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BKT PHASE IN SYSTEMS OF SPINLESS STRONGLYINTERACTING ONE-DIMENSIONAL FERMIONSV. V. Afonin a*, V. Yu. Petrov baIo�e Physi
o-Te
hni
al Institute, Russian A
ademy of S
ien
es194021, Saint-Petersburg, RussiabPetersburg Nu
lear Physi
s Institute, Russian A
ademy of S
ien
es188300, Saint-Petersburg, RussiaRe
eived April 8, 2008We present the ground-state wave fun
tions for a system of spinless one-dimensional fermions in the limit ofan in�nitely strong intera
tion and demonstrate expli
itly that the system symmetry is lower than the originalsymmetry of the Hamiltonian. As a result, the system in this limit undergoes a se
ond-order phase transitioninto a phase with �nite density of 
hiral pairs. The phase transforms 
ontinuously into a Berezinskii�Kosterlitz�Thouless (BKT) phase if the intera
tion in the model de
reases. Therefore, just the BKT phase is realized innature. The temperature of the smearing phase transition is 
al
ulated.PACS: 71.10.Hf, 73.63.Fg1. INTRODUCTIONFor a long time, one-dimensional fermion systemswere a subje
t of intensive studies only in theoreti-
al physi
s. Tomonaga [1℄ and Luttinger [2℄ demon-strated in their pioneering papers that the longwaveex
itations of su
h a system (under rather general 
on-ditions) 
an be expressed in terms of nonintera
tingbosons. These degrees of freedom were made expli
it inthe elegant method of bosonization proposed by Mattisand Leeb [3℄. The re
ent interest in this �eld is mainlydue to the development of submi
ron te
hniques, whi
hallowed produ
ing very pure quantum wires. In su
hwires, only few levels (or sometimes even one) 
orre-sponding to the quantization of ele
trons in perpendi
-ular dire
tions are o

upied. Hen
e, the systems un-der dis
ussion are a

essible by experiment today (see,e.g., [4�7℄).The bosonization te
hnique allows 
al
ulating alln-point 
orrelation fun
tions for systems of intera
tingfermions in one dimension. However, these 
orrelatorsgive only indire
t information about the ground state ofthe system, whi
h requires further interpretation. The
orrelation fun
tions of the Luttinger model reveal anumber of anomalies of the fermion system (see [8�10℄):*E-mail: vasili.afonin�mail.io�e.ru

they have os
illating 
ontributions with wave ve
torsequal to 2pf or 4pf , whi
h de
ay very slowly with dis-tan
e. In the literature, these 
ontributions were in-terpreted as follows: the os
illations with the Fermimomentum pf doubled were related to the Peierls in-stability (related to the 
harge density wave [9; 11℄) andthe os
illations with the 4pf frequen
y were interpretedas a marginal Wigner 
rystal [12℄. Although the 
orre-lators of 
hiral 
omplexes obey a power law (see [13℄),it is 
ommonly believed that the system under dis
us-sion is a kind of normal liquid be
ause quantum �u
-tuations destroy any order parameter. As a result, aphase with a long-range order is impossible even in thezero-temperature region [9℄. The 
ommon point of viewwas formulated as �Luttinger liquid is a normal (notsymmetry-broken) metalli
 phase� [14℄ with a gaplessboson spe
trum. However, if we speak about quantum�u
tuations, two more points should be taken into a
-
ount.1. In low dimensions, some of the systems ap-pear to be in the Berezinskii�Kosterlitz�Thouless phase(BKT) [15; 16℄. In this phase, the order parameter den-sity tends to zero in an in�nite system, but a long-range order exists be
ause 
orrelation fun
tions de
ayas some power of the distan
e. This means that the 
or-relation is present in a whole spe
imen. As a result, in637
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ros
opi
 properties, the system are quite similarto a system with broken symmetry. A BKT phase 
anform if the gapless ex
itations, whi
h should be presentin the system after spontaneous symmetry breaking dueto the Goldstone theorem [17; 18℄, do not intera
t. Atnonzero temperatures (� 6= 0), this phase 
an o

urin two-dimensional systems; at � = 0, a BKT phaseis possible in one dimension. (The 
rossover tempera-ture and its relation to the smearing phase transitiontemperature �
 is 
onsidered below; see Se
. 3.)2. The Goldstone theorem itself 
an be brokenin one-dimensional models with the Adler�S
hwingeranomaly. For that to happen, the intera
tion has to bestrong enough. As an illustration one 
an 
onsider themassless S
hwinger model [19℄. In the Coulomb gauge,this model is a parti
ular 
ase of the Luttinger modelwith the potential given by a linear fun
tion of the dis-tan
e between ele
trons. This leads to the Goldstonetheorem violation: all ex
itations have a gap in spiteof spontaneous breaking of the 
hiral symmetry. Forthis reason, ex
itations 
annot suppress the long-rangeorder at temperatures below the gap. As a result, ase
ond-order phase transition o

urs in one dimensioneven at �nite temperature [20℄.This makes the statement that the Luttinger liquidat � = 0 is in an unbroken phase doubtful.To 
larify this question, we 
al
ulate the wave fun
-tions of the ground states in the Tomonaga�Luttingermodel dire
tly in the fermion representation. Althoughthe details of these wave fun
tions 
ould depend on theintera
ting potential, all possible ground states quali-tatively reveal the same phenomenon.In one dimension, the Fermi surfa
e redu
es to twoisolated points in phase spa
e (p = �pf ). Transitionsbetween these two points 
an be negle
ted. This is agood approximation, at least if the potential is a de-
reasing fun
tion of the momentum transfer. As a re-sult, the number of ele
trons near ea
h point (left andright parti
les) must be 
onserved and the system a
-quires a 
omplementary (
hiral) symmetry. This sym-metry, as we see in what follows, breaks down sponta-neously in the model.It is 
ommon knowledge that the ele
tron distribu-tion fun
tion in one dimension 
hanges drasti
ally evenfor the systems with a weak ele
tron�ele
tron intera
-tion. It is of the order 1/2 near the Fermi level [21℄.This means that a hole is lo
ated near ea
h ele
tron.Naturally, they attra
t ea
h other and form a kind ofbound state 
onsisting of a right ele
tron and a lefthole (R�L-pair). This is quite similar to the formationof a Cooper pair in a super
ondu
tor, but the quan-tum numbers of the bound state are di�erent: instead

of a nonzero ele
tri
 
harge, ex
iton-like (neutral) pairswith nonzero 
hirality o

ur1).Of 
ourse, this fa
t itself is not enough to speakabout a new 
orrelated phase. Using the expli
itground-state wave fun
tion 
onstru
ted in this paper,we verify that long-range order is indeed present in thesystem. As a result, the Luttinger liquid undergoes aphase transition at low temperatures.We see in what follows that in the limit of the in-�nitely strong intera
tion and at zero temperature, thesystem is in a phase with broken 
hiral symmetry andnonvanishing order parameter density. The propertiesof the Luttinger liquid in this limit are quite analo-gous to the properties of the massless S
hwinger model,where the spontaneous breakdown of the 
hiral symme-try is well known. This 
an be expe
ted be
ause theintera
tion in the S
hwinger model is also in�nite (it in-
reases with distan
e). On the other hand, in 
ontrastto the S
hwinger model, the spe
trum of the Luttingermodel remains gapless.If the intera
tion in the Luttinger model is 
onsid-ered �nite, as it is realized in nature, the order param-eter density vanishes (in the in�nite system). In this
ase, the system appears to be in a BKT phase with
orrelators de
aying as some power of the distan
e. Butthe properties of this phase are rather 
lose to those of asystem with a nonzero order parameter. The BKT sys-tem transforms smoothly into the phase with a nonzeroorder parameter as the 
oupling 
onstant in
reases.The main point of this paper is that the existen
eof a symmetry-broken phase underlies the existen
e ofanomalies in the 
orrelation fun
tions. We believe thatthe usual interpretation of the anomalies as an insta-bility of the Peierls type is misleading. There is a 
lear-
ut distin
tion between the 
hiral phase and the Peierlsone. Indeed, the phase transition to the Peierls phaseis a se
ond-order phase transition in the phonon sys-tem, while the 
hiral symmetry of ele
trons is brokenexpli
itly, in the Hamiltonian. On the 
ontrary, the
hiral phase originates from the spontaneous symme-try breaking in the ele
tron system. To manifest thebreakdown of the 
hiral symmetry in the Luttinger liq-uid, we exa
tly 
al
ulate the ground-state wave fun
-tion for the model in the fermion representation anddemonstrate expli
itly that its symmetry is lower thanthe original symmetry of the Hamiltonian. (This is thede�nition of spontaneous symmetry breaking.)As regards, possible observations of a 
ondensate1) To draw an analogy between an ex
iton-like pair and abound state, we should take into a

ount that we have a 
or-relation between the �lled states rather than a real bound pair.638
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harge-neutral 
ondensate 
annot revealitself in experiments asso
iated with 
harge transfer.But it 
ontributes to the e�e
ts involving energy 
ur-rents and should not transfer heat. Hen
e, we 
an thinkabout thermal anomalies related to the 
ondensate. Infa
t, we keep in mind the e�e
t similar to the ther-mome
hani
al e�e
t in super�uid helium. (The tem-perature de
reases with an in
rease in the super�uidmass [22℄.) We plan to dis
uss this problem elsewhere.This paper is organized as follows. In Se
. 2, weintrodu
e the Hamiltonian, the de�nitions of left andright parti
les, and so on. We present our results anddis
ussion in Se
. 3. We relegate the derivation of theresults to Se
. 4 be
ause the 
al
ulation is rather 
um-bersome. In Se
. 5, we show the symmetry breaking ina di�erent way, namely, from the well-known ground-state wave fun
tion in the boson representation [23℄.Justi�ably, the boson representation may be 
onsid-ered a nonobvious way to see the symmetry breakingin a fermion system. However, we perform the 
al
ula-tion in order to 
ompare our approa
h with a 
ommonmethod. We 
on
lude the paper with three appendi
esthat 
ontain some mathemati
al details related to the
al
ulation.2. NOTATION AND GENERAL EQUATIONSWe begin with the usual separation of left and rightparti
les in the ele
tron wave fun
tions 	̂ (x) [24℄:	̂ (x) = exp (ipfx) 	̂R (x) + exp (�ipfx) 	̂L (x) : (1)It is implied here that the wave fun
tions 	̂R;L (x) varyover distan
es mu
h longer than 1=pf . We also re-stri
t ourself to the Tomonaga�Luttinger model [24℄.For simpli
ity, we 
onsider only an ele
tri
ally neutralsystem, where a positive 
harge of ions is distributedhomogeneously along the 
hannel.We pass to the ele
tron�hole representation for theright (left) parti
les:	̂R;L (x) == 1Z0 dp2� �exp (�ipx) âR;L (p) + exp (�ipx) b̂yR;L (p)� == âR;L (x) + b̂yR;L (x) ; (2)where ây(â) and b̂y(b̂) are 
reation (annihilation) op-erators for ele
trons and holes. The Hamiltonian ofintera
ting spinless ele
trons in one dimension 
an be

written for a neutral system in terms of the ele
trondensity operator% (x) = %R (x) + %L (x)asH = Z dx�� h	̂yR (x) vf (�i�x) 	̂R (x)+	̂yL (x) vf i�x	̂L (x)i++ Z dx dy % (x)V (x� y) % (y) ; (3)where vf is the Fermi velo
ity.The form of V (x � y) depends on the relation be-tween the usual 3D s
reening radius RD (we 
onsiderthe 
ase of Debye s
reening for simpli
ity) and thetransverse size of the 
hannel d. Indeed, we must takeinto a

