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A theory of magnetorotational instability (MRI) allowing an equilibrium plasma pressure gradient and nonax-
isymmetry of perturbations is developed. This approach reveals that in addition to the Velikhov effect driving
the MRI due to negative rotation frequency profile, dQ*/dr < 0, there is an opposite effect (the anti-Velikhov
effect) weakening this driving (here, Q is the rotation frequency and r is the radial coordinate). It is shown that
in addition to the Velikhov mechanism, two new mechanisms of MRI driving are possible, one of which is due
to the pressure gradient squared and the other is due to the product of the pressure and density gradients. The
analysis includes both the one-fluid magnetohydrodynamic plasma model and the kinetics allowing collisionless
effects. In addition to the pure plasma containing ions and electrons, the dust plasma is considered. The
charged dust effect on stability is analyzed using the approximation of immobile dust. In the presence of dust,
a term with the electric field appears in the one-fluid equation of plasma motion. This electric field affects
the equilibrium plasma rotation and also gives rise to a family of instabilities of the rotating plasma, called the

dust-induced rotational instabilities.

PACS: 52.35.Bj, 94.30.cq

1. INTRODUCTION

Application of the magnetorotational instability
(MRI) concept [1,2] to the problem of accretion
disks [3] became an important event in physics. Tt
helped to resolve the long-standing puzzle of anoma-
lous viscosity in the disks [4].

Paper [3] has stimulated numerous astrophysical in-
vestigations. The original studies in this astrophysical
trend in the MRI theory are cited in [5]. The current
status of the research and future perspectives in this
field are summarized in review [6], where it was empha-
sized that one of the main topics here is rapid sponta-

*E-mail: j.lominadze@astro-ge.org

neous spin-up of plasma with no apparent momentum
input. In addition to the traditional areas of astrophys-
ical applications such as star formation processes, mass
transfer between binary stars, and active galactic nu-
clei, the solar dynamo [7, 8] was also mentioned [6] as a
phenomenon where the angular momentum transport
is an issue.

It is generally accepted that the MRI drive in a
perfectly conducting magnetized medium [1-3] is the
effect of differential rotation, i.e., the Velikhov effect.
Following the approach of the local dispersion relation
proposed in [3] and used in [5], one obtains the instabil-
ity criterion of the axisymmetric perturbations in the
form
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It is assumed here that the equilibrium configuration is
axisymmetric, i. e., independent of the azimuthal angle
# in the cylindrical coordinates (r,6,z). The equilib-
rium magnetic field is along the axis z, and the medium
is involved in azimuthal rotation with the angular fre-
quency = Q(r). Here, vy is the Alfvén velocity and
k* = k2 + k2, where k, and k, are the radial and longi-
tudinal wave numbers of the perturbations. The term
dQ?/dInr describes the mentioned Velikhov effect. In-
stability criterion (1.1) can be called the Velikhov—
Balbus-Hawley (VHB) instability criterion. It can be
satisfied only for a decreasing rotation frequency pro-
file, dQ?/dInr < 0.

One of the motivations of this paper was to elu-
cidate whether the Velikhov effect is the only driving
mechanism of MRI. As a tool, we use the magnetohy-
drodynamic (MHD) approach going back to the paper
by Frieman and Rotenberg (FR) [9], which has been
effectively applied and developed in [10-12].

Local instability criterion (1.1) was derived in [3]
within the so-called local approach, assuming that the
radial dependence of a perturbation F(r) can be ex-
pressed in the form F(r)exp(ik,r), where F(r) is the
amplitude with a negligibly weak radial dependence.

The FR approach deals with two variables, one
of which is the perturbed radial magnetic field B,
and the other is the sum of the perturbed pressures
of the medium and the magnetic field, denoted as
p« and called the FR variable. The MHD approach
leads to a pair of first-order differential equations for
B, and p, [10-12], the Hameiri-Bondeson-Tacono-
Bhattacharjee (HBIB) type equations. The equation
for B, contains the radial derivative of P«, and there-
fore, when this variable is eliminated in order to obtain
the mode equation, two contributions appear from the
equation for p,. One inolves the radial derivative of
ET., which is canceled by a similar term in the HBIB
equation for B,. The second is expressed in terms of
the radial derivative of the medium equilibrium param-
eters. This part, in general, should be taken into ac-
count in the local dispersion relation. As a result, it
combines a local part and a differential contribution.
Such a dispersion relation can be called the canonical
dispersion relation. The crucial question is whether
the local dispersion relation obtained by means of the
MHD approach coincides with that derived by the lo-
cal approach used, in particular, in [3,5]. The answer
is that such a coincidence occurs only in the absence of
the differential part in the FR local dispersion relation!

One can say that papers [1, 2] were aimed at ap-

plications to a laboratory medium. On the contrary,
paper [3] with an analysis of accretion disks is clearly
astrophysical. Then, based on Eq. (1.1), one can sug-
gest that response of the laboratory and astrophysi-
cal media to the MRI is identical. But the physics
of the equilibrium rotation in these cases is different
in general. As a rule, it is assumed that the astro-
physical rotation is caused by the gravitation force [3].
In contrast, this force plays no role in the laboratory
plasma. If there is no equilibrium azimuthal magnetic
field, the main reason for the plasma rotation is the pos-
itive plasma pressure gradient, p{ > 0, where pq is the
pressure and the prime is the radial derivative. Then we
can refer to either the simplest astrophysical situation,
where the rotation is stipulated solely due to the gravi-
tation force, or the simplest laboratory case, where the
only reason for plasma rotation is the positive plasma
pressure gradient. For the “astrophysical plasma”, we
use the term “gravitation-dominated plasma”. Also, in
addition to “laboratory plasma”, the term “gravitation-
free plasma” is used in what follows. This implies that
the case g = 0 is relevant to not only the laboratory
devices but also some space configurations.

In Refs. [1-3], the perturbations were assumed to
be incompressible, i.e., those with

V-V =0, (1.2)
where V is the perturbed medium velocity. In the sim-
plest astrophysical situation, the incompressibility as-
sumption leads to the vanishing of the perturbed pres-
sure p,

p=0. (1.3)
In contrast to this, in the laboratory case, the same
assumption leads to a nonvanishing p defined, for ax-
isymmetric perturbations [1, 2], by the equation
on ~
LTy =0,

5 (1.4)

where ‘~/r is the perturbed radial velocity.

Dealing with pj # 0, we must allow for the per-
turbed mass density p, which, in the incompressible
approximation, is determined by the continuity equa-
tion

9p

at
where pg is the equilibrium mass density. Thus, for the
simplest laboratory plasma, in contrast to the simplest
astrophysical scenario, we should deal with effects of py
and, in general, the effects of pj.

+Veph = 0, (1.5)
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Then a question arises: are the MRI developments
in these two situations the same or different? The an-
swer to this question is one of the goals of this paper.
With the above remarks, we should expect that the
scenarios must be different. We show this in formulas.

The MRI in the simplest astrophysical situation has
already been studied in detail, including the analysis
of the MRI dependence on 3, the ratio of the plasma
pressure to the magnetic field pressure (see, e.g.,
Refs. [5,13,14]). The recent theory of MRI in this case
has also considered the kinetic effects [5, 15-19] includ-
ing the effects of plasma pressure anisotropy [15, 18, 19].
Here, we restrict the study by the one-fluid plasma
model only, assuming the plasma to be ideal.

