О ВЫНУЖДЕННОМ ЧЕРЕНКОВСКОМ ИЗЛУЧЕНИИ В ГАЗОВОЙ ДИНАМИКЕ

М. В. Кузелев^{*}, А. А. Рухадзе^{**}

Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 15 мая 2008 г.

Развита линейная теория вынужденного черенковского излучения плоского и цилиндрического сверхзвуковых газовых потоков в окружающем газе. Показана аналогия черенковского излучения в газовой динамике с вынужденным черенковским излучением электромагнитных волн пучком заряженных частиц в среде.

PACS: 41.60.Bq, 52.25.Os

1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Вынужденное черенковское излучение сверхзвукового потока в газовой динамике было рассмотрено методом дисперсионного уравнения в работах [1,2] в связи с анализом неустойчивости Кельвина – Гельмгольца сверхзвукового тангенциального разрыва [3]. В свою очередь, неустойчивость сверхзвукового разрыва в газе с учетом его сжимаемости впервые была рассмотрена Л. Д. Ландау в 1944 г. в работе [4] (см. также [3, § 84]), где было показано, что в одномерном случае при скорости разрыва

$$u > u_{cr} = 2\sqrt{2} c_0, \tag{1.1}$$

где c_0 — скорость звука, неустойчивость тангенциального разрыва стабилизируется. Вместе с тем, в работе [3] была рассмотрена задача отражения звука от поверхности стабилизированного сверхзвукового разрыва (см. § 84, задача 2) и показано, что амплитуда отраженной волны больше, чем амплитуда падающей волны, что обусловлено излучением звука сверхзвуковой поверхностью разрыва. Данное излучение является вынужденным (оно индуцируется падающей на поверхность разрыва звуковой волной) и указывает на возможность развития в газе со сверхзвуковым тангенциальным разрывом излучательной неустойчивости, обусловленной вынужденным черенковским излучением звуковых волн в покоящейся области газа. Исследованию этой газодинамической неустойчивости, а также ее электродинамических аналогов, и посвящена настоящая работа.

Следует отметить, что спонтанного излучения звука, подобного спонтанному излучению заряда в электродинамике, в газовой динамике нет. При сверхзвуковом движении тела в газе излучает газовый поток, создаваемый движущимся телом. Как будет показано ниже, излучение сверхзвукового потока является излучением вынужденным. Поэтому в настоящей работе мы рассматриваем вынужденное черенковское излучение в газовой динамике в постановке, наиболее близкой к задаче вынужденного черенковского излучения пучком заряженных частиц в электродинамике плазмы и плазменной СВЧ-электронике [5, 6]. При этом наиболее адекватным оказывается метод дисперсионного уравнения [6].

Рассмотрим некоторый канал — акустический волновод (плоский или цилиндрический) с твердыми стенками, заполненный газом. Пусть вдоль канала, параллельно оси z, в газе создан поперечно-ограниченный однородный газовый поток, имеющий скорость u. Для простоты считаем поток газа и «основной» газ одинаковыми по плотности и температуре (скачок терпит только скорость газа, направленная по оси z). Возмущения в газе зададим в виде волн, бегущих вдоль канала, т. е.

$$f(\mathbf{r}_{\perp}) \exp(-i\omega t + ik_z z), \qquad (1.2)$$

^{*}E-mail: kuzelev@mail.ru

^{**}E-mail: rukh@fpl.gpi.ru

где \mathbf{r}_{\perp} — координата в поперечном сечении газового канала.

Запишем следующие линеаризованные уравнения газовой динамики для возмущений плотности ρ , скорости **v** и давления *p* в газе:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla (\rho_0 \mathbf{v} + \rho \mathbf{u}_0) &= 0, \\ \frac{\partial \mathbf{v}}{\partial t} + (u_0 \nabla) \mathbf{v} &= -\frac{1}{\rho_0} \nabla p, \quad p = c_0^2 \rho, \end{aligned}$$
(1.3)

где скорость звука c_0 считается постоянной, так же как и равновесные плотность ρ_0 и давление p_0 , а $\mathbf{u}_0 = \{0, 0, u_0(\mathbf{r}_\perp)\}$ — скорость газа вдоль оси z, причем

$$u_0(\mathbf{r}_{\perp}) = \begin{cases} 0, & \mathbf{r}_{\perp} \notin G_0, \\ u, & \mathbf{r}_{\perp} \in G_0, \end{cases}$$
(1.4)

где G_0 — область поперечного сечения канала, в которой создан газовый поток.