ount that the ele
trons are one-dimensionalonly for distan
es jx � yj mu
h larger than d. There-fore, if RD � d, we 
an use a point-like intera
tionV0Æ (x� y)2). This is the 
ase for metals3). In the op-posite 
ase RD � d (a semi
ondu
tor), an ordinaryCoulomb potential must be used. In what follows, werestri
t ourself to the simplest 
ase, a point-like inter-a
tion. Thus, V (p) = V0: (4)The Hamiltonian of the Luttinger model in Eq. (3) rep-resented in terms of ele
trons and holes is 
ompletelyde�ned without any additional regularization of theele
tron operators. In parti
ular, the 
ommutator ofthe R- and L-densities in this representation reprodu
esthe well-known S
hwinger anomaly [19℄:[%R;L (x) ; %R;L (y)℄ = � i2� ��xÆ (x� y) : (5)2) We note that this 
ase also in
ludes ba
ks
attering of ele
-trons with the transition L! R and ba
k:Z dx	̂yR(x)	L(x)	̂yL(x)	R(x):By anti
ommuting the 	̂-operators, we 
an redu
e this term tothe term without ba
ks
attering [9℄; for this model, therefore, theTomonaga�Luttinger Hamiltonian des
ribes the entire ele
tron�ele
tron intera
tion.3) To obtain a real parameter, we should use the standard ex-pression for the Debye s
reening radius RD = 1=p4�e2�n=��with the 
on
entration n = pf=�2d2: We took into a

ounthere that there is only one state for ele
trons in dire
tions per-pendi
ular to the 
hannel. Thus, RD � (d=2)p�pfab, whereab = �me2��1 is the Bohr radius. Hen
e, the 
ondition RD � dis equivalent to pfab � 1. The last parameter depends only onthe e�e
tive mass of the ele
tron. If it is of the order of the freeele
tron mass, then ab � 0:5 � 10�8 
m and we obtain pfab � 1for the 
on
entrations typi
al for metals. In other words, we thendeal with a short-range intera
tion.639
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hnique. Equations (5) are usually derivedby regularizing the produ
t of 	 operators by pointsplitting [25℄. This is not ne
essary, however, in theele
tron�hole representation [20℄ be
ause the 
reationand annihilation operators for R, L ele
trons (â�R;L(x))and holes (b̂�R;L(x)) are nonlo
al in the 
oordinate spa
eas their anti
ommutators are:fâyR (x) ; âR (x1)g = fb̂yR (x) ; b̂R (x1)g == 12�i 1x� x1 � iÆ ; (6)fâyL (x) ; âL (x1)g = fb̂yL (x) ; b̂L (x1)g == 12�i 1x1 � x� iÆ (7)(in momentum spa
e, these anti
ommutators areÆ-fun
tions). Using these anti
ommutators for thedensities of right and left ele
trons %R;L (x) ofform (75), we immediately reprodu
e the S
hwingeranomaly. This means that, being formulated in theele
tron�hole representation, our theory is 
ompletelyde�ned without any further rede�nition of the densityoperators.Besides, Hamiltonian (3) is invariant under the 
hi-ral transformations	R(x) = ei�
	R; 	L(x) = e�i�
	L; (8)where �
 is a 
onstant parameter of the transforma-tion. This invarian
e leads to 
onservation of the 
hi-ral 
harge (the di�eren
e of the numbers of right andleft ele
trons). However, we see below that the groundstate of the model is 
onstru
ted su
h that the symme-try is spontaneously broken.3. THE APPROACH, RESULTS, ANDDISCUSSIONThe standard approa
h to many-parti
le systems isbased on Green's fun
tions. The one-parti
le Green'sfun
tion gives the information about the spe
trum ofex
itations; the many-parti
le Green's fun
tions allow
al
ulating di�erent 
orrelation and response fun
tions.Of 
ourse, the Green's fun
tions give some informationabout the wave fun
tions of the states, but this infor-mation is indire
t.In prin
iple, the wave fun
tions of stationary states(and of the ground state in parti
ular) 
an be obtainedby solving the 
orresponding S
hrödinger equation di-re
tly. However, for systems with an in�nite number

of the degrees of freedom, this equation is too 
ompli-
ated. A more pra
ti
al approa
h 
an be based on theevolution operator [26℄S (T ) =Xm;n jnihnj exp�iHT jmihmj; (9)where jni are the exa
t wave fun
tions of the Hamilto-nian H in the se
ond-quantized representation and T isthe time of observation. The evolution operator deter-mines the evolution of an arbitrary initial wave fun
-tion (hmj) from the instant t = 0 to �nal states jni att = T . (We assume from now on that the S
hrödingerrepresentation for operators with time-dependent wave-fun
tions is used.)Formula (9) suggests the general method to obtainwave fun
tions. We �rst 
al
ulate the evolution opera-tor and represent it as a sum of time-dependent expo-nentials. The 
oe�
ients in front of these exponentialsare produ
ts of exa
t wave fun
tions and their 
omplex
onjugates. To extra
t the ground-state wave fun
tion,we must take the limit T ! 1 (with an in�nitesimalimaginary part added to the energy). Passing to theEu
lidean time (T ! �i=�), we see that the evolutionoperator determines the density matrix for the equilib-rium system at nonzero temperature (see end of thisse
tion).The advantage of this method is that the evolutionoperator 
an be written expli
itly as a fun
tional inte-gral with de�nite boundary 
onditions (see Eq. (22)).The expression is nontrivial be
ause it allows rewritingthe wave fun
tion in the se
ond-quantized representa-tion as a fun
tional integral with unusual boundary
onditions at t = 0 and t = T . This is possible be-
ause 
reation and annihilation operators in Eq. (9) an-ti
ommute on
e they 
orrespond to di�erent instan
esof time (see Appendix A for the details). That is, theyshould be 
onsidered Grassmann variables. (An anal-ogous representation for the Feynman Green's fun
-tion des
ribes the va
uum�va
uum transitions. In this
ase, therefore, Grassmann variables obey zero bound-ary 
onditions. This distin
tion is extremely essential.)The fun
tional integral is rather simple for the Lut-tinger model with Hamiltonian (3) and 
an be 
al
u-lated exa
tly. This allows 
onstru
ting wave fun
tionsof all states in the model and, in parti
ular, the groundstate in terms of the ele
tron and hole operators. Thissu�
es to demonstrate the symmetry breaking. (SeeSe
. 5 for further 
omparison of the approa
h and thebosonization one.)We keep the size of the system �nite. This is im-portant not only for regularizing infrared divergen
es inthe system but mostly be
ause the 
hara
teristi
 tem-640



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :peratures of the problem depend on the system size L.Therefore, we have to dis
uss the 
on
ept of phase tran-sition in �nite systems. In fa
t, we identify a param-eter that allows applying the 
on
ept of phase transi-tion formulated in the thermodynami
 limit (L ! 1,with the ele
tron density �nite) to a real �nite system.We see in what follows that our system is in a 
ertainsense large enough and we 
an speak about a smearingse
ond-order phase transition for the problem.Usually, the 
riti
al temperature is de�ned as apoint where thermodynami
 quantities have a singu-larity. Of 
ourse, this is the 
ase only in an in�nitesystem be
ause all singularities smear out if the size ofthe system is �nite. The same is true for the 
oheren
elength, whi
h 
annot be larger than the system size.In this paper, we adopt the point of view sug-gested by Landau in order to des
ribe se
ond-orderphase transitions [27℄. He introdu
ed the order param-eter as the main quantity for the des
ription of phasetransitions related to the spontaneous symmetry break-ing. By de�nition, the order parameter is zero in thehigh-symmetry phase (with the same symmetry as theHamiltonian) and nonzero in a phase with broken sym-metry. In fa
t, this is only one of the possible de�ni-tions of the broken (unbroken) phase, but we use it be-low be
ause it is 
onvenient for us. In the 
ase of 
hiralsymmetry breaking in Eq. (8), the following quantity
an serve as the order parameter:� = Z dxh
jâyR (x+ Æx=2)�� b̂yL (x� Æx=2) j
ijÆx!0: (10)This quantity is not invariant under transformations inEq. (8) and should be zero if the 
hiral symmetry re-mains unbroken. We note that we use a ma
ros
opi
order parameter (the integral over the entire system).In the broken phase, this quantity is proportional tothe volume of the system.The BKT phase represents the intermediate 
asewhere � � L�T ; 0 < �T < 1; (11)and hen
e� is still in�nite in the thermodynami
 limit,while the density of the order parameter �=L vanishes.We note that � appears to be nonzero even at � > �
due to �u
tuations of the broken phase in the higher-symmetry phase. It is important that � does not in-
rease with L in this 
ase.Intensive thermodynami
 quantities remain smoothfor a �nite-size system even at the phase transitionpoint. However, an essential 
ir
umstan
e is that they

depend expli
itly on the system size and tend to in�nity(or a
quire a jump) as L!1.Usually, one proves that the system is in the BKTphase by investigating the behavior of the four-fermion
orrelator that does not break the 
hiral invarian
e (be-low, in Se
. 4.1, we 
onsider su
h a 
orrelator�theprobability to �nd an R�L-pair at a large distan
e r froman L �R pair). If su
h a 
orrelator de
reases su�
ientlyslowly with the distan
e, the system is in the BKTphase. The limit 
ase where the 
orrelator remains
onstant at large distan
es 
orresponds to a nonzerodensity of the order parameter and the ordinary bro-ken symmetry. In fa
t, this de�nition of the BKT phaseis equivalent to our de�nition given above, but the def-inition in (10) and (11) is more 
onvenient for us.In one dimension, the BKT phase 
an exist only at� = 0 or, to be more pre
ise, for temperatures thattend to zero as L ! 1. There is no need in a mi-
ros
opi
 theory in order to estimate the 
hara
teristi
temperature �
 at whi
h the system 
hanges one typeof behavior for another. To obtain an estimate, we 
anuse the general phenomenology appli
able to all BKTsystems (see, e.g., [24℄). We assume that the 
hiralsymmetry is indeed spontaneously broken in the Lut-tinger model (of 
ourse, this 
an be proved only in ami
ros
opi
 theory). A

ording to the Goldstone theo-rem, the 
hiral phase �
 (the phase of the 	+R	L oper-ator) be
omes a massless boson �eld. In the long-rangelimit, only �u
tuations of this �eld are relevant and itse�e
tive Lagrangian redu
es to (Eu
lidean time � = itis used be
ause we want to 
onsider nonzero tempera-tures below)Seff [�
℄ = V 22 Z d� dmx �(�t�
)2 + (w�x�
)2� ; (12)where V and w are phenomenologi
al 
onstants (
al-
ulable in a mi
ros
opi
 theory) and m is number ofspatial dimensions.To de
ide if the system is in the BKT phase, it suf-�
es to 
onsider the behavior at large distan
es jx� yjof the 
hirality-
onserving 
orrelator:F (x� y) = h	+R(x)	L(x)	+L (y)	R(y)i: (13)We 
an negle
t �u
tuations of the modulus of the op-erator 	+R(x)	L(x) (as well as higher derivatives in thee�e
tive a
tion for the 
hiral phase). Correlator (13)then redu
es toF (x� y) = 
onstZ D�
 exp(�S[�
℄)�� exp(2i�
(x)) exp(�2i�
(y)): (14)2 ÆÝÒÔ, âûï. 4 (10) 641



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008Cal
ulating this integral at � = 0, we obtainF (x� y) � exp"2iV �2 Z d!dmk(2�)m+1 �� sin2 [(k � (x� y)) =2℄!2 � w2k2 # : (15)For m = 1, the two-dimensional integral (one spa
eand one time dimension) in the exponent diverges log-arithmi
ally, and hen
eF (x� y) � V 2(kmaxjx� yj)1=2�V 2w : (16)This proves the existen
e of a BKT phase at � = 0.If the temperature is nonzero, the integral over !in Eq. (15) should be repla
ed by a sum over dis
retevalues !n = 2�n� (with integer n). At high tempera-tures, only the term with n = 0 survives at large dis-tan
es and we are left with a one-dimensional integralwith respe
t to k, whi
h leads to the 
orrelator expo-nentially de
reasing with distan
e:F (x� y) � V 2 exp�� �2�V 2w2 jx� yj�: (17)Clearly, this 
orrelator des
ribes the unbroken phase.The power-like behavior of the 
orrelator in (16) isvalid in the region jx� yj < w=�:For � < �
 � w=L;this takes pla
e for the entire sample, i.e., the systemis in a broken phase. The temperature �
 is the tem-perature of the phase smear transition.In this estimate, we 
an re
ognize the ex
itation en-ergy with the smallest momentum possible in a �nite-size system. In the Luttinger model, this energy isequal to !min = 2�v
f=L, with the renormalized Fermivelo
ity v
f = vfp1 + V0=�vf [9℄. Therefore, we seethat if the spe
trum of ex
itations is gapless (as in theLuttinger model), then the phase transition temper-ature is inversely proportional to the sample length.This result 
an be obtained in the mi
ros
opi
 theoryas well.At � � �
, the integral in Eq. (17) diverges loga-rithmi
ally for m = 2. Therefore, �
 
an also be 
on-sidered a 
rossover point where the 
riti
al dimensionof the system 
hanges from 1 to 2.