Thus, there is a rather wide open area in the MRI
theory: a branch allowing for the pressure gradient ef-
fects. The present paper is a step in its development.

Another insufficiently studied area of the MRI the-
ory is that with nonaxisymmetric perturbations. Cor-
rect description of such perturbations within the MHD
approach necessitates taking the differential part of the
mode equation into account. Closing this gap in the
MRI theory is another goal of this paper.

According to the plasma equilibrium condition, the
rotation frequency in the simplest laboratory situation
is determined solely by the pressure gradient, and hence
Q2 = pl/rpo. In this case, the Velikhov effect is related
to the pressure gradient, dQ?/dInr = d(p}/rpo)/dInr.
In the MHD approach, the Velikhov effect is contained
in the local part of the mode equation, but the term
with (ph/rpo)’, i.e., with dQ? /dInr, also enters the dif-
ferential part of this equation, although with the oppo-
site sign. In contrast to the Velikhov effect, this term
can be considered responsible for “the anti-Velikhov ef-
fect”. This leads to an “annihilation” of the Velikhov
and anti-Velikhov effects.

One of the most intriguing questions of our investi-
gation is whether the Velikhov effect, predicted as the
only driving mechanism of MRI for the astrophysical
plasma, remains in force in the laboratory plasma. In
other words, whether the MRI can be driven when the
Velikhov and anti-Velikhov effects are completely “an-
nihilated” such that dQ?/dlnr = 0. The answer is
that there are two additional driving mechanisms in
this case, one due to the squared pressure gradient ef-
fect and the other is the cross effect of the pressure and
density gradients.

It turns out that the differential part of the mode
equation is nonvanishing not only at pf, # 0 but also
at p; = 0 if the perturbations are nonaxisymmetric,
m # 0, where m is the azimuthal mode number. Anal-

ysis of a locally nonaxisymmetric MRI based on the
properly derived dispersion relation is also given here.

We have mentioned a variety of physically differ-
ent configurations where a rotating plasma can be sub-
jected to a rather wide family of specific MRIs. There-
fore, it seems reasonable to develop a unified theory of
MRI similar to the unified theory of instabilities of non-
rotating plasma dealing with the beforehand-calculated
plasma permittivity tensor and the standard general
dispersion relation written in terms of this tensor, as
described in our papers [20-24]. The parameters D,
C1, Cy, and C3 in HBIB-type equations play the role
similar to that of the permittivity tensor components.
Therefore, we call them the canonical parameters of the
MHD theory. Because an additional canonical param-
eter A appears in our theory, they can also be called
the primary canonical parameters, and A the secondary
canonical parameter. It was already mentioned that A
contains the local and differential parts. These values
denoted by a and b can be called the local and dif-
ferential secondary canonical parameters. Using the
canonical mode equation, we derive a local dispersion
relation in terms of D, Cy, and A, which we call the
canonical local dispersion relation.

Investigation of linear and nonlinear collective phe-
nomena in a dusty plasma is a wide area of recent stud-
ies in space and laboratory plasma physics [25-35]. Ac-
cording to Refs. [36-38], this applies to fusion-oriented
systems and, first of all, the tokamaks, among the lab-
oratory devices dealing with the dusty plasma.

On the other hand, dusty plasmas are of long-
lasting interest for astrophysics, in particular, for the
physics of accretion and protoplanetary disks [39-43].
According to these studies, collective phenomena are
important for such disks in relation to plasma turbu-
lence in them. As one of the possible candidates for
generating such a turbulence, the MRI was considered
in Refs. [39-43]. The importance of MRI was demon-
strated in other astrophysical problems as well as in
various problems of applied physics. Recent plasma-
physical investigations of MRI open new areas where
this instability can be important.

A first step in the analysis of collective phenomena
in a rotating dusty plasma was made in brief commu-
nication [44], where the linear problem of instability in
such a plasma was studied assuming the dust grains
heavy enough to be immobile. One of the goals of the
present paper is to give a more detailed theory of this
instability.

Section 2 contains a derivation of the canonical
mode equation and the canonical local dispersion re-
lation for the one-fluid plasma model. In Sec. 3, we
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use this dispersion relation to analyze the axisymmet-
ric perturbations in this plasma model. Section 4 ad-
dresses the collisionless plasma, and Sec. 5 deals with
the dusty plasma. Discussions are given in Sec. 6.

2. MRI THEORY IN THE STANDARD MHD
PLASMA MODEL

2.1. Preliminaries
2.1.1. Basic equations

We start with the standard MHD plasma equation
of motion
av 1 B?
— ==V —-——<V——(B-V)B;, (21
P p+pg4ﬂ{2( )},()
where V is the plasma velocity, B is the magnetic field,
p is the plasma pressure, p is the plasma mass density,
g is the gravity force, and

d 0
—_— = — - V. 2.2
itV (2.2)
We use the Ohm law in the form
E+[V xB]/c=0, (2.3)

where E is the electric field and ¢ is the speed of light.
Equation (2.3) leads to the standard freezing-in condi-
tion

0B
— -V x[VxB]=0. (2.4)
ot
In addition, we use the Maxwell equation
V.-B =0, (2.5)
the plasma continuity equation
dp
— V-V =0, 2.6
il : (2.6)
and the adiabaticity condition
d(p
—(=1)=0 2.7
dt <pr> @1)

where T is the adiabatic exponent.

2.1.2. Equilibrium

We consider a cylindrical plasma rotating in the
azimuthal direction € with the angular frequency
Q = Q(r), where r is the radial coordinate. The equi-
librium magnetic field By is assumed to be uniform and
directed along the cylinder axis z, Bo = (0,0, By), and

we assume the gravitational force g to have only the
radial component, g = (¢,0,0). In accordance with
Ohm law (2.3), there is an equilibrium electric field
Ey = (Eo,0,0) related to the rotation frequency

Q= Vo/T (28)

by

E(] = —T‘QBO/C, (29)

where Vy = Vi(r) is the azimuthal equilibrium plasma
velocity.

With (2.8), it follows from the equilibrium part of
the radial component of the plasma equation of motion
(2.1) that

rpo¥ = pj — pog, (2.10)
where pg and pg are the equilibrium plasma mass den-
sity and the equilibrium plasma pressure, respectively,
and the prime is the radial derivative.

2.1.3. Linearization of basic equations

We linearize the basic equations assuming each per-
turbation to depend on ¢, 6, z as exp(—iwt+imf+ik,z),
where w is the oscillation frequency, m is the azimuthal
mode number, and k£, is the parallel projection of the
wave vector. In addition to m, we introduce k, = m/r,
the azimuthal projection of the wave vector, and in
addition to w, we use the Doppler-shifted oscillation
frequency

W =w—mi. (2.11)
The (r, 0, z) projections of the perturbed plasma veloc-
ity V are (V,, Vg, V.). Similarly, the (r,6,z) compo-
nents of the perturbed magnetic field B are (ET, Eg.,
EZ). The perturbed plasma mass density is denoted
by p.

