КВАНТОВАЯ ЗАПУТАННОСТЬ В НИТРОЗИЛЬНЫХ КОМПЛЕКСАХ ЖЕЛЕЗА

С. М. Алдошин, Э. Б. Фельдман^{*}, М. А. Юрищев

Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 28 апреля 2008 г.

Показано, что недавние измерения магнитной восприимчивости поликристаллических образцов биядерных нитрозильных комплексов железа [Fe₂(C₃H₃N₂S)₂(NO)₄] (I) и [Fe₂(SC₃H₅N₂)₂(NO)₄] (II) свидетельствуют о существовании в этих соединениях квантово-механической запутанности спиновых степеней свободы. Запутанность E существует ниже температуры T_E , которая по полученным нами оценкам для комплекса I составляет 80–90 K, а для комплекса II равна 110–120 K. Используя для гейзенберговского димера выражение запутанности через магнитную восприимчивость, мы находим температурный ход запутанности комплекса II. Возникнув при температуре T_E , запутанность монотонно возрастает с понижением температуры и при T = 25 K, когда еще мало влияние побочных факторов, достигает в этом комплексе 90-95%.

PACS: 03.67.Mn, 75.10.Jm, 75.50.Xx

1. ВВЕДЕНИЕ

Запутанность является одним из наиболее интригующих феноменов квантовой механики. Примером, где проявляется данное явление, может служить система из двух спинов в состоянии с волновой функцией

$$|\psi\rangle = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2}$$

Эту функцию, описывающую когерентную суперпозицию кубитов, невозможно представить в виде произведения волновых функций отдельных составных частей системы (состояние не сепарабельно). С другой стороны, именно это свойство — свойство запутанности — приводит к тому, что измерение состояния одной частицы позволяет мгновенно редуцировать состояние второй частицы как бы далеко или близко она не находилась от первой.

В настоящее время запутанность и связанные с ней возможности осуществления квантовых вычислений, криптографии, телепортации и т. д. исследуют не только теоретически, но и экспериментально. Более того, сейчас уже есть реальные предпосылки для того чтобы использовать эти уникальные возможности квантовой механики на практике. Литература по данной тематике весьма обширна и разнообразна; укажем для определенности, например, на обзоры и книги [1–5], а также на сайты www.qubit.org и xxx.arxiv.ru.

В последнее время были установлены важные соотношения, позволяющие по измеряемым на опыте таким характеристикам, как корреляционные функции, внутренняя энергия или магнитная восприимчивость, делать предсказания о существовании запутанности в системах [6–9] (см. также обзор [10] и диссертацию [11]).

Эти теоретические результаты открыли возможность находить температуру возникновения запутанности T_E в реальных веществах. Начало было положено в [12], где показано, что в парамагнитных кристаллах Cu(NO₃)₂ · 2.5 H₂O и Cu(NO₃)₂ · 2.5 D₂O температура $T_E \approx 5$ К. В другой совсем недавней работе [13] были предъявлены свидетельства, указывающие на возникновение квантовой запутанности в кристаллах Na₂Cu₅Si₄O₁₄, содержащих цепочки пятиядерных спиновых кластеров меди, при температурах ниже $T_E \approx 200-240$ К.

В предлагаемой работе рассмотрены не так давно синтезированные нитрозильные комплексы железа (НКЖ) I [14] и II [15]. Их физические свойства были изучены различными методами, включая

^{*}E-mail: efeldman@icp.ac.ru

рентгеноструктурный анализ, мессбауэровскую и инфракрасную спектроскопии. Кроме того, (для дальнейшего это особенно важно) с помощью СКВИД-магнитометров для этих НКЖ были получены зависимости магнитных восприимчивостей от температуры [14, 15].

В своей работе мы определяем для названных веществ не только температуру возникновения внутримолекулярной запутанности, но и в случае НКЖ II находим зависимость величины (меры) запутанности от температуры, используя для этого формулу Вуттерса (см. ниже).