Turning to the mi
ros
opi
 theory, we dis
uss thesimplest 
ase: the short-range potential in the limit ofan in�nitely strong intera
tion�vfV0 � 1: (18)In the leading order in this parameter, the evolution op-erator appears to be very simple and the ground-statewave fun
tion 
an be represented in a 
losed form. Inthe temperature region�
hiral = 2�vfL � �� �
 = !min; (19)the ground-state wave fun
tion is of the form4)j
i� =pZ0 exp�Z dx exp (i�) âyR (x) b̂yL (x) ++ Z dy exp (�i�) âyL (y) b̂yR (y)� jF i; (20)where jF i is the �lled Fermi sphere and Z0 is the nor-malization 
oe�
ient. There is an in�nite set of degen-erate ground states labeled by the 
ontinuous param-eter �, whi
h has the meaning of the order parameterphase.The symmetry breaking 
an be seen immediatelybe
ause wave fun
tion (20) is not invariant under 
hi-ral transformation (8). This is the de�nition of spon-taneous symmetry breaking. Besides, it 
an be veri�eddire
tly that � / L5). This means that a se
ond-orderphase transition o

urs at a higher temperature in thislimit.Wave fun
tion (20) is a mixture of states with dif-ferent 
hiralities. (We assign 
hirality +1 to a rightele
tron and a left hole and �1 to their 
ounterparts.Therefore, bosons in Eq. (20) are neutral in terms ofele
tri
 
harge but have the nonzero 
hiralities �2).As a result, the order parameter � (see Eq. (10)) doesnot vanish be
ause su
h a ground state implies that4) Stri
tly speaking, at nonzero temperatures, the system isdes
ribed not by the wave fun
tion but by the density matrix.But we are interested in the low-temperature region, where theprobability to �nd the system in an ex
ited state is small. Inthe leading approximation, we 
an des
ribe su
h a system by thewave fun
tion.5) To 
al
ulate this, we use the identity�â (p) ; exp�Z dp02� ây �p0� b̂y �p0��� == b̂y (p) exp�Z dp02� ây �p0� b̂y �p0��and determine the anti
ommutator with the same momenta in aregular way: fây (pn) ; â (pm)g = LÆn;m.642
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hiralities are all degeneratein energy and transitions between states with di�er-ent 
hiralities in Eq. (10) exist. The degenera
y per-mits 
onstru
ting a symmetry-breaking wave fun
tion,although the Hamiltonian has no symmetry-breakingterms. This is a typi
al situation for a system witha 
ondensate: adding one pair to the 
ondensate doesnot 
ost any energy. But this degenera
y is possibleonly if the size of the system is large enough; we see inwhat follows that it should be L � Lmin � 2�vf=�.In the opposite 
ase L � Lmin; the ground state hasa �xed 
hirality (equal to zero; see the dis
ussion be-low Eq. (58)) and the order parameter � vanishes, i.e.,there is no spontaneous symmetry breaking. In fa
t,the �rst inequality is the parameter that allows the
on
ept of phase transition, whi
h has been formulatedin the thermodynami
 limit, to be applied to �nite realsystems. If the states with di�erent 
hiralities are de-generate, the sample 
an be 
onsidered in�nite withregard to symmetry breaking. (See the end of Se
. 5for a further dis
ussion of these statements. There, were
al
ulate Eq. (20) from the boson representation.)These 
onsiderations put a lower bound on thetemperature region where a 
hiral phase 
an exist:�� �
hiral, with �
hiral being the degeneration tem-perature. It is the 
hara
teristi
 energy di�eren
e be-tween states with varied 
hirality.We estimate the density of 
hiral pairs in the groundstate. Wave fun
tion (20) implies that all ele
trons arebound into pairs. Hen
e, the density of R�L 
oin
ideswith the density of R-ele
trons:NR (p) = �h
jâyR (p) âR (p) j
i� = L=2 (21)(see footnote 5). This quantity re�e
ts a well-knownfa
t: the distribution fun
tion of ele
trons is of the or-der 1/2 near the Fermi surfa
e [21℄. If the intera
tionis in�nitely strong, all ele
trons and all holes are boundinto ex
iton-like pairs. As a result, we obtain the valuein (21), whi
h is the maximal possible.In the model under 
onsideration,NR (p) is momen-tum independent and the total number of pairs NR di-verges at large p. (This is the defe
t of the point-likeele
tron�ele
tron intera
tion.) The sum over all statesshould be restri
ted either by pf or, at pfd� 1, by theinverse size of the 
hannel be
ause ele
trons 
annot be
onsidered one-dimensional at larger p (see footnote 3).In the 
ase, therefore,NR � L4�d:Hen
e, the number of pairs NR, in the 
ase pfd � 1,is only a small fra
tion of the total number of ele
trons

(Lpf=2�). This does not mean, of 
ourse, that theLuttinger liquid behaves like a normal one in this 
ase.The response of the system to slowly varying external�elds is 
ompletely determined by the ele
trons nearthe Fermi surfa
e, whi
h are all paired. This situationresembles super�uid helium, where (even at zero tem-perature) the density of the 
ondensate is only a fewper
ent of the total one. Nevertheless, the whole massof helium is super�uid [28℄ at � = 0.We pro
eed with the region of high temperatures:� � �
 = !min. In this region, ma
ros
opi
 or-der parameter (10) is proportional not to the vol-ume of the system but to some 
hara
teristi
 length� (�) = v
f= (���
) (see the end of the next se
tion)and the density of the order parameter �=L vanishes(as �=L) in the limit L !1, as it should. Hen
e, thetemperature�
 indeed has the meaning of the tempera-ture of a smearing phase transition from the symmetri
phase to the phase with broken 
hiral symmetry.The length � (�) plays the role of 
oheren
e lengthin our system. At lengths less than � (�), the wavefun
tion of the system 
oin
ides with 
oherent expo-nent (20). But at larger distan
es, the order disap-pears.The ma
ros
opi
 order parameter� 
an be nonzeroeven in the symmetri
 phase due to �u
tuations of thebroken to the unbroken phase. What matters is the be-havior of � with the size of the system. If � does notin
rease with L, it follows that � / � and � � L, andwe deal with an unbroken phase; if � in
reases withL, a long-range order appears. (This is just the region� � �
, where � � v
f= �
 � L.) This 
ondition 
analso be 
onsidered the de�nition of the smearing phasetransition temperature for a �nite-size system.On the other hand, it is obvious from su
h a de�ni-tion that the phase transition temperature in �nite-sizesystems 
an be de�ned only up to 1=L 
orre
tions andthe phase transition is smooth within the 1=L regionnear the phase transition temperature. In the Luttingermodel, where the temperature �
 itself is of the order1=L, we 
an de�ne �
 only up to a fa
tor of the orderof unity. This is the pri
e we have to pay for 
onsid-ering a phase transition of a large but �nite-size sys-tem. The above dis
ussion should make it 
lear thatthis transition is smeared over the temperature regionabout �
. But there is still a 
lear distin
tion betweenthe 
ase with a 
orrelation length of the order of thesystem size (broken phase) and the 
ase where � � L(unbroken phase). We note that �
 is not so small forreal systems. Indeed, if we take vf � 107 
m/se
 andL � 10�4 
m, then �
 � 1Æ K � v
f=vf .As was already pointed out in the Introdu
tion, the643 2*
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ase of the in�nitely strong intera
tion is very spe
ial.We see in what follows that if the intera
tion is �nite,then the ma
ros
opi
 order parameter� in
reases withthe system size, but more slowly than L (at �� �
).In the 
ase of a short-range potential (see Se
. 4.1), �behaves as some power of L. This 
orresponds literallyto the de�nition of the BKT phase. If we 
onsidereda potential of the Coulomb type, � would depend onL in a more 
ompli
ated way, but would neverthelessin
rease with the size L. Physi
ally, this 
ase is quitesimilar to the usual BKT one. We note that in theformal limit e2=�vf ! 1, we have the 
ondensate ofindependent 
hiral pairs with wave fun
tion (20).To summarize, the Luttinger model at � < �
 isalways in the BKT phase with broken 
hiral symmetry.At � � �
, it undergoes a phase transition, whi
h inthe limit of the in�nitely strong intera
tion turns intothe smearing se
ond-order phase transition with a �nitedensity of pairs.4. GROUND STATE OF THETOMONAGA�LUTTINGER MODELEvolution operator (9) of a quantum system 
anbe represented as a fun
tional integral with de�niteboundary 
onditions (
f. [26℄). This representation isusually derived for boson systems, and we therefore givethe derivation for fermions in Appendix A.The theory with an arbitrary ele
tron�ele
tron in-tera
tion 
an be redu
ed to a theory in an external�eld by means of the Hubbard�Stratonovi
h transfor-mation [29℄ (see Eq. (33) below). Integrating over theexternal �eld is required in order to return to the orig-inal 4-fermion intera
tion. Therefore, we �rst 
onsiderthe evolution operator for one-dimensional ele
tronspla
ed into an external �eld �(x; t). It is given byŜ (�) = Z(	;	) D	D	expS �	;	�; (22)where 	 and 	 are the ele
tron �elds (Grassmann vari-ables) and S is the a
tion:S = i TZ0 dt Z dx	R (x; t) [i�t � vf i�x +�(x; t)℄��	R (x; t) + (R; vf $ L;�vf ) : (23)Integration over 	;	 in Eq. (22) is performed withgiven boundary 
onditions at t = 0 and t = T .