С учетом зависимости (1.2) система (1.3) сводится к одному уравнению:

$$\Delta_{\perp} p - \left(k_z^2 - \frac{\left[\omega - k_z u_0(\mathbf{r}_{\perp})\right]^2}{c_0^2}\right) p = 0, \qquad (1.5)$$

где Δ_{\perp} — поперечная часть оператора Лапласа.

Уравнение (1.5) дополняется граничными условиями, которые также следуют из системы (1.3):

$$\{p\}_{\Gamma_0} = 0, \quad \left\{ \frac{1}{\left[\omega - k_z u_0(\mathbf{r}_\perp)\right]^2} \frac{dp}{dn_\perp} \right\}_{\Gamma_0} = 0, \quad (1.6)$$
$$\frac{dp}{dn_\perp} \bigg|_{\Gamma} = 0,$$

где Г — граница газового канала, Γ_0 — граница области газового потока G_0 , а производные функции *р* берутся по нормалям к границам Γ_0 и Г. Дальнейшая задача состоит в нахождении собственных частот газового канала $\omega(k_z)$ и условия неустойчивости, когда Im $\omega > 0$.

2. СЛУЧАЙ ПЛОСКОГО ГАЗОВОГО КАНАЛА

Начнем рассмотрение со случая плоского газового канала: газ заключен между твердыми поверхностями $x = \pm a$, а газовый поток создан в области $-\Delta < x < \Delta$, причем $\Delta \ll a$. Из симметрии канала относительно плоскости x = 0 следует, что возмущения газа распадаются на четные (давление — четная функция x) и нечетные (давление — нечетная функция x). Поэтому решение уравнения (1.5) в различных областях поперечного сечения газового канала при x > 0 следует искать в виде

$$p(x) = \begin{cases} A \begin{cases} \operatorname{sh}(\kappa_1 x) - \operatorname{heeethag Bojha,} \\ \operatorname{ch}(\kappa_1 x) - \operatorname{vethag Bojha,} \\ B \operatorname{ch}[\kappa_2(a-x)], \end{cases} & 0 < x < \Delta, \end{cases}$$
(2.1)

где

$$\kappa_1^2 = k_z^2 - \frac{(\omega - k_z u)^2}{c_0^2}, \quad \kappa_2^2 = k_z^2 - \frac{\omega^2}{c_0^2}.$$
(2.2)

Решение (2.1) удовлетворяет последнему граничному условию (1.6). Подставляя выражение (2.1) в первые два условия (1.6) и исключая постоянные A и B, приходим к следующему дисперсионному уравнению:

$$\frac{1}{(\omega - k_z u)^2} \kappa_1 \operatorname{Hth}(\kappa_1 \Delta) + \frac{1}{\omega^2} \kappa_2 \operatorname{th}[\kappa_2 (a - \Delta)] = 0. \quad (2.3)$$

Здесь $\operatorname{Hth}(\kappa_1 \Delta) = \operatorname{cth}(\kappa_1 \Delta)$ в случае нечетной волны, $\operatorname{Hth}(\kappa_1 \Delta) = \operatorname{th}(\kappa_1 \Delta)$ в случае четной волны.

