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We present the ground-state wave functions for a system of spinless one-dimensional fermions in the limit of
an infinitely strong interaction and demonstrate explicitly that the system symmetry is lower than the original
symmetry of the Hamiltonian. As a result, the system in this limit undergoes a second-order phase transition
into a phase with finite density of chiral pairs. The phase transforms continuously into a Berezinskii—Kosterlitz—
Thouless (BKT) phase if the interaction in the model decreases. Therefore, just the BKT phase is realized in
nature. The temperature of the smearing phase transition is calculated.
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1. INTRODUCTION

For a long time, one-dimensional fermion systems
were a subject of intensive studies only in theoreti-
cal physics. Tomonaga [1] and Luttinger [2] demon-
strated in their pioneering papers that the longwave
excitations of such a system (under rather general con-
ditions) can be expressed in terms of noninteracting
bosons. These degrees of freedom were made explicit in
the elegant method of bosonization proposed by Mattis
and Leeb [3]. The recent interest in this field is mainly
due to the development of submicron techniques, which
allowed producing very pure quantum wires. In such
wires, only few levels (or sometimes even one) corre-
sponding to the quantization of electrons in perpendic-
ular directions are occupied. Hence, the systems un-
der discussion are accessible by experiment today (see,
e.g., [4-7]).

The bosonization technique allows calculating all
n-point correlation functions for systems of interacting
fermions in one dimension. However, these correlators
give only indirect information about the ground state of
the system, which requires further interpretation. The
correlation functions of the Luttinger model reveal a
number of anomalies of the fermion system (see [8-10]):
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they have oscillating contributions with wave vectors
equal to 2py or 4ps, which decay very slowly with dis-
tance. In the literature, these contributions were in-
terpreted as follows: the oscillations with the Fermi
momentum p; doubled were related to the Peierls in-
stability (related to the charge density wave [9, 11]) and
the oscillations with the 4ps frequency were interpreted
as a marginal Wigner crystal [12]. Although the corre-
lators of chiral complexes obey a power law (see [13]),
it is commonly believed that the system under discus-
sion is a kind of normal liquid because quantum fluc-
tuations destroy any order parameter. As a result, a
phase with a long-range order is impossible even in the
zero-temperature region [9]. The common point of view
was formulated as “Luttinger liquid is a normal (not
symmetry-broken) metallic phase” [14] with a gapless
boson spectrum. However, if we speak about quantum
fluctuations, two more points should be taken into ac-
count.

1. In low dimensions, some of the systems ap-
pear to be in the Berezinskii—Kosterlitz—Thouless phase
(BKT) [15,16]. In this phase, the order parameter den-
sity tends to zero in an infinite system, but a long-
range order exists because correlation functions decay
as some power of the distance. This means that the cor-
relation is present in a whole specimen. As a result, in



V. V. Afonin,V. Yu. Petrov

MKOT®, vom 134, Boin. 4 (10), 2008

its macroscopic properties, the system are quite similar
to a system with broken symmetry. A BKT phase can
form if the gapless excitations, which should be present
in the system after spontaneous symmetry breaking due
to the Goldstone theorem [17, 18], do not interact. At
nonzero temperatures (@ # 0), this phase can occur
in two-dimensional systems; at ©® = 0, a BKT phase
is possible in one dimension. (The crossover tempera-
ture and its relation to the smearing phase transition
temperature O, is considered below; see Sec. 3.)

2. The Goldstone theorem itself can be broken
in one-dimensional models with the Adler-Schwinger
anomaly. For that to happen, the interaction has to be
strong enough. As an illustration one can consider the
massless Schwinger model [19]. In the Coulomb gauge,
this model is a particular case of the Luttinger model
with the potential given by a linear function of the dis-
tance between electrons. This leads to the Goldstone
theorem violation: all excitations have a gap in spite
of spontaneous breaking of the chiral symmetry. For
this reason, excitations cannot suppress the long-range
order at temperatures below the gap. As a result, a
second-order phase transition occurs in one dimension
even at finite temperature [20].

This makes the statement that the Luttinger liquid
at ©® = 0 is in an unbroken phase doubtful.

To clarify this question, we calculate the wave func-
tions of the ground states in the Tomonaga—Luttinger
model directly in the fermion representation. Although
the details of these wave functions could depend on the
interacting potential, all possible ground states quali-
tatively reveal the same phenomenon.

In one dimension, the Fermi surface reduces to two
isolated points in phase space (p = £py). Transitions
between these two points can be neglected. This is a
good approximation, at least if the potential is a de-
creasing function of the momentum transfer. As a re-
sult, the number of electrons near each point (left and
right particles) must be conserved and the system ac-
quires a complementary (chiral) symmetry. This sym-
metry, as we see in what follows, breaks down sponta-
neously in the model.

It is common knowledge that the electron distribu-
tion function in one dimension changes drastically even
for the systems with a weak electron—electron interac-
tion. It is of the order 1/2 near the Fermi level [21].
This means that a hole is located near each electron.
Naturally, they attract each other and form a kind of
bound state consisting of a right electron and a left
hole (RL-pair). This is quite similar to the formation
of a Cooper pair in a superconductor, but the quan-
tum numbers of the bound state are different: instead
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of a nonzero electric charge, exciton-like (neutral) pairs
with nonzero chirality occur®).

Of course, this fact itself is not enough to speak
about a new correlated phase. Using the explicit
ground-state wave function constructed in this paper,
we verify that long-range order is indeed present in the
system. As a result, the Luttinger liquid undergoes a
phase transition at low temperatures.

We see in what follows that in the limit of the in-
finitely strong interaction and at zero temperature, the
system is in a phase with broken chiral symmetry and
nonvanishing order parameter density. The properties
of the Luttinger liquid in this limit are quite analo-
gous to the properties of the massless Schwinger model,
where the spontaneous breakdown of the chiral symme-
try is well known. This can be expected because the
interaction in the Schwinger model is also infinite (it in-
creases with distance). On the other hand, in contrast
to the Schwinger model, the spectrum of the Luttinger
model remains gapless.

If the interaction in the Luttinger model is consid-
ered finite, as it is realized in nature, the order param-
eter density vanishes (in the infinite system). In this
case, the system appears to be in a BKT phase with
correlators decaying as some power of the distance. But
the properties of this phase are rather close to those of a
system with a nonzero order parameter. The BKT sys-
tem transforms smoothly into the phase with a nonzero
order parameter as the coupling constant increases.

The main point of this paper is that the existence
of a symmetry-broken phase underlies the existence of
anomalies in the correlation functions. We believe that
the usual interpretation of the anomalies as an insta-
bility of the Peierls type is misleading. There is a clear-
cut distinction between the chiral phase and the Peierls
one. Indeed, the phase transition to the Peierls phase
is a second-order phase transition in the phonon sys-
tem, while the chiral symmetry of electrons is broken
explicitly, in the Hamiltonian. On the contrary, the
chiral phase originates from the spontaneous symme-
try breaking in the electron system. To manifest the
breakdown of the chiral symmetry in the Luttinger lig-
uid, we exactly calculate the ground-state wave func-
tion for the model in the fermion representation and
demonstrate explicitly that its symmetry is lower than
the original symmetry of the Hamiltonian. (This is the
definition of spontaneous symmetry breaking.)

As regards, possible observations of a condensate

1) To draw an analogy between an exciton-like pair and a
bound state, we should take into account that we have a cor-
relation between the filled states rather than a real bound pair.
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we note that a charge-neutral condensate cannot reveal
itself in experiments associated with charge transfer.
But it contributes to the effects involving energy cur-
rents and should not transfer heat. Hence, we can think
about thermal anomalies related to the condensate. In
fact, we keep in mind the effect similar to the ther-
momechanical effect in superfluid helium. (The tem-
perature decreases with an increase in the superfluid
mass [22].) We plan to discuss this problem elsewhere.

This paper is organized as follows. In Sec. 2, we
introduce the Hamiltonian, the definitions of left and
right particles, and so on. We present our results and
discussion in Sec. 3. We relegate the derivation of the
results to Sec. 4 because the calculation is rather cum-
bersome. In Sec. 5, we show the symmetry breaking in
a different way, namely, from the well-known ground-
state wave function in the boson representation [23].
Justifiably, the boson representation may be consid-
ered a nonobvious way to see the symmetry breaking
in a fermion system. However, we perform the calcula-
tion in order to compare our approach with a common
method. We conclude the paper with three appendices
that contain some mathematical details related to the
calculation.

2. NOTATION AND GENERAL EQUATIONS

We begin with the usual separation of left and right
particles in the electron wave functions ¥ () [24]:

A

U (z) = exp (ipsx) g (v) + exp (—ipyz) ¥r (7).

A A

(1)

It is implied here that the wave functions W, 1, (z) vary
over distances much longer than 1/p;. We also re-
strict ourself to the Tomonaga—Luttinger model [24].
For simplicity, we consider only an electrically neutral
system, where a positive charge of ions is distributed
homogeneously along the channel.