At t! +0,	R;L (x; t) = âR;L (x) ++ arbitrary negative-frequen
y part,	R;L (x; t) = b̂R;L (x) ++ arbitrary negative-frequen
y part.At t! T � 0,	R;L (x; t) = b̂yR;L (x) ++ arbitrary positive-frequen
y part,	R;L (x; t) = âyR;L (x) ++ arbitrary positive-frequen
y part. (24)The 
reation operators of ele
trons and holes â+and b̂+ are the variables entering the wave fun
tionsof the states in the sum in Eq. (9). The annihilationoperators â and b̂ enter the 
onjugate wave fun
tions.They anti
ommute, fâ; â+g = fb̂; b̂+g = 0, on
e theybelong to di�erent instan
es of time if the evolutionoperator is 
al
ulated (see Appendix A for the details).Therefore, we 
an regard them as Grassmann variablesin 
al
ulating the fun
tional integral.It is possible to expli
itly separate the dependen
eon the 
reation and annihilation operators for the evo-lution operator in a given external �eld determined bythe fun
tional integration region in (22). We introdu
enew integration variables	R;L = 	0R;L + �R;L;	R;L = 	0R;L + �R;L: (25)The saddle-point �elds 	0R;L are supposed to obey theS
hrödinger equation in the external �eld �(x; t) withgiven boundary 
onditions (24). The �quantum" �elds�R;L(x; t) are arbitrary but obey zero boundary 
ondi-tions: �R;L (0) = �R;L (T ) = 0.The solutions 	0R;L 
an be represented in terms ofthe Feynman Green's fun
tion GR;L in a �nite time,de�ned as follows. It is a solution of the S
hrödingerequation[i�t � vf i�x +�(x; t)℄GR;L (x; t;x1; t1) == iÆ(2) (x� x1; t� t1) (26)with the following boundary 
onditions: at t ! +0,the Green's fun
tion GR(x; t; x1; t1) 
oin
ides with the644
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tion of free fermions in the lower halfplaneof the 
omplex variable x (being arbitrary in the up-per halfplane). At t ! T � 0, it 
oin
ides with thefree Green's fun
tion in the upper halfplane. For theGreen's fun
tion of left ele
trons GL(x; t; x1; t1), theupper and lower halfplanes are to be ex
hanged.The free Feynman Green's fun
tion is given by [8℄G0R;L (x; t;x1; t1) == 12�i [vf (t�t1)� (x�x1)�iÆ sign (t�t1)℄�1 : (27)In one dimension, S
hrödinger equation (26) 
an besolved for an arbitrary external �eld �(x; t):GR;L (x; t;x1; t1) = G0R;L (x; t;x1; t1)�� exp24i TZ0 dt0 Z dy�(y; t0) �G0R;L (x; t; y; t0) �� G0R;L (x1; t1; y; t0)� 35 : (28)Now it is easy to verify that the saddle-point �elds	0R;L 
an be expressed in terms of these Green's fun
-tions as	0R;L (x; t) = Z dx0 [GR;L (x; t;x0; 0) âR;L (x0) �� GR;L (x; t;x0; T ) b̂yR;L (x0)i ;	0R;L (x; t) = � Z dx0 [GR;L (x0; 0;x; t) �� b̂R;L (x0)� GR;L (x0; T ;x; t) âyR;L (x0)i : (29)
To verify that these �elds obey the required boundary
onditions, we note that âR (x) and b̂R (x) are regularin the upper halfplane (see Eq. (2)). Therefore, thepositive-frequen
y part of GR(x; t; x1; t1) at t ! +0 isdetermined by the pole 
ontribution at x0 = x+ iÆ andis equal to âR (x), as it should. The se
ond term inEq. (29) yields a negative-frequen
y part, whi
h is ar-bitrary. Similarly, we verify the boundary 
ondition att ! T � 0. Inside the time interval (0; T ), the saddle-point �elds satisfy the S
hrödinger equation, as 
an beseen from Eq. (26) for the Green's fun
tions.The 
ontribution of the saddle-point �eld to the a
-tion is

S0 = Xi=R;L Z dx dx0 hb̂i (x0)Gi (x0; 0;x; �) âi (x) ++ âyi (x0)Gi (x0; T ;x; T � �) b̂yi (x) �� âyi (x0)Gi (x0; T ;x; 0) âi (x)�� b̂i (x0)Gi (x0; 0;x; T ) b̂yi (x)i : (30)We here take Eq. (26) into a

ount. Sin
e the saddle-point �elds obey the S
hrödinger equation, there is noterm linear in the quantum �eld � in the a
tion.The dependen
e of the evolution operator in theexternal �eld on the 
reation and annihilation fermionoperators is 
ompletely determined by Eq. (30). Theintegral over quantum �u
tuations produ
es the de-terminant of the S
hrödinger operator in the external�eld �:ln [Det� (T )℄ = � 14� TZ0 dt dt1 �� 1Z�1 dp2�� (�p; t)� (p; t1) jpj �� exp [�ijpjvf jt� t1j℄ : (31)(It is 
al
ulated in Appendix B. In fa
t, we introdu
edan ultraviolet 
ut-o� there.) The 
omplete expressionfor the evolution operator in the external �eld has theform Ŝ (�) = exp (S0 + ln[Det� (T ) ℄)jF ihF j; (32)Now we 
an express the evolution operator for thesystem of intera
ting fermions in terms of this operator.We use the well-known identity [29℄exp24� i2 TZ0 dt 1Z�1 dp2�V (p) % (p; t) % (�p; t)35 = 1N ��Z D�exp24 i2 TZ0 dt 1Z�1 dp2�� (p; t) � (�p; t)V �1 (p) �� i2 TZ0 dt 1Z�1 dp2� (% (p; t) � (�p; t) ++ % (�p; t)� (p; t))35 : (33)The normalization 
oe�
ient N is645
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es to shift the integrationvariable � to �� V % in the integralZ D�exp � i2Tr ��y�V �1�� :Applying identity (33) to the fun
tional inte-gral that determines the evolution operator for theTomonaga�Luttinger model, we express it in terms ofthe evolution operator in the external �eld at the pri
eof an additional fun
tional integration over the s
alar�eld �(x; t):Ŝe�e = 1N Z D�exp24 i2 TZ0 dt �� 1Z�1 dp2�� (p; t) � (�p; t)V �1 (p)35 Ŝ (�): (35)Expression (35) is expli
it: while it is not possible toperform the �nal integration in �(x; t) in 
losed form,it is easy to obtain an arbitrary term of the evolutionoperator by expanding it in the 
reation and annihila-tion operators. This su�
es for the 
al
ulation of theevolution operator.Indeed, we expand the evolution operator in pow-ers of the external �eld Sn0 . The arbitrary term of theexpansion 
ontains a number of Green's fun
tions inthe external �eld (28), whi
h are exponentials linear inthe external �eld. Together with a
tion (35) and de-terminant (34), we obtain a Gaussian-type integral in�(x; t), whi
h 
an be easily performed. The result ofthe integration depends of the ele
tron�hole 
on�gura-tion 
onsidered. It is spe
i�ed by the 
on
rete term ofthe expansion.We introdu
e the following notation for the 
oordi-nates entering the ele
tron�hole 
reation and annihila-tion operators.1. We let x denote the 
oordinates of the right par-ti
les and y the 
oordinates of the left parti
les.2. We put a tilde on 
oordinates related to annihi-lation operators (initial state) and leave 
oordinates of
reation operators (�nal state) without a tilde.3. We put primes on 
oordinates related to holes.

It is 
onvenient to pro
eed in the exponents ofGreen's fun
tions (28) to momentum spa
e using theexpression for the free Feynman Green's fun
tions:G0R;L (p; t; t1) = ��p� (t� t1)�� exp [�ipvf (t� t1)℄� ��p� (t1 � t)�� exp [�ipvf (t� t1)℄ : (36)Colle
ting all terms in the exponents arising fromGreen's fun
tion (28), we obtain the 
ontribution tothe a
tion linear in the external �eld �,S
 = i TZ0 dt 1Z�1 dp2�� (�p; t)R
 (p; t) ; (37)where the �
urrent� R
 depends on the 
hosen 
on�g-uration, i.e., on the 
on
rete term in the expansion ofSn0 . It depends on the ele
tron (hole) operators dire
tlyand as a result on their 
oordinates. (See Eq. (50) be-low. A possible 
on�guration 
an be seen in expli
itform there.) It is equal toR
 (p; t) = Ri (p) exp (�ijpjvf t) ++Rf (p) exp (�ijpjvf (T � t)) ; (38)andRf (p) = Xx::: ;x0::: ;y::: ;y0::: � (p) [exp (ipx) �� exp (ipx0)℄ + � (�p) [exp (ipy)� exp (ipy0)℄ ;Ri (p) = X~x::: ;~x0::: ;~y::: ;~y0::: � (�p) [exp (ip~x) �� exp (ip~x0)℄ + � (p) [exp (ip~y)� exp (ip~y0)℄ (39)
for the initial (annihilation operators) and �nal (
re-ation operators) 
on�gurations respe
tively. Coordi-nates x; : : : ; y; : : : in Eq. (39) are the 
oordinates ofannihilation and 
reation operators for the 
on�gura-tion in whi
h we are interested. Finally, we obtain thefun
tional integral646



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :Z D�exp24 i2 TZ0 dt dt1 �� 1Z�1 dp2�� (p; t) � (�p; t1)V �1 (p) Æ (t� t1) �� 14� TZ0 dtdt1 1Z�1 dp2�� (�p; t)� (p; t1) jpj �� exp [�ijpjvf jt� t1j℄ ++ i TZ0 dt 1Z�1 dp2�� (�p; t)R
 (p; t)35 ; (40)where the �rst term is the a
tion in Eq. (35), the se
-ond term is the quantum determinant, and the thirdterm 
omes from the Green's fun
tions in Eq. (37).The integral in Eq. (40) is Gaussian: it 
an be 
al-
ulated by standard methods, by �nding the saddle-point �eld �0 and shifting the integration variables as� ! � � �0. The integral with respe
t to the �u
tu-ations ���0 yields a shift of the ground-state energydue to the ele
tron intera
tion and the normalization
oe�
ient of the ground-state wave fun
tion. We 
al-
ulate this integral in Appendix C. The operator stru
-ture of the evolution operator is 
ompletely determinedby the terms that appear as a result of substituting thesaddle-point �0 in Eq. (40). We write them as an �ef-fe
tive a
tion�:Seff = i2 1Z�1 dp2� TZ0 dt�0 (p; t)R
 (p; t) : (41)The saddle-point �eld �0(x; t) satis�es the integralequationiV0�0 (p; t)� 12� Z T0 dt1�0 (p; t1) jpj �� exp [�ijpjvf jt� t1j℄ = �iR
 (p; t) ; (42)whi
h 
an be redu
ed to the following di�erential equa-tion (to see this, it su�
es to di�erentiate both sides ofEq. (42) with respe
t to time):�2t�0 (p; t) + !2p�0 (p; t) = 0; (43)where !p = jpjvfs1 + V0�vf : (44)

