)This is a 
onsequen
e of a nonzero �� (see the 
ommentafter (5.26)).Substitution of (5.27) in (2.32) yields (
f. (2.43))� ip0� = �ky��D0 p� + �0��kzB0 �B �� �0kzB0 ��r � ��D0 e! (2
�
d)� eBr: (5.32)Then we arrive at (2.44), with �C1 = C1 (
f. Eq. (2.47))andC3 = 4��0D0��1+ ��s��D0� d
2d ln r+
d d
d ln r ��� p00r�0 +

d� d�0d ln r � (2
�
d)2D0 e!2 �� me!D0 (2
�
d)

d�+ r2�sv2Ae!2 �D0 p00�20 � 2

d �� p00r�0 k2zv2A � k2zv2A(1 + �)
2
2d�� : (5.33)The 
anoni
al mode equation in the dusty plasma turnsout to be the same as in the 
ase of pure plasma (see(2.50)) with � given by (2.51)�(2.53). The same appliesto the 
anoni
al lo
al dispersion relation (see (2.55)).5.3. Axisymmetri
 modes in a high-� dustyplasma with p00 = 0For � � 1, ky = 0, p00 = 0, and �0 = 
onst, we havethe expressions for D and C2 in (3.5) and (3.3), andEq. (5.33) then yieldsC3 = �4��0D0� D0k2zv2A �D0 � d
2d ln r ++ 
d d
d ln r � (2
�
d)2!2D0 �+ r2v2A
2
2d� ; (5.34)1251 12*
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ording to (2.52),a = � 4��0k2zv2A (!2 � k2zv2A)2 �!2 � k2zv2A � d
2d ln r ++ 
d d
d ln r � (2
�
d)2!2!2 � k2zv2A � : (5.35)Next, in a

ordan
e with (2.53),b = 4��0k2zv2A (!2 � k2zv2A)2 d(

d)d ln r : (5.36)It then follows from (2.51) that� = � 4��0k2zv2A (!2 � k2zv2A)2 �!2 � k2zv2A � d
2d ln r �� 
 d
dd ln r � (2
�
d)2!2!2 � k2zv2A � : (5.37)As a result, we obtain the lo
al dispersion relation!2 � k2zv2A � k2zk2 � d
2d ln r +
 d
dd ln r ++ (2
�
d)2!2!2 � k2zv2A � = 0: (5.38)Taking 
d = 0 in (5.38) yields the standard MRI
riterion, i. e., the VHB instability 
riterion given by(1.1). It follows from (5.38) that for 
d 6= 0, the insta-bility o

urs ford
2d ln r +
 d
dd ln r + k2v2A < 0: (5.39)This is a generalization of the VHB instability 
riterionto the 
ase of dusty plasma.In the 
ase of gravitation-free dusty plasma (g = 0and 
 = 
d), Eq. (5.39) redu
es to32 d
2dd ln r + k2v2A < 0: (5.40)This instability 
riterion looks as being independent of�, but, in a

ordan
e with the above-said, it is valid forhigh � only. It shows that for the instability to develop,the pro�le of 
d(r) must be de
reasing, d
2d=d ln r < 0.5.4. Axisymmetri
 modes in a low-� dustyplasma with p00 = 0For ky = 0, � = 0, p00 = 0, and �0 = 
onst, disper-sion relation (2.55) redu
es to [44℄(!2 � k2zv2A)�!2 � k2v2A � d
2d ln r +
d d
d ln r �� r2k2z
2
2d!2 �� !2(2
�
d)2 = 0: (5.41)