We pass to the electron—hole representation for the
right (left) particles:

() =

(

,L

=

p L .
exp (£ipz) g,z (p) + exp (Fipz) bl ; (p)

)

(2)

3

U
7

0
=aR,L (z) + bJ}f&L (z),
where af(a) and bt(b) are creation (annihilation) op-

erators for electrons and holes. The Hamiltonian of
interacting spinless electrons in one dimension can be
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written for a neutral system in terms of the electron
density operator

o(r) = or(z) + oL (2)

a

s
H:/dacx

(z) —l—li'E (z) vpid, Up, ()| +

+/dxdyg(x)V(l‘—y)Q(y)a (3)

where vy is the Fermi velocity.

The form of V(2 — y) depends on the relation be-
tween the usual 3D screening radius Rp (we consider
the case of Debye screening for simplicity) and the
transverse size of the channel d. Indeed, we must take
into account that the electrons are one-dimensional
only for distances | — y| much larger than d. There-
fore, if Rp <« d, we can use a point-like interaction
Voo (z —y)?). This is the case for metals®). In the op-
posite case Rp > d (a semiconductor), an ordinary
Coulomb potential must be used. In what follows, we
restrict ourself to the simplest case, a point-like inter-
action. Thus,

V(p) (4)

The Hamiltonian of the Luttinger model in Eq. (3) rep-
resented in terms of electrons and holes is completely
defined without any additional regularization of the
electron operators. In particular, the commutator of
the R- and L-densities in this representation reproduces
the well-known Schwinger anomaly [19]:

Vo.

o (&) o1 W] = %5- 50z —3). (5)

2) We note that this case also includes backscattering of elec-
trons with the transition L — R and back:

/dm\i/k(m)\IlL(m)\ilJ‘L(m)\IlR(m).

By anticommuting the \i’—operators, we can reduce this term to
the term without backscattering [9]; for this model, therefore, the
Tomonaga-Luttinger Hamiltonian describes the entire electron—
electron interaction.

3) To obtain a real parameter, we should use the standard ex-
pression for the Debye screening radius Rp = 1/+/4me2dn/0u
with the concentration n pf/7r2d2. We took into account
here that there is only one state for electrons in directions per-
pendicular to the channel. Thus, Rp (d/2)\/7psap, where
ap = (m62)71 is the Bohr radius. Hence, the condition Rp < d
is equivalent to pya, < 1. The last parameter depends only on
the effective mass of the electron. If it is of the order of the free
electron mass, then a; ~ 0.5 -1078 em and we obtain prap L 1
for the concentrations typical for metals. In other words, we then
deal with a short-range interaction.

)
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These relations are the starting point of the bosoniza-
tion technique. Equations (5) are usually derived
by regularizing the product of ¥ operators by point
splitting [25]. This is not necessary, however, in the
electron—hole representation [20] because the creation
and annihilation operators for R, L electrons (&ﬁ,L(az))

and holes (l;ﬁ’L (x)) are nonlocal in the coordinate space
as their anticommutators are:

{ (1)} = {b

At
;3

A

ar

(x),

. 1
T omia —x— 10

(7)

(in momentum space, these anticommutators are
d-functions). Using these anticommutators for the
densities of right and left electrons gg 1 (z) of
form (75), we immediately reproduce the Schwinger
anomaly. This means that, being formulated in the
electron—hole representation, our theory is completely
defined without any further redefinition of the density
operators.

Besides, Hamiltonian (3) is invariant under the chi-
ral transformations

\I'R(x) = em“\I/R, \I'L(x) = e_ia“\I’L, (8)

where a. is a constant parameter of the transforma-
tion. This invariance leads to conservation of the chi-
ral charge (the difference of the numbers of right and
left electrons). However, we see below that the ground
state of the model is constructed such that the symme-
try is spontaneously broken.

3. THE APPROACH, RESULTS, AND
DISCUSSION

The standard approach to many-particle systems is
based on Green’s functions. The one-particle Green’s
function gives the information about the spectrum of
excitations; the many-particle Green’s functions allow
calculating different correlation and response functions.
Of course, the Green’s functions give some information
about the wave functions of the states, but this infor-
mation is indirect.

In principle, the wave functions of stationary states
(and of the ground state in particular) can be obtained
by solving the corresponding Schrédinger equation di-
rectly. However, for systems with an infinite number

640

of the degrees of freedom, this equation is too compli-
cated. A more practical approach can be based on the
evolution operator [26]

S(T) = |n){(n|exp —iHT|m)(m|, (9)

m,n

where |n) are the exact wave functions of the Hamilto-
nian H in the second-quantized representation and T is
the time of observation. The evolution operator deter-
mines the evolution of an arbitrary initial wave func-
tion ((m|) from the instant ¢ = 0 to final states |n) at
t =T. (We assume from now on that the Schrédinger
representation for operators with time-dependent wave-
functions is used.)

Formula (9) suggests the general method to obtain
wave functions. We first calculate the evolution opera-
tor and represent it as a sum of time-dependent expo-
nentials. The coefficients in front of these exponentials
are products of exact wave functions and their complex
conjugates. To extract the ground-state wave function,
we must take the limit 7' — oo (with an infinitesimal
imaginary part added to the energy). Passing to the
Euclidean time (T' — —i/0©), we see that the evolution
operator determines the density matrix for the equilib-
rium system at nonzero temperature (see end of this
section).

The advantage of this method is that the evolution
operator can be written explicitly as a functional inte-
gral with definite boundary conditions (see Eq. (22)).
The expression is nontrivial because it allows rewriting
the wave function in the second-quantized representa-
tion as a functional integral with unusual boundary
conditions at ¢ = 0 and ¢ = T. This is possible be-
cause creation and annihilation operators in Eq. (9) an-
ticommute once they correspond to different instances
of time (see Appendix A for the details). That is, they
should be considered Grassmann variables. (An anal-
ogous representation for the Feynman Green’s func-
tion describes the vacuum-vacuum transitions. In this
case, therefore, Grassmann variables obey zero bound-
ary conditions. This distinction is extremely essential.)
The functional integral is rather simple for the Lut-
tinger model with Hamiltonian (3) and can be calcu-
lated exactly. This allows constructing wave functions
of all states in the model and, in particular, the ground
state in terms of the electron and hole operators. This
suffices to demonstrate the symmetry breaking. (See
Sec. 5 for further comparison of the approach and the
bosonization one.)

We keep the size of the system finite. This is im-
portant not only for regularizing infrared divergences in
the system but mostly because the characteristic tem-
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peratures of the problem depend on the system size L.
Therefore, we have to discuss the concept of phase tran-
sition in finite systems. In fact, we identify a param-
eter that allows applying the concept of phase transi-
tion formulated in the thermodynamic limit (L — oo,
with the electron density finite) to a real finite system.
We see in what follows that our system is in a certain
sense large enough and we can speak about a smearing
second-order phase transition for the problem.

Usually, the critical temperature is defined as a
point where thermodynamic quantities have a singu-
larity. Of course, this is the case only in an infinite
system because all singularities smear out if the size of
the system is finite. The same is true for the coherence
length, which cannot be larger than the system size.

In this paper, we adopt the point of view sug-
gested by Landau in order to describe second-order
phase transitions [27]. He introduced the order param-
eter as the main quantity for the description of phase
transitions related to the spontaneous symmetry break-
ing. By definition, the order parameter is zero in the
high-symmetry phase (with the same symmetry as the
Hamiltonian) and nonzero in a phase with broken sym-
metry. In fact, this is only one of the possible defini-
tions of the broken (unbroken) phase, but we use it be-
low because it is convenient for us. In the case of chiral
symmetry breaking in Eq. (8), the following quantity
can serve as the order parameter:

A= /dx(Q\d}% (& + 52/2) x
x b (& = 62/2) |Q)]sz—0.  (10)

This quantity is not invariant under transformations in
Eq. (8) and should be zero if the chiral symmetry re-
mains unbroken. We note that we use a macroscopic
order parameter (the integral over the entire system).
In the broken phase, this quantity is proportional to
the volume of the system.

The BKT phase represents the intermediate case
where

A~IoT, O<ar<l, (11)

and hence A is still infinite in the thermodynamic limit,
while the density of the order parameter A/L vanishes.
We note that A appears to be nonzero even at © > 0,
due to fluctuations of the broken phase in the higher-
symmetry phase. It is important that A does not in-
crease with L in this case.

Intensive thermodynamic quantities remain smooth
for a finite-size system even at the phase transition
point. However, an essential circumstance is that they

2 ZKOT®, Bem. 4 (10)

depend explicitly on the system size and tend to infinity
(or acquire a jump) as L — oc.

Usually, one proves that the system is in the BKT
phase by investigating the behavior of the four-fermion
correlator that does not break the chiral invariance (be-
low, in Sec. 4.1, we consider such a correlator—the
probability to find an RL-pair at a large distance r from
an LR pair). If such a correlator decreases sufficiently
slowly with the distance, the system is in the BKT
phase. The limit case where the correlator remains
constant at large distances corresponds to a nonzero
density of the order parameter and the ordinary bro-
ken symmetry. In fact, this definition of the BKT phase
is equivalent to our definition given above, but the def-
inition in (10) and (11) is more convenient for us.