The boundary 
onditions for this equation follow fromthe original integral equation (42):�t�0 (p; 0)� ijpjvf�0 (p; 0) = 2ijpjvfV0Ri (p) ;�t�0 (p; T ) + ijpjvf�0 (p; T ) == �2ijpjvfV0Rf (p) : (45)In the derivation of Eq. (43), we have used the fa
t thatour system is ele
tri
ally neutral, and hen
eRf (p = 0; t) = Ri (p = 0; t) = 0:The solution of the di�erential equation for thesaddle-point �eld (Eq. (43)) gives�0 (p; t) = �2jpjvfV0(!p + jpjvf ) �1� �2p� �� fRi [exp (�i!pt) + �p exp (�i!p (T � t))℄ ++ Rf [�p exp (�i!pt) + exp (�i!p (T � t))℄g ; (46)where �p = 1�p1 + V0=�vf1 +p1 + V0=�vf exp (�i!pT ) :Substituting the saddle-point �eld in the e�e
tive a
-tion (41), we �nally obtainSeff = � 1LXp6=0 V01 +p1 + V0=�vf 11� �2p �� [[Rf (�p)Rf (p) +Ri (�p)Ri (p)℄F2 (p) ++ 2F1 (p)Rf (�p)Ri (p)℄ ; (47)where we introdu
e the fun
tionsF1 (p) = exp (�ijpjvfT )� exp (�i!pT )!p � jpjvf ++ �p 1� exp (�i (!p + jpjvf ) T )!p + jpjvf ;F2 (p) = 1� exp (�i (!p + jpjvf )T )!p + jpjvf ++ �p exp (�ijpjvfT )� exp (�i!pT )!p � jpjvf : (48)
In expression (47) for the e�e
tive a
tion, we re-turn to a sum over the parti
le momenta pn = 2�n=Lin a

ordan
e with the ordinary rule6):1Z�1 dp2� �! 1LXp :6) This 
orresponds to periodi
 boundary 
onditions for the 	and 	 �elds at the boundaries of the sample. (See also the endof Appendix D.)647
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esthat appear in the e�e
tive a
tion. We note that thereis no term with p = 0 in these sums. This fa
t is re-lated to the gauge invarian
e of the system: 
onstant(in spa
e) �elds �(t) 
orrespond to a pure gauge ele
-tri
 potential and should not 
ontribute.We pro
eed with the ground-state wave fun
tion inthe Tomonaga�Luttinger model. As mentioned above,in order to separate the ground state, we have to takethe limit T ! 1. (This 
orresponds to the 
ase ofzero temperature.) We 
an omit os
illating exponen-tials in this limit. As a result, we are left with only thefun
tion F2, whi
h be
omesF2 (p) � "jpjvf  1 +s1 + V0�vf !#�1 :The e�e
tive a
tion fa
tores into 
ontributions of initialand �nal states:Seff = � 1LXp6=0 V0jpjvf h1 +q1 + V0�vf i2 �� [Rf (�p)Rf (p) +Ri (�p)Ri (p)℄ == Sfeff + Sieff : (49)In addition to Seff , we have to 
al
ulate preex-ponential fa
tors that arise from the free FeynmanGreen's fun
tions. Only the Green's fun
tions withequal-time arguments survive as T ! 1. As a re-sult, we see that the whole expression for the evolutionoperator for large T fa
tores into the produ
t of theground-state wave fun
tion j
i and its 
omplex 
onju-gate. The �nal expression for the wave fun
tion is ofthe formj
i = 1Xn=0 1n! "Z dx dx02�i âyR (x) b̂yR (x0)x0 � x� iÆ ++ Z dy dy02�i âyL (y) b̂yL (y0)y � y0 � iÆ #n �� expSfeff (x; x0; : : : ; y; y0; : : : ) jF i: (50)We verify that the wave fun
tion of nonintera
tingfermions (V = 0) is jF i. The general term in the sumin Eq. (50) is a produ
t of fa
tors:Z dx dx02�i âyR (x) b̂yR (x0)x0 � x� iÆ jF i:We note now that all singularities of the operatorb̂yR (x0) are those in the upper halfplane (see De�ni-tion 2) and the pole of the Green's fun
tion. We 
an


lose the 
ontour of x0 in the lower halfplane and provethat the 
orresponding integral vanishes. The onlyterm that survives is the one with n = 0, and hen
ej
i = jF i, as it should be for nonintera
ting fermions.A nontrivial answer for the wave fun
tion appearsonly owing to singularities of the e�e
tive a
tion. It is
lear from the general stru
ture of the a
tion (whi
his the produ
t Rf (p)Rf (�p)) that the wave fun
tion
ontains only terms where both R- and L-parti
les arepresent. All terms with only R (or only L) ele
trons orholes vanish. The simplest possible 
ontribution to theground-state wave fun
tion j
i (see Eq. (50)) isZ dx dx02�i dy dy02�i âyR (x) b̂yR (x0)x0 � x� iÆ âyL (y) b̂yL (y0)y � y0 � iÆ �� expSfeff (x; x0; y; y0): (51)The e�e
tive a
tion Seff for this term is given bySfeff (x; x0; y; y0) = �2�L �� Xpn>0 1pn fexp[ipn (x� y + iÆ)℄ ++ exp [ipn (x0�y0+iÆ)℄� exp [ipn (x0�y+iÆ)℄�� exp [ipn (x� y0 + iÆ)℄g ; (52)where � = V0vf h1 +p1 + V0=�vf i2 : (53)The sums in Eq. (52) 
an be easily 
al
ulated. WeobtainSfeff (x; x0; y; y0) == �� ln (x� y + iÆ) (x0 � y0 + iÆ)(x0 � y + iÆ) (x� y0 + iÆ) : (54)A

ording to the 
harge 
onservation law, the numberof ele
trons has to be equal to the number of holes, andtherefore the number of exponentials with the oppositesign in Eq. (52) is the same. As a result, the a
tionSeff does not diverge and singularities in the integrandin Eq. (51) are removed by zeroes of the a
tion or bythe integrations over x0 and y0. Therefore, divergen
esin the wave fun
tion do not exist even for short-rangeintera
tions.Expression (51) des
ribes the simplest possible 
om-plex in the va
uum of the intera
ting fermions. This648
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omplex has all quantum numbers equal to zero.In fa
t, it des
ribes ele
tron�ele
tron s
attering (inthe 
ross 
hannel). Correspondingly, all 
oordinatesx; x0; y; y0 are 
lose to ea
h other. In general, this 
om-plex does not break any 
ontinuous symmetry.But in the Tomonaga�Luttinger model, a spe
ialsituation arises. The leading 
ontribution to term (54)
omes from the region x0�y; x�y0 ! 0 (of the order ofthe transverse size of the 
hannel), but x�y and x0�y0
an be arbitrarily large. In other words, the 
omplexde
ays into R�L- and �RL-pairs. As we see in what fol-lows, su
h a wave fun
tion leads to a spontaneous 
hiralsymmetry breaking.We �rst 
onsider the strong-intera
tion limit:V0�vf � 1: (55)In this limit, �=� ! 1. It 
an be seen that for �=� = 1,the poles (x = x0 and y = y0) 
orresponding tofree fermions are 
an
eled 
ompletely by the fermion�fermion intera
tion (des
ribed by expSeff ) with the ef-fe
tive a
tion in Eq. (54). Instead, we obtain new polesat the points x0 = y � iÆ and y0 = x + iÆ. Re
allingthat b̂yR (x0) is analyti
 in the lower and b̂yL (y0) in theupper halfplane, we 
an integrate further over x0 andy0. As a result, we obtain the following 
ontribution tothe ground-state wave fun
tion:Z dx âyR (x) b̂yL (x) Z dy âyL (y) b̂yR (y) : (56)Thus, the 4-parti
le 
omplex de
ays into 2 noninter-a
ting �bosons�. They are neutral in the ele
tri
 
hargebut have a nonzero 
hirality �2.It 
an be veri�ed that no other 
onne
ted 
omplexesappear in the limit of strong intera
tion. For example,we 
onsider 
harged 
omplexes. The four-fermion 
on-tribution is exhausted by Eq. (56), and hen
e we haveto 
onsider a 6-fermion 
omplex:âyR (x) b̂yR (x0)x0 � x� iÆ âyR (x1) b̂yR (x01)x01 � x1 � iÆ âyL (y) b̂yL (y0)y � y0 � iÆ ��(x�y+iÆ) (x1�y+iÆ) (x0�y0+iÆ) (x01�y0+iÆ)(x�y0+iÆ) (x1�y0+iÆ) (x0�y+iÆ) (x01�y+iÆ) : (57)This 
omplex, indeed, de
ays into 2 fermions asx1 ! y0 ! x and x0 ! y ! x01 (the relative distan
ex � x0 is supposed to be large). These fermions are ofthe form âyR (x) âyR (x) b̂yL (x) and âyL (x0) b̂yR (x0) b̂yR (x0).Hen
e, this 
ontribution is zero owing to the Pauliprin
iple. We 
an also 
onsider more 
ompli
ated


on�gurations that 
ould produ
e 
harged 
onne
ted
omplexes and verify that they do not appear in theground-state wave fun
tion.The Pauli prin
iple allows one more 
omplex thatdes
ribes s
attering of 
hiral pairs:âyR (x) b̂yL (x) âyL (x) b̂yR (x) :The 
orresponding 
ontribution 
an be extra
ted fromthe 
onne
ted part of the general expression (51). Theintegral over x0 and y0 is easily 
al
ulated and we obtainZ dx dy âyR (x) b̂yL (x) âyL (y) b̂yR (y) � (x� y) ;where� (x� y) = �iÆy � x� 2iÆ �2 + iÆy � x� 2iÆ� :The fun
tion � (x� y) is �nite at any x and y (evenat x = y) and therefore its 
ontribution to the integralvanishes in the limit Æ ! +0. In other words, in thelimit of an in�nitely strong intera
tion, the 
hiral pairsdo not intera
t. This intera
tion appears, however, inthe next approximations in the inverse 
oupling 
on-stant (see Se
. 4.1).To obtain the 
omplete expression for the ground-state wave fun
tion, we have to 
onsider 
omplexeswith 8, 12, : : : parti
les and separate the 
onne
tedparts of these 
omplexes. This is not ne
essary, how-ever, be
ause, a

ording to a general theorem [30℄, the
omplete wave fun
tion is the exponent of the 
on-ne
ted 
omplexes7) and we have proved that the only
onne
ted 
omplexes are the 
hiral pairs in Eq. (56).On the other hand, the total 
hirality C of j
i must bezero and only terms with C = 0 
an o

ur in the ex-pansion of j
i. To take this into a

ount, we introdu
ethe proje
tor PC=0 onto the state with 
hirality zero.Then the wave fun
tion 
an be written asj
i =pZ0P̂C=0 exp �Z dx âyR (x) b̂yL (x) ++ Z dy âyL (y) b̂yR (y)� jF i: (58)The normalization 
oe�
ient Z0 is 
al
ulated in Ap-pendix C. We have already dis
ussed the wave fun
-tion in Se
. 3. Fun
tion (58) 
orresponds to an un-broken symmetry phase in spite of the presen
e of an7) This theorem is in fa
t a purely 
ombinatorial statement.In �eld theory, it is mostly applied to Green's fun
tions. In sta-tisti
al physi
s, it is known as the �rst Mayer's theorem (see,e.g., [31℄).649
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hiral pairs with zero momentum.If the 
hiral symmetry is broken, the states with dif-ferent 
hiralities should be degenerate in energy. Thisis not the 
ase if the system size is �nite: the energyof the state with C = 0 is still minimal and the orderparameter � is zero for � = 0.Wave fun
tion (58) 
orresponds to the state withthe minimal possible energy. Hen
e, it is the wave fun
-tion of the system at � = 0. To dis
uss the nonzerotemperature region, we 
an pro
eed to the Eu
lideantime (T ! �i=�) for equilibrium systems. We haveseen that the a
tion 
ontains two types of exponen-tials (see the term with Rf (p)Ri (�p) in Eq. (48)):exp(�vfp=�) and exp(�v
fp=�) (with a renormalizedFermi velo
ity). Corre
tions of the se
ond type 
orre-spond to ex
itations, and we omit them. But there areno ex
itations with the energy vfp (this 
an be seen,e.g., by the method of bosonization). In fa
t, theseexponentials des
ribe the 
hange of the ground statewith temperature (see footnote 4). (We dis
ussed themeaning of the 
rossover temperature 2�vf=L in Se
. 3in detail.) Obviously, for � � 2�vf=L, this exponen-tial fa
tor is not small but the preexponential fa
tor,i.e., the Green's fun
tion with the imaginary time dif-feren
es about 1=�, gives the smallness. This is 
om-pensated by the a
tion, be
ause it is proportional toln(1=�): This is the 
ase for the temperature region un-der 
onsideration. In the opposite 
ase � � 2�vf=L,the Green's fun
tion (27) is inappli
able. We 
an useEq. (36), but it is impossible to transform the sums overpn to integrals in order to obtain Eq. (27). As a result,the Green's fun
tion is proportional to a small exponen-tial fa
tor. It 
annot be 
ompensated by a logarithmi
divergen
e from the a
tion and the whole term withexp(�vfp=�) is small. Therefore, ground-state wavefun
tion (58) is valid if�� �
hiral = 2�vfL : (59)Of 
ourse, we assume that the number of states is large,i.e., pfL � 1. This allows passing from sums to inte-grals in the expressions independent of � (or T ).In the region of higher temperatures, �
hiral � �;Eq. (27) for the Green's fun
tion is appli
able. In this
ase, after similar algebrai
 transformations, the e�e
-tive a
tion Seff in Eq. (47) for an in�nitely strong in-tera
tion 
an be rewritten as