Кроме данного Введения, настоящая работа содержит следующий материал. В разд. 2 описано строение и физические характеристики НКЖ. Затем в разд. 3 статьи мы строим модель и даем вывод формул для расчета квантовой запутанности по магнитной восприимчивости. Раздел 4 посвящен обсуждению и интерпретации результатов. В заключительном разд. 5 кратко подведены итоги проделанной работы и сделаны выводы.

2. ДИМЕРНАЯ МАГНИТНАЯ СТРУКТУРА БИЯДЕРНЫХ НКЖ

Нитрозильные комплексы являются носителями монооксида азота NO, который выполняет роль сигнальной молекулы в целом ряде метаболических и физиологических процессов, происходящих в биологических системах и организмах, включая человека. НКЖ были открыты в живых тканях в 1960-е годы [16]. По характерному сигналу ЭПР с g = 2.03они получили название «комплексов 2.03».

В живых клетках НКЖ существуют в моноядерной и биядерной формах, соответственно с одним и двумя ионами железа в молекуле. Природные биядерные НКЖ неустойчивы и их изучение физическими методами крайне ограничено. Начиная с 2000-х годов были разработаны методы синтеза ряда устойчивых искусственных НКЖ, которые позволяют косвенным образом определять (моделировать) характеристики естественных НКЖ, а также открывают возможность для создания препаратов с нужными медико-биологическими и фармакологическими свойствами [17].

Структура интересующих нас биядерных НКЖ имеет вид

где R есть имидазол-2-тиолат (для комплекса I) или имидазолидин-2-тиолат (для комплекса II). Лиганды R представляют собой пятичленные гетероциклы, которые состоят из трех атомов углерода и двух атомов азота, разделенных углеродом.

Данные рентгеноструктурного анализа, мессбауэровской спектроскопии, а также измерений магнитной восприимчивости приводят к следующему [14, 15, 18].

Магнитоактивные центры образованы ионами железа, каждый из которых связан с двумя нитрозильными группами. Спин отдельного центра равен S = 1/2. (Механизм формирования магнитоактивного центра из одного Fe и двух NO-групп на примере моноядерного HKЖ рассмотрен в [19].)

Молекулы имеют центросимметричную структуру, в которой оба атома железа соединены между собой двумя мостиками S–C–N, где C–N является фрагментом гетероцикла R. В результате образуется парамагнитный димер. Взаимодействие в нем подчиняется гейзенберговскому закону и носит антиферромагнитный характер. Расстояние Fe–Fe в комплексе I равно 0.4102 нм, а в комплексе II составляет 0.4030 нм. (Меньшее расстояние способствует увеличению силы взаимодействий в магнитном димере комплекса II.)

Кристаллы обсуждаемых НКЖ имеют слоистую структуру. Внутри слоя между молекулами в одном направлении существуют межмолекулярные контакты атома серы и фрагмента H–N в кольце лиганда R. Наличие таких контактов если и ведет к существованию междимерных взаимодействий, то они слабы из-за большой протяженности этих суперобменных связей. Молекулы из разных слоев ориентированы друг к другу NO-группами. Слои связаны между собой лишь электростатическими силами, что тоже способствует изоляции магнитных димеров друг от друга.

В результате выполненные исследования позволяют заключить, что, во-первых, магнитная структура биядерных НКЖ I и II представляет собой достаточно уединенные димеры. Данное обстоятельство выделяет обсуждаемые вещества среди других материалов, проявляющих квазидимерные магнитные свойства (см. обзоры [20, 21] и имеющиеся там ссылки). Во-вторых, измерения магнитной восприимчивости свидетельствуют о том, что комплексы I и II антиферромагнитны и взаимодействия в димерах являются гейзенберговскими.

3. МОДЕЛЬ И РАСЧЕТ ЗАПУТАННОСТИ

Гамильтониан спинового магнитного димера Гейзенберга имеет вид

$$\mathcal{H} = -\frac{1}{2} J\sigma_1 \sigma_2. \tag{1}$$

В этом равенстве J — константа обменного взаимодействия, $\sigma_1 = \sigma \otimes e$ и $\sigma_2 = e \otimes \sigma$, причем e — единичная матрица размером 2×2 , а $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ вектор матриц Паули

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(2)

Компоненты магнитного момента димера равны

$$M_{\nu} = \frac{1}{2} g_{\nu} \mu_B (\sigma_1^{\nu} + \sigma_2^{\nu}), \quad \nu = x, y, z.$$
 (3)

Здесь g_{ν} — компоненты g-фактора и μ_B — магнетон Бора.