In one dimension, the BKT phase can exist only at
© = 0 or, to be more precise, for temperatures that
tend to zero as L — oo. There is no need in a mi-
croscopic theory in order to estimate the characteristic
temperature ©. at which the system changes one type
of behavior for another. To obtain an estimate, we can
use the general phenomenology applicable to all BKT
systems (see, e.g., [24]). We assume that the chiral
symmetry is indeed spontaneously broken in the Lut-
tinger model (of course, this can be proved only in a
microscopic theory). According to the Goldstone theo-
rem, the chiral phase a, (the phase of the ‘IIE\IIL oper-
ator) becomes a massless boson field. In the long-range
limit, only fluctuations of this field are relevant and its
effective Lagrangian reduces to (Euclidean time 7 = it
is used because we want to consider nonzero tempera-
tures below)

2

Seflac] = V? /dT d"z [(Opac)® + (wya)?], (12)

where V' and w are phenomenological constants (cal-
culable in a microscopic theory) and m is number of
spatial dimensions.

To decide if the system is in the BKT phase, it suf-
fices to consider the behavior at large distances |z — y/|
of the chirality-conserving correlator:

F(z —y) = (Ti(2)P2(2)T7 (1) Tr(y)). (13)

We can neglect fluctuations of the modulus of the op-
erator U5 (z) ¥y () (as well as higher derivatives in the
effective action for the chiral phase). Correlator (13)
then reduces to

Flx—y)= const/Dac exp(—Sfa.]) x

x exp(2iac(x)) exp(—2iac(y)). (14)
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Calculating this integral at ©® = 0, we obtain

2112 / 7(de L

F(x - y) ~ exXp 271')m+1

. Sin? [LkZ : _(3; ;kb;)) /2]

] v

For m = 1, the two-dimensional integral (one space
and one time dimension) in the exponent diverges log-
arithmically, and hence

V2
(kmax‘x _y‘

Pz —y) ~ (16)

)1/27rV2w :

This proves the existence of a BKT phase at © = 0.

If the temperature is nonzero, the integral over w
in Eq. (15) should be replaced by a sum over discrete
values w, = 2mn® (with integer n). At high tempera-
tures, only the term with n = 0 survives at large dis-
tances and we are left with a one-dimensional integral
with respect to k, which leads to the correlator expo-
nentially decreasing with distance:

C]

2

F(z—y) ~V7exp <—W9€—y>- (17)

Clearly, this correlator describes the unbroken phase.
The power-like behavior of the correlator in (16) is

valid in the region

|z —y| <w/O.

For
©<0.=w/L,

this takes place for the entire sample, i.e., the system
is in a broken phase. The temperature O, is the tem-
perature of the phase smear transition.

In this estimate, we can recognize the excitation en-
ergy with the smallest momentum possible in a finite-
size system. In the Luttinger model, this energy is
equal to wyin = 270§ /L, with the renormalized Fermi
velocity v§ = vyy/1+ Vo/mvy [9]. Therefore, we see
that if the spectrum of excitations is gapless (as in the
Luttinger model), then the phase transition temper-
ature is inversely proportional to the sample length.
This result can be obtained in the microscopic theory
as well.

At © > 0., the integral in Eq. (17) diverges loga-
rithmically for m = 2. Therefore, ©. can also be con-
sidered a crossover point where the critical dimension
of the system changes from 1 to 2.
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Turning to the microscopic theory, we discuss the
simplest case: the short-range potential in the limit of
an infinitely strong interaction

U f

< 1.
Vo

(18)
In the leading order in this parameter, the evolution op-
erator appears to be very simple and the ground-state
wave function can be represented in a closed form. In
the temperature region

21w
Ochiral = Tf K 0O KL 0O, = wWnin, (19)

the ground-state wave function is of the form®

109 = /Zo exp U dx exp (i6) al, (2) b (2) +

i / dy exp (—i6) a}, (y) bl ()| |F),  (20)

where |F) is the filled Fermi sphere and Z; is the nor-
malization coefficient. There is an infinite set of degen-
erate ground states labeled by the continuous param-
eter 8, which has the meaning of the order parameter
phase.

The symmetry breaking can be seen immediately
because wave function (20) is not invariant under chi-
ral transformation (8). This is the definition of spon-
taneous symmetry breaking. Besides, it can be verified
directly that A oc L?). This means that a second-order
phase transition occurs at a higher temperature in this
limit.

Wave function (20) is a mixture of states with dif-
ferent chiralities. (We assign chirality +1 to a right
electron and a left hole and —1 to their counterparts.
Therefore, bosons in Eq. (20) are neutral in terms of
electric charge but have the nonzero chiralities £2).
As a result, the order parameter A (see Eq. (10)) does
not vanish because such a ground state implies that

4) Strictly speaking, at nonzero temperatures, the system is
described not by the wave function but by the density matrix.
But we are interested in the low-temperature region, where the
probability to find the system in an excited state is small. In
the leading approximation, we can describe such a system by the
wave function.

5) To calculate this, we use the identity

a0 ([ )]
Bt (p) exp (/ ‘;—1:&* (v') b (p')>

and determine the anticommutator with the same momenta in a
regular way: {dT (pn) @ (pm)} = Lon,m.

dplﬂr it
) b —
5, 0 (P 0" (P')
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the states with different chiralities are all degenerate
in energy and transitions between states with differ-
ent chiralities in Eq. (10) exist. The degeneracy per-
mits constructing a symmetry-breaking wave function,
although the Hamiltonian has no symmetry-breaking
terms. This is a typical situation for a system with
a condensate: adding one pair to the condensate does
not cost any energy. But this degeneracy is possible
only if the size of the system is large enough; we see in
what follows that it should be L > L,in ~ 27vs/0.
In the opposite case L < Ly, the ground state has
a fixed chirality (equal to zero; see the discussion be-
low Eq. (58)) and the order parameter A vanishes, i.e.,
there is no spontaneous symmetry breaking. In fact,
the first inequality is the parameter that allows the
concept of phase transition, which has been formulated
in the thermodynamic limit, to be applied to finite real
systems. If the states with different chiralities are de-
generate, the sample can be considered infinite with
regard to symmetry breaking. (See the end of Sec. 5
for a further discussion of these statements. There, we
recalculate Eq. (20) from the boson representation.)

These considerations put a lower bound on the
temperature region where a chiral phase can exist:
O > Ocpiral, With Ocpirqs being the degeneration tem-
perature. It is the characteristic energy difference be-
tween states with varied chirality.

We estimate the density of chiral pairs in the ground
state. Wave function (20) implies that all electrons are
bound into pairs. Hence, the density of RL coincides
with the density of R-electrons:

Nr(p) = o(Qlak (p) ar (p) |9 = L/2  (21)

(see footnote 5). This quantity reflects a well-known
fact: the distribution function of electrons is of the or-
der 1/2 near the Fermi surface [21]. If the interaction
is infinitely strong, all electrons and all holes are bound
into exciton-like pairs. As a result, we obtain the value
in (21), which is the maximal possible.

In the model under consideration, Ng (p) is momen-
tum independent and the total number of pairs Ng di-
verges at large p. (This is the defect of the point-like
electron—electron interaction.) The sum over all states
should be restricted either by p¢ or, at ppd > 1, by the
inverse size of the channel because electrons cannot be
considered one-dimensional at larger p (see footnote 3).
In the case, therefore,

L
N~ ——.

Hence, the number of pairs Ng, in the case ppd > 1,
is only a small fraction of the total number of electrons
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(Lpy/27m). This does not mean, of course, that the
Luttinger liquid behaves like a normal one in this case.
The response of the system to slowly varying external
fields is completely determined by the electrons near
the Fermi surface, which are all paired. This situation
resembles superfluid helium, where (even at zero tem-
perature) the density of the condensate is only a few
percent of the total one. Nevertheless, the whole mass
of helium is superfluid [28] at @ = 0.

We proceed with the region of high temperatures:
©® > O, = wnin- In this region, macroscopic or-
der parameter (10) is proportional not to the vol-
ume of the system but to some characteristic length
((©) =v$/ (0 - ©O,) (see the end of the next section)
and the density of the order parameter A/L vanishes
(as (/L) in the limit L — oo, as it should. Hence, the
temperature O, indeed has the meaning of the tempera-
ture of a smearing phase transition from the symmetric
phase to the phase with broken chiral symmetry.

The length ¢ (©) plays the role of coherence length
in our system. At lengths less than ((0), the wave
function of the system coincides with coherent expo-
nent (20). But at larger distances, the order disap-
pears.

The macroscopic order parameter A can be nonzero
even in the symmetric phase due to fluctuations of the
broken to the unbroken phase. What matters is the be-
havior of A with the size of the system. If A does not
increase with L, it follows that A o ( and {( < L, and
we deal with an unbroken phase; if A increases with
L, a long-range order appears. (This is just the region
© ~ O, where ( ~ v§/ O, ~ L.) This condition can
also be considered the definition of the smearing phase
transition temperature for a finite-size system.