The (r,0) projections of the freezing-in condition
(2.4) yield

—i@B, —ik.ByV, = 0, (2.12)
- a0~ -
—i3Bg — —— B, — ik, BV = 0. (2.13)
dinr

Maxwell equation (2.5) leads to the following relation
between the components of the perturbed magnetic
field:

- - 18 -
ik.B. + ik, By + — — (rB,) = 0. 2.14
ik + ik, o—l—rar(r )=0 ( )
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The equation of motion of perturbed plasma, Eq. (2.1)
yields

3

. ~ 18 ik ~
— iV, 20V 4 — 2 AT
po Or By
2 /5] ~
U4 JB, PPo
A -9, (215
B 0 22 o (2.15)
~ K~ ikyp ik, =
—ioVo+ =V, + 2~ - —42B
1w 0+2(2 r+ % B, o+
. 2 -
+ DA R B, =0, (2.16)
By
—ioV. = —ik.p/po, (2.17)

where v = B3 /4mpy is the squared Alfvén velocity,

k2 = (2Q/r)d(r?Q)/dr, and the gravity force is ex-

pressed in terms of 2 and pj, by means of (2.10).
Using (2.14), we express B, in terms of B, and By:

B, = —k—i’ By + T (2.18)
where
10 =
= - — (rB,). 2.1
=5 (rBr) (2.19)

Equations (2.12) and (2.13) allow expressing the per-
turbed velocities V, and Vy in terms of B, and By:

V, = —&B, k. By, (2.20)

~ &By  iB, dQ
_— . 2.21
Vo= =4 By T kB dinv (2.21)

2.2. The Frieman—Rotenberg approach
2.2.1. Basic equations of the FR approach
We introduce the FR variable

ps = D+ B.By /4. (2.22)
Then Eqs. (2.15) and (2.16) become
o’ \ = ~
i|Do— B, +2QwBy +
dlnr
kE.By dp.  k.Boppy
420 B P00 ) (2.23)
po dr Po
~ ~ B
iDoBy — 2Q0B, + Mp* =0, (2.24)

£o

where

Dy = a &2, (2.25)

as = 1— k% /5% (2.26)

It follows from (2.6) that the perturbed density sat-
isfies the equation

ﬁ 1 . d ln PO & ~
— = B, | —k,B
Po k. By [l <TB * dr T) ky 0} -

(2.27)

In turn, according to (2.7), the perturbed plasma pres-
sure p is given by

~ ipy =
= B,
P szO *
2 2
pPoC . ~ k B(] ~
+ kZBSO <ZTB — kyBs + ZLT) Vz) ,  (2.28)

where ¢ = T'pg/po is the sound velocity squared. Us-
ing (2.17), (2.27), and (2.28), we find expressions for p
and p in terms of the perturbed magnetic field:

D= " Boo. ipy By + c2po(ite — kyBg)|,  (2.29)
0 1
L _ %
£0 k.Boas
dl E2ph\ ~ ~
x i |rp+ (0, =2y O Bk By b, (2.30)
dr  pow?
where
s =1 — k22 )&*. (2.31)
Substitution of (2.30) in (2.23) yields
Z.Arér + /\aée - Z‘A‘rTB + szOp;/pO = 07 (232)
where
dn? ph dln pg k2 p2
A = Do — - - =0 (233
" O dlnr rpo dlnr  as@? rp3’ ( )
Ao =200 + kypy/ aspo, (2.34)
Ar = po/aspo. (2.35)
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2.2.2. Canonical equations in the FR approach
(the HBIB-type equations)

It follows from (2.24) that

1 -~ k,k.B
By = —— <iQQ&BT+ vz Op*>. (2.36)
Dg p

Substitution of (2.36) in (2.18) and (2.29) leads to

~ i ky .o~ kz
B.=— |78+ —=—2QWB, | + —= Bops,
Dy Po

L (2.37)

1
P = Boas

{iﬁpom +
, 2 pok, 200
+ i <p6 + SK)OTZ

Using (2.37) and (2.38), we represent (2.22) in the form

62
+ == k’k.B } 2.38
> Do Y op ( )

Drg = C1 B, — idnk.ByCaps, (2.39)
where
D = Do(1+ B/as), (2.40)
D /
Oy = —2k, 05 (1 + ﬁ) -0 B a1
g Qg% Po
1 2.2 B

Substitution of (2.36) in (2.32) yields

B | pods
Do P T E B,

_ M 505) B
"B <)\T Do 29w> B,. (2.43)

. !
—ip, = — B —

Using (2.39), we eliminate 7p from (2.43). Then we
arrive at
idrk.ByDp', = —4nk.BoCips + C3B,.  (2.44)

Here,
01 = — |:471'p0)\.,—02 + )\oky <1 + aﬁ>:| R (245)
DY R
03 = 471'p0 D )\r - D_ 20w | — /\Tcl . (246)
0

By means of (2.41) and (2.42), Eqs. (2.45) and (2.46)
reduce to

C’I = Cla

dn? 0odl
03 =47Tp0D0 1+£ Do— —p—o 1 Po
Qg dlnr rpy dlar

(2.47)

2~2 ~ol '2
_4%“’ _ 2”;)9” p_0> Do__ p_g] L (248
0 0o Tpo QU W™ Py
Equations (2.39) and (2.44) can be called the canon-
ical equations of the MRI theory. They were initially
obtained in Refs. [11,12]. Therefore, they can also be
called the HBIB-type equations. The values D, Cy, Cs,
and C3 are the primary canonical parameters.

2.2.3. The canonical mode equation and
canonical local dispersion relation

To eliminate the value p, from our problem, we
use (2.39) to find

4irk.Bops = (C1 B, — D1g)/C5. (2.49)
Then (2.44) takes the form
D(D7p/C5) + AB, =0, (2.50)
where
A=a+b, (2.51)
a=Cy—C}/Cy, (2.52)
b= —DT(Cl /TCQ),. (253)

The quantity A is the secondary canonical parameter.
We call the values a and b the local and differential
canonical secondary parameters, respectively.

We take the function ET in the form

B, = B,(r)exp(ik,r), (2.54)

where B,.(r) is a slowly varying amplitude. Then (2.50)
leads to
—k2D?/Cy + A =0, (2.55)

which is the canonical local dispersion relation.

3. AXISYMMETRIC PERTURBATIONS IN
THE ONE-FLUID PLASMA MODEL

3.1. Reduction of the dispersion relation

Here, we take

(3.1)
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which corresponds to axisymmetric perturbations.
Then Eqs. (2.41)—(2.43) reduce to

Cy = —ppDo/povias. (3.2)
Cy = Do/B3, 3.3
I’ ag?  402%W?
=4rmpoD 1+— Dy————— —
Cs TPoZo < +as O dinr Dg

ph dln pg Do

- — 55 5 . (34)
rpo dlnr PovRW s

It can be seen that Cy # 0 for p; # 0. Turning to (2.52),
we conclude that the differential part of the local dis-
persion relation does not vanish in this case. Therefore,
for py # 0, the correct local dispersion relation cannot
be obtained by the standard local approach [3, 5].

3.2. The simplest astrophysical high-3 plasma

The problem statement in [1-3] implies the incom-

pressibility approximation ¢? — oo and the assump-

tion pj = 0. The condition ¢ — oo is equivalent to

B — oo. Then Eq. (3.3) for Cy remains in force, while
Eqs. (2.40), (3.2), and (3.4) reduce to

D= —(w?— kzvi)2/k§vi, (3.5)
¢, =0,
Oy = —dmpo(w® — k20})? x

dn? 40202

2 22

—k — — . (3.7
8 <w AT lnr @2 —k%%) (37)

In this case, in accordance with (2.52) and (2.53),

a = Cg, (38)

b=0.
It then follows from (2.51) that

A =Cs. (3.10)

Substitution of (3.5), (3.6), and (3.8) in (2.55) gives the
dispersion relation

40202
w? — k20

k2 [ dQ?
2 _ 2.2 -
w —ksz—k—; <d1nr ) =0, (3.11)
where k> = k2 + k2. This is the Balbus—Hawley (BH)
dispersion relation [3]. It leads to the MRI criterion
in (1.1).