Магнитная восприимчивость моля димеров (1)-(3) удовлетворяет уравнению Блини-Бауэрса [22, 23]

$$\chi(T) = \frac{2N_A g^2 \mu_B^2}{k_B T \left(3 + \exp(-2J/k_B T)\right)},$$
 (4)

где N_A — число Авогадро, k_B — постоянная Больцмана и T — температура; g — соответствующая компонента g-фактора, если измерения проводятся на монокристалле, либо

$$g^2 = (g_x^2 + g_y^2 + g_z^2)/3 \tag{5}$$

при выполнении измерений на поликристаллическом образце. Уравнение Блини–Бауэрса нам будет нужно при установлении связи запутанности с магнитной восприимчивостью.

Запутанность по формуле

$$E = -\frac{1 + \sqrt{1 - C^2}}{2} \log_2 \left(\frac{1 + \sqrt{1 - C^2}}{2}\right) - \frac{1 - \sqrt{1 - C^2}}{2} \log_2 \left(\frac{1 - \sqrt{1 - C^2}}{2}\right)$$
(6)

выражается через так называемую согласованность *С* [24–26]. Для ее расчета нужно знать матрицу плотности.

Матрица плотности системы в состоянии теплового равновесия имеет гиббсовский вид

$$\rho = \frac{1}{Z} \exp\left(-\frac{\mathcal{H}}{k_B T}\right),\tag{7}$$

где *Z* — статистическая сумма

$$Z = \operatorname{Tr} \exp\left(-\frac{\mathcal{H}}{k_B T}\right).$$
(8)

Легко проверить, что

$$\sigma_1 \cdot \sigma_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (9)

Как результат, матрица плотности гейзенберговского димера (1) равна

$$\rho(T) = \frac{1}{Z} \begin{pmatrix} e^{K} & & \\ & e^{-K} \operatorname{ch} 2K & e^{-K} \operatorname{sh} 2K \\ & & e^{-K} \operatorname{sh} 2K & e^{-K} \operatorname{ch} 2K \\ & & & e^{K} \end{pmatrix}, \quad (10)$$

где

$$Z = 3 e^{K} + e^{-3K} \tag{11}$$

и $K = J/2k_BT$.

В случае матрицы плотности, обладающей блочно-диагональной структурой вида

$$\rho = \begin{pmatrix} u & & \\ & x_1 & w & \\ & w^* & x_2 & \\ & & & v \end{pmatrix},$$
(12)

для расчета согласованности служит простая формула [27] (см. также [4, с. 49, 55])

$$C = 2 \max\{|w| - \sqrt{uv}, 0\}.$$
 (13)

Наша матрица плотности (10) как раз имеет форму (12).

Выражение (13) является частным случаем известной формулы Вуттерса [25, 26] (см. также [4, с. 48]), которая позволяет рассчитывать парную согласованность между частицами со спинами S = 1/2

в системе с матрицей плотности ρ произвольной структуры.

Используя соотношения (10)–(13), нетрудно найти, что в димере (1) с ферромагнитным взаимодействием, когда $J \ge 0$, согласованность тождественно равна нулю. В силу (6) запутанность тоже отсутствует при всех температурах: $E \equiv 0 \forall T$.

При антиферромагнитном же характере связи в гейзенберговском димере (J < 0) согласованность, опять в соответствии с уравнениями (10)–(13), равна [28, 29] (см. также [4, с. 50])

$$C(T) = \frac{1 - 3\exp(-2|J|/k_B T)}{1 + 3\exp(-2|J|/k_B T)}, \quad T < T_E,$$

$$C(T) = 0, \quad T \ge T_E,$$
(14)

где

$$T_E = \frac{2}{\ln 3} |J| / k_B.$$
 (15)

Отметим, что формула Вуттерса, из которой получено выражение (14), строго доказана непосредственно из определения запутанности через информационную энтропию фон Неймана [26]. В этом ее преимущество по сравнению с другими, формальными мерами запутанности (см. [10] и имеющиеся там ссылки). Отметим также, что наличие в системе запутанности по Вуттерсу может вести к нарушению неравенств Белла [29].