On the other hand, it is obvious from such a defini-
tion that the phase transition temperature in finite-size
systems can be defined only up to 1/L corrections and
the phase transition is smooth within the 1/L region
near the phase transition temperature. In the Luttinger
model, where the temperature ©, itself is of the order
1/L, we can define ©. only up to a factor of the order
of unity. This is the price we have to pay for consid-
ering a phase transition of a large but finite-size sys-
tem. The above discussion should make it clear that
this transition is smeared over the temperature region
about ©.. But there is still a clear distinction between
the case with a correlation length of the order of the
system size (broken phase) and the case where ( < L
(unbroken phase). We note that O, is not so small for
real systems. Indeed, if we take vy ~ 107 cm/sec and
L ~10"* cm, then O, ~ 1° K - v} /v;.

As was already pointed out in the Introduction, the

2*
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case of the infinitely strong interaction is very special.
We see in what follows that if the interaction is finite,
then the macroscopic order parameter A increases with
the system size, but more slowly than L (at © < 0..).
In the case of a short-range potential (see Sec. 4.1), A
behaves as some power of L. This corresponds literally
to the definition of the BKT phase. If we considered
a potential of the Coulomb type, A would depend on
L in a more complicated way, but would nevertheless
increase with the size L. Physically, this case is quite
similar to the usual BKT one. We note that in the
formal limit e? /7v; — oo, we have the condensate of
independent chiral pairs with wave function (20).

To summarize, the Luttinger model at ® < O, is
always in the BKT phase with broken chiral symmetry.
At © ~ O, it undergoes a phase transition, which in
the limit of the infinitely strong interaction turns into
the smearing second-order phase transition with a finite
density of pairs.

4. GROUND STATE OF THE
TOMONAGA-LUTTINGER MODEL

Evolution operator (9) of a quantum system can
be represented as a functional integral with definite
boundary conditions (cf. [26]). This representation is
usually derived for boson systems, and we therefore give
the derivation for fermions in Appendix A.

The theory with an arbitrary electron—electron in-
teraction can be reduced to a theory in an external
field by means of the Hubbard—Stratonovich transfor-
mation [29] (see Eq. (33) below). Integrating over the
external field is required in order to return to the orig-
inal 4-fermion interaction. Therefore, we first consider
the evolution operator for one-dimensional electrons
placed into an external field ®(x,t). Tt is given by

(22)

3

S(@) = / DIDTexpS (T, )
(v.7)

where ¥ and ¥ are the electron fields (Grassmann vari-
ables) and S is the action:

T
S = i/dt/da@R (2,4) [0 — v7ids + B (2, )] X
0
X Up(x,t)+ (R,vp <> L,—vy). (23)
Integration over ¥, ¥ in Eq. (22) is performed with
given boundary conditions at ¢t = 0 and t =T
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At t — 40,

U (2,t) =are(z) +
+ arbitrary negative-frequency part,

TRL (x,t) = IA)R’L (l‘) +

+ arbitrary negative-frequency part.

Att—=T -0,

p(x) +

Tpp, (,1) = bl
+ arbitrary positive-frequency part,

TRJ/ (33, t) = &;%,L (SU) +

+ arbitrary positive-frequency part. (24)

The creation operators of electrons and holes a*
and bt are the variables entering the wave functions
of the states in the sum in Eq. (9). The annihilation
operators a and b enter the conjugate wave functions.
They anticommute, {a,a*} = {b,b*} = 0, once they
belong to different instances of time if the evolution
operator is calculated (see Appendix A for the details).
Therefore, we can regard them as Grassmann variables
in calculating the functional integral.

It is possible to explicitly separate the dependence
on the creation and annihilation operators for the evo-
lution operator in a given external field determined by
the functional integration region in (22). We introduce
new integration variables

Urr=9%; +x\rL
_ g ’ (25)
Upr =Yg, +XrL-

The saddle-point fields $% ; are supposed to obey the
Schrédinger equation in the external field ®(z,t) with
given boundary conditions (24). The “quantum" fields
XR,r(z,t) are arbitrary but obey zero boundary condi-
tions: X g,z (0) = xr,L (T) = 0.

The solutions ¥}, ; can be represented in terms of
the Feynman Green’s function Gg,z in a finite time,
defined as follows. It is a solution of the Schrodinger
equation

[i0 £ 0710, + @ (2, )] Grr (x,t;21,t1) =

= 16(2) (JU — xl,t — tl) (26)

with the following boundary conditions: at t — 40,
the Green’s function Gg(x,t,z1,t;) coincides with the
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Green’s function of free fermions in the lower halfplane
of the complex variable z (being arbitrary in the up-
per halfplane). At ¢t — T — 0, it coincides with the
free Green’s function in the upper halfplane. For the
Green’s function of left electrons Gy (z,t,21,t1), the
upper and lower halfplanes are to be exchanged.

The free Feynman Green’s function is given by [§]

Ghr (x tioy ty) =

. % (g (t—t1) F (2—1) —idsign (t—t)] L. (27)

In one dimension, Schrodinger equation (26) can be
solved for an arbitrary external field ®(z,¢):

Gro(z,t;21. ) = G p (2,621, 1) X
T

X exp i/dt’/dy O(y,t') (G p (. by, 1) —
0

— GRp (1, ti;y. 1)) (28)

Now it is easy to verify that the saddle-point fields
¥% 1 can be expressed in terms of these Green’s func-
tions as

W, (nt) = /dx’ Grr (2,620 anp () —

= Gro (.12, T) by ()]
- (29)

Vop(z.t) = —/dx’ [Grr (2',0;2,t) X

X b (2') = Gro (o', Tst) iy ()]

To verify that these fields obey the required boundary
conditions, we note that ap () and bg (z) are regular
in the upper halfplane (see Eq. (2)). Therefore, the
positive-frequency part of Gr(x,t,x1,t1) at t — +0 is
determined by the pole contribution at 2’ = z + i and
is equal to ap (), as it should. The second term in
Eq. (29) yields a negative-frequency part, which is ar-
bitrary. Similarly, we verify the boundary condition at
t — T — 0. Inside the time interval (0,7"), the saddle-
point fields satisfy the Schrédinger equation, as can be
seen from Eq. (26) for the Green’s functions.

The contribution of the saddle-point field to the ac-
tion is
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So = Z /daf; dax' [i), (") G (',0;2,€) a; (v) +
i=R,L
+af (') Gi (2!, T;2,T = ) bf () —
—af («') Gi (2!, T ,0) s () —
— b; (2")G; (2',0;2,T) IA);r ()] . (30)

We here take Eq. (26) into account. Since the saddle-
point fields obey the Schrodinger equation, there is no
term linear in the quantum field y in the action.

The dependence of the evolution operator in the
external field on the creation and annihilation fermion
operators is completely determined by Eq. (30). The
integral over quantum fluctuations produces the de-
terminant of the Schrédinger operator in the external
field ®:

In [Det & (T)]

oo
X/
— o

1 T
—E/dtdtl X
0

dp

5 ® (—p,t) @ (p, 1) |p| x
iy

x exp [ilploglt — 1] (31)
(It is calculated in Appendix B. In fact, we introduced
an ultraviolet cut-off there.) The complete expression
for the evolution operator in the external field has the
form
S (®) = exp (S + In[Det ® (T)])|F)(F], (32)
Now we can express the evolution operator for the
system of interacting fermions in terms of this operator.
We use the well-known identity [29]

The normalization coefficient N is
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; T It is convenient to proceed in the exponents of
N = /D‘I) exp | 5 /dt X Green’s functions (28) to momentum space using the
0 expression for the free Feynman Green’s functions:
dp

\8

5 2@ (=p, ) VT (p)| . (34)

— o

To prove Eq. (33), it suffices to shift the integration
variable ® to ® — Vp in the integral

/D@ exp {%Tr (cbfwl)] :

Applying identity (33) to the functional inte-
gral that determines the evolution operator for the
Tomonaga—Luttinger model, we express it in terms of
the evolution operator in the external field at the price
of an additional functional integration over the scalar
field ®(x, ¢t):

T
S*H_jlv/D@exp %O/dtx
x / L& (p,t)® (—p,t) V! <p>} S(@). (35)

Expression (35) is explicit: while it is not possible to
perform the final integration in ®(z,¢) in closed form,
it is easy to obtain an arbitrary term of the evolution
operator by expanding it in the creation and annihila-
tion operators. This suffices for the calculation of the
evolution operator.

Indeed, we expand the evolution operator in pow-
ers of the external field S'. The arbitrary term of the
expansion contains a number of Green’s functions in
the external field (28), which are exponentials linear in
the external field. Together with action (35) and de-
terminant (34), we obtain a Gaussian-type integral in
®(x,t), which can be easily performed. The result of
the integration depends of the electron—hole configura-
tion considered. It is specified by the concrete term of
the expansion.

We introduce the following notation for the coordi-
nates entering the electron-hole creation and annihila-
tion operators.

1. We let « denote the coordinates of the right par-
ticles and y the coordinates of the left particles.

2. We put a tilde on coordinates related to annihi-
lation operators (initial state) and leave coordinates of
creation operators (final state) without a tilde.