With (5.41), for 
d 6= 0, it seems natural to introdu
ethe parameter�d � � �1 + 1k2v2A � d
2d ln r �
d d
d ln r�� (5.42)instead of � given by (3.14). Then (5.41) be
omes(!2 � k2zv2A)�!2 + k2v2A�d � r2k2z
2�2d!2 ��� !2(2
�
d)2 = 0: (5.43)In the approximation (
; !) � kzvA and�d � kzvA, Eq. (5.43) be
omes quadrati
 in !2:!4 + !2k2v2A�d � r2k2z
2
2d = 0: (5.44)It 
an be seen that this equation des
ribes unstableperturbations at any sign of �d. Their growth rate isgiven by
2 � �!2 == 12 �k2v2A�d +qk4v4A�2d + 4r2k2z
2
2d� : (5.45)The 
ase �d < 0 
orresponds to the dust-indu
ed rota-tional instability (DRI). For small 
d, it follows from(5.45) that the growth rate of this instability is deter-mined by [44℄
2 = �r2k2z
2
2d=k2v2A�d: (5.46)It seems important that the DRI is driven even forsu�
iently large wave numbers, in parti
ular, fork2v2A � jd
2=d ln rj.In the absen
e of gravitation for
e, the rotation fre-quen
y 
 is equal to the e�e
tive dust-indu
ed rota-tion frequen
y 
d (see (5.12)). Then dispersion relation(5.41) redu
es to(!2 � k2zv2A)�!2 � k2v2A � 12 d
2dd ln r � r2k2z
4d!2 ��� !2
2d = 0: (5.47)For ! � (kzvA; kvA), this gives (
f. (5.44))� !kzvA�4 ��k2v2A
2d + 12 d ln
2dd ln r �� !kzvA�2 �� r2
2dv2A = 0: (5.48)For a uniform dust-indu
ed rotation frequen
y,d
d=dr = 0, this yields� !kzvA�4 � !2k2k2z
2d � r2
2dv2A = 0: (5.49)1252
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ts : : :It 
an be seen that the two roots of this dispersion rela-tion are imaginary, and hen
e !2 = �
2, where 
 is thegrowth/de
ay rate. These roots are given by (
f. (5.45))
2k2z =sr2
2dv2A +�k2v4A2
2d �2 � k2v4A2
2d : (5.50)They are relevant to the simplest 
ase of theabove-mentioned DRI. In the long-wavelength limitkvA � 
d, it hen
e follows that
2 = k2zrvAj
dj: (5.51)In the opposite short-wavelength limit kvA � 
d,Eq. (5.50) leads to (
f. (5.46))
2 = k2zr2
4d=v2Ak2: (5.52)Therefore, di�erential plasma rotation is not needed forappearan
e of the DRI.6. DISCUSSIONThe present paper shows that the MRI propertiesare in general di�erent in astrophysi
al and laboratory
ases be
ause the respe
tive equilibrium 
onditions aredi�erent. In the simplest astrophysi
al situation, therotation is 
aused by the gravitation for
e, but a posi-tive plasma pressure gradient is required for produ
inga similar laboratory equilibrium. Therefore, these two
ases must be distinguished in the MRI theory.We have derived the mode equation des
ribingperturbations in a one-�uid rotating plasma 
ylinderimmersed in a parallel uniform magneti
 �eld (seeEq. (2.50)). This equation is expressed in terms of theprimary 
anoni
al parameters D, C1, C2, and C3 givenby (2.40)�(2.42), and (2.48), and the se
ondary 
anon-i
al parameters �, a, and b (see (2.51)�(2.53)). Usingthis equation, we obtained the 
anoni
al lo
al disper-sion relation (2.55).The parameter a 
ontains the term involvingd
2=dr, whi
h des
ribes the Velikhov e�e
t as well asthe e�e
ts of the pressure and density gradients. Themost important feature of the parameter b is that itinvolves the derivative (p00=r�0)0, whi
h des
ribes theanti-Velikhov e�e
t in laboratory plasma. The param-eter b also 
ontains the terms proportional to the pres-sure and density gradients, whi
h 
ontribute to theMRI drive, and the terms nonvanishing for m 6= 0,whi
h are important for studying the nonaxisymmetri
MRI in both astrophysi
al and laboratory 
onditions.For axisymmetri
 perturbations in the simplest astro-physi
al plasma, we obtain zero b (see (3.9)).

The axisymmetri
 perturbations in the simplest as-trophysi
al and laboratory plasmas are des
ribed bythe respe
tive dispersion relations (3.11) and (3.21).They a

ordingly lead to instability boundaries givenby (1.1) and (3.25). Equation (3.25) in
ludes threeme
hanisms of the MRI drive. These me
hanisms areshown expli
itly in (3.31).The axisymmetri
 MRI in the simple astrophysi
alplasma, in both high-� and low-� 
ases, 
an be 
hara
-terized by the dimensionless parameter � introdu
edin [5℄ (see (3.14)). In 
ontrast, the laboratory high-� plasma is des
ribed by the parameter �L de�nedby (3.22).We have shown that des
ription of MRI within the
ollisionless plasma model requires 
al
ulation of theprimary 
anoni
al parameters D, C1, �C1, C2, and C3.They are given by (4.25)�(4.29). With these parame-ters, we obtain 
anoni
al mode equation (4.31) with these
ondary 
anoni
al parameter � expressed in terms ofthe above quantities. In turn, � is a sum of lo
al anddi�erential parts expressed in terms of the se
ondary
anoni
al parameters a and b. The parameter a rep-resents the main driving me
hanism of MRI, the Ve-likhov e�e
t, related to the derivative d
2=d ln r. Be-sides, it in
ludes two additional driving me
hanisms,the perpendi
ular plasma pressure gradient squaredand the produ
t of the pressure and density gradients(see (3.15)). It turns out that the same e�e
ts butwith the opposite sign are 
ontained in the parameterb, whi
h 
an be 
alled �the anti-driving term�. In parti
-ular, b in
ludes the anti-Velikhov e�e
t, whi
h weakensor 
an 
ompletely suppress the d
2=d ln r drive.Comparing the obtained kineti
 