Seff = ��LXn6=0 1jpnj �� th jpnjv
f2� [Rf (�p)Rf (p)+Ri (�p)Ri (p)℄�� 2�L Xn6=0 1jpnj exp �jpnjvf� � exp �jpnjv
f�1 + exp �jpnjv
f� ��Rf (p)Ri (�p) ; (60)where v
f = vfp1 + V0=�vf : If�
hiral � �� 2�v
f=L (61)then Eq. (60) 
an be transformed to8)Seff = ��LXn6=0 1jpnj [Rf (�p) �� Rf (p) +Ri (�p)Ri (p)℄�� 2�L Xn6=0 1jpnj exp �jpnjvf� Rf (�p)Ri (p) : (62)Hen
e, in the temperature region of interest, we shouldtake another 4-fermion 
ontribution to the ground stateinto a

ount:Z dx d~x2�i dy0d~y02�i âyR (x) âR (~x)~x� x+ vfT � iÆ �� b̂yL (y0) b̂L (~y0)~y0 � y0 � vfT + iÆ expSfeff (x; ~x; y0; ~y0): (63)(At lower temperatures, this 
ontribution is exponen-tially small. Here, we work with real time T until theend and pro
eed to Eu
lidean time only at the laststep.) The a
tion for this 
on�guration isln (~y0 � y0 � vfT + iÆ) (x� ~x� vfT + iÆ)(x� y0 + iÆ) (~y0 � ~x+ iÆ) : (64)Thus, we have a similar result: a pair âyR (x) b̂yL (x)in j
i and âR (~x) b̂L (~x) in h
j: However, the existen
eof an extra pair implies that the total 
hirality C ofthe state is nonzero. Hen
e, states with any C exist.Their energies di�er by values of the order of 2�vf=L:For temperatures (61), these states 
an be 
onsidereddegenerate. Then a state with a �xed 
hirality is un-stable relative to an in�nitesimal intera
tion that mixes8) The terms in the equation for Seff with the fa
torexp ��jpnjv
f=�� des
ribe an ex
ited state. We do not dis
ussthem be
ause su
h e�e
ts 
an be 
al
ulated more easily by usingthe bosonization te
hnique.650
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les (e.g., in�nitesimal ba
k s
atter-ing). Similarly to the theory of super
ondu
tivity, thereal ground state of the system is a mixture of stateswith di�erent 
hiralities, but with a �xed 
hiral phase�. Therefore, we have derived the wave fun
tion 
orre-sponding to Eq. (20) dis
ussed in Se
. 3. An alternative(in the boson representation) form of the ground-statewave fun
tion is given in Se
. 5.To prove that�
 = !(2�=L) = 2�v
f=L (65)is the phase transition temperature, we must 
onsiderthe higher-temperature region � � �
. The log-arithmi
 
ontribution to the a
tion Seff arises fromn � nmin � L�=2�v
f � 1: At smaller n, the loga-rithmi
 divergen
e does not o

ur. Hen
e,Seff = ��L Xjnj>nmin 1jpnj �� [Rf (�p)Rf (p) +Ri (�p)Ri (p)℄�� 2�L Xjnj>nmin 1jpnj exp �jpnjvf� Rf (�p)Ri (p) : (66)This is to be 
ompared with Eq. (60). The sums inEq. (66) are 
al
ulated in Appendix D. As a result, thelogarithms in Eq. (54) are to be repla
ed byln (�x+ iÆ)(�x0 + iÆ) ! �(�x+iÆ)Z�(�x0+iÆ) dzz exp�� iz� (�)� ; (67)where � (�) = v
f= (���
) (68)is the 
oheren
e length.The right-hand side of Eq. (67) 
an be expres-sed in terms of the integral exponential fun
tionwith imaginary argument. To prove that � (�)is the 
oheren
e length, we note that at lengths�x � � (�), the right-hand side of Eq. (67) tendsto ln ((�x+ iÆ) = (�x0 + iÆ)); i.e., the system is 
har-a
terized by the wave fun
tion in Eq. (20), with theex
eption of the normalization 
oe�
ient. (Indeed, itis then possible to repeat the 
al
ulations in the pre-vious se
tion with all 
onne
ted 
omplexes separatedby distan
es shorter than � (�).) Thus, in a regionof a sample smaller than �, a 
oherent state exists. Inthe opposite 
ase (distan
es between pairs �x = jx�yjlarger than � (�)), the integrand begins to os
illate and

the divergen
e does not o

ur. As a result, we havesmall 
orre
tions to the a
tion approximately given byexp�� i�x� (�)� � (�)�x :Hen
e, the 4-fermion 
ontribution in (63) leads to thetermZ dx dy� � (�)jx� yj�2 âyR (x) b̂yL (x)�� jF ihF jb̂L (y) âR (y) (69)in the evolution operator. Thus, at distan
esjx � yj � �, we have 
on�gurations with free bosons.Consequently, the state is non
oherent at this s
ale.Therefore, the long-range order does not exist atlengths larger than � (�). We 
an also verify thisdire
tly. For this, we 
al
ulate the 
ontribution ofstate (69) to the order parameter density 
orrela-tor hjâyR (y1) b̂yL (y1) b̂L (x1) âR (x1) ji in the regionjx1 � y1j � L � �: After the integration over x1 andy1, we have the 
ontribution of this state to �2:L=2Z�L=2 dx�2 (�)L � �2 (�) :Be
ause � is independent of L, we have the normalphase (see Se
. 3) with low-symmetry phase �u
tua-tions. This means that �
 is indeed the phase tran-sition temperature and � is the 
oheren
e length. Be-sides, we have a more obvious de�nition of �
:� (�
) � L:In this 
ase, the entire system 
an be des
ribed by thebroken-symmetry wave fun
tion in Eq. (20). Hen
e, thelow-symmetry phase should be regarded as realized if� < �
. The above dis
ussion must make it 
lear thatthis transition is smeared over the temperature regionabout �
, as it should be for a �nite-size sample.4.1. Berezinskii�Kosterlitz�Thouless phaseWe prove that the BKT phase [16℄ is likely to formin the Tomonaga�Luttinger model if 
orre
tions to thea
tion due to �vf=V0 are taken into a

ount.We begin with the 
ase of zero temperature andagain 
onsider the 4-fermion 
ontribution, Eq. (51), tothe ground wave fun
tionZ dx dx02�i dy dy02�i âyR (x) b̂yR (x0)x0 � x� iÆ âyL (y) b̂yL (y0)y � y0 � iÆ �� � (x� y + iÆ) (x0 � y0 + iÆ)(x0 � y + iÆ) (x� y0 + iÆ)��0 jF i; (70)651
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ity, we 
onsider �0 
loseto unity. We 
onsider the 
on�guration with two 
on-ne
ted 
hiral 
omplexes separated by a distan
e R large
ompared to the transverse size of the 
hannel d: x0�y,x � y0 � d ! 0 and jx � x0j � R, jy � y0j � R ! 1.The 
ontribution in whi
h we are interested is deter-mined by two 
uts, y0 = x+ iÆ and x0 = y + iÆ, and isproportional to�1� e2�i�0� xZ�1 dy02�i b̂yL (y0) 1(y0 � x)�0 (x0 � y0)�0(y0 � y) :The last fa
tor in the integrand is of the order of1=R1��0 . Distan
es inside the pair y0�x, x0� y are ofthe order of d. The 
ontribution of the distant 
hiralpairs to integral (70) isZ dx dyâyR (x) b̂yL (x) âyL (y) b̂yR (y)��� djx� yj�2(1��0) jF i: (71)In temperature region (19), we 
an also 
onsider 
on-tributions of the states with C 6= 0 to the ground state.The simplest 
ontribution 
omes again from Eq. (63)and has the form9)Z dx dy� djx� yj�2(1��0) �� âyR (x) b̂yL (x) jF ihF jb̂L (y) âR (y) : (72)As 
an be seen from Eqs. (71) and (72), the probabilityto �nd 
hiral pairs at the distan
e R isP (R) = j�(R)j2 � 1=R2(1��0):This probability de
reases with R but mu
h moreslowly than in the theory without intera
tion. The av-erage distan
e between 
orrelated pairshRi = LZ0 dRRP (R) � L2�0diverges as L!1.9) The bosonization te
hnique allows 
al
ulating the 4-parti
le
orrelator exa
tly (i.e., with pair s
attering). As a result, wehave the well-known exponent�T = 1� 1= s1 + V0�vf :It 
oin
ides with �0 only in the strong intera
tion limit. Thisdistin
tion arises from the fa
t that the term in whi
h we areinterested involves only the dire
t intera
tion between two pairs.

It is instru
tive to 
onsider the same quantities inthe theory with nonintera
ting ele
trons. There, theprobability to �nd a 
hiral pair isPfree = � djx� yj�2(see Eq. (69)). As we have seen, this results in the in-dependen
e of � from L. The other limit 
ase is thesystem with a nonzero density of the order parameter.There, the probability to �nd a 
hiral pair is indepen-dent of the distan
e R and � / L. The probabilityunder dis
ussion has an intermediate behavior. As aresult, � in
reases with L, but the power exponent issmaller than unity. Both these properties 
an be 
on-sidered a de�nition of the BKT phase. Moreover, theexisten
e of a ma
ros
opi
, i.e., in
reasing with vol-ume, number of bosons in the ground state is a suf-�
ient 
ondition for a long-range order itself. This isthe 
ase although their density tends to zero in thethermodynami
 limit be
ause ea
h matrix element isproportional to the square root of the boson number inthe state.In the BKT system at �0 < 1, the temperature �
of the phase transition to the unbroken phase is of thesame order as in the limit of the in�nitely strong in-tera
tion. Indeed, our estimate of �
 in the previousse
tion was based on the logarithmi
 divergen
e of thea
tion. This divergen
e also exists for �0 < 1 and hen
eour expressions for �
 and the 
orrelation length � arevalid in this 
ase. We note that the upper-temperatureboundary of the 
hiral phase 
oin
ides with the tem-perature region where power-law 
orrelators exist, as itshould. Indeed, it is well-known that for a �nite tem-perature, the 
orrelators de
rease exponentially at dis-tan
es longer than v
f=� [11℄. Be
ause we do not wishthat the exponential asymptoti
 be rea
hed within thesize of the sample, it has to be smaller than v
f=�, or�� v
f=L � �
.The wave fun
tion for the BKT phase does not havethe simple form in Eq. (20) be
ause the intera
tion of
hiral pairs is nonzero. Also 
hiral 
omplexes with morethan two parti
les are present in the ground-state wavefun
tion. However, properties of this phase are quitesimilar to properties of the phase with broken symme-try that appears in the limit of in�nitely strong inter-a
tion.5. BOSON REPRESENTATION ANDSYMMETRY BREAKINGWe 
onsider the relation between the ground-statewave fun
tion in the boson representation and in our652
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onvenient to use the �rst in theform given in [23℄ for the Luttinger model (as it should,it 
oin
ides in the limit of in�nitely strong intera
tionth � ! 1 with the S
hwinger model [32℄):jGS0i == N exp � 1LXn>0 th �ĈyL (pn) ĈyR (pn)! jF i; (73)where ĈyR is the boson 
reation operator determinedby the density of the right ele
trons; the subs
ript Ldenotes left bosons:ĈR;L (p) =r2�p Z dx exp(�ipx)%R;L (x) ; (74)all p > 0; and%R;L (x) = âyR;L (x) âR;L (x) � b̂yR;L (x) b̂R;L (x) ++ âyR;L (x) b̂yR;L (x) + b̂R;L (x) âR;L (x) : (75)The parameters sh � and 
h � allow passing to the newdiagonalized �elds Ĉ (�p). Wave fun
tion (73) hasthe lowest possible energy and satis�es the relationĈ (�p) jGS0i = 0: We 
laim that the wave fun
tionjGS0i 
oin
ides with our ground-state wave fun
tionwith zero 
hirality (see Eq. (58)). We used the fermionrepresentation in the paper be
ause we need to see thesymmetry breaking in the ele
tron system. RewritingjGS0i in terms of ele
tron operators dire
tly with thehelp of Eq. (75) is a rather involved and nonuniversalpro
edure. In the boson approa
h, it is preferable toknow results in advan
e be
ause the boson representa-tion is the most veiled way to see a symmetry break-ing. The problems begin with non
ommuting terms inEq. (75). It is extremely di�
ult to �nd 
omplexes de-
aying into 
hiral pairs and to prove the absen
e of theneutral ones in all orders. (We note that the form ofthe 
hiral 
omplexes depends on a problem. For exam-ple, it 
hanges drasti
ally with in
reasing the ele
tron
omponent number, see [33℄, and the 
al
ulations be-
ome mu
h more bulky in the 
ase.) In the fermiontreatment in this paper, the operator stru
ture of thewave fun
tion is determined by the 
ontribution of thesaddle-point �eld to the a
tion, S0 (Eq. (30)). Theoperators are here 
onsidered anti
ommuting (see Ap-pendix A for the details). This allows formulating the
al
ulation rule for the a
tion for a given ele
tron op-erator 
on�guration in expli
it form (Eq. (37)).In addition, the pairing e�e
t 
annot be obtainedin any order of the perturbation theory (i.e., in theexpansion of (73) in powers of ĈyLĈyR). It is a nonper-turbative e�e
t. However, if the 
omplexes are known