Принимая во внимание уравнение Блини–Бауэрса (4), из (14) получаем следующее выражение для согласованности антиферромагнитного димера Гейзенберга (1) при температурах $T < T_E$:

$$C(T) = 1 - \frac{3}{2} \frac{\chi(T)}{\chi^{Curie}(T)},$$
 (16)

где

$$\chi^{Curie}(T) = \frac{N_A g^2 \mu_B^2}{2k_B T} \tag{17}$$

— закон Кюри для двух спинов с S = 1/2 (уравнение Блини – Бауэрса (4) при высоких температурах, когда можно считать J = 0). Эти соотношения вместе с формулой (6) позволяют определять квантовую запутанность по измеряемой на опыте магнитной восприимчивости системы гейзенберговских димеров.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Магнитная восприимчивость антиферромагнитного димера (4) как функция температуры имеет максимум с координатами

$$\frac{k_B T_{max}^{\chi}}{|J|} = \frac{2}{1 + W(3/e)} = 1.2472\dots, \qquad (18)$$

$$\frac{|J|\chi_{max}}{N_A g^2 \mu_B^2} = \frac{1}{3} W(3/e) = 0.2011\dots$$
 (19)

Здесь $W(x) - функция Ламберта [30], определяемая соотношением <math>We^W = x$. Эта функция под именем Lambert W(x) включена в пакет Maple.

Из (15) и (18) находим, что

$$\frac{T_E}{T_{max}^{\chi}} = \frac{1 + W(3/e)}{\ln 3} = 1.4596\dots$$
 (20)

Таким образом, квантовая запутанность спиновых степеней свободы возникает при температуре, почти в полтора раза превышающей температуру максимума магнитной восприимчивости. Это обстоятельство благоприятствует нахождению T_E и E(T) из экспериментальных данных.

В соответствии с (16), запутанность в димере (1) существует, когда его восприимчивость

$$\chi(T) < \frac{2}{3} \chi^{Curie}(T).$$
(21)

Данное неравенство находится в полном согласии с более общим критерием несепарабельности — условием возникновения запутанности в системе из Nчастиц со спинами S [9, 11]:

$$\chi_p(T) < \frac{Ng^2 \mu_B^2 S}{3k_B T},\tag{22}$$

где χ_p — усредненная по пространственным направлениям восприимчивость (восприимчивость поликристаллического материала).

Уравнение (22) мы представим в виде

$$\chi_p(T) < \frac{1}{1+S} \chi^{Curie}(T), \qquad (23)$$

где

$$\chi^{Curie}(T) = \frac{nN_A g^2 \mu_B^2 S(S+1)}{3k_B T}$$
(24)

— закон Кюри для моля n-ядерных кластеров, состоящих из спинов величины S. (В димере n = 2.)

Правые части неравенств (21) и (23) представляют собой деформированные законы Кюри. Именно благодаря таким деформациям (из-за дополнительных ренормировочных коэффициентов) становится возможным определение запутанности в системе.

Отметим, что критерий (23), так же как и (21), позволяет находить только лишь температуру T_E , но не саму величину запутанности. Однако для димерных соединений, и в этом их преимущество, мы можем как определять T_E , так и воспроизводить с

Рис.1. Зависимости магнитной восприимчивости (•) и эффективного магнитного момента (•) для НКЖ І. Данный рисунок взят из статьи [14] и дополнен нами, как объяснено в тексте, штриховыми линиями 1 и 2

помощью соотношений (6), (16) и (17) температурный ход запутанности различных веществ, используя для этого экспериментальные данные по восприимчивости.

