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PSEUDOGAP VALUE IN THE ENERGY SPECTRUM OF LaOFeAs:A FIXED SPIN MOMENT TREATMENTM. A. Korotin *, S. V. Streltsov, A. O. Shorikov, V. I. AnisimovInstitute of Metal Physi
s, Russian A
ademy of S
ien
es620041, Yekaterinburg, RussiaRe
eived May 23, 2008The experimental data 
urrently available in the literature on the paramagneti
�spin density wave transition innonsuper
ondu
ting LaOFeAs are dis
ussed. In parti
ular, we note that a relative de
rease in the density ofstates on the Fermi level and a pseudogap formation o

ur upon a spin density wave transition. The values ofthese quantities are not properly des
ribed in the framework of the density fun
tional theory. The agreementwith experimental estimations be
omes more a

urate with the use of a �xed spin moment pro
edure when theiron spin moment is set to the experimental value. Strong ele
tron 
orrelations that are not in
luded into thepresent 
al
ulation s
heme may lead both to a de
rease in the spin moment and to a renormalization of theenergy spe
trum in the vi
inity of the Fermi level for 
orre
t des
ription of the dis
ussed 
hara
teristi
s.PACS: 71.15.Mb, 74.25.JbStimulated by the dis
overy of a new 
lass of high-T
super
ondu
tors based on the LaOFeAs 
ompound [1℄,numerous investigations of the ele
troni
 and magneti
stru
ture of this nonsuper
ondu
ting parent 
ompoundwere performed in the framework of the density fun
-tional theory (DFT) [2�6℄. These 
al
ulations weresu

essful in predi
ting not only the magneti
 instabil-ity [2, 5℄ but also an exa
t type of the magneti
 stru
-ture of LaOFeAs [4, 7℄.The 
al
ulated iron magneti
 moment is 
lose to2�B [6, 8℄. But experiments indi
ate a mu
h smallervalue. Powder neutron di�ra
tion measurements [9℄give 0:36(5)�B. Lo
al probe measurements of magneti
properties of LaOFeAs su
h as 57Fe Mössbauer spe
-tros
opy [10℄ together with muon spin relaxation [11℄indi
ate the respe
tive values � 0:35�B and 0:25(5)�B.The situation when DFT 
al
ulations predi
t largerspin magneti
 moment in 
omparison with the exper-imental one is rare and known only for few systems(e.g., MnSi and ZrZn2). The in
onsisten
y between ex-perimental and 
al
ulated magneti
 moments in thesematerials may be as
ribed to spin �u
tuations that leadto the suppression of magneti
 moment [12℄. Neverthe-less, LaOFeAs is an outstanding 
ompound even amongthese systems be
ause the ratio �
al
=�exp is extraordi-*E-mail: mi
hael.korotin�gmail.
om

nary large, approximately equal to 6; more importantly,Fe ions in the simple atomi
 pi
ture are expe
ted tohave S = 2, whi
h 
annot be easily suppressed by anyquantum �u
tuations.The other known experimental parameters that
an be 
ompared with their theoreti
al values arethe spe
i�
 heat 
oe�
ient 
 related to the den-sity of states (DOS) on the Fermi level N(EF ) as
 = (�2=3)k2BN(EF ) and the Pauli sus
eptibility� = �2BN(EF ). The spe
i�
 heat 
oe�
ient 
an be ex-tra
ted from the low-temperature behavior of the heat
apa
ity. Unfortunately, this parameter is ill-de�nedexperimentally, i.e., strongly depends on the tempera-ture range used in the �tting pro
edure. It was esti-mated by di�erent groups to be 3.7 mJ/(mol�K2) [7℄,0.9 mJ/(mol�K2) [13℄, and 0.69 mJ/(mol�K2) [14℄. But
 obtained in nonmagneti
 DFT 
al
ulations [2, 5℄overestimates the largest experimental value by almosttwo times. The results of magneti
 