3. We put primes on coordinates related to holes.
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G(}]%7L (p, ta tl) - Gﬂ:pe (t — tl) X
x exp [Fipvys (t — t1)] — O5p0 (t1 — 1) X

x exp [Fipvy (t —t1)].  (36)

Collecting all terms in the exponents arising from
Green'’s function (28), we obtain the contribution to
the action linear in the external field ®,

T 00
:z‘/dt/
0 —oc

where the “current” R, depends on the chosen config-

D (

t)Re (p:t),  (37)

Sfl%

uration, i.e., on the concrete term in the expansion of
S¢. It depends on the electron (hole) operators directly
and as a result on their coordinates. (See Eq. (50) be-
low. A possible configuration can be seen in explicit
form there.) It is equal to

Re (pt) = Ri (p) exp (—ilplost) +

+ Ry (p)exp (—ilplvg (T —t)), (38)
and
Rep)= >, 0(p)lexp(ipz) —
— exp (ipz')] + 0 (=p) [exp (ipy) — exp (ipy)] ,
(39)
Ri(p) = > 6 (—=p) [exp (ipZ) —

— exp (ip#')] + 0 (p) [exp (ipy) — exp (ipy')]

for the initial (annihilation operators) and final (cre-
ation operators) configurations respectively. Coordi-
nates x,...,y,... in Eq. (39) are the coordinates of
annihilation and creation operators for the configura-
tion in which we are interested. Finally, we obtain the
functional integral
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T
/D‘bexp %/dtdtl X
0
s

< [ (0@ (-p.)v

o ()3 (t—t1) -

——/Mh/%ﬂpﬁﬂMMﬂx
s
x exp [—i|plvg[t — t1]] +
T [e%)
H/m/i —p)Re(p,t) |, (40)
2
0 — 00

where the first term is the action in Eq. (35), the sec-
ond term is the quantum determinant, and the third
term comes from the Green’s functions in Eq. (37).

The integral in Eq. (40) is Gaussian: it can be cal-
culated by standard methods, by finding the saddle-
point field ®q and shifting the integration variables as
® — & — ®y. The integral with respect to the fluctu-
ations ® — @ yields a shift of the ground-state energy
due to the electron interaction and the normalization
coefficient of the ground-state wave function. We cal-
culate this integral in Appendix C. The operator struc-
ture of the evolution operator is completely determined
by the terms that appear as a result of substituting the
saddle-point ®¢ in Eq. (40). We write them as an “ef-
fective action™

i
Seff = 2

¥l&

8\8

T
/dt D (p,t) Re (pyt) . (41)
0

The saddle-point field ®q(x,t) satisfies the integral
equation

L3,

T
7 /0 dt1®q (p, 1) |p| x

_iRc (p,

1
) - —
(p;1) o

X exp [—

t),

which can be reduced to the following differential equa-
tion (to see this, it suffices to differentiate both sides of

ilploglt — 1] = (42)

Eq. (42) with respect to time):
63(}0 (p7 t) + w?;q)O (p7 t) = 07 (43)
where
Vo
= 14+ —. 44
wp = |plvy + Ty (44)
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The boundary conditions for this equation follow from
the original integral equation (42):

0 ®q (p,0) — i|plvy®o (p,0) = 2i|plvsVoR; (p),

01®0 (p, T) +ilplvy @ (p, T) =
—2i[plosVoRy (p) -

(45)

In the derivation of Eq. (43), we have used the fact that
our system is electrically neutral, and hence

The solution of the differential equation for the
saddle-point field (Eq. (43)) gives

—2|plvs Vo
(wp + Iplvg) (1 - €2)
x {Ri [exp (—iwpt) + & exp (—iw, (T
+ Ry [&p exp (—iwpt) + exp (—iwy, (T

@ (pv t) =

— 1)
—1))]

)+
b (46)

where

1— \/l-l-V()/ﬂ'U
1+\/1+Vo/7rv

Substituting the saddle-point field in the effective ac-
tion (41), we finally obtain

1
Lp#zol—l— 1+ Vo/muy

X [[Rf (=p) Rs (p) + Ri (—p) Ri (p)] F> (p) +
+ 2F1 (p) Ry (=p) Ri (p)],

& = p (—iw,T) .

1

‘/0 X
1-¢&

Seff = —

(47)
where we introduce the functions
exp (—i|plvsT) — exp (—iw,T)

— [plvy
1 —exp(—i(wp+ |plvy) T

wp + [plog
1 —exp (=i (wp + |p|vy)

wp + [plvg
exp (—i|plvsT) — exp (—iw,T)
— lplvy '

Fi(p) =

+&p
(48)

Fy (p) = 7) +

+&

In expression (47) for the effective action, we re-
turn to a sum over the particle momenta p,, = 27n/L
in accordance with the ordinary rule®:

dp 1
s DI

6) ‘This corresponds to periodic boundary conditions for the ¥
and ¥ fields at the boundaries of the sample. (See also the end
of Appendix D.)

— o0
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This allows qualifying different infrared divergences
that appear in the effective action. We note that there
is no term with p = 0 in these sums. This fact is re-
lated to the gauge invariance of the system: constant
(in space) fields ®(t) correspond to a pure gauge elec-
tric potential and should not contribute.

We proceed with the ground-state wave function in
the Tomonaga—Luttinger model. As mentioned above,
in order to separate the ground state, we have to take
the limit 7' — oo. (This corresponds to the case of
zero temperature.) We can omit oscillating exponen-
tials in this limit. As a result, we are left with only the
function F5, which becomes

Fy(p) ~ [Ipvf (1 +

The effective action factores into contributions of initial
and final states:

Seff ———Z

p#0 |plug

Vo

X
Vo

p) Ry (p) + Ri (—p) Ri (p)] =

= Sl + Siyy.

[1+ 1+

x [Ry(—
(49)

In addition to Serf, we have to calculate preex-
ponential factors that arise from the free Feynman
Green’s functions. Only the Green’s functions with
equal-time arguments survive as T — oco. As a re-
sult, we see that the whole expression for the evolution
operator for large T' factores into the product of the
ground-state wave function |Q) and its complex conju-
gate. The final expression for the wave function is of

Z /
n

dx da’ d;'% (z) lA)J}'% (2') N

2w 2 —x —id
dd/AT()i)T(/) "
/ ydy' ag, (y) by, (y
+ - -
2y —y' —id
xexpSej}f(x,x',...,y,y',...)|F>. (50)

We verify that the wave function of noninteracting
fermions (V = 0) is |F'). The general term in the sum
in Eq. (50) is a product of factors:

/dxdx’ al ( )bT ( "

!
We note now that all singularities of the operator
b;’2 (') are those in the upper halfplane (see Defini-
tion 2) and the pole of the Green’s function. We can

5 1F)-

211 T
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close the contour of 2’ in the lower halfplane and prove
that the corresponding integral vanishes. The only
term that survives is the one with n = 0, and hence
|Q) = |F), as it should be for noninteracting fermions.
A nontrivial answer for the wave function appears
only owing to singularities of the effective action. It is
clear from the general structure of the action (which
is the product Ry(p)Rs(—p)) that the wave function
contains only terms where both R- and L-particles are
present. All terms with only R (or only L) electrons or
holes vanish. The simplest possible contribution to the
ground-state wave function |2) (see Eq. (50)) is

/

The effective action Sepr for this term is given by

dadzx' dydy' al, (z) b, ()

X
' —x—1d

il (y) bl (")
PR

)
2ri 27 y' —id

X expSg;f (l‘.,l‘,./y,yl). (51)

(0]
Sécff (x7x,7yay,) = _T X

X Z pin {explipn (x —y +i0)] +

pn 0
+exp [ipn (2'—y'+id)] — exp [ip, (2’ —y+id)] -
—explip, (z —y' +1id)]}, (52)

where
Vo

o [+ VTFVafmoy |

The sums in Eq. (52)
obtain

(53)

o =

can be easily calculated. We

Sf{ff (x,x’,y., yl) =

(z—y+1id)(z' —y' +i9)
(' —y+id) (x —y' +1id)

According to the charge conservation law, the number
of electrons has to be equal to the number of holes, and
therefore the number of exponentials with the opposite
sign in Eq. (52) is the same. As a result, the action
Sepp does not diverge and singularities in the integrand
in Eq. (51) are removed by zeroes of the action or by
the integrations over ' and y’. Therefore, divergences
in the wave function do not exist even for short-range

(54)

= —In
™

interactions.
Expression (51) describes the simplest possible com-
plex in the vacuum of the interacting fermions. This
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complex has all quantum numbers equal to zero.
In fact, it describes electron—electron scattering (in
the cross channel). Correspondingly, all coordinates
x,2',y,y" are close to each other. In general, this com-
plex does not break any continuous symmetry.

But in the Tomonaga—Luttinger model, a special
situation arises. The leading contribution to term (54)
comes from the region ' —y,z —y' — 0 (of the order of
the transverse size of the channel), but z —y and 2’ — '
can be arbitrarily large. In other words, the complex
decays into RL- and RL-pairs. As we see in what fol-
lows, such a wave function leads to a spontaneous chiral
symmetry breaking.