Because we assume pj = 0 in this subsection, dis-
persion relation (3.11) describes the case where, accord-
ing to equilibrium condition (2.10), plasma rotation is
caused by the gravitational force only,

rQ? = —g. (3.12)

This can be called the simplest astrophysical situation
or the case of gravitation-dominated plasma.

The result of analysis of (3.11) is well known:
this dispersion relation describes the MRI driving for
dQ?/dInr < 0, representing the Velikhov effect. Mean-
while, in accordance with (3.12),

aQ*  d(g/r)

dlnr  dlnr’
In this context, the MRI driving due to the Velikhov
effect is revealed as a result of an unstable profile of
gravitation force.

We recall that a dimensionless parameter A was in-
troduced in [5] by

1 dQ?
A=—|14+ 55 —].
< M) dlnr)
Then the instability region following from (3.11) is
given by (cf. (1.1))

(3.13)

(3.14)

A>0. (3.15)

Near the instability boundary, it follows from (3.11)
that w? = —+2, where

2 = k204 A/A. (3.16)

Here, A; = 1 +40Q%/k*0% (cf. [5]).

3.3. High-3 laboratory plasma
Now we assume the gravitational field to be negli-

gible,

g=0. (3.17)

Then, according to equilibrium condition (2.10), the
rotation frequency is defined by

rpoQ? = pj. (3.18)

Therefore, inducing rotation of the laboratory medium
requires organizing a region where

Pl > 0. (3.19)

The incompressibility approximation ¢2 — 0o con-
sidered in Sec. 3.2 corresponds to the case where the
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parameter ag becomes infinite. We introduce the quasi-
incompressible approximation assuming the parameter
k2c2 Jw? to be large but finite, k2c2/w? > 1. Then we
have

as = —k2c2 W (3.20)

As a result, instead of (3.11), we obtain the dispersion
relation
wt — BPoiw? A — 2204 AL = 0. (3.21)

Here, similarly to (3.14),

1 ao? Q2 dlnp
L __ _ 2 0
AT= [Hk?vi <d1nr = Yy ﬂ (322)
and
QZ
L _ L
Ay =1-A +v§1k2x
1 (dlnpy dlnpg
x {4+B<dlnr - )| (323

The superscript “L” means “laboratory”.
Taking w = 0, we obtain
Al =0 (3.24)
for the instability boundary (cf. (3.15)) or, in the ex-
plicit form,

Qir? , dln pg
2 dlnr

s

Comparing (3.25) with (1.1) shows that the MRI
driving due to the Velikhov effect remains in force in
our model. The stabilizing term k?v%, describing the
magnetoacoustic effect, is also revealed in our analysis.
Meanwhile, we obtain one more driving mechanism re-
lated to the term with Q* in (3.25). The term with 0?2
in (3.25) describes an additional driving mechanism for
a negative density gradient,

=0.  (3.25)

dInpo/dInr < 0. (3.26)

Otherwise, the density gradient effect is stabilizing. As
a whole, the MRI occurs for

Qir? , dln pg
c2 dlnr

s

<0. (327

Near the instability boundary, i.e., for small AL,
Eq. (3.21) yields

¥ = K2AAT /AL (3.28)

where AlL(O) is Al for AL =0, i.e.,

2
2 7.2
vk

1 (dlnpy dlnpg
8 {“ 3 <d1nr dinr )} - (3:29)

AlL(O) =1+ X

Explicitly, Eq. (3.28) means

2 W0 dlnr

c dlIn pg

4 dInTy
5 dlnr

-1
X <k2v2A + > ,  (3.30)
where Ty = po/po is the equilibrium plasma tempera-

ture. With (3.18), the MRI criterion in such a medium
becomes

daq? 2,2 p dinpg
il |
dnr ¥ “A{ k21202 dlnr
dInTy dIn pg
X {dlnr —T-1 dlm”<0. (3.31)

This instability criterion replaces (1.1).

An important consequence of expression (3.31) is
that the MRI in a laboratory medium can be driven
even in the absence of the Velikhov effect, i.e., for

dQ?/dInr = 0. (3.32)
In this case, the MRI is possible if
dInTy dIn pg
dlnr - (-1 dlnr > 0. (3:33)

The analysis in this subsection shows that behavior
of the MRI in the simplest high-3 laboratory plasma
is essentially different from that in the simplest high-3
astrophysical plasma.

4. COLLISIONLESS PLASMA

4.1. Basic equations

In the case of collisionless plasma, the equilibrium
condition is (cf. (2.10))
—por? = —p' Lo + gpo, (4.1)

where p o is the equilibrium perpendicular plasma
pressure.
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To describe the perturbed plasma dynamics, in-
stead of (2.1), we start from the equation of motion
in the form (see [19] and Sec. 19.1 in [45])

AR
P ar B

- {—V~p+pg—% BVBQ—(B : V)B]}

~

(4.2)

where p = pg + p is the total pressure tensor. Accord-
ing to [19,45],

Vop=Vputl {%vg%[[v x B] x B]}+
+3® V) |5 o-r0|, 63

where p; and p) are the total perpendicular and paral-
lel pressures given by p1 = p1o+p1 and p| = pjo+pj,
p|jo is the equilibrium parallel plasma pressure, and p
and p are the perturbed perpendicular and parallel
plasma pressures.

The (r,0,z) projections
(cf. Egs. (2.15)-(2.17))

of Eq. (4.2) are

~ ~\ Jd
po( —idV, —20Vy) —p(Q*r +g) = —— P +

or
By |. BL—-B\ 5 OB,
+ E Zkz <1 + T Br — W s (44)

P _
0o <—szg + 20 Vr> = —ikypL +
iBo BL—=B1\ » ~

—i@V, = —ik:B| /o, (4.6)

where (81, 8) = 8n(p.Lo,pjo)/Bs-
Using (4.4) and (4.5) and introducing the modified
FR variable

ps = D1 + BoB. /4, (4.7)
we arrive at (cf. (2.23), (2.24))
2 [i(py- TN B, 1 2058,| - p5=
k. Bo O dnr) " 0] = ProP =
Op+
_— 4.8
5 (48)
PO (iDoBy — 200B,) = —ikyp..  (4.9)
k. B

where Dy is given by (2.25), and (cf. (2.27))

2,2 —
aA:I—kZUA <1_|_,3¢ B|>.

w? 2

(4.10)

We calculate the perturbed pressures p; and p| as
(see Eqs. (16.43) and (16.46) in [45])

2 ~
(01, p)) = M/ <%7U|2> fdv,

where M is the ion mass, fis the perturbed distribu-
tion function, v, and v are the perpendicular and par-
allel particle velocities, and dv is the volume element
in the velocity space. According to Sec. 16.4 in [45]
and the appendix in [23], the function fconsists of two
physically different parts. One is related to the spatial
inhomogeneity of the equilibrium distribution function
fo, and the other is due to the plasma compressibility,
with

(4.11)

ENISENICE (4.12)
where
O =-XF, (4.13)
~ Mv? T 5 T B
)= L (1-== ) fo =2, (414
f 2TL < T” +@—]{:Z’UH T” > 0 B()7 ( )

with 7' and T being the perpendicular and parallel
temperatures. Equation (4.14) implies that the parti-
cle distribution is bi-Maxwellian.

