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CONTROLLING CHAOS IN A BOSE-EINSTEIN CONDENSATE
LOADED INTO A MOVING OPTICAL LATTICE POTENTIAL
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The spatial structure of a Bose—Einstein condensate loaded into an optical lattice potential is investigated and
spatially chaotic distributions of the condensates are revealed. Through changing the s-wave scattering length
by using a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical
simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if
the maximal Lyapunov exponent of the system is negative.
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1. INTRODUCTION

Eighty years after its prediction, the Bose—Einstein
condensate (BEC) has been observed in trapped gases
of rubidium, sodium, and lithium [1]. The mean-
field theory (Gross—Pitaevskii (GP) equation) has been
quite successful in quantitatively reproducing many ex-
perimental observations [2].

The realization of BEC in dilute alkali vapors has
opened the field of a weakly interacting degenerate Bose
gas. Subsequent experimental and theoretical progress
has been made in studying the properties of this new
state of matter. Several remarkable phenomena, which
strongly resemble well-known effects in nonlinear op-
tics, have been observed in BEC, such as four-wave
mixing, vortices, dark and bright solitons, and chaos
[3-12]. In realistic experimental setting, an external
electromagnetic field is used to produce, trap, and ma-
nipulate the BEC. In early experiments, only the har-
monic potential was used, but a wide variety of poten-
tials can now be constructed experimentally. Among
the most frequently studied both experimentally and
theoretically are periodic optical lattice potentials. The
optical lattice is created as a standing-wave interference
pattern of mutually coherent laser beams. With each
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lattice site occupied by one mass of alkali atoms in its
ground state, the BEC in optical lattices shows a num-
ber of potential applications, such as an atomic inter-
ferometer, registers for quantum computers, an atom
laser, quantum information processing on the nanome-
ter scale, and others. Optical lattices are therefore of
particular interest from the perspective of both fun-
damental quantum physics and its relation to applica-
tions [8].

Numerous experimental studies have confirmed
the general validity of the time-dependent nonlinear
Schrédinger equation, also called the GP equation,
used to calculate the ground state and excitations of
various BECs of trapped alkali atoms. The dynamics
of the system are described by a Schrédinger equation
with a nonlinear term that represents many-body inter-
actions in the mean-field approximation. This nonlin-
earity allows introducing chaos into a quantum system:.
The existence of BEC chaos has been proved and the
chaos properties have also been extensively investigated
in many previous works. Naturally, chaos, which plays
a role in the regularity of the system, causes instability
of the condensate wave function. The study of chaos
in nonlinear deterministic systems has been underway
for many years. Besides addressing the basic questions
about the mechanisms and the predictions of chaos,
however, the ability to control it to a regular state is
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also an important subject for the relevant studies.

For the purpose of applications, the control of chaos
is anticipated in practical investigations. In [13], the
Ott—Grebogi-Yorker scheme of controlling chaos in a
BEC system was proposed. Chaos control has al-
ways been a widely attractive field since the pioneering
work [13]. Controlling chaos can be separated into two
categories: feedback control (active control) and non-
feedback control (passive control). The general method
for feedback control is to push a system state onto a
stable manifold of a target orbit, that is, to stabilize
the unstable target orbits embedded within a chaotic
attractor. The main purpose of the present paper is
to control the chaos into the stable states in the BEC
through changing the s-wave scattering length by us-
ing the Feshbach resonance. We can force the system
to the stable periodic orbit.

2. CONTROLLING THE CHAOS IN THE BEC
SYSTEM

The BEC system considered here is created in a
harmonically trapped potential and is then loaded into
a moving optical lattice. The 3D combined potential
is therefore given by

V(@,y, 2. t1) = Vi cos? (k) +m(wle?+uwly+u22?) /2,

where the second term is the harmonic magnetic poten-
tial, with m being the atomic mass and w,, wy, w. the
trap frequencies. The periodic potential is a moving op-
tical lattice with the space—time variable £ = z+dt1 /2k,
where ¢ is the frequency difference between the two
counterpropagating laser beams and k is the laser wave
vector that determines the velocity of the traveling lat-
tice as V = ¢/2k. When the BEC is formed in the
region near the center of the magnetic trap, the mag-
netic potential is much weaker than the lattice one and
can be neglected. We find that in the region

kv/22 4+ y2/2 + 22 /4 < 1007,

the harmonic potential is much smaller than the lat-
tice potential. Therefore, the 1D optical potential
plays the main role in the system and the quasi-1D
approximation is valid in this region. On the other
hand, for a time-dependent lattice, the damping effect
should be considered. The damping effect caused by
the incoherent exchange of normal atoms and the finite-
temperature effect [14-16] has been analyzed in detail
for the two-junction linking of two BECs [14]. For the
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system considered here, it is similar to the case of the
linear junction linking of many BECs. Thus, a damp-
ing effect caused by similar elements or other factors
may also exist. With these considerations, the system
is governed by the quasi-1D GP equation [17]
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where go = 4nhi’a/m denotes the interatomic interac-
tion with a being the s-wave scattering length. The case
a > 0 represents a repulsive interatomic interaction,
and a < 0 implies the case of attraction. The parame-
ter ¢ is the macroscopic quantum wave function. The
term proportional to vy represents the damping effect.
We focus our attention on only the traveling-wave
solution of this equation and write Eq. (1) in the form