al
ulations forthe real striped antiferromagneti
 stru
ture [8℄ improvethe situation. They are 
lose to the intermediate ex-perimental 
 value. However, this 
oin
iden
e maybe 
onsidered a

idental be
ause the ele
troni
 stru
-ture of this antiferromagneti
 solution 
orresponds toa large iron magneti
 moment. The sus
eptibility 
al-
ulated in the framework of the nonmagneti
 DFT is8:5�10�5 emu/mol [2℄. At the same time, the �at region758
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trum of LaOFeAs : : :of the experimental sus
eptibility 
urve has the valueabout 50 �10�5 emu/mol [1, 15℄, 6 times larger than the
al
ulated one.There is an experimental indi
ation of the forma-tion of a partial energy gap (or pseudogap) around theFermi level, whi
h removes parts of the DOS or fewbands from the Fermi energy at the phase transitionfrom the paramagneti
 to the spin density wave (SDW)state. Dire
t experimental estimations of the pseudo-gap Epg are based on the results of re�e
tivity measure-ments [7℄. The pseudogap asso
iated with a de
rease inopti
al absorption spe
tra observed at di�erent temper-atures 
orresponding to paramagneti
 and SDW statesis in the range 150�350 
m�1 (19�43 meV). The value ofthe pseudogap due to SDW formation evaluated fromthermal transport experiments is equal to 210 K [13℄,whi
h 
orresponds to 18 meV. Results of a temperature-dependent angle-integrated laser photoemission studyfor a �uorine-doped 
ompound indi
ate a pseudogapabout 100 meV [16℄, whereas high-resolution photo-emission spe
tros
opy [17℄ gives the above-T
 pseudo-gap value 15�20 meV.The evaluation of the relative redu
tion of the DOSin the vi
inity of the Fermi energy due to the formationof su
h a pseudogap is a less dire
t pro
edure. Basedon the results of sus
eptibility measurements [15℄, one
an dedu
e from the values of Pauli-like sus
eptibility
urves at high and low temperatures that the 
hangein the N(EF ) does not ex
eed 20%. The same valueof approximately 20% may be extra
ted from the 
on-du
tivity 
urves in Ref. [7℄, keeping in mind that 
on-du
tivity is proportional to N2(E) in the proximity ofEF . Analysis of the spe
i�
 heat at various temper-atures [13℄ suggests a 70% redu
tion of N(E) aroundEF under the paramagneti
�SDW transition.Thus, for LaOFeAs, we 
an assume that there is ade
rease in the DOS near the Fermi energy of tens per-
ent under the paramagneti
�SDW transition, whi
h
orresponds to the formation of a 20�100 meV pseudo-gap. The SDW state is 
hara
terized by the iron spinmagneti
 moment 0.2�0:4�B, the spe
i�
 heat 
oe�-
ient 1�4 mJ/(mol�K2), and the sus
eptibility 
oe�-
ient approximately equal to 50 � 10�5 emu/mol. Con-ventional DFT 
al
ulations (both nonmagneti
 and an-tiferromagneti
) fail to 
orre
tly des
ribe these quanti-ties.In the present paper, we show that �xed spin mo-ment DFT 
al
ulations with the magneti
 moment�xed at the experimental value 
an signi�
antly im-prove an agreement with the experiments with regardto the spe
i�
 heat and pseudogap values and the rel-ative de
rease in the N(EF ) value.