As a result, Eqgs. (4.11) yield the following expres-
sions for the perturbed plasma pressures:

b= +p7, (4.15)
b =p"+p". (4.16)

Here, the superscripts “(1)” and “(2)” denote the
“MHD” and “kinetic” parts of the these perturbed func-
tions, which are respectively given by

{i)ﬂl)/i){“l)} = i{plj_mpi\o}ér/(szO)-,
{057} = {20201, p101 ) B-/Bo.

The coefficients ¢ and c|| are

" <|kzaUT|>]  (419)

(4.17)

(4.18)

Tw

T, { 7
SEN P
k. |vp

T

Cl=1
T 202
C|=1—T—J|_{1-|-—><

kg
ST

i/
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where v = /2T /M is the ion parallel thermal veloc-
ity and W (z) is the plasma dispersion function defined
by [20-23]

W(z) =exp(—2?) [ 1+ %O/exp(ﬂ)dt . (4.21)

The function W (a) has the asymptotic forms [21]

i
;T > 17
W(z)={ Vrz (4.22)
1, r <L 1.
Accordingly, Eqs. (4.19) and (4.20) imply
1, W |k:|vp,
€L = TJ_ < I\/T w0 > ~
1-— , W< ko,
T [kzlory :
(4.23)
1., w > |kz|vTH7
o= T, 2i"
1-—— | 1+——= ], O |k:|vpy.
Ty ( ”“23“3“|> ”
(4.24)

Evidently, the expressions for the kinetic parts of
the perturbed pressures can be extended to more gen-
eral particle distributions than the bi-Maxwellian one.
The expression for f@) in terms of fy in [23] can then
be used.

4.2, The canonical mode equation and
canonical local dispersion relation

Following the procedure explained in Sec. 2, we ar-
rive at Eq. (2.39) with

D =(1+8.cy)Do, (4.25)
O =— [29@1%(1 +Blel)+ 472’}“ DO} . (4.26)
0
Cy = [Do — kZvi(1+ Brey)] /Bs. (4.27)
In addition, we have Eq. (2.44) with
Ch = —747rp;§D° (1 + % ’“;—1;24> -
— 2%, Q1+ Brcy), (4.28)

dn?
C3 =4mpy { Do(1+ Brcy) | Do —
dlnr

4% plec) | Pl Biey kv
+ 1+ ~ | X
Dq por Po 2w

!
X [zmky(nmqnw”, (4.29)

Bj
where
. dln py kgrpho
77 dlnr @2 po
We then obtain the mode equation (cf. (2.50))
D <DCT2B>I+%TB +AB, =0, (4.31)
where
6Cy = Cy — C1 = —p'LokZ Do [2p0@”,  (4.32)
A is given by (2.51),
a=Cs—C1Cy/Cs, (4.33)

and b is of form (2.53). The local mode equation for
the collisionless plasma is given by (2.55).

To some extent, the coefficient A plays the role of
the potential energy of perturbations. Its form is es-
sential for the problem considered because A includes
all driving mechanisms of MRI. Turning to (4.33) and
(4.29), we can see that a, the local part of A, contains
the differential term d©Q?/dInr. This term is respon-
sible for the Velikhov effect. Meanwhile, the differen-
tial part of A, i.e., b, can also include the term with
dQ?/dInr. This term in b describes the anti-Velikhov
effect.

One more driving mechanism is related to the term
involving ¢, in (4.29). It describes the cross effect of
plasma pressure and density gradients. This effect is
also of differential nature. Therefore, as the Velikhov
effect, it can also be compensated by a respective term
in the coefficient b. An important driving mechanism
is described by the term with pfO in (4.29), which is
the effect of the squared plasma pressure gradient, see
Sec. 3.

4.3. Axisymmetric modes in the simplest
astrophysical plasma model

Setting p',, = 0 and k, = 0, we have from (4.26)
and (4.28) that

(4.34)
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Then, according to (3.53), b = 0 (cf. (3.9)) while, ac-
cording to (4.33), a = C3 (cf. (3.8)) and (2.51) reduces
to A = C5 (cf. (3.10)).

Turning to (4.29), we find that in the case consid-

ered,
03 = 471'p0D0(1 + ﬂLCL) X
dQ? 40202
Dy — — . (4.
g ( O dlnr Do ) (4:35)

On the other hand, we have (3.3). As a result, disper-
sion relation (2.55) reduces to

an? 3 40202
dinr Dy

By means of (2.25), (4.10), and (4.19) this dispersion
relation can be represented in the form

Dy — kzvi(l +picL) — =0.

(4.36)

Qa(Qy — dQ?/dInr) — 40%w* = 0, (4.37)

where Q4 and Qs are the Alfvén and magnetoacoustic
parts of the dispersion relation given by

Qa=w’ — k2 [(1+ (B —8))/2].

QM:w2—vi{k2+kzw+kzﬂL x

‘ {1 - % <1 i |227;:| v <k:|L;T|>>} } (439)

In the case of nonrotating plasma, Eq. (4.37) splits
into two dispersion relations

Qa=0,
Qum =0.

These dispersion relations describe the Alfvén and mag-
netoacoustic oscillations branches.

We see that in the case of axisymmetric modes
in astrophysical plasma, in the absence of pressure
anisotropy, the only driving mechanism is the Velikhov
effect described by the term with dQ?/dInr in (4.37).
The analysis of (4.37) with the pressure anisotropy
taken into account was performed in [19].

(4.38)

(4.40)
(4.41)

4.4. Axisymmetric modes in the simplest
laboratory plasma model

In the case of laboratory plasma, we have g = 0.
For k, = 0, Eqs. (4.26) and (4.28) then yield

Cy = —rQ? Dy /vy, (4.42)

_ 02D 2,2

¢ = - <1+ Gl k?‘) (4.43)
vy 2 w

It follows from (4.30) that in the case considered,

k? Tleo

w?po

. dln pg
P dlnr

(4.44)

Then Eq. (4.29) reduces to

03 = 471'p0D0 {(1 + ﬂLCL)

400 02 <d1np0 N kng’I())

Dy
r2a Bey k2vi
1 : . (44
o (SR e

Using (4.45), (4.42), and (3.3), we transform (4.33)
to

Q2 402072
a= 47Tp[)D[)(]. + /BJ_CJ_) [DO - m - D—O —

k2rp!
- (—‘“npo + —'°> (4.46)

dinr w2pg

With (4.25), (3.3), and (4.42), Eq. (2.53) yields

3

d0? 02 d1n pg
dlnr dlnr

b=47rp0D0(1+ﬂLCL) ( > . (4.47)
Substituting (4.46) and (4.47) in (2.51), we have

A= 47Tp0D0(1 + BJ_CJ_) X

4920.)2 kgrp,“o
Do — -0 = . (4.48
X ( 0 Dy w2p0 ( )

With (4.25), (3.3), and (4.48), dispersion relation (2.55)
leads to
4920.)2 . Q2k§’rp’“0 0.