¥ = (&) expli(ax + ft1)] (2)

such that the matter wave is a Bloch-like wave. Here, «
and 3 are two undetermined real constants. According
to the definition of the space—time variable ¢ = x4V ty,
the traveling wave p(£) moves with the same velocity
as the optical lattice. Inserting Eq. (2) in Eq. (1), we
can easily turn partial differential equation (1) into the
ordinary differential equation
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For simplicity, using the dimensionless variables and
parameters
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Fig.1. The chaotic attractor projection on the yiy> plane and the time series with Iy = 1.85, v = 0.05, y = 2.03, and
g=—0.75

where I is the optical intensity and v = 2muy, /hik. The
square of the amplitude R is just the particle number
density because |R| = |p| = |¢|, and 6 is the phase of

¢ [5].

According to the general theory of the Duffing equa-
tion, Eq. (4) has a monoclinic solution only when the
coefficients of the linear (R) and nonlinear (R?) terms
in the left-hand side of Eq. (4) have opposite signs.
Therefore, to study the chaos for a negative R term,
we must consider the case of attractive atom—atom in-
teractions, i.e., g < 0; Eq. (4) is just the parametrically
driven Duffing equation with a damping term. The
square of the amplitude R is just the particle number
density.

We solve Eq. (4) numerically using the fourth
Runge-Kutta (RK) algorithm. To avoid transient
chaos, y; and y, in the initial 10000 steps are elimi-
nated. The initial conditions are y; = 18.0, yo = 0.1,
and 7 = 0. The parameters in Eq. (4) are Iy = 1.85,
v =0.05, » = 2.03, and g = —0.75.

Figure 1la shows the strange attractor projected
onto the y,y» plane; however, we cannot tell whether
this attractor is chaotic. We calculate the maximal
Lyapunov exponent of the BEC system using the al-
gorithms presented in [11,18,19]. The maximal Lya-
punov exponent of the BEC system is A0, = 0.0792.
The system lies in a chaotic state because there ex-
ist one positive Lyapunov exponent. Figure 15 shows
the time series of y;, and we can find that the value
seems to be random, but it is different from noise sig-
nals without rules and seems to change following some
regularity.

3. NUMERICAL RESULTS

To control the chaos in a BEC loaded into a mo-
ving optical lattice potential, we adjust the two-body
interaction by changing the s-wave scattering length,
that is, changing the value of ¢g. In this paper, we only
consider the effect of the s-wave.

Figure 2 shows the maximal Lyapunov exponent
as a function of the s-wave scattering length g. The
middle point-drawing line stands for the value of
zero. We find that in many ranges, for example
—0.651 < g < —0.6525, —0.575 < g < —0.578, the
maximal Lyapunov exponent is negative. If g takes a
value in these ranges, the BEC is in a periodic state.
The BEC is in a periodic state when g takes values as
—0.661 and —0.561.

We solve Eq. (4) numerically by using the fourth RK
algorithm. The values of y; and y» in the initial 30000
steps are eliminated. The last 10000 steps of y; and
y2 are retained. The initial conditions are y; = 18.0,
y2 = 0.1, and n = 0.

Figure 3 shows the attractor projected onto the
y1y2 plane, and the time series of y;. The parame-
ters are the same as in Fig. 2, the other parameters
being g = —0.661 and —0.561. We find that in Fig. 3a,
C is in periods 1 and 3 respectively when g = —0.661
and —0.561. Figure 3b,d shows the respective time se-
ries. We can therefore transform the chaotic state into
the periodic regular state by modulating the s-wave
length g.

4. CONCLUSIONS

In summary, we have investigated the chaotic fea-
tures in the spatial distributions of the BEC. We
present a method of controlling chaos via changing the
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Fig.2. The maximal Lyapunov exponent A.qz as a function of the s-wave scattering length g (a) with v = 0.05, v = 2.03,
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Fig. 3.

The attractor projection on the yi1y> plane and the time series of y; at different s-wave scattering lengths with

v =0.05, v=2.03, I = 1.85, g = —0.661 (a,b), g = —0.561 (c,d)

s-wave scattering length. Numerical simulation shows
that the period is different for different s-wave scatter-
ing lengths.

It is well known that the periodic lattice systems
in BEC have many fantastic properties. For example,
quantum computation with BEC atoms in a Mott in-
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sulating state is an interesting advancement in appli-
cation of the BEC. On the other hand, chaos is asso-
ciated with quantum entanglement and quantum er-
ror correcting, which are both fundamental subjects in
quantum computations. Thus, it is important to apply
or control the chaos in a system.
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