We first consider the strong-interaction limit:

Yo > 1. (55)

U
In this limit, a/7 — 1. It can be seen that for a/m = 1,
the poles (x = 2’ and y = 9') corresponding to
free fermions are canceled completely by the fermion—
fermion interaction (described by exp Sep) with the ef-
fective action in Eq. (54). Instead, we obtain new poles
at the points '’ = y —i0 and y' = = + id. Recalling
that lA)J}'2 (2') is analytic in the lower and lA)TL (y') in the
upper halfplane, we can integrate further over 2’ and
y'. As a result, we obtain the following contribution to
the ground-state wave function:

[arik @i, @ [aal wikw. 6o

Thus, the 4-particle complex decays into 2 noninter-
acting “bosons”. They are neutral in the electric charge
but have a nonzero chirality +2.

It can be verified that no other connected complexes
appear in the limit of strong interaction. For example,
we consider charged complexes. The four-fermion con-
tribution is exhausted by Eq. (56), and hence we have
to consider a 6-fermion complex:

i (2) bl (2") iy (21) B (21) &} )b} ()
—x—id ) —w—id y—y —id
(x—y+i0) (x1—y+id) (2’ —y'+id) (2} —y'+id)

(x—y'+id) (x1—y'+i0) (2’ —y+1id) (x’l_y+i5)'

This complex, indeed, decays into 2 fermions as
z; =y — x and 2’ — y — 2} (the relative distance
x — ' is supposed to be large). These fermions are of
the form d}r% (z) d}r% (z) EAJE (z) and &E (') E}% (z') IA)E% ().
Hence, this contribution is zero owing to the Pauli
principle. We can also consider more complicated

configurations that could produce charged connected
complexes and verify that they do not appear in the
ground-state wave function.

The Pauli principle allows one more complex that
describes scattering of chiral pairs:

il () b (2) &l () D (2) .

The corresponding contribution can be extracted from
the connected part of the general expression (51). The
integral over 2’ and y’ is easily calculated and we obtain

/dx dy al, (x) b (x)al ()bl (v) @ (2 — ),

—id 54 0
Yy — — 2i y—x—2id)"

The function ® (z — y) is finite at any = and y (even
at = y) and therefore its contribution to the integral
vanishes in the limit § — +0. In other words, in the
limit of an infinitely strong interaction, the chiral pairs
do not interact. This interaction appears, however, in
the next approximations in the inverse coupling con-
stant (see Sec. 4.1).

To obtain the complete expression for the ground-
state wave function, we have to consider complexes
with 8, 12, ... particles and separate the connected
parts of these complexes. This is not necessary, how-
ever, because, according to a general theorem [30], the
complete wave function is the exponent of the con-
nected complexes”) and we have proved that the only
connected complexes are the chiral pairs in Eq. (56).
On the other hand, the total chirality C' of |2) must be
zero and only terms with C' = 0 can occur in the ex-
pansion of |Q2). To take this into account, we introduce
the projector Po—g onto the state with chirality zero.
Then the wave function can be written as

Q) = \/ZoPo—g exp {/ dx dk (%) IAJE () +

+ [ dyal ()8 w)

The normalization coefficient Zg is calculated in Ap-
pendix C. We have already discussed the wave func-
tion in Sec. 3. Function (58) corresponds to an un-
broken symmetry phase in spite of the presence of an

where

®(z—y) =

[F). (58)

7) This theorem is in fact a purely combinatorial statement.
In field theory, it is mostly applied to Green’s functions. In sta-
tistical physics, it is known as the first Mayer’s theorem (see,

e.g., [31]).
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infinite number of chiral pairs with zero momentum. Seff = Z
If the chiral symmetry is broken, the states with dif- L Ipn
ferent chiralities should be degenerate in energy. This | pn\ v
is not the case if the system size is finite: the energy x th Ry (=p) Ry (p) +Ri (—p) Ri (p)] —
of the state with C' = 0 is still minimal and the order lpalv ~[pale©
parameter A is zero for © = 0. or Z exp T"f - Tf
X
Wave function (58) corresponds to the state with n;ﬁO ‘p" 1+ exp M
the minimal possible energy. Hence, it is the wave func- ©
tion of the system at ® = 0. To discuss the nonzero xRy (p)Ri(=p), (60)
temperature region, we can proceed to the Euclidean
time (7' — —i/©) for equilibrium systems. We have where vj = vy/1+Vo/moy. I
seen that the action contains two types of exponen- .
tials (see the term with Ry (p) Ri(—p) in Eq. (48)): Ochirar < O < 2mv}/L (61)
exp(—.vfp/(?) and exp(—‘v')ip/@) (with a renormalized then Eq. (60) can be transformed to°)
Fermi velocity). Corrections of the second type corre-
spond to excitations, and we omit them. But there are
no excitations with the energy vyp (this can be seen, Sepr = I Z |p [Rf p) X
e.g., by the method of bosonization). In fact, these nz0 1
exponentials describe the change of the ground state X Rf( )+ Ri(—p) Ri (p)] —
with temperature (see footnote 4). (We discussed the —|pnlvy
meaning of the crossover temperature 27wvy /L in Sec. 3 Z m &P —g— —5  Rs(=p)Ri(p). (62)
n;éO

in detail.) Obviously, for © > 27v,/L, this exponen-
tial factor is not small but the preexponential factor,
i.e., the Green’s function with the imaginary time dif-
ferences about 1/0, gives the smallness. This is com-
pensated by the action, because it is proportional to
In(1/0). This is the case for the temperature region un-
der consideration. In the opposite case © < 27v;/L,
the Green’s function (27) is inapplicable. We can use
Eq. (36), but it is impossible to transform the sums over
pn to integrals in order to obtain Eq. (27). As a result,
the Green’s function is proportional to a small exponen-
tial factor. It cannot be compensated by a logarithmic
divergence from the action and the whole term with
exp(—vyp/O) is small. Therefore, ground-state wave
function (58) is valid if

27va

SR @chiral = 7

(59)

Of course, we assume that the number of states is large,
i.e.,, pyL > 1. This allows passing from sums to inte-
grals in the expressions independent of © (or T').

In the region of higher temperatures, ©:pira K O,
Eq. (27) for the Green’s function is applicable. In this
case, after similar algebraic transformations, the effec-
tive action Ser in Eq. (47) for an infinitely strong in-
teraction can be rewritten as
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Hence, in the temperature region of interest, we should
take another 4-fermion contribution to the ground state
into account:

/

dedi dy'dy  ak (x)ag (2)

21 & — a4+ vT —i6
by (') br. ()
g =y —vfT +ié

271

XpSeff (xajaylagl)' (63)
(At lower temperatures, this contribution is exponen-
tially small. Here, we work with real time T until the
end and proceed to Euclidean time only at the last
step.) The action for this configuration is

(@ =y —vT+id) (x — & —v;T +1i0)
(x —y' +1id) (§ — & +1i0) '

Thus, we have a similar result: a pair aR( )bT (z)
in |Q) and ag (#) by, (&) in (Q|. However, the existence
of an extra pair implies that the total chirality C' of
the state is nonzero. Hence, states with any C exist.
Their energies differ by values of the order of 2wvy/L.
For temperatures (61), these states can be considered
degenerate. Then a state with a fixed chirality is un-
stable relative to an infinitesimal interaction that mixes

In (64)

8) The terms in the equation for S.; with the factor
exp (f\pn\v?/(a) describe an excited state. We do not discuss

them because such effects can be calculated more easily by using
the bosonization technique.
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right and left particles (e.g., infinitesimal back scatter-
ing). Similarly to the theory of superconductivity, the
real ground state of the system is a mixture of states
with different chiralities, but with a fixed chiral phase
6. Therefore, we have derived the wave function corre-
sponding to Eq. (20) discussed in Sec. 3. An alternative
(in the boson representation) form of the ground-state
wave function is given in Sec. 5.
To prove that
O, = w(2r/L) = 2mv} /L (65)
is the phase transition temperature, we must consider
the higher-temperature region ® > ©.. The log-
arithmic contribution to the action Sepp arises from
n > Nmin ~ L@/?ﬂv; > 1. At smaller n, the loga-
rithmic divergence does not occur. Hence,

T 1
Sefp = —— Z — X
e [P
x [Ry(=p) Ry (p) + Ri (—=p) Ri (p)] —
T Y orew R R ). (60
[n|>nmin

This is to be compared with Eq. (60). The sums in
Eq. (66) are calculated in Appendix D. As a result, the
logarithms in Eq. (54) are to be replaced by

A ) —(Az+id) p ‘
T+ Z 12
s | S () o
—(Az'+1i6)
where
¢(©) /(©—06,) (68)

is the coherence length.