Do—k2v% (1 - =
0 rvA( +/8lcl) DO w290

(4.49)

It can be seen from (4.49) that in contrast to the
one-fluid approach, both the Velikhov effect and the
effect of plasma density gradient are not involved in
the axisymmetric MRI in the collisionless laboratory
plasma. The reason for the difference in predictions
of the one-fluill MHD and the kinetics is that the
MHD implies an engagement between the perpendic-
ular and parallel plasma motion. This engagement is
described by the factor ay = 1 — k2c2/w? determined
by Eq. (2.31). Therefore, if we formally take ay — 1in
Eq. (2.51) for the parameter A, we arrive at the con-
clusion that both the Velikhov effect and the effect of
plasma density gradient disappear.
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Here the question arises: what is reason of the cru-
cial difference between the astrophysical and laboratory
situations, with the Velikhov effect presence in (4.36)
and absence in (4.49)7 Formally, this difference is ex-
plained by the fact that Cy = 0 in astrophysics and, as
a result, b = 0, while Cy # 0 and b # 0 in laboratory
conditions. Physically, this difference is a consequence
of the fact that in contrast to the laboratory situations,
the perturbed mass density plays no role in the astro-
physical MRI. As a result, it does not lead to annihi-
lation of the Velikhov effect related to the differential
term in (2.52).

Similarly to (4.37), Eq. (4.49) can be represented in
the form

k2p/ p/
QalQu—- =510 4022 =0, (450)
wW=Pp
where Q4 and Qs are given by (4.38) and (4.39). The
term involving pﬁ_opho in (4.50) describes the above-
mentioned driving effect due to the squared plasma
pressure gradient.
In the case of Maxwellian ions, Eq. (4.49) reduces

to

(W? — E20%) S w? — v} [k2 - k2B iym X
|kzor
w Py’ k2
x W - = -
()] =
—40%0w? =0, (4.51)

where vp = /2T /M and T = T =T, is the equilib-
rium ion temperature. For w < |k.|vr, it hence follows
that

1_4\/Ek£/81/2 o

TR Tafoa
k2 o vy (dlnpg ?
=0. (4.52
+4k26 r2w? \ dlnr ( )

For 8> 1, Eq. (4.52) yields

3 . 2
w _ i dIn pg
k:lor) — V2mr2k2 \dlnr )
It can be seen that one of the roots of this equation

describes unstable perturbations.
For 8 « 1, Eq. (4.52) becomes

o _ KB o} (dinpy’
4k2 r2 \ dlnr '

(4.53)

(4.54)

12 ZK3T®, Bem. 6 (12)

This dispersion relation describes an aperiodic instabil-
ity with the growth rate

I8V ur
T2k r

d1n pg
dlnr

. (4.55)

Thus, for arbitrary 3, there is an instability with the
growth rate independent of # for § > 1 and decreasing
as /2 for B < 1. Tt is the MRI in collisionless labo-
ratory plasma. Recalling the discussion in [5], we note
that the appearance of this MRI is governed by the
collisionless gyrorelaxation effect; it can therefore be
called the pressure-gradient-driven gyrorelaxation MRI
in collisionless laboratory plasma.

5. DUSTY PLASMA

5.1. Basic equations and equilibrium

Turning to Refs. [46, 47], we see that one of the
main plasmadynamic equations showing the presence
of dust grains is the quasineutrality condition

—ene +en; —eZgng =0, (5.1)

where n., n;, and ng are the electron, ion and dust den-
sities, e is the ion charge, —eZ, is the charge of the dust
grain, and Z; is the number of excessive (Z4 > 0) or de-
ficient (Z4 < 0) electrons on the grain. The remaining
plasmadynamic equations are taken in the approxima-
tion of immobile dust, implying that the mass of each
grain is infinite and the dust velocity is zero.

The assumption of immobile dust is valid when the
frequencies of interest exceed both the dust cyclotron
frequency and the dust plasma frequency. These re-
strictions, together with knowledge of the dust com-
position (dust material), determine the corresponding
size of grains.

We take the equations of motion of ions and elec-
trons in the standard form

d:-V: 1

1
0= —en, <E + - V. x B) — Ve, (5.3)
where V; and V. are the ion and electron velocities, p;
is the ion mass density, d;/dt = 0/0t + V; -V, and p;
and p. are the ion and electron pressures. Adding (5.2)
and (5.3), we obtain

pi—g = e(n; —ne)E +

e
+ - (niVi —neVe) x B=Vp+pig,  (5.4)
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where p = p; + pe is the plasma pressure. Because the

dust is assumed to be immobile, we have

e(niVi —n.Ve) =], (5.5)

where j is the electric current density. Then, with (5.1),
Eq. (5.4) reduces to

dv 1.
P = engZqBE + - [ixB]—Vp+pg. (5.6)
Here, in correspondence with the one-fluid approach,

we have changed the notation as p; — p, V; — V|,
d;/dt — d/dt. By means of the identity

1., 1 B2
“[ixB]= - {VT—(B-V)B}., (5.7)
Eq. (5.6) is transformed into (cf. (2.1))
av 1 B?
—Vp+pg. (58)

In the scope of the one-fluid approach, the equation
of motion for electrons in (5.3) is transformed as fol-
lows. The electron velocity V. is taken to be equal to
the ion velocity V;,

V.=V;=V. (5.9)
The term with the electron pressure gradient is ne-
glected. Then Eq. (5.3) takes the form of Eq. (2.3). The
Ohm law in form (2.10) leads to the standard freezing-
in condition (2.4). In addition, we use Maxwell equa-
tion (2.5), plasma continuity equation (2.6), and adia-
baticity condition (2.7). Then the presence of the dust
is revealed in our model only through the term with
the electric field in plasma equation of motion (5.8).

It follows from the equilibrium part of the radial

projection of Eq. (5.8) that (cf. (2.10))

rpo Q2 = Q4) = py — pog; (5.10)
where Q4 is the dust-induced effective rotation fre-
quency defined by

Qd =wBiZdnd/n0. (5.11)

It seems to be important that, according to (5.10),
a dusty plasma column rotates even in the absence of
the gravity force and the plasma pressure gradient: at
g =0 and p{ = 0, we have

0= Q. (5.12)

Another important particular case of the dusty
plasma equilibrium is the gravitation-free plasma,
g = 0, in the presence of a plasma pressure gradient
py # 0. Then Eq. (5.10) gives

rpoQ(Q — Qa) = pp. (5.13)

The presence of dust allows the equilibrium of such
plasma to occur not only for pj > 0 but also for nega-
tive plasma pressure gradient, pj < 0.

5.2. Derivation of the mode equation and local
dispersion relation

By means of the Ohm law, we find the expressions
for the perturbed electric fields:

E, = —(rQB. + ByVy)/c, (5.14)
Ey = ByV, /c. (5.15)
E. =rQOB,/c. (5.16)

Then the perturbed plasma equation of motion in (5.8)
yields (cf. (2.15)—(2.17))

o ~ 19p ivik. ~ % OB.
—iwoV, = 2QVp + — — — B, + =+
" o+ £o or BO + BO or

~ B
Q4 [ Ve 0=\ -
+ d(g-}—r B0>

+

>~ !
_ L <p_0 + rQQd> -0, (5.17)
Po \Po
~ K2~ ikyp ik, =
—iwVp+ =V, + - - —4ZB
1w 0+2(2 r+ 0 B, o+
iy~ ~
+ A kB, -V, =0, (5.18)
By
—ioV. = rQ0B, /By — ik.p/ po- (5.19)

We introduce the FR variable p, defined by (2.22).
Then Eqs. (5.17) and (5.18) become

. 02 o~ _
7 <D0 — m + Qd m) Br +W(20 — Qd)Be +
k= By dp* + iTQQdTB —
Po r
~ !
_ kerBop <smd + p—°) =0, (5.20)
Lo Lo
~ ~ ) B
iDoBy — (20— Q)3B, + TukBo o (501)

Po
where Dy is given by (2.25) and (2.26).
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The expressions for p and p in terms of the per-
turbed magnetic field are (cf. (2.29), (2.30))

_ 1 A k2 EperQaQ\ =
e A B
"7 kBoa, {Z <p T .