Обратимся к экспериментальному материалу. На рис. 1 показано поведение начальной магнитной восприимчивости комплекса I [14]. Реальное вещество с НКЖ I содержит небольшое количество примеси (порядка 2.3 % [14]), вклад от которой подчиняется закону Кюри–Вейсса. Этот вклад велик при $T \to 0$ (на рис. 1 он проявляется в виде подъема воспримчивости вблизи нуля температуры). Однако при $T > T_{max}^{\chi}$ вклад примеси относительно невелик и мы будем пренебрегать им при оценках температуры T_E для НКЖ I.

Штриховой линией 1 на рис. 1 мы нанесли деформированную гиперболу Кюри (правая часть неравенства (21)) с учетом того, что в НКЖ g = 2 [14]. На рисунке видно, что эта гипербола пересекает экспериментальные точки (темные кружки) при $T_E \approx 80$ К (по оси абсцисс эта температура отмечена удлиненной риской). С другой стороны, как указано в работе [18], магнитная восприимчивость обсуждаемого НКЖ I проходит через максимум при $T_{max}^{\chi} = 63$ К. Следовательно, в соответствии с формулой (20) температура запутанности должна быть $T_E \approx 90$ К. Учитывая обе полученные оценки, заключаем, что запутанность в комплексе I возникает при температурах T < 80–90 К.

В магнетохимии принято наряду с кривыми $\chi(T)$ (а часто даже вместо них) изображать те же самые экспериментальные данные в виде зависимостей эф-

Рис.2. Поведение магнитной восприимчивости НКЖ II с примесями (\circ) и после вычета вклада примеси (\bullet). Кривая 1 — теоретическая зависимость Блини – Бауэрса с $J/k_B = -68$ К и g = 2; кривая 2 — зависимость $(2/3)\chi^{Curie}(T)$ с g = 2

фективного магнитного момента

$$\mu_{eff}(T) = \frac{1}{\mu_B} \left(\frac{3k_B}{N_A} T\chi\right)^{1/2}.$$
 (25)

Тогда критерию (23) с учетом (24) можно придать форму

$$\mu_{eff}(T) < g\sqrt{nS}.$$
(26)

Использование критерия наличия или отсутствия запутанности становится предельно простым делом: нужно лишь провести горизонтальную прямую на высоте $g\sqrt{nS}$ и посмотреть, пересекает ли она кривую $\mu_{eff}(T)$ или нет, а если пересекает, то определить где.

На комбинированном рис. 1 светлыми кружками представлены значения $\mu_{eff}(T)$ для комплекса I. Мы провели на этом рисунке горизонтальную штриховую прямую 2 по уровню $g\sqrt{nS} = 2$ (поскольку g = 2, n = 2 и S = 1/2). Видим, что значение абсциссы точки пересечения согласуется с температурой T_E , найденной выше.

Обсудим теперь опытные данные для НКЖ II, опубликованные в работе [15]. Поведение магнитной восприимчивости здесь в целом схожее с НКЖ I (см. рис. 2). Образцы были более чистыми, количество примеси не превышало 1.7 %. С целью проведения более тщательного анализа мы вычли вклад примеси и получили $\chi(T)$ собственно для НКЖ II (темные кружки на рис. 2). На этом же рис. 2 кривая 1

Рис. 3. Температурный ход согласованности (•) и запутанности (•) для НКЖ II. Сплошные кривые 1 и 2 — теоретические зависимости соответственно для C и E

показывает зависимость Блини–Бауэрса (4) с найденными в работе [15] параметрами: $J/k_B = -68$ К и g = 2. Как видно на рис. 2, деформированная кривая Кюри пересекает темные кружки при температуре $T_E \approx 110$ К, а теоретическую аппроксимацию опытных данных — при $T_E \approx 120$ К. Согласно [18], магнитная восприимчивость рассматриваемого комплекса II с примесями проходит через максимум при температуре 83 К. Пользуясь соотношением (20), находим, что $T_E \approx 121$ К. Таким образом, в НКЖ II температура возникновения запутанности $T_E \approx 110-120$ К.