anoni
al modeequation with the one-�uid equation presented inSe
. 2, we see that in 
ontrast to the one-�uid modeldealing with the 
anoni
al parameters D, C1, C2, andC3, the kineti
s 
ontains the additional 
anoni
al pa-rameter �C1 6= C1.The parameter � is 
ru
ial for the problem 
on-sidered be
ause it in
ludes all the driving me
hanismsof MRI. We have analyzed them for the axisymmetri
modes in astrophysi
al and laboratory plasmas. It isshown that the axisymmetri
 MRI in the astrophysi
alplasma behaves the same as predi
ted by the ele
tro-dynami
 approa
h [5℄. Then, with the me
hanisms dueto the plasma inhomogeneity (i. e., without the plasmapressure anisotropy e�e
ts), the only reason for thisinstability 
an be the Velikhov e�e
t [1, 3℄.For laboratory plasma, the axisymmetri
 modes aredes
ribed by dispersion relation (4.50). The Velikhove�e
t is absent in this dispersion relation. Instead, the1253
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t of squared plasma pressure gradient is demon-strated.A

ording to our analysis, in the laboratory plasmawith isotropi
 pressure, a pressure-gradient-drivenMRI
an o

ur. There are two varieties of this instability
hara
terized by dispersion relations (4.53) and (4.55).We have elaborated a mathemati
al te
hnique toanalyze the MRI in a dusty plasma in the approxima-tion of immobile dust grains. A basis of our analysisis the plasma equation of motion in (5.8). This equa-tion di�ers from the standard one des
ribing the pureplasma by the presen
e of the ele
tri
 �eld. This �eldmodi�es the equilibrium plasma rotation (see (5.10))and in�uen
es the perturbations (see (5.17)�(5.19)).Both these e�e
ts lead to modi�
ation of the primary
anoni
al parametersD, C1, C2, and C3 (see (5.30) and(5.33)). We have derived the 
anoni
al mode equationin the presen
e of dust and the lo
al dispersion relation.We have restri
ted our analysis to only the lo
almodes, assuming them to be axisymmetri
. The non-lo
al modes and the nonaxisymmetri
 variety of thelo
al modes have been studied in Refs. [48℄ and [49℄,respe
tively.As a whole, we have advan
ed the MRI theory to-wards more 
omplete understanding of the relevantphenomena and indi
ated a new, modern trend in thistheory. The present paper gives a rather broad basisfor further theoreti
al study of MRI in astrophysi
aland laboratory plasmas.In addition to the uni�ed MHD theory of MRI andrelated instabilities in a rotating plasma, it seems inter-esting to elaborate the uni�ed ele
tromagneti
 theoryof su
h instabilities. This was the topi
 of Ref. [50℄.A

ording to [16℄, the MRI and related instabilitiesin the kineti
 plasma model are important, in parti
-ular, for understanding the me
hanisms of the radioand X-ray sour
e Sagitarius A� in our Galaxy. Theone-�uid and kineti
 instabilities also seem relevant tolaboratory experiments aimed at reprodu
ing the as-trophysi
al instabilities [6, 51℄.In the present paper, both the one-�uid and kineti
regimes are 
onsidered for the magnetized plasma withthe ion 
y
lotron frequen
y larger than the os
illationfrequen
y and the plasma rotation frequen
y. A weakmagnetization implies the so-
alled Hall regime, whi
hwas broadly analyzed in astrophysi
s [52�63℄ withinboth the MHD and ele
trodynami
 approa
hes.A

ording to Ref. [64℄, the ele
tron inertia should insome 
ases be allowed in astrophysi
s. The ele
trody-nami
 theory of axisymmetri
 modes with the ele
troninertia has been developed in Refs. [63; 65℄.We have restri
ted ourselves to the linear approx-

imation. It seems that in
lusion of the three-waveintera
tion [66℄ and the nonlinear zonal �ow genera-tion [67℄ may be an important generalization of ourtheory.We are grateful to A. I. Smolyakov and S. V. Vla-dimirov for the valuable dis
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