The right-hand side of Eq. (67) can be expres-
sed in terms of the integral exponential function
with imaginary argument. To prove that ((O)
is the coherence length, we note that at lengths
Az < ((0), the right-hand side of Eq. (67) tends
to In ((Ax +1id) / (Az' + 1)), i.e., the system is char-
acterized by the wave function in Eq. (20), with the
exception of the normalization coefficient. (Indeed, it
is then possible to repeat the calculations in the pre-
vious section with all connected complexes separated
by distances shorter than ¢ (©).) Thus, in a region
of a sample smaller than (, a coherent state exists. In
the opposite case (distances between pairs Ax = |z —y|
larger than ¢ (©)), the integrand begins to oscillate and
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the divergence does not occur. As a result, we have
small corrections to the action approximately given by

o (‘ciﬁ;)) CA(?'

Hence, the 4-fermion contribution in (63) leads to the

term
) (@) B () x

faein (52
x |F){(F|by (y) ar (y)

in the evolution operator. Thus, at distances
|z — y| > ¢, we have configurations with free bosons.
Consequently, the state is noncoherent at this scale.
Therefore, the long-range order does not exist at
lengths larger than ((©). We can also verify this
directly. For this, we calculate the contribution of
state (69) to the order parameter density correla-
tor (lak (y1) b} (y1)br, (z1) agr (z1)|) in the region
|21 — y1| ~ L > (. After the integration over x; and
y1, we have the contribution of this state to AZ:

~—

-yl
(69)

L2 2 (6
/ dx—cé )NCQ(@).
—L)2

Because A is independent of L, we have the normal
phase (see Sec. 3) with low-symmetry phase fluctua-
tions. This means that O, is indeed the phase tran-
sition temperature and ( is the coherence length. Be-
sides, we have a more obvious definition of ©,:

C(@c) ~ L.

In this case, the entire system can be described by the
broken-symmetry wave function in Eq. (20). Hence, the
low-symmetry phase should be regarded as realized if
® < O.. The above discussion must make it clear that
this transition is smeared over the temperature region
about O, as it should be for a finite-size sample.

4.1. Berezinskii—Kosterlitz—Thouless phase

We prove that the BKT phase [16] is likely to form
in the Tomonaga—Luttinger model if corrections to the
action due to wvy/V, are taken into account.

We begin with the case of zero temperature and
again consider the 4-fermion contribution, Eq. (51), to
the ground wave function

/dacdaf; dy dy' a it R (x )ET( )&TL(?J) E( )><
2w 27 x—x—l5 y—y' —id
(0= y+i0) (o' =y’ +i)]*
Sl e |
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where oy = /7. For simplicity, we consider aq close
to unity. We consider the configuration with two con-
nected chiral complexes separated by a distance R large
compared to the transverse size of the channel d: 2’ —y,
x—y' ~d—=0and |z —2'|~ R, ly—y'| ~ R — .
The contribution in which we are interested is deter-
mined by two cuts, y' = z +i0 and ' = y + id, and is
proportional to

T

(1= ey |

— 00

! @o

1
(y —=x

(' —vy")

' 5
(' —y)

o L

(¥')

)™

The last factor in the integrand is of the order of
1/R'~%0. Distances inside the pair y' —z, 2’ — y are of
the order of d. The contribution of the distant chiral
pairs to integral (70) is

L) b (y) x

x < )2(1_%) |F). (71)

In temperature region (19), we can also consider con-
tributions of the states with C' # 0 to the ground state.
The simplest contribution comes again from Eq. (63)
and has the form?)
2(1—aq)
) x

/ dz dy (
(2) b} () |FY(F|br () ar (y) .

As can be seen from Eqs. (71) and (72), the probability
to find chiral pairs at the distance R is

IAJE (z)a

/dx dy&}r% (z)

d
z —y

d

z —y

t

X ap (72)

P(R) = |®(R)|* ~ 1/R*(1~0),

This probability decreases with R but much more
slowly than in the theory without interaction. The av-
erage distance between correlated pairs

L
(R) = /dRRP(R) ~ L200
0

diverges as L — oo.

9) The bosonization technique allows calculating the 4-particle
correlator exactly (i.e., with pair scattering). As a result, we
have the well-known exponent

-
14+ 22
vV

ar=1-1/
It coincides with ap only in the strong interaction limit. This
distinction arises from the fact that the term in which we are
interested involves only the direct interaction between two pairs.
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It is instructive to consider the same quantities in
the theory with noninteracting electrons. There, the
probability to find a chiral pair is

> 2

P B d
free — |33‘ _y|

(see Eq. (69)). As we have seen, this results in the in-
dependence of A from L. The other limit case is the
system with a nonzero density of the order parameter.
There, the probability to find a chiral pair is indepen-
dent of the distance R and A « L. The probability
under discussion has an intermediate behavior. As a
result, A increases with L, but the power exponent is
smaller than unity. Both these properties can be con-
sidered a definition of the BKT phase. Moreover, the
existence of a macroscopic, i.e., increasing with vol-
ume, number of bosons in the ground state is a suf-
ficient condition for a long-range order itself. This is
the case although their density tends to zero in the
thermodynamic limit because each matrix element is
proportional to the square root of the boson number in
the state.

In the BKT system at ag < 1, the temperature ©,
of the phase transition to the unbroken phase is of the
same order as in the limit of the infinitely strong in-
teraction. Indeed, our estimate of ©, in the previous
section was based on the logarithmic divergence of the
action. This divergence also exists for ag < 1 and hence
our expressions for O, and the correlation length ( are
valid in this case. We note that the upper-temperature
boundary of the chiral phase coincides with the tem-
perature region where power-law correlators exist, as it
should. Indeed, it is well-known that for a finite tem-
perature, the correlators decrease exponentially at dis-
tances longer than v$/0© [11]. Because we do not wish
that the exponential asymptotic be reached within the
size of the sample, it has to be smaller than vft/@, or
0K v§ /L ~ ©,.

The wave function for the BKT phase does not have
the simple form in Eq. (20) because the interaction of
chiral pairs is nonzero. Also chiral complexes with more
than two particles are present in the ground-state wave
function. However, properties of this phase are quite
similar to properties of the phase with broken symme-
try that appears in the limit of infinitely strong inter-
action.

5. BOSON REPRESENTATION AND
SYMMETRY BREAKING

We consider the relation between the ground-state
wave function in the boson representation and in our
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representation. It is convenient to use the first in the
form given in [23] for the Luttinger model (as it should,
it coincides in the limit of infinitely strong interaction
th# — 1 with the Schwinger model [32]):

|GSo) =

= Nexp (—% > thoC] (o) C <pn>> |F). (73)

n>0

where C}% is the boson creation operator determined
by the density of the right electrons; the subscript L
denotes left bosons:

Gt (p) = \/% [arespiwiprions @),

all p > 0, and

or,1 (2) = dly p () ar,r (1) = b (2) br1 () +
+afy p (2) by (2) + brop (2) an (2). (75)

The parameters sh # and ch @ allow passing to the new
diagonalized fields C (+p). Wave function (73) has
the lowest possible energy and satisfies the relation
C (£p)|GSy) = 0. We claim that the wave function
|GSy) coincides with our ground-state wave function
with zero chirality (see Eq. (58)). We used the fermion
representation in the paper because we need to see the
symmetry breaking in the electron system. Rewriting
|GSp) in terms of electron operators directly with the
help of Eq. (75) is a rather involved and nonuniversal
procedure. In the boson approach, it is preferable to
know results in advance because the boson representa-
tion is the most veiled way to see a symmetry break-
ing. The problems begin with noncommuting terms in
Eq. (75). It is extremely difficult to find complexes de-
caying into chiral pairs and to prove the absence of the
neutral ones in all orders. (We note that the form of
the chiral complexes depends on a problem. For exam-
ple, it changes drastically with increasing the electron
component number, see [33], and the calculations be-
come much more bulky in the case.) In the fermion
treatment in this paper, the operator structure of the
wave function is determined by the contribution of the
saddle-point field to the action, Sy (Eq. (30)). The
operators are here considered anticommuting (see Ap-
pendix A for the details). This allows formulating the
calculation rule for the action for a given electron op-
erator configuration in explicit form (Eq. (37)).

In addition, the pairing effect cannot be obtained
in any order of the perturbation theory (i.e., in the
expansion of (73) in powers of éz C’L) It is a nonper-
turbative effect. However, if the complexes are known

from the outset, it is possible to rewrite |GSy) in the
fermion representation. Indeed, we know that the sim-
plest complex decaying into chiral pairs for a zero chi-
rality state is dki)gdy)k. We extract the relevant term
from the entire state |GSy):

N exp (—% Z éz (pn) C‘v;f% (pn)> |F> =

n>0

x b, (x')) +] IFY. (76)

To calculate the coefficient F(?), we have to project the
entire state on (F|agbpar, br, and hence

F® (z,%,5,7) = (Flar (#) by (') ar (§) br (') x

X exp (—% Z C’{ (pn) C';r% (pn)> |[F). (77)

n>0

The further train of thought is obvious. After bosoniza-
tion, the matrix element is to be rewritten as a func-
tional integral using the well-known relation

(FIR (C) R (1) |F) =
- /DCD@R(C)R’ (C)exp (-TrCC),

where R and R’ are arbitrary functions and C'is a com-
plex Bose field. Wave function (73) depends on the left
and right electron densities, and it is therefore conve-
nient to use the bosonization scheme involving left and
right fields, C, and Cg (see [32]), rather than a scheme
with the total density and momentum canonically con-
jugate to it:

a
‘IJJIth (z) = exp (AJ}th (95)) BL «

Here

1 . 21 A
AE’L (z) = 7 Z exp (Fipx)y —C;%L,
n>0 p
and o is the operator with a set of characteristics deter-
mined by ¥ 1. For example, from the anticommutator
of the electron operators, we have UI%,LGR’L =1 and

{or.L,0r.r} = 0. Also, o and ot should commute with
Cr.r and (Flo} ; |F) = 0. Tt follows that

/ dx U, (2)|F) = L%k | |F),
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that is, aRL coincides with the ladder operator of Hal-
dane [23]. The scheme in (78) is identical to the stan-
dard one for condensed matter physics (see, e.g., [11])
but is more convenient in our problem.