Наконец, на рис. 3 представлены температурные зависимости для согласованности (светлые кружки) и запутанности (темные кружки), пересчитанные по формулам (16), (17) и (6) из экспериментальных данных по магнитной восприимчивости комплекса II. Сплошными кривыми показаны теоретические зависимости C(T) и E(T), полученные с использованием уравнения Блини–Бауэрса (4) с приведенными выше параметрами J/k_B и g для этого комплекса. На рисунке видно, что при температуре T = 25 К степень запутанности в комплексе составляет 90–95 %.

Физическая интерпретация температурного поведения запутанности состоит в следующем. Гейзенберговский димер (1) обладает двумя уровнями энергии 3J/2 и -J/2. Они разделены энергетической щелью $\Delta = 2|J|$. Первый уровень представляет собой синглет, волновая функция которого равна

7 ЖЭТФ, вып. 5 (11)

$$|\psi_{0}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ -1\\ 0 \end{pmatrix}.$$
(27)

Второй уровень трехкратно вырожден, и ему отвечают волновые функции

$$|\psi_1\rangle = |\uparrow\uparrow\rangle = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}, \qquad (28)$$

$$|\psi_2\rangle = |\downarrow\downarrow\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \qquad (29)$$

$$|\psi_{3}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}.$$
 (30)

(Орты упорядочены в последовательности $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\downarrow\rangle$.)

Если J < 0, то нижним уровнем оказывается синглет. Переходя в выражениях (10) и (11) к пределу $K \to -\infty$, находим, что при T = 0 матрица плотности равна

$$\rho(0) = \frac{1}{2} \begin{pmatrix} 0 & & \\ & 1 & -1 & \\ & -1 & 1 & \\ & & & 0 \end{pmatrix} = |\psi_0\rangle\langle\psi_0|. \quad (31)$$

Поскольку это состояние является чистым и максимально запутанным, в антиферромагнитном димере Гейзенберга при температуре абсолютного нуля E = 1.

С другой стороны, в пределе бесконечно высокой температуры, когда спины ведут себя как независимые частицы, матрица плотности (10) переходит в

Запутанность частиц в этом максимально смешанном, но, очевидно, факторизуемом состоянии равна нулю. При температуре T_E матрица плотности антиферромагнитного димера имеет вид

$$\rho(T_E) = \frac{1}{6} \begin{pmatrix} 1 & & \\ & 2 & -1 \\ & -1 & 2 \\ & & 1 \end{pmatrix} = \\
= \frac{1}{2} |\psi_0\rangle \langle\psi_0| + \frac{1}{6} \sum_{i=1}^3 |\psi_i\rangle \langle\psi_i|. \quad (33)$$

В Приложении мы показываем непосредственными вычислениями, что данную матрицу можно представить в виде суммы прямых произведений матриц плотности отдельных спинов. Это означает (теперь уже «из первых принципов»), что состояние сепарабельно, т. е. не запутано: $E(T_E) = 0$.

Далее, запутанность системы в смешанном триплетном состоянии тоже равна нулю (несмотря на то, что среди формул (28)–(30) — одна, $|\psi_3\rangle$, является нефакторизуемой). Чтобы убедиться в этом, перейдем в уравнении (10) к пределу $K \to +\infty$. Получаем

$$\rho = \frac{1}{6} \begin{pmatrix} 2 & & \\ & 1 & 1 & \\ & 1 & 1 & \\ & & & 2 \end{pmatrix} = \frac{1}{3} \sum_{i=1}^{3} |\psi_i\rangle \langle \psi_i|.$$
(34)

Для этой матрицы мы снова нашли разложение, которое в явном виде демонстрирует сепарабельность триплетного состояния (см. Приложение).

В результате картина выглядит следующим образом. Запутанность антиферромагнитного димера при T=0 равна единице (максимально запутанное состояние). С повышением температуры начинает заселяться триплет и запутанность ослабевает. Она исчезает, когда статистический вес синглета в матрице плотности уменьшается до 1/2 (см. (33)). Поскольку в системе есть характерный энергетический параметр Δ (= 2|J|), неудивительно, что исчезновение запутанности происходит при температуре $T_E \sim \Delta/k_B$. Затем при температурах $T > T_E$ система остается все время в сепарабельном состоянии.