Прежде чем приступить к анализу уравнения (2.3) в интересующем нас аспекте, приведем его решение для случая несжимаемой жидкости $(c_0 \to \infty)$, а именно

$$\omega = \frac{k_z u}{1 \pm i \sqrt{\operatorname{Hth}(\kappa_z \Delta) \operatorname{cth}[\kappa_z(a-\Delta)]}} \,. \tag{2.4}$$

Мнимая часть частоты (2.4) дает инкремент развития неустойчивости тангенциального разрыва. В частности, в коротковолновом пределе $k_z \Delta \gg 1$, $k_z (a - \Delta) \gg 1$ из выражения (2.4) получается известная формула для комплексной частоты $\omega = (1 \pm i)k_z u/2$ при неустойчивости тангенциального разрыва в безграничной несжимаемой жидкости

со скачком скорости u [3]. Решения вида (2.4) у дисперсионного уравнения (2.3) имеются при любом соотношении между скоростью потока u и скоростью звука c_0 . Далее нас будут интересовать другие решения, описывающие неустойчивость, отличную от неустойчивости тангенциального разрыва скорости газа.

Перейдем теперь к анализу собственно уравнения (2.3). Используя малость толщины газового потока, предположим, что имеют место неравенства

$$k_z \Delta \ll 1, \quad \Delta |\omega| / c_0 \ll 1.$$
 (2.5)

Тогда дисперсионное уравнение (2.3) упрощается. Для нечетной волны имеем

$$\operatorname{ch}(\kappa_2 a) + \Delta \kappa_2 \frac{(\omega - k_z u)^2}{\omega^2} \operatorname{sh}(\kappa_2 a) = 0, \qquad (2.6)$$

а в случае четной волны дисперсионное уравнение оказывается следующим:

$$\operatorname{sh}(\kappa_2 a) + \Delta \frac{\kappa_1^2}{\kappa_2} \frac{\omega^2}{(\omega - k_z u)} \operatorname{ch}(\kappa_2 a) = 0.$$
 (2.7)

При $\Delta = 0$, т. е. в отсутствие газового потока, дисперсионные уравнения (2.6) и (2.7) сводятся к виду

$$ch(\kappa_2 a) = 0, \quad sh(\kappa_2 a) = 0.$$
 (2.8)

Отсюда находим спектры частот звуковых волн, распространяющихся вдоль оси плоского акустического волновода, ограниченного твердыми поверхностями:

$$\omega \equiv \omega_0 = \pm c_0 \sqrt{k_z^2 + \left(\frac{\pi n}{2a}\right)^2}, \qquad (2.9)$$

где $n = 1, 2, 3, \ldots$ Формула (2.9) объединяет как нечетные по координате x $(n = 1, 3, \ldots)$, так и четные по x $(n = 2, 4, \ldots)$ волны акустического волновода.

Учтем теперь наличие газового потока, т.е. $\Delta \neq 0$, но $\Delta \ll a$. В случае уравнения (2.6) к вещественным частотам (2.9) добавляется комплексная частота, обусловленная неустойчивостью тангенциального разрыва в акустическом волноводе с потоком газа относительно нечетных возмущений. Так, при $|\kappa_2 a| \ll 1$ из уравнения (2.6) имеем

$$\omega = \pm i k_z u \sqrt{k_z^2 \Delta a} \,. \tag{2.10}$$

Последняя формула, конечно, содержится и в общем выражении (2.4). Других неустойчивостей дисперсионное уравнение (2.6) не описывает. Данный результат обусловлен тем, что возмущение давления в нечетной волне в плоскости x = 0, т.е. непосредственно в газовом потоке, обращается в нуль. Заметим, что неустойчивость с инкрементом (2.10) имеет место независимо от соотношения между скоростями u и c_0 .

Анализ дисперсионного уравнения четных волн (2.7) оказывается более содержательным. Так, помимо частот (2.9) появляются еще следующие частоты $(|\kappa_2 a| \ll 1)$:

$$\omega = k_z u \pm i \sqrt{\frac{\Delta}{a}} \left(1 - \frac{u^2}{c_0^2} \right)^{-1/2} k_z u.$$
 (2.11)

Видно, что при $u < c_0$ одна из частот (2.11) имеет положительную мнимую часть, что означает неустойчивость тангенциального разрыва в акустическом волноводе с потоком газа относительно четных возмущений. При $u > c_0$ данная неустойчивость пропадает (в пределах описания, основанного на приближенном уравнении (2.7)).