from the outset, it is possible to rewrite jGS0i in thefermion representation. Indeed, we know that the sim-plest 
omplex de
aying into 
hiral pairs for a zero 
hi-rality state is âyRb̂yLâyLb̂yR. We extra
t the relevant termfrom the entire state jGS0i:N exp � 1LXn>0 ĈyL (pn) ĈyR (pn)! jF i == N h1+Tr�F (2) (x; x0; y; y0) âyR (x) b̂yL (y0) âyL (y) �� b̂yR (x0)�+ : : : i jF i: (76)To 
al
ulate the 
oe�
ient F (2), we have to proje
t theentire state on hF jâRb̂LâL b̂R, and hen
eF (2) (~x; ~x0; ~y; ~y0) = hF jâR (~x) b̂L (~y0) âL (~y) b̂R (~x0)�� exp � 1LXn>0 ĈyL (pn) ĈyR (pn)! jF i: (77)The further train of thought is obvious. After bosoniza-tion, the matrix element is to be rewritten as a fun
-tional integral using the well-known relationhF jR�Ĉ�R0 �Ĉy� jF i == Z DCDCR (C)R0 �C� exp ��TrCC� ;whereR andR0 are arbitrary fun
tions and C is a 
om-plex Bose �eld. Wave fun
tion (73) depends on the leftand right ele
tron densities, and it is therefore 
onve-nient to use the bosonization s
heme involving left andright �elds, ĈL and ĈR (see [32℄), rather than a s
hemewith the total density and momentum 
anoni
ally 
on-jugate to it:	yR;L (x) = exp�AyR;L (x)� �yR;LpL �� exp (�AR;L (x)) : (78)Here AyR;L (x) = 1LXn>0 exp (�ipx)r2�p ĈyR;L;and � is the operator with a set of 
hara
teristi
s deter-mined by	R;L. For example, from the anti
ommutatorof the ele
tron operators, we have �yR;L�R;L = 1 andf�R;L; �L;Rg = 0. Also, � and �y should 
ommute withĈL;R and hF j�yR;LjF i = 0. It follows thatZ dx	yR;L (x) jF i = L�1=2�yR;LjF i;653



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008that is, �yR;L 
oin
ides with the ladder operator of Hal-dane [23℄. The s
heme in (78) is identi
al to the stan-dard one for 
ondensed matter physi
s (see, e.g., [11℄)but is more 
onvenient in our problem.To extra
t the ele
tron or hole parts from (78), we
an use the identities su
h asâL (~y) = 12�i Z dx 	L (x)(~y � x� i0) :As a result, we obtainF (2) (~x; ~x0; ~y; ~y0) == 1(2�i)2 1(~x� ~y0 + i0) (~x0 � ~y + i0) : (79)This implies that the se
ond term in Eq. (76) is equalto Z d~x d~y âyR (~x) b̂yL (~x) b̂yR (~y) âyL (~y) ;in a

ordan
e with our previous result.To obtain the 
hiral wave fun
tion, we prove thatthe state jGS1i = �L�yRjGS0i is the state with an ad-ditional 
hiral pair. In the same way, we haveF (1) (~x; ~y0) = 12�i 1~x� ~y0 + i0 ;and hen
e the one-pair state isZ d~x âyR (~x) b̂yL (~x) jF iand the entire state jGS1i is not invariant under 
hiraltransformations. (It is highly essential that the ele
tronand the hole are at the same spatial point. In prin
iple,the form of jGS1i might suggest that their positions areun
orrelated.) Of 
ourse, the energy di�eren
e betweenthe state and jGS0i is 4�vf=L. At the same time, in or-der to have a nonzero order parameter, the states withdi�erent 
hiralities have to be degenerate in energy.This would allow 
onstru
ting a wave fun
tion giving anonzero order parameter, Eq. (10), although the Hamil-tonian has no symmetry-breaking term. To obtain thedegenera
y, the thermodynami
 limit L ! 1 is typi-
ally used. This treatment is forbidden for us be
ause�
 ! 0 in the limit as well. At the same time, in thetemperature region � � �
hiral = 2�vf=L, we 
an
onsider these states degenerate too (
f. the dis
ussionin Se
. 3 between Eqs. (20) and (21)). Therefore, theground-state wave fun
tion with an arbitrary 
hiralityand �xed phase 
an be 
onstru
ted asj�i = 1X�1 exp (in�)jGSni; (80)

where jGSni = ��L�yR�n jGS0ifor n > 0 and jGSni = ��R�yL�n jGS0ifor n < 0. (Indeed, Ĉ (�p) j�i = 0 and in orderto 
he
k 
hirality of the state, any n-pair amplitude
an be 
al
ulated in the same way.) Equation (80)is an alternative (in the boson representation) formof our symmetry-breaking ground-state wave fun
tion,Eq. (20).It is not surprising that the boson representationis a nonobvious way to see a symmetry breaking ina fermion system. To re
al
ulate the wave fun
tion,we should know the result in advan
e. We believethat the ex
lusive use of the boson representation inan analyti
 
al
ulation is the reason why the fa
t ofsymmetry breaking has been unknown so far.We are grateful to V. L. Gurevi
h, Yu. M. Galperin,and V. I. Kozub for a number of interesting dis
ussionsand to V. L. Gurevi
h and W. von S
hlippe for readingthe manus
ript. V. V. A. also a
knowledges for partialsupport RFBR (grant � 06-02-16384).APPENDIX AEvolution operator for fermion systemsIn this appendix, we derive the representation forthe evolution operator of fermions in the external �eldas a fun
tional integral with de�nite boundary 
ondi-tions.In the S
hrödinger representation, the evolution op-erator S(T ) isS[T ℄ = T exp(�i TZ0 H dt)jF ihF j;where H is a fermion Hamiltonian in the external �eld,whi
h is bilinear in the fermion �elds. As we have seen,the general problem with the ele
tron�ele
tron intera
-tion 
an be redu
ed to this problem at the pri
e ofintegration over the external �eld. For simpli
ity, webegin with the model with an empty ground state j0irather than the Fermi one. (This allows writing theequations in a more 
ompa
t form.) We also omit thespatial arguments.We divide the time interval T into N in�nitesimalpie
es Æ = T=N (with the point i = N 
orresponding to654
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e the sum overthe 
omplete set of quantum me
hani
al states jkihkjat the intermediate points:S[T ℄ =Xni jkN ihkN j (1� iÆH) jkN�1i : : :: : : hk2j (1� iÆH) jk1ihk1j: (A.1)For any 
omplete set of wave fun
tions in the se-
ond-quantized representation, we haveXn jki(n)ihki(n)j = Z D�iD�yi exp��Tr �yi �i��� exp �Tr �iây� j0ih0j exp��Tr �yi â� (A.2)(the index n 
orresponds to the set of all quantum num-bers). The Grassmann variables � are de�ned in theusual way:Z d�i(n) = 0; Z d�i(n)�i(n) = 1;h�yi (n); �i(n)i+ = 0; D�i =Yn d�i(n):Equation (A.2) 
an be proved by dire
t 
omparison ofthe left- and right-hand sides. We use this represen-tation to rewrite the sum over states as a fun
tionalintegral.At ea
h point i, we obtain the following matrix el-ement of the Hamiltonian:exp��Tr �yi �i� h0j exp��Tr �yi â��� �1� iÆH �ây; â�� exp��Tr �yi+1�i+1��� exp �Tr �i+1ây� j0i: (A.3)To 
al
ulate this matrix element, we move all 
reationoperators to the right. For the Hamiltonian H depend-ing linearly on â and â+, e.g., for the Hamiltonian inthe external �eld, the result isexp�Tr �yi (�i+1 � �i) + iÆTrH ��yi ; �i+1�� :Thus, the result of the 
al
ulation is that the 
reationand annihilation operators in the Hamiltonian are sub-stituted by the Grassmann variables � and �+.The produ
t over all intermediate points asN !1tends toexp0�� TZ0 dt	(t) [�t+iH℄ 	 (t)1A = exp0�i TZ0 dtL1A ;L = 	 [i�t �H℄ 	;