To extract the electron or hole parts from (78), we
can use the identities such as

L 1 ¥y (z)
=— [ de——"2 .
ar (7) 27ri/ G =z —i0)
As a result, we obtain
FO (3,4,5,§') =
1 1

Sl Gy @ —gro)

This implies that the second term in Eq. (76) is equal
to

/ di djaly (7) 0% () b5, (5) al (7)

in accordance with our previous result.

To obtain the chiral wave function, we prove that
the state |GS;) = ULJ;'%\GSO) is the state with an ad-
ditional chiral pair. In the same way, we have

1 1
T 2mi k- +i0

~

FO (2,3

and hence the one-pair state is

and the entire state |GS;) is not invariant under chiral
transformations. (It is highly essential that the electron
and the hole are at the same spatial point. In principle,
the form of |GS1) might suggest that their positions are
uncorrelated.) Of course, the energy difference between
the state and |GSy) is 4wvy /L. At the same time, in or-
der to have a nonzero order parameter, the states with
different chiralities have to be degenerate in energy.
This would allow constructing a wave function giving a
nonzero order parameter, Eq. (10), although the Hamil-
tonian has no symmetry-breaking term. To obtain the
degeneracy, the thermodynamic limit L — oo is typi-
cally used. This treatment is forbidden for us because
O, — 0 in the limit as well. At the same time, in the
temperature region © > Ocpirar = 270y /L, we can
consider these states degenerate too (cf. the discussion
in Sec. 3 between Eqs. (20) and (21)). Therefore, the
ground-state wave function with an arbitrary chirality
and fixed phase can be constructed as

6) = exp (inf)|GSy), (80)

— o0
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where N
|Gsn>::(aLa;) IG:So)
for n > 0 and
|Gsn>::(aRa;) 1G'So)
for n < 0. (Indeed, C(£p)|#) = 0 and in order

to check chirality of the state, any n-pair amplitude
can be calculated in the same way.) Equation (80)
is an alternative (in the boson representation) form
of our symmetry-breaking ground-state wave function,
Eq. (20).

It is not surprising that the boson representation
is a nonobvious way to see a symmetry breaking in
a fermion system. To recalculate the wave function,
we should know the result in advance. We believe
that the exclusive use of the boson representation in
an analytic calculation is the reason why the fact of
symmetry breaking has been unknown so far.

We are grateful to V. L. Gurevich, Yu. M. Galperin,
and V. I. Kozub for a number of interesting discussions
and to V. L. Gurevich and W. von Schlippe for reading
the manuscript. V. V. A. also acknowledges for partial
support RFBR (grant Ne(06-02-16384).

APPENDIX A

Evolution operator for fermion systems

In this appendix, we derive the representation for
the evolution operator of fermions in the external field
as a functional integral with definite boundary condi-
tions.

In the Schrodinger representation, the evolution op-
erator S(T) is

T
S[T] = Texp(—i/Hdt)|F)(F\,

where H is a fermion Hamiltonian in the external field,
which is bilinear in the fermion fields. As we have seen,
the general problem with the electron—electron interac-
tion can be reduced to this problem at the price of
integration over the external field. For simplicity, we
begin with the model with an empty ground state |0)
rather than the Fermi one. (This allows writing the
equations in a more compact form.) We also omit the
spatial arguments.

We divide the time interval T into N infinitesimal
pieces § = T'/N (with the point i = N corresponding to
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t=0andi=1tot=7T) and introduce the sum over
the complete set of quantum mechanical states |k) (k|
at the intermediate points:

SITI = S Vo) (k| (1 — i6H) [kn—1) ...

ni

oo ks| (1= i0H) ki) (ke |, (A1)

For any complete set of wave functions in the se-
cond-quantized representation, we have

S i) (sn) = [ DEDE exp (~Tegfes)
X exp (Trfidf) |0)(0] exp (—Trfjd) (A.2)

(the index n corresponds to the set of all quantum num-
bers). The Grassmann variables ¢ are defined in the
usual way:

[dsm =0, [asmemn =1,

[l =0, D& =T[dem).

Equation (A.2) can be proved by direct comparison of
the left- and right-hand sides. We use this represen-
tation to rewrite the sum over states as a functional
integral.

At each point i, we obtain the following matrix el-
ement of the Hamiltonian:

exp (—Tr dfz) (0] exp (—Trfj&) X
x (1= i6H (a',a)) exp (~Trely &1 ) x
x exp (Tr&iat) [0).  (A.3)
To calculate this matrix element, we move all creation
operators to the right. For the Hamiltonian H depend-

ing linearly on @ and a*, e.g., for the Hamiltonian in
the external field, the result is

exp (Tr € (€41 — &) +i0Tr H (gj,gi+1)) .

Thus, the result of the calculation is that the creation
and annihilation operators in the Hamiltonian are sub-
stituted by the Grassmann variables ¢ and £,

The product over all intermediate points as N — oo
tends to

T T
exp —/dt@(t) [O:+iH] W (t) | =exp i/dtﬁ ,
0 0

L=Uli0, —H] T,
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where £ is the Lagrangian of the system. This expres-
sion should be integrated over ¥, ¥ at all intermedi-
ate points in time. The boundary points are special,
however. The creation operators entering |ky) and the
annihilation operators entering (k| are not contracted.
They are variables on which the evolution operator de-
pends.

We integrate over all intermediate variables and
consider the answer as a function of the Grassmann
variable £ (and f;'\,) This function can be only linear:
A+ B& . Then the last integration in & and fi" gives

/Dgﬂ)g{ exp (—Trgjgl) x
X exp (—Trﬂr&) (A1 + Tr B1 &) = Ay + Tr Bya.

Thus, we see that the variable &; should be substituted
by an annihilation operator. Integrating over fx,, we
conclude that ff\L, is substituted by a creation operator.

Finally, we can formulate the following recipe:
to calculate the evolution operator, we integrate

T
exp (zf£> over ¥, W at all intermediate points. At
0

t =0, VU is fixed to G, and at t = T, ¥ is fixed to at.
The values of ¥ at t = 0 and ¥ at ¢ = T remain arbi-
trary. As a result, the operators @ and a* are defined
at different times. Therefore, they are to be regarded
here as anticommuting.

If the ground state of our system is a filled Fermi
sphere, we have to introduce two types of creation and
annihilation operators a* and b* corresponding to elec-
trons and holes. Then we can apply the above deriva-
tion in this case as well. We should introduce negative
(¥~) and positive (I) frequency parts of ¥ variables
and double the number of the ¢ variables.

APPENDIX B

Calculation of Det ®

We calculate the functional integral over the fields
x and Y. They obey zero initial conditions:

Det ® = /DXDX X
T

X exp i/dt/dxy(iat — Hext () x |, (B.1)

0

where Hept = Ho (z) + @ (2,¢) . In the ordinary case,
Det @ can be calculated in the usual way using the iden-
tity

In [Det ®] = Tr In ®.
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After differentiation over A, the right-hand side of this
identity is represented as

Tr —i/d)\(—at—i”;‘{o(x)—i/\‘1>(x))_1<1>(x) ,

where the inverse operator is the Green’s function with
the same arguments. The result is usually independent
of the order of the arguments. However, in the the-
ory with the Adler—Schwinger anomaly, the sequence
of time and spatial arguments is essential. The sim-
plest way is to make spatial arguments equal first. In
this case, the result contradicts the gauge invariance
of the theory. In paper [20], a procedure free of this
difficulty was suggested. The problem does not ex-
ist in the procedure because all calculations are done
with nonequal variables until the end. It is based on
the Heisenberg equation for the electron evolution op-
erator S (®) = Det ®expS, (T) in the external field
(without a direct electron—electron interaction). This
claim guarantees the conservation of the electron num-
ber and, as a result, the theory is gauge invariant. The
dependence of Det ® on the sequence time and spa-
tial arguments considered above implies the existence
of an ultraviolet divergence in the theory. In fact, we
have regularized it in the usual way for the theory with
the Adler-Schwinger anomaly: we required a gauge-
invariant result (see [19]).
In the Heisenberg representation