+ 2o (iTB - kyég)} , (5.22)
5 1

Po - szoas

dl k2t
{i |:T3 + (as Py 282 +
dr pPow
E2rQQ4\ = ~
+ = d) BT} —kyBg}, (5.23)

w

where o is given by (2.31). We see that p and p de-

pend on the dust presence through their dependence on

‘75, which, in accordance with (5.19), depends on Q.
Substitution of (5.23) in (5.20) yields (2.32) with

dn? dQ ph \ dln pg
A = Dg———+Qq—— | QQu+ > -
0 dlnr+ “dinr < d+rp0> dlnr

k2 / 2
L (Qﬂd+p—°> . (5.24)
Qg0 rpo

Ao = 520 — Qu) + 2 <smd + p—“) . (5.25)
Qs TpPo
1 ! k? 2
A= — <’;—2 - = rQQd> . (5.26)

We note that according to (5.26), in the case of pure
plasma with p{ = 0, the coefficient A; vanishes. The
presence of dust leads to a nonvanishing A\, even for
ph = 0 if the plasma temperature is finite, c2 # 0.

It follows from (5.21) that (cf. (2.36))

ey k- Bo

~ 1 - ~
By = N [ZW(?Q - Q4)B, +

- p*} . (5.27)

Substitution of (5.27) in (2.18) and (5.22) leads to

0
k.2
+ 2 Bop., (5.28)
0
k2c2 porQQ
~ .9 . ~2CsP0 d
p= kDo {ZCSpoTB +1 {pg + B R +
2 k ~ 2
+ % (20 — Qd)} + g—zk;szop*} . (5.29)

With (5.28) and (5.29), Eq. (2.22) is represented in
form (2.39) with D and C5 given by (2.40), (2.42), and

Oy = —ky5(20 — Q) (1 + ﬁ) -

s
Dy Do n Ak2rQ0y,
vy \ po 2

) . (5.30)

It follows from (5.30) that, in accordance with (2.41),
in the case of axisymmetric modes (k, = 0) and the
vanishing plasma pressure gradient (p{, = 0), we have
C1 = 0 in the pure plasma. In contrast, in the dusty
finite-temperature plasma, this is a finite quantity:

Doc2k2rQQy

>~ 5.31
v o2 (5.31)

(C1)ky=0,py=0 = —
This is a consequence of a nonzero A, (see the comment
after (5.26)).
Substitution of (5.27) in (2.32) yields (cf. (2.43))
kyXo

- _ pOAT
WPy = Dy Dx + k. Bq B

__Po A~ =
P B {/\r Dow(zg Qd)} B,. (5.32)

Then we arrive at (2.44), with C = Oy (cf. Eq. (2.47))
and

s “dlnr dlnr
Po | qq,) o (20-94)°,
rpo dl Dy
ma 2 7
- — (20 — Q4)Q0Q — | Dy=2 — 200
DO ( d) d} + S’UQAWQ Op[Q) d X

The canonical mode equation in the dusty plasma turns
out to be the same as in the case of pure plasma (see
(2.50)) with A given by (2.51)—(2.53). The same applies
to the canonical local dispersion relation (see (2.55)).

5.3. Axisymmetric modes in a high-3 dusty
plasma with pj =0
For > 1, k, =0, p;, = 0, and po = const, we have
the expressions for D and C in (3.5) and (3.3), and
Eq. (5.33) then yields

Dy
Cs = —4mpolo {k—

dQ) (29 — Qg)%w?
dlnr Dy

B dQ?
dlnr

7,2
} + —29293}, (5.34)
U4

0

+ Q4
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while Cy is given by (5.31). Then, according to (2.52),

dmpo . o 2. 2\2 | 2 2,2 dQ?
=T (W™ = kZvy)” |w” = kivy = o
dQ (2Q — Q4)%w?
Q - 5.35
+ Ydnr w? — k2v% ( )
Next, in accordance with (2.53),
4mpo . 5 2 22 A(220)
b= —k . 5.36
kngA (UJ ZUA) dln’l“ ( )
It then follows from (2.51) that
dmpo . o 2. 2\2 | 2 2,2 aQ®
A:_kgvi(w —kivy)” |w _ksz_dlnr -
dQ 20 — Q4)%w?
_ % _{ )W) (5.37)
dlnr w? — k203

As a result, we obtain the local dispersion relation

k2 [ d02 a0y
2 _ 12,2 _ %2
WITRYA T gy T dlnr T
(29 — Qd)2w2
T Y 0 (5.38)
w? — k20

Taking Q4 = 0 in (5.38) yields the standard MRI
criterion, i.e., the VHB instability criterion given by
(1.1). It follows from (5.38) that for Q4 # 0, the insta-
bility occurs for

dQ? dQy

dlnr dlnr
This is a generalization of the VHB instability criterion
to the case of dusty plasma.

In the case of gravitation-free dusty plasma (g = 0
and Q = Qg), Eq. (5.39) reduces to

3 d02
2 dlnr
This instability criterion looks as being independent of
/3, but, in accordance with the above-said, it is valid for
high 3 only. It shows that for the instability to develop,
the profile of Q4(r) must be decreasing, dQ3/dInr < 0.

+ k2% < 0. (5.39)

+ k%03 < 0. (5.40)

5.4. Axisymmetric modes in a low-3 dusty
plasma with pj =0
For k, =0, 8 =0, pj = 0, and py = const, disper-
sion relation (2.55) reduces to [44]

2
2A_ dQ) oy dQ)
dlnr dlnr

(w? — k20%) <w2 — k%

B r2k20%03

— ) — w20 - Qg2 =0. (5.41)

With (5.41), for Qg4 # 0, it seems natural to introduce
the parameter

2

k203 \dinr fa dlnrﬂ (5.42)

instead of A given by (3.14). Then (5.41) becomes

w?2

QkQQZAZ
(w? — k20%) <w2 + k203 Ay — ”7’1) -
— w20 -0y =0.

In the approximation (Q,w) <« k,va and
Ay < k,va, Eq. (5.43) becomes quadratic in w?:

wh + WA AL - 1 E2Q%Q7% = 0.

(5.43)

(5.44)

It can be seen that this equation describes unstable
perturbations at any sign of Ay. Their growth rate is
given by

2= _ 2

v

DO | =

<k2viAd + \/k%iAg + 47‘%29293) . (5.45)

The case Ay < 0 corresponds to the dust-induced rota-
tional instability (DRI). For small g, it follows from
(5.45) that the growth rate of this instability is deter-
mined by [44]

72 = —r?E2Q203% /K0 Ay (5.46)

It seems important that the DRI is driven even for
sufficiently large wave numbers, in particular, for
E*v?% > |dQ?/dInr|.

In the absence of gravitation force, the rotation fre-
quency 2 is equal to the effective dust-induced rota-
tion frequency 4 (see (5.12)). Then dispersion relation
(5.41) reduces to

1 d?  r2k208
(w* = k203) <“2 K - 2 dlndr T d) -
— w02 =0. (547)

For w < (k,va, kva), this gives (cf. (5.44))
w 4_ k2vi+ldln03 w 2_
kva 02 2 dlnr ksva

r2Q?2
3

For a uniform dust-induced rotation frequency,
dQg/dr = 0, this yields

=0.