where L is the Lagrangian of the system. This expres-sion should be integrated over 	; �	 at all intermedi-ate points in time. The boundary points are spe
ial,however. The 
reation operators entering jkN i and theannihilation operators entering hk1j are not 
ontra
ted.They are variables on whi
h the evolution operator de-pends.We integrate over all intermediate variables and
onsider the answer as a fun
tion of the Grassmannvariable �+1 (and �yN ). This fun
tion 
an be only linear:A+B�1. Then the last integration in �1 and �+1 givesZ D�1D�y1 exp��Tr �y1�1��� exp��Tr �y1â� (A1 +TrB1�1) = A1 +TrB1a:Thus, we see that the variable �1 should be substitutedby an annihilation operator. Integrating over �+N , we
on
lude that �+N is substituted by a 
reation operator.Finally, we 
an formulate the following re
ipe:to 
al
ulate the evolution operator, we integrateexp i TR0 L! over 	; �	 at all intermediate points. Att = 0, 	 is �xed to â, and at t = T , �	 is �xed to â+.The values of �	 at t = 0 and 	 at t = T remain arbi-trary. As a result, the operators â and â+ are de�nedat di�erent times. Therefore, they are to be regardedhere as anti
ommuting.If the ground state of our system is a �lled Fermisphere, we have to introdu
e two types of 
reation andannihilation operators â� and b̂� 
orresponding to ele
-trons and holes. Then we 
an apply the above deriva-tion in this 
ase as well. We should introdu
e negative(	�) and positive (	+) frequen
y parts of 	 variablesand double the number of the � variables.APPENDIX BCal
ulation of Det�We 
al
ulate the fun
tional integral over the �elds� and ��. They obey zero initial 
onditions:Det� = Z D�D��� exp0�i TZ0 dt Z dx� (i�t �Hext (x))�1A ; (B.1)where Hext = H0 (x) + � (x; t) : In the ordinary 
ase,Det� 
an be 
al
ulated in the usual way using the iden-tity ln [Det�℄ = Tr ln�:655
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tion withthe same arguments. The result is usually independentof the order of the arguments. However, in the the-ory with the Adler�S
hwinger anomaly, the sequen
eof time and spatial arguments is essential. The sim-plest way is to make spatial arguments equal �rst. Inthis 
ase, the result 
ontradi
ts the gauge invarian
eof the theory. In paper [20℄, a pro
edure free of thisdi�
ulty was suggested. The problem does not ex-ist in the pro
edure be
ause all 
al
ulations are donewith nonequal variables until the end. It is based onthe Heisenberg equation for the ele
tron evolution op-erator Ŝ (�) = Det� expS0 (T ) in the external �eld(without a dire
t ele
tron�ele
tron intera
tion). This
laim guarantees the 
onservation of the ele
tron num-ber and, as a result, the theory is gauge invariant. Thedependen
e of Det� on the sequen
e time and spa-tial arguments 
onsidered above implies the existen
eof an ultraviolet divergen
e in the theory. In fa
t, wehave regularized it in the usual way for the theory withthe Adler�S
hwinger anomaly: we required a gauge-invariant result (see [19℄).In the Heisenberg representation, we havei �Ŝ�T = hHext; Ŝi ;where Hext is the nonintera
ting ele
tron Hamiltonian(the external �eld is dependent on the time T ), andthe a
tion S0 is de�ned by Eq. (30). We note thatall 
reation operators are de�ned at the instant T andthe annihilation operators at t = 0, and therefore, inthe 
ommutator [Hext;S0 (T )℄, only the terms with 
re-ation operators do not 
ommute with S0.We 
an rewrite the last equation asi� lnDet ��T = exp (�S0) [Hext; expS0℄� i�S0�T : (B.2)To 
al
ulate the 
ommutator in this equation, we 
anuse the well-known identity�â (x) ; exp�Z dx0K (x0) ây (x0)�� == Z dx1�(x1�x0)K (x1) exp�Z dx0K (x0) ây (x0)�;whi
h 
an be proved by expanding the exponentials.(Here, K is an operator anti
ommuting with â and

�(x1 � x0) is the anti
ommutator fâ (x) ; ây (x0)g de-�ned in Eq. (7).) The left-hand side of Eq. (B.2)is a 
-number; this means that all operators in theright-hand side of this equation have to vanish. The
-number parts arise only from the following 
ommu-tators:Z dx� (x) �b̂ (x) â (x) ;exp�Z dy dy0ây (y0)G (y0T; yT � ") b̂y (y)�� :As a result, we havei� lnDet ��T = Z dx dy dy0(2�i)2 � (x; T )�� � GR (y0T; yT � ")(y0 � x� iÆ) (y � x� iÆ) ++ GL (y0T; yT � ")(x� y0 � iÆ) (x� y � iÆ)� : (B.3)This representation is general. To rewrite the right-hand side of this equation in our 
ase, we re
all thatonly the region y ! y0 ! x is essential in the �rstterm. However, at the point y ! y0, the argument ofthe exponential in Green's fun
tion (28) vanishes. Thismeans that the 
ontribution is determined by the pre-exponential pole and only the �rst and the se
ond termsof the expansion of the exponential 
an give nonvan-ishing 
ontributions. All singularities in the integrandwith respe
t to y in the fun
tion 
oming from the �rstterm are in the same halfplane. We 
an 
lose the 
on-tour in the other halfplane and prove that this integralvanishes. In the next order in �, only the part with asingularity in the lower halfplane of y gives a nonvan-ishing term. After the integration over y0, we have (inthe momentum-spa
e representation)�i2� TZ0 dt1 1Z0 dp2�p��p (T )�p (t1) exp (�ipvf (T�t1)):The L ele
trons give the same result but with the oppo-site sign of p in the region p < 0. After the integrationof Eq. (B.3) and symmetrization, we obtain Eq. (31).We note that Eq. (31) is gauge invariant: the �eldsdepending only on time do not 
ontribute to Eq. (31).APPENDIX CNormalization 
oe�
ient and energy shiftWe have seen that the matrix element in Eq. (9) 
anbe expressed as a Gaussian-type fun
tional integral. It656
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oe�
ient and the ground-stateenergy shift. Indeed, we 
an expand the exa
t wavefun
tion with respe
t to the free-ele
tron fun
tions. Inthe limit T !1, only the matrix element between thelowest energy level survives. It 
an be represented asZ = exp (�i�ET )jh
jF ij2;where �E is the ground-state energy shift. Compar-ing Z with the de�nition of the normalization 
oe�-
ient Z0 in Eq. (20), we 
an see that it is equal to theoverlap probability of the ground states of the free andintera
ting ele
trons, jh
jF ij2: The normalization 
o-e�
ient should be 
al
ulated for a �nite-size system,be
ause it is exponentially small with the volume.On the other hand, the matrix element in whi
h weare interested isZ = 1N Z D�exp24 i2 TZ0 dt dt1 �� 1Z�1 dp2�� (p; t) � (�p; t1)V �1 (p) Æ (t� t1) �� 14� TZ0 dt dt1 1Z�1 dp2�� (�p; t) � (p; t1) jpj �� exp [�ijpjvf jt� t1j℄35 ; (C.1)where 1=N is normalization 
oe�
ient (34).It is 
onvenient to transform the integral operator.A more e�e
tive pro
edure is the transformation of in-tegral operator (C.1) to a di�erential form. For this,we note the identity1�2ijpjvf � �2�t2 + p2v2f� TZ0 dt1�p (t1)�� exp (�ijpjvf jt� t1j) = �p (t) : (C.2)Thus, symboli
ally,exp (�ijpjvf jt� t1j) = �2ijpjvf� �2�t2 + p2v2f�Æ (t� t1) ;and the kernel in Eq. (C.1) is equal toi2V0 �2�t2 + !2p�2�t2 + p2v2f Æ (t� t1) : (C.3)

As a result, we haveZ = 1N Z D�exp264 i2 TZ0 dt 1Z�1 dp2�V �1 (p) �� � (�p; t) �2�t2 + !2p�2�t2 + p2v2f � (p; t)375 : (C.4)Taking into a

ount that the normalization 
oe�
ientN 
an
els pDet (i=2Vp) that arises from the di�eren-tial kernel de�nition, we obtainZ�2 = Det i� �2�t2 + !2p�i� �2�t2 + p2v2f� = DD0 :To de�ne the di�erential operator, we should have twoinitial 
onditions. In exa
tly the same way as in thederivation of the equation for the saddle-point �eld, weobtain the 
onditions�t� (p; 0)� ijpjvf� (p; 0) = 0;�t� (p; T ) + ijpjvf� (p; T ) = 0: (C.5)Usually, determinants are 
al
ulated with zeroboundary 
onditions�p (0) = �p (T ) = 0:To redu
e our problem to the problem with zero bound-ary 
onditions, we introdu
e�p (t) = �p (t) + � (t) :The �eld �p (t) is assumed to obey the equation�t�p (t) = 0 with the initial 
onditions in Eq. (C.5).(As usual, �t = �2=�t2 + !2p.) The �eld � (t) is arbi-trary but with zero boundary 
onditions. The solution�p (t) 
an be expressed as�p (t) = �p (0) sin(!p (T � t))sin(!pT ) + �p (T ) sin(!pt)sin(!pT ) :(The 
onstants �p (0) and �p (T ) are arbitrary.) Thismeans that the determinant is given byD�1=2 = 1Z�1 d�p (0) d�p (T )�� exp [i (�p (T )�t�p (T )��p (0)�t�p (0))℄�� Z D�p (t) exp (��p (t)�t�p (t)): (C.6)3 ÆÝÒÔ, âûï. 4 (10) 657
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an be 
al
ulated in the usual way,C (p = 0) !psin(!pT ) ;where C (p = 0) is the p = 0 
ontribution. It 
an
els inthe �nal expression. With the identity�p (T )�t�p (T )��p (0) �t�p (0) == ���p (0)2 +�p (T )2� (jpjvf � i!p 
tg(!pT )) ++ 2i!psin(!pT )�p (0)�p (T ) ;we haveZ�2 = Yp6=0 sin(!pT )sin (vf jpjT ) �� p2v2f � 2i!pjpjvf 
tg(!pT ) + !2p2jpjvf!p (1� i 
tg(!pT )) : (C.7)If the temperature is nonzero, we should substitute Tby 1=�. We note that Eq. (C.7) is valid even at thetemperatures � � �
hiral; be
ause only the Green'sfun
tions with equal-time arguments were used. In thistemperature region, Z 
an be expressed asZ = Yp6=0 exp��!p � jpjvf2� �4pjpjvf!p!p + jpjvf : (C.8)It is 
onvenient to rewrite this equation in the formZ = exp24�L� 1Z0 dp2� (!p � pvf ) ++ 12Xp6=0 ln 4pjpjvf!p!p + jpjvf 35 ; (C.9)whi
h shows the energy shift (the �rst term in the ex-ponent) and the normalization 
oe�
ient (the se
ondterm) expli
itly. The sums in this equation diverge be-
ause of the gapless spe
trum. They have to be 
uto� at pmax � 1=d. To take the preexponential fa
torinto a

ount, we should 
al
ulate the next 
orre
tionafter the Riemann sum. As a result, for a short-rangepotential, we have�E � L4�d vfd s V0�vffor the energy shift andZ0 = 4r�vfV0 exp�� L4�d ln V0�vf �for the normalization 
oe�
ient.

APPENDIX DCal
ulation of SumsAll the sums in the equation for the a
tion 
an be
al
ulated by di�erentiating S (�) with respe
t to theparameter �:S (�) = �2�L 1Xnmin 1pn exp �2�in�L (x+ iÆ)�;(� ranges within (1; i1)). After summation of the ge-ometri
 series, we 
an rewrite it asS (1; x) = 1�y0Z1 dyy (1� y)nmin�1 ;where y0 (x) = exp (2�i=L) (x+ iÆ) :It is understood that x � L here. This result 
an ap-ply at x � L as an order-of-magnitude estimate only.The �nal expression appearing in the a
tion isS (1; x)� S (1; y) = x+iÆZy+iÆ dzz exp�� iz� �; (D.1)where � = L=2� (nmin � 1)�1 : If nmin � L�=2�v
f ,then � is equal to the 
oheren
e length in Eq. (68).We 
onsider the in�uen
e of the boundary 
ondi-tions on the a
tion. In prin
iple, any of them 
an berewritten as pn = 2� (n+ Æn) =L; jÆnj < 1=2: In this
ase, at � = 0, the a
tion is determined by the sumS0 (�) = �2�L 1X1 1pn exp �2�i (n+ Æn)�L (x+ iÆ)�:In the same way, we obtainS0 (1; x)� S0 (1; y) = x+iÆZy+iÆ dzz exp��2�izÆnL �:The result is that up to jx � yj � L at � = 0, thea
tion is independent of the boundary 
onditions. For�� �
, we should 
ut o� the sum at some n = nmin:As a result, � is substituted by L=2� (nmin + Æn� 1)�1in Eq. (D.1). This suggests the repla
ement of �
 by(1� Æn)�
10). However, the transition temperature
an be de�ned only up to a fa
tor of the order of unity.Therefore, we should not take this into a

ount.10) This means that �
 is determined by the ex
itation energywith the smallest momentum.658
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