5. ЗАКЛЮЧЕНИЕ

В рамках простой модели спинового димера проанализированы экспериментальные данные по магнитной восприимчивости парамагнитных нитрозильных комплексов железа [Fe₂(SR)₂(NO)₄] с R=C₃H₃N₂ и C₃H₅N₂. Анализ свидетельствует о возникновении в обоих этих соединениях квантово-механической запутанности при азотных температурах.

Для комплекса с $R=C_3H_5N_2$ представлен температурный ход кривой запутанности. Опытные данные показывают, что при понижении температуры до T = 25 K степень запутанности в этом НКЖ близка к 100 %.

Высокая температура T_E парамагнитных материалов является их существенным преимуществом по сравнению с веществами с ядерными спинами, где, по оценкам [31], запутанность может возникать лишь при десятых долях микрокельвина.

В плане повышения температуры T_E представляют определенный интерес так называемые диамагнитные НКЖ [32]. Их молекулярная структура имеет вид

Здесь R — теперь уже шестичленные кольца $C_{6-n}H_{5-n}N_n$ (n = 0, 1, 2). В этих НКЖ магнитоактивные центры $Fe(NO)_2$ тоже образуют антиферромагнитные димеры. Благодаря тому, что в молекуле лиганды R непосредственно соединены лишь с серой, расстояние между атомами железа в таких комплексах укорочено до 0.27 нм. Малое расстояние приводит, очевидно, к сильному обменному взаимодействию в димере. Поэтому можно предположить, что состояние магнитных димеров в веществе продолжает оставаться синглетным (а значит, и запутанным) даже при комнатных температурах.

Важным является вопрос о междимерных взаимодействиях в кристаллах НКЖ. Определение их открыло бы возможность исследования запутанности в макроскопических масштабах (а не только внутри молекул). Изучение междимерных связей, которые являются слабыми, требует выполнения более тонких экспериментов.

Развитый в работе метод исследования запутанности имеет общий характер и применим не только к НКЖ, но и к другим объектам, содержащим димеры. Авторы благодарят А. В. Куликова, А. Ф. Шестакова и С. И. Доронина за полезные обсуждения. Мы также очень признательны Е. И. Кузнецовой, оказавшей помощь при подготовке рукописи. Работа выполнена при финансовой поддержке РФФИ (грант № 07-07-00048).

ПРИЛОЖЕНИЕ

Определение (см. [33, 34]). Состояние системы, состоящей из двух подсистем 1 и 2, называется сепарабельным, если существует хотя бы одно разложение матрицы плотности ρ системы вида

$$\rho = \sum_{i} w_i \rho_i^{(1)} \otimes \rho_i^{(2)} , \qquad (\Pi.1)$$

где веса $w_i \ge 0$ и $\sum_i w_i = 1$, а $\rho_i^{(1,2)}$ — матрицы плотности подсистем 1 и 2.

Если система сепарабельна, то в ней нет запутанности: E = 0. И наоборот, несепарабельность означает, что в системе есть запутанность: $E \neq 0$.

Путем выполнения прямых вычислений мы нашли, что матрица плотности (33) имеет разложение

$$\begin{aligned} \frac{1}{6} \begin{pmatrix} 1 & & \\ & 2 & -1 & \\ & -1 & 2 & \\ & & 1 \end{pmatrix} &= \frac{1}{6} \begin{bmatrix} \begin{pmatrix} 1 & 0 & \\ 0 & 0 & \end{pmatrix} \otimes \\ & \otimes \begin{pmatrix} 0 & 0 & \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & \\ 0 & 0 \end{pmatrix} + \\ & + \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \\ & \otimes \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \frac{i}{2} \\ -\frac{i}{2} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{i}{2} & \frac{1}{2} \end{pmatrix} + \\ & + \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{i}{2} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & \frac{i}{2} \\ -\frac{i}{2} & \frac{1}{2} \end{pmatrix} \end{bmatrix}. \end{aligned}$$

Аналогично для матрицы плотности (34) мы получили

Оба эти разложения удовлетворяют соотношению (П.1), поэтому матрицы плотности (33) и (34) отвечают сепарабельным состояниям, т. е. в данных состояниях E = 0.