Однако при $u > c_0$ у дисперсионного уравнения (2.7) имеются и другие комплексные относительно ω решения, описывающие неустойчивости качественно иного типа. Для нахождения этих решений учтем, что при $\Delta = 0$ частота ω совпадает с $\omega_0(k_z)$, где ω_0 определена в формуле (2.9) при четном n. Кроме того, при малом Δ вклад газового потока в дисперсионное уравнение (2.7) существен только при $\omega \approx k_z u$. Поэтому решение дисперсионного уравнения можно искать в виде

$$\omega = \omega_0(k_z) + \delta\omega = k_z u + \delta\omega. \tag{2.12}$$

Тогда, подставляя (2.12) в дисперсионное уравнение (2.7), находим следующее выражение для комплексного инкремента $\delta\omega$ развития неустойчивости неравновесного акустического волновода:

$$\delta\omega = \frac{-1 + i\sqrt{3}}{2} \left(\frac{\Delta}{a} \frac{k_z^2 c_0^2}{\omega_0^2}\right)^{1/3} \omega_0, \qquad (2.13)$$

где величина ω_0 определена в формуле (2.9) при $n=2,4,\ldots$

Неустойчивость с инкрементом (2.13) развивается на каждой четной по x поперечной моде неравновесного акустического волновода. Данная неустойчивость обусловлена черенковским излучением сверхзвуковым газовым потоком звуковых волн в газе. Можно показать, что инкремент, определяемый формулой (2.13), при $\Delta \ll a$ является максимально возможным [5, 6]. Как видно из выражения (2.12), неустойчивость с инкрементом (2.13) развивается при выполнении условия резонанса

$$\omega_0(k_z) = k_z u \to \omega_0 \equiv \omega_{0n} = \frac{\pi n}{2a} c_0 \frac{u}{\sqrt{u^2 - c_0^2}}, \quad (2.14)$$

представляющего собой известное условие излучения Вавилова–Черенкова [7]. Здесь ω_{0n} являются частотами излучаемых волн.

3. СЛУЧАЙ ЦИЛИНДРИЧЕСКОГО ГАЗОВОГО КАНАЛА

Рассмотрим теперь цилиндрический канал радиуса R с твердыми стенками, заполненный газом, вблизи оси которого создан цилиндрический газовый поток со скоростью u и радиусом $r_0 \ll R$. Исследуем азимутально-симметричные возмущения газа в канале, в связи с чем в уравнении (1.5) положим

$$\Delta_{\perp} = \frac{1}{r} \, \frac{d}{dr} \, r \frac{d}{dr}$$

где r — расстояние от оси канала. Ограниченное в нуле решение уравнения (1.5) имеет вид

$$p(r) = \begin{cases} C_1 J_0(\sigma_1 r), & r \le r_0, \\ C_2 J_0(\sigma_2 r) + C_3 N_0(\sigma_2 r), & r_0 < r < R, \end{cases}$$
(3.1)

где $\sigma_{1,2}^2 = -\kappa_{1,2}^2$, $J_0(x)$ и $N_0(x)$ — функции Бесселя и Неймана. Подставляя (3.1) в граничные условия (1.6) и исключая постоянные $C_{1,2,3}$, получим следующее дисперсионное уравнение:

$$\frac{1}{(\omega - k_z u)^2} \sigma_1 \frac{J_1(\sigma_1 r_0)}{J_0(\sigma_1 r_0)} - \frac{1}{\omega^2} \sigma_2 \times \\ \times \frac{J_1(\sigma_2 r_0) N_1(\sigma_2 R) - N_1(\sigma_2 r_0) J_1(\sigma_2 R)}{J_0(\sigma_2 r_0) N_1(\sigma_2 R) - N_0(\sigma_2 r_0) J_1(\sigma_2 R)} = 0.$$
(3.2)

Это уравнение имеет такую же структуру, как и дисперсионное уравнение (2.3). При выполнении неравенства $|\sigma_1 r_0| \ll 1$ уравнение (3.2) сводится к следующему:

$$\frac{\omega^2}{(\omega - k_z u)^2} \frac{\sigma_1^2 r_0}{\sigma_2} - \frac{2 J_1(\sigma_2 r_0) N_1(\sigma_2 R) - N_1(\sigma_2 r_0) J_1(\sigma_2 R)}{J_0(\sigma_2 r_0) N_1(\sigma_2 R) - N_0(\sigma_2 r_0) J_1(\sigma_2 R)} = 0. \quad (3.3)$$

Учитывая поведение функций $N_0(x)$ и $N_1(x)$ в нуле, видим, что при $r_0 = 0$ уравнение (3.3) сводится к соотношению $J_1(\sigma_2 R) = 0$, являющемуся дисперсионным уравнением для дискретных частот звуковых волн акустического цилиндрического волновода. Эти частоты даются формулами

$$\omega \equiv \omega_0 = \pm c_0 \sqrt{k_z^2 + \frac{\mu_{1s}^2}{R^2}}, \quad s = 1, 2, \dots, \quad (3.4)$$

где μ_{1s} — нули функции $J_1(x)$.

В следующем порядке по параметру r_0/R вблизи к какой-либо из собственных частот (3.4) дисперсионное уравнение (3.3) преобразуется к виду, аналогичному уравнению четных волн (2.7),

$$J_1(\sigma_2 R) = \frac{\omega^2}{(\omega - k_z u)^2} S_0 \sigma_1^2 \frac{1}{4} N_1(\sigma_2 R).$$
(3.5)

Здесь $S_0 = \pi r_0^2$ — площадь поперечного сечения приосевого газового потока. Подставляя решение (2.12) в уравнение (3.5), находим следующее выражение для комплексного инкремента нарастания звуковых волн при излучательной черенковской неустойчивости сверхзвукового газового потока в акустическом цилиндрическом волноводе:

$$\delta\omega = \frac{-1 + i\sqrt{3}}{2} \left(\alpha \frac{S_0}{4R^2} \frac{k_z^2 c_0^2}{\omega_{0s}^2} \right)^{1/3} \omega_{0s}, \qquad (3.6)$$

где $\alpha = |N_1(\mu_{1s})/J_0(\mu_{1s})| \approx 1$. Сходство инкрементов (3.6) и (2.13) очевидно.

4. ЭЛЕКТРОДИНАМИЧЕСКИЕ АНАЛОГИИ

В рассмотренных выше плоском и цилиндрическом случаях вынужденное черенковское излучение звуковых волн сверхзвуковым газовым потоком является резонансной неустойчивостью, описываемой дисперсионным уравнением вида

$$D(\omega, k_z) = G(\omega, k_z) \frac{\omega_e^2 \gamma^{-3}}{(\omega - k_z u)^2}, \qquad (4.1)$$

где $D(\omega, k_z)$ — дисперсионная функция, нули которой определяют собственные частоты излучаемых звуковых волн, а $G(\omega, k_z)$ — некоторая функция, не обращающаяся в нуль одновременно с D.

Впервые дисперсионные уравнения типа (4.1) были получены и исследованы в электродинамике плазмы и в плазменной СВЧ-электронике в связи с проблемами вынужденного излучения электронного пучка в плазме и пучково-плазменных неустойчивостей (см., например, [5, 6]). Выясним аналогию черенковского излучения звуковых волн в газе и черенковского излучения звуковых волн в газе и черенковского излучения электромагнитных волн в среде, например, в плазме. Рассмотрим круглый металлический волновод радиуса R, пронизываемый вдоль оси z сплошным цилиндрическим электронным пучком радиусом $r_e \ll R$, в области $r_e < r < R$ заполненный однородной средой, тензор диэлектрической проницаемости которой имеет вид

$$\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{\perp}(\omega) & 0 & 0\\ 0 & \varepsilon_{\perp}(\omega) & 0\\ 0 & 0 & \varepsilon_{\parallel}(\omega) \end{pmatrix}, \qquad (4.2)$$
$$i, j = r, \varphi, z,$$

где r, φ, z — цилиндрические координаты.

Для взаимодействия с пучком интерес представляют только волны с ненулевой продольной составляющей электрического поля, т.е. с $\mathbf{E} \cdot \mathbf{u} \neq 0$, чтобы работа поля над электроном отличалась от нуля. Исходя из этого предположим, что в волноводе возбуждаются азимутально-симметричные волны *E*-типа. Известно [6], что у таких волн отличны от нуля составляющие электромагнитного поля E_z , E_r , B_{φ} , причем

$$E_z(0) \neq 0, \quad E_r(0) = 0, \quad B_\varphi(0) = 0.$$
 (4.3)

Согласно формуле (4.3), вблизи оси волновода основным является продольное электрическое поле. Поэтому при $r_e \ll R$ поперечными компонентами поля в области пучка $0 < r < r_e$ можно пренебречь и диэлектрическую проницаемость пучка задать в форме (4.2) с $\varepsilon_{\perp} = 1$ и

$$\varepsilon_{\parallel}(\omega) \equiv \varepsilon_e(\omega, k_z) = 1 - \frac{\omega_e^2 \gamma^{-3}}{(\omega - k_z u)^2}, \qquad (4.4)$$

где ω_e — ленгмюровская частота электронов пучка, а $\gamma = (1 - u^2/c^2)^{1/2}$ — релятивистский фактор электрона.

Из уравнений Максвелла с тензором диэлектрической проницаемости (4.2) следует, что составляющая E_z азимутально-симметричной волны E-типа удовлетворяет уравнению

$$\frac{1}{r}\frac{d}{dr}r\frac{dE_z}{dr} - \kappa_{\perp}^2\frac{\varepsilon_{\parallel}}{\varepsilon_{\perp}}E_z = 0, \quad \kappa_{\perp}^2 = k_z^2 - \frac{\omega^2}{c^2}\varepsilon_{\perp}, \quad (4.5)$$

где *с* — скорость света, а другие составляющие электромагнитного поля вычисляются по формулам

$$E_r = -i\frac{k_z}{\kappa_\perp^2}\frac{dE_z}{dr}, \quad B_\varphi = -i\frac{\omega}{c\kappa_\perp^2}\varepsilon_\perp\frac{dE_z}{dr}.$$
 (4.6)

Согласно формуле (4.5), в области волновода $r_e < r < R$ поле дается выражением

$$E_z = C_1 J_0(\sigma r) + C_2 N_0(\sigma r),$$

$$\sigma = \sqrt{-\kappa_{\perp}^2 \varepsilon_{\parallel} / \varepsilon_{\perp}},$$
(4.7)

а в области пучка с учетом ограниченности поля на оси имеем следующую формулу:

$$E_z = C_3 J_0 \left(\sqrt{-\kappa_0^2 \varepsilon_e} r \right), \quad \kappa_0^2 = k_z^2 - \omega^2 / c^2. \quad (4.8)$$

Дисперсионное уравнение для спектров частот симметричных волн E-типа получается сшиванием решений (4.7) и (4.8) на границе $r = r_e$ и исключением постоянных $C_{1,2,3}$ [6]. При этом используется непрерывность функций E_z и B_{φ} на границе, а также равенство нулю составляющей E_z на проводящей стенке волновода r = R. В случае тонкого пучка, когда выполняются условия

$$|\kappa_0^2|r_e^2 \ll 1, \quad \omega_e^2 S_e = \text{const}, \tag{4.9}$$

дисперсионное уравнение оказывается следующим:

$$\frac{\omega_e^2 \gamma^{-3}}{(\omega - k_z u)^2} S_e = 2\pi r_e \sqrt{-\frac{\varepsilon_{\parallel} \varepsilon_{\perp}}{\kappa_{\perp}^2}} \times \\ \times \frac{J_1(\sigma r_e) N_0(\sigma R) - N_1(\sigma r_e) J_0(\sigma R)}{J_0(\sigma r_e) N_0(\sigma R) - N_0(\sigma r_e) J_0(\sigma R)}.$$
(4.10)

Здесь $S_e = \pi r_e^2$. Электродинамическое уравнение (4.10) является аналогом газодинамического дисперсионного уравнения (3.3). Чтобы проследить аналогию дальше, рассмотрим частные случаи, имеющие и самостоятельный интерес.

В случае волновода, заполненного изотропным диэлектриком, имеем $\varepsilon_{\perp} = \varepsilon_{\parallel} = \varepsilon$, $\sigma = \sqrt{-\kappa_{\perp}^2}$, $\kappa_{\perp}^2 < 0$. Учитывая, что частоты изотропного диэлектрического волновода определяются из уравнения $J_0(\sigma R) = 0$, преобразуем уравнение (4.10) к виду

$$J_0(\sigma R) = \frac{\omega_e^2 \gamma^{-3}}{\varepsilon(\omega)(\omega - k_z u)^2} S_e \kappa_\perp^2 \frac{1}{4} N_0(\sigma R),$$

$$\kappa_\perp^2 = k_z^2 - \frac{\omega^2}{c^2} \varepsilon(\omega).$$
(4.11)

В случае плазменного волновода в сильном внешнем магнитном поле имеем $\varepsilon_{\perp} = 1$, $\varepsilon_{\parallel} = 1 - \omega_p^2/\omega^2$, $\sigma = \sqrt{-\kappa_0^2 \varepsilon_{\parallel}}$, $\kappa_0^2 \varepsilon_{\parallel} < 0$. Поскольку частоты плазменного волновода определяются из уравнения $J_0(\sigma R) = 0$, уравнение (4.10) сводится к следующему:

$$J_0(\sigma R) = \frac{\omega_e^2 \gamma^{-3}}{(\omega - k_z u)^2} S_e \kappa_0^2 \frac{1}{4} N_0(\sigma R).$$
(4.12)

Дисперсионные уравнения (4.11) и (4.12) имеют структуру обобщенного дисперсионного уравнения (4.1). Используя обозначения, принятые в формуле (4.1), решение уравнений (4.11) и (4.12) запишем в виде

$$\omega = \omega_0 + \frac{-1 + i\sqrt{3}}{2} \times \left[G_0 \left(\frac{\partial D_0}{\partial \omega} \right)^{-1} \omega_e^2 \gamma^{-3} \right]^{1/3}.$$
 (4.13)

Здесь $D_0 = D(\omega_0, \omega_0/u), G_0 = G(\omega_0, \omega_0/u),$ а ω_0 — резонансная частота, которая определяется из системы уравнений

$$D(\omega, k_z) = 0, \quad \omega = k_z u. \tag{4.14}$$

Формулы (4.13) и (4.14), очевидно, справедливы и в случае черенковского излучения звуковых волн сверхзвуковым газовым потоком.

Поразительное сходство дисперсионных уравнений (3.5), (4.11) и (4.12) отражает единую волновую природу вынужденного эффекта Вавилова-Черенкова при сверхсветовом (сверхзвуковом) движении источника в среде независимо от вида волн, структуры источника и механизма взаимодействия источника со средой.

ЛИТЕРАТУРА

- В. Г. Кирцхалия, А. А. Рухадзе, Кратк. сообщ. по физике ФИАН, № 4, 50 (2003).
- В. Г. Кирцхалия, А. А. Рухадзе, ЖТФ 57(9), 117 (2007).
- 3. Л. Д. Ландау, Е. М. Лифшиц, Гидродинамика, Наука, Москва (1988).
- 4. Л. Д. Ландау, Е. М. Лифшиц, *Механика сплошных* сред, Физматгиз, Москва (1944).
- 5. М. В. Кузелев, А. А. Рухадзе, Электродинамика плотных электронных пучков в плазме, Наука, Москва (1990).
- М. В. Кузелев, А. А. Рухадзе, П. С. Стрелков, Плазменная релятивистская СВЧ-электроника, Изд-во МГТУ им. Н. Э. Баумана, Москва (2002).
- 7. В. Л. Гинзбург, *Теоретическая физика и астрофизика*, Наука, Москва (1981).