The 
al
ulations were performed in the frameworkof the method of tight-binding linear mu�n-tin orbitals(TB LMTO) [18℄ using the generalized gradient ap-proximation (GGA), where the ex
hange potential wastaken in the Perdew�Wang form [19℄. Experimentallydetermined [9℄ stru
ture parameters and atomi
 posi-tions for tetragonal phase and 
ollinear striped anti-ferromagneti
 order of Fe ions in layer were used. Forsimpli
ity, we assumed a ferromagneti
 interlayer in-tera
tion due to a negligible in�uen
e of the antipar-allel alignment of spins between di�erent FeAs lay-ers. The La(6s,6p,5d,4f), Fe(4s,4p,3d), O(3s,2p,3d),and As(4s,4p,4d) orbitals were in
luded into the basisset. The integration in the 
ourse of self-
onsisten
yiterations was performed over a mesh of 18 � 18 � 12k-points in the irredu
ible part of the Brillouin zone.We 
he
ked that this number of k-points su�
es forthe pre
ise 
al
ulation of the Fermi level position EFand the value of the density of states at the Fermi levelN(EF ). A �ne mesh is important due to the nest-ing bands near EF . Cal
ulations were performed in ap2a�p2a� 
 (four formula units) unit 
ell appropri-ate for des
ription of a striped antiferromagneti
 state.Crystallographi
 x and y axes were dire
ted from ironto its nearest iron neighbors and ferromagneti
 
hainswere running along the x dire
tion.Figure 1 demonstrates the results of nonmagneti

al
ulations. The band stru
ture agrees with that ob-tained previously [8℄. The Fe bands mainly of a t2g ori-gin 
ross the Fermi level. We note the two-dimensional
hara
ter of the band stru
ture and 
lear signs of Fermisurfa
e nesting in ��X and Y �� dire
tions.The nesting e�e
t is usually illustrated in the �gureof the Fermi surfa
e. To reveal nesting in the simpleband stru
ture graph, we plot it along the S�� line forthe 
onventional a�a�
 unit 
ell; the result is given inthe inset to Fig. 1. This S�� dire
tion 
orresponds tothe Y �� (or X��) line for the enlarged p2a�p2a� 
unit 
ell. When the unit 
ell is doubled, the left halfof the instet folds to the right half. The 
rossing of thefolded bands o

urs just on the Fermi level.The spe
i�
 heat and sus
eptibility 
oe�
ients re-
al
ulated from N(EF ) obtained in the nonmagneti
DFT approa
h are 
NM = 5:3 mJ/(mol�K2) and�NM = 7:2 � 10�5 emu/mol. That agrees with the val-ues 
al
ulated before.The total energy di�eren
e between nonmagneti
and antiferromagneti
 (whi
h is energeti
ally more fa-vored) states is 116 meV/(Fe atom), whi
h is in goodagreement with the result in Ref. [8℄. A substantial en-ergy gap between di�erent magneti
 solutions togetherwith the large magneti
 moment (see below) shifts the759
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Fig. 1. Band stru
ture of LaOFeAs obtained from anonmagneti
 
al
ulation in the Brillouin zone 
orre-sponding to the enlarged (p2a � p2a � 
) unit 
ell.Inset: band stru
ture along the S�� line for the 
on-ventional (a � a � 
) unit 
ell. The Fermi energy iszero. For the bands 
rossing the Fermi level, orbitalproje
tions are marked
�������������
�������������
�������������
�������������
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Fig. 2. Band stru
ture of LaOFeAs for a striped an-tiferromagneti
 state. The pseudogap energy region isshown by a hat
hed stripe. The Fermi energy is zero.For the bands 
rossing the Fermi level, orbital proje
-tions are marked. Supers
ripts indi
ate majority (maj)and minority (min) spin proje
tions. There are 
ontri-butions from both majority and minority states to theband dxysystem away from the quantum 
riti
al point, wherespin �u
tuations may play an important role. Theband stru
ture for the striped antiferromagneti
 stateis shown in Fig. 2. It di�ers essentially from the non-magneti
 pi
ture. In parti
ular, in the vi
inity of theFermi level in the ��X dire
tion, there is only one bandof the d#yz 
hara
ter. The other four bands are movedaway from the Fermi level due to the Stoner splitting.In the Y �� dire
tion, three bands remain. Two of them(dxy and dyz) have the same origin as in the nonmag-
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Fig. 3. Band stru
ture of LaOFeAs for the striped an-tiferromagneti
 state with the �xed spin moment value0:36�B . See also the 
aption to Fig. 2neti
 state and the third band originates from d"x2�y2and d#3z2�r2 orbitals, whi
h were 
ompletely o