(5.48)
U4

w?k?

w \* 20
k.va k202 v

- 0. (5.49)

1252



MITP, Tom 134, Bemn. 6 (12), 2008

3

The Velikhov and anti-Velikhov effects ...

It can be seen that the two roots of this dispersion rela-
tion are imaginary, and hence w?> = —v2, where 7 is the
growth /decay rate. These roots are given by (cf. (5.45))

2 2,4\ 2 2,4
v k2v% kE2v%
k2 \/Tm?l”rf“r < 293) 202

z

(5.50)

They are relevant to the simplest case of the
above-mentioned DRI. In the long-wavelength limit
kv < Qg, it hence follows that

v = k2rvalQal. (5.51)

In the opposite short-wavelength limit kvy > Qg
Eq. (5.50) leads to (cf. (5.46))
v = k22l joi k2 (5.52)

Therefore, differential plasma rotation is not needed for
appearance of the DRI.

6. DISCUSSION

The present paper shows that the MRI properties
are in general different in astrophysical and laboratory
cases because the respective equilibrium conditions are
different. In the simplest astrophysical situation, the
rotation is caused by the gravitation force, but a posi-
tive plasma pressure gradient is required for producing
a similar laboratory equilibrium. Therefore, these two
cases must be distinguished in the MRI theory.

We have derived the mode equation describing
perturbations in a one-fluid rotating plasma cylinder
immersed in a parallel uniform magnetic field (see
Eq. (2.50)). This equation is expressed in terms of the
primary canonical parameters D, C, Cs, and C5 given
by (2.40)—(2.42), and (2.48), and the secondary canon-
ical parameters A, a, and b (see (2.51)—(2.53)). Using
this equation, we obtained the canonical local disper-
sion relation (2.55).

The parameter a contains the term involving
dQ? /dr, which describes the Velikhov effect as well as
the effects of the pressure and density gradients. The
most important feature of the parameter b is that it
involves the derivative (pj/rpo)’, which describes the
anti-Velikhov effect in laboratory plasma. The param-
eter b also contains the terms proportional to the pres-
sure and density gradients, which contribute to the
MRI drive, and the terms nonvanishing for m # 0,
which are important for studying the nonaxisymmetric
MRI in both astrophysical and laboratory conditions.
For axisymmetric perturbations in the simplest astro-
physical plasma, we obtain zero b (see (3.9)).

The axisymmetric perturbations in the simplest as-
trophysical and laboratory plasmas are described by
the respective dispersion relations (3.11) and (3.21).
They accordingly lead to instability boundaries given
by (1.1) and (3.25). Equation (3.25) includes three
mechanisms of the MRI drive. These mechanisms are
shown explicitly in (3.31).

The axisymmetric MRI in the simple astrophysical
plasma, in both high-3 and low-/ cases, can be charac-
terized by the dimensionless parameter A introduced
in [5] (see (3.14)). In contrast, the laboratory high-
B plasma is described by the parameter A’ defined
by (3.22).

We have shown that description of MRI within the
collisionless plasma model requires calculation of the
primary canonical parameters D, Cy, Cy, Cs, and Cs.
They are given by (4.25)—(4.29). With these parame-
ters, we obtain canonical mode equation (4.31) with the
secondary canonical parameter A expressed in terms of
the above quantities. In turn, A is a sum of local and
differential parts expressed in terms of the secondary
canonical parameters a and b. The parameter a rep-
resents the main driving mechanism of MRI, the Ve-
likhov effect, related to the derivative dQ?/dInr. Be-
sides, it includes two additional driving mechanisms,
the perpendicular plasma pressure gradient squared
and the product of the pressure and density gradients
(see (3.15)). It turns out that the same effects but
with the opposite sign are contained in the parameter
b, which can be called “the anti-driving term”. In partic-
ular, b includes the anti-Velikhov effect, which weakens
or can completely suppress the dQ?/dInr drive.

Comparing the obtained kinetic canonical mode
equation with the one-fluid equation presented in
Sec. 2, we see that in contrast to the one-fluid model
dealing with the canonical parameters D, C, Cy, and
C3, the kinetics contains the additional canonical pa-
rameter C # C).

The parameter A is crucial for the problem con-
sidered because it includes all the driving mechanisms
of MRI. We have analyzed them for the axisymmetric
modes in astrophysical and laboratory plasmas. It is
shown that the axisymmetric MRI in the astrophysical
plasma behaves the same as predicted by the electro-
dynamic approach [5]. Then, with the mechanisms due
to the plasma inhomogeneity (i. e., without the plasma
pressure anisotropy effects), the only reason for this
instability can be the Velikhov effect [1, 3].

For laboratory plasma, the axisymmetric modes are
described by dispersion relation (4.50). The Velikhov
effect is absent in this dispersion relation. Instead, the
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effect of squared plasma pressure gradient is demon-
strated.

According to our analysis, in the laboratory plasma
with isotropic pressure, a pressure-gradient-driven MRI
can occur. There are two varieties of this instability
characterized by dispersion relations (4.53) and (4.55).

We have elaborated a mathematical technique to
analyze the MRI in a dusty plasma in the approxima-
tion of immobile dust grains. A basis of our analysis
is the plasma equation of motion in (5.8). This equa-
tion differs from the standard one describing the pure
plasma by the presence of the electric field. This field
modifies the equilibrium plasma rotation (see (5.10))
and influences the perturbations (see (5.17)—(5.19)).
Both these effects lead to modification of the primary
canonical parameters D, C, Cy, and C3 (see (5.30) and
(5.33)). We have derived the canonical mode equation
in the presence of dust and the local dispersion relation.

We have restricted our analysis to only the local
modes, assuming them to be axisymmetric. The non-
local modes and the nonaxisymmetric variety of the
local modes have been studied in Refs. [48] and [49],
respectively.

As a whole, we have advanced the MRI theory to-
wards more complete understanding of the relevant
phenomena and indicated a new, modern trend in this
theory. The present paper gives a rather broad basis
for further theoretical study of MRI in astrophysical
and laboratory plasmas.

In addition to the unified MHD theory of MRI and
related instabilities in a rotating plasma, it seems inter-
esting to elaborate the unified electromagnetic theory
of such instabilities. This was the topic of Ref. [50].

According to [16], the MRI and related instabilities
in the kinetic plasma model are important, in partic-
ular, for understanding the mechanisms of the radio
and X-ray source Sagitarius A* in our Galaxy. The
one-fluid and kinetic instabilities also seem relevant to
laboratory experiments aimed at reproducing the as-
trophysical instabilities [6, 51].

In the present paper, both the one-fluid and kinetic
regimes are considered for the magnetized plasma with
the ion cyclotron frequency larger than the oscillation
frequency and the plasma rotation frequency. A weak
magnetization implies the so-called Hall regime, which
was broadly analyzed in astrophysics [52-63] within
both the MHD and electrodynamic approaches.

According to Ref. [64], the electron inertia should in
some cases be allowed in astrophysics. The electrody-
namic theory of axisymmetric modes with the electron
inertia has been developed in Refs. [63, 65].

We have restricted ourselves to the linear approx-

imation. It seems that inclusion of the three-wave
interaction [66] and the nonlinear zonal flow genera-
tion [67] may be an important generalization of our

theory.
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