ЛИТЕРАТУРА

- 1. В. В. Митюгов, УФН 163, 103 (1993).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000) [М. Нильсен, И. Чанг, Квантовые вычисления и квантовая информация, Мир, Москва (2006)].
- Физика квантовой информации, под ред. Д. Боумейстера, А. Экерта и А. Цайлингера, Постмаркет, Москва (2002).
- 4. А. А. Кокин, *Твердотельные квантовые компьютеры на ядерных спинах*, Институт компьютерных исследований, Москва-Ижевск (2004).
- 5. К. А. Валиев, УФН 175, 3 (2005).
- 6. X. Wang and P. Zanardi, Phys. Lett. A 301, 1 (2002).
- R. A. Cowley, J. Phys.: Condens. Matter 15, 4143 (2003).
- 8. Č. Brukner and V. Vedral, arXiv:quant-ph/0406040.
- M. Wieśniak, V. Vedral, and Č. Brukner, New J. Phys. 7, 258 (2005).
- L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008); arXiv:quant-ph/0703044.

- 11. M. Wieśniak, Quantum Entanglement in Some Physical Systems, Dissertation, Gdańsk (2007); arXiv:quant-ph/0710.1775.
- 12. Č. Brukner, V. Vedral, and A. Zeilinger, Phys. Rev. A 73, 012110 (2006).
- A. M. Souza, M. S. Reis, D. O. Soares-Pinto et al., Phys. Rev. B 77, 104402 (2008).
- 14. N. A. Sanina, S. M. Aldoshin, T. N. Rudneva et al., J. Mol. Struct. 752, 110 (2005).
- 15. Н. А. Санина, Т. Н. Руднева, С. М. Алдошин и др., Известия АН, серия хим. № 1, 28 (2007).
- 16. А. Ф. Ванин, УФН 170, 455 (2000).
- 17. Н. А. Санина, С. М. Алдошин, Известия АН, серия хим. № 11, 2326 (2004).
- 18. Т. Н. Руднева, Синтез, исследование строения и NO-донорной активности нитрозильных комплексов железа с 2-меркаптоимидазолами, Дисс. ... канд. хим. наук, ИПХФ РАН, Черноголовка (2007); http://www.icp.ac.ru/news/avtoref/070628_ Rudneva.doc.
- А. Ф. Шестаков, Ю. М. Шульга, Н. С. Емельянова и др., Известия АН, серия хим. № 7, 1244 (2007).
- 20. А. Н. Васильев, М. М. Маркина, Е. А. Попова, ФНТ
 31, 272 (2005).
- **21**. А. И. Смирнов, В. Н. Глазков, ЖЭТФ **132**, 984 (2007).

- 22. B. Bleaney and K. D. Bowers, Proc. Roy. Sos. (London) A 214, 451 (1952).
- 23. Р. Карлин, Магнетохимия, Мир, Москва (1989).
- 24. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
- 25. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
- 26. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
- 27. K. M. O'Connor and W. K. Wootters, Phys. Rev. A 63, 052302 (2002).
- M. A. Nielsen, Quantum Information Theory, Dissertation, New Mexico (1998); arXiv:quant-ph/0011036.
- 29. M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87, 017901 (2001).
- 30. А. Е. Дубинов, И. Д. Дубинова, С. К. Сайков, W-функция Ламберта: таблицы интегралов и другие математические свойства, СарФТИ, Саров (2004).
- 31. С. И. Доронин, А. Н. Пырков, Э. Б. Фельдман, Письма в ЖЭТФ 85, 627 (2007); ЖЭТФ 132, 1091 (2007).
- 32. А. Ф. Шестаков, Ю. М. Шульга, Н. С. Емельянова и др. Известия АН, серия хим. № 12, 2053 (2006).
- **33**. R. F. Werner, Phys. Rev. A **40**, 4277 (1989).
- 34. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).