upiedin the nonmagneti
 
ase.The pseudogap 
an be de�ned as the energy regionaround the Fermi level where the number of bands inFig. 2 is essentially smaller than in Fig. 1. It is naturalto de�ne it to lie between the maximum of the parabolaat the X k-point and the minimum of a higher-lyingparabola in the ��X dire
tion (see the hat
hed stripe inFig. 2). The pseudogap de�ned in this way is estimatedto be 380 meV, whi
h is mu
h larger than experimentalexpe
tations.The 
al
ulated iron magneti
 moment is equalto 1:77�B and the spe
i�
 heat 
oe�
ient 
MAG == 0:99 mJ/(mol�K2). This agrees with the experimen-tal estimations of 
 [13℄. However, in going from thenonmagneti
 to the antiferromagneti
 phase, the 
al
u-lated value of N(EF ) 
hanges by a fa
tor of 6 (600%instead of tens per
ent).This in
onsisten
y in the values of magneti
 mo-ment and the width of the pseudogap, and too drasti
a 
hange in N(EF ) in going from the paramagneti
 tothe magneti
 state demands an explanation. Below, us-ing the �xed spin moment pro
edure, we simulate theexperimental value of the magneti
 moment and inves-tigate how N(EF ) and the pseudogap width 
hangeupon a de
rease in the spin moment value.The band stru
ture 
orresponding to the �xed spinmoment value 0:36�B is presented in Fig. 3. It looksvery similar to the nonmagneti
 pi
ture. A remarkabledi�eren
e o

urs along the ��X dire
tion: dxy and dzxbands are spin-splitted and the �rst of them is removedfrom the vi
inity of the Fermi level, whereas d#zx is still
rossing EF . There is no dramati
 rearrangement ofbands along the Y �� dire
tion. We 
on
lude that un-der the transition from the nonmagneti
 to the mag-760
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Fig. 4. Band stru
ture of LaOFeAs for a striped anti-ferromagneti
 state with the �xed spin moment value0:25�B . See also the 
aption to Fig. 2neti
 state, the �rst 
hanges of the band stru
ture o
-
ur along the ��X line; then the bands along Y �� areinvolved in the formation of magneti
 moment.The �xed spin moment 
al
ulation results in a sig-ni�
ant in
rease in the spe
i�
 heat 
oe�
ient, whi
his equal to 
FSM = 2:0 mJ/(mol�K2) in this 
ase, ina good agreement with experiment. The pseudogap,whi
h 
an now be de�ned as indi
ated by the hat
hedstripe in Fig. 3, de
reases to 180 meV, whi
h is stilllarger than the experimental value.It is interesting to note that a further de
rease inthe magneti
 moment in the �xed spin moment 
al
u-lation (Fig. 4) leads to an even better agreement withexperiment as regards the value of the pseudogap. Forone of the reported values of � = 0:25�B, it de
reasesto 130 meV. The spe
i�
 heat parameter is 
al
ulatedto be 2:4 mJ/(mol�K2), and then the 
hange in N(EF )in nonmagneti
 and magneti
 states is only 55%, inreasonable agreement with experimental estimations.The semiempiri
al �xed spin moment approa
hdemonstrates that the 
orresponden
e of experimen-tally known parameters of the ele
troni
 stru
ture ofLaOFeAs is essentially improved in 
omparison withthe 
onventional magneti
 
al
ulations if the magneti
moment is kept at a low value near 0:3�B found inthe experiment. However, even with the redu
ed spinmoment value, the 
al
ulated pseudogap (130 meV) re-mains larger than the experimental one (20�40 meV).In our opinion, an a

ount for dynami
al 
orrela-tions, whi
h 
ertainly exist for the d shell of iron, maylead both to an essential redu
tion in the spin momentvalue and to a renormalization of the energy spe
trumin the vi
inity of the Fermi level for de
reasing the pseu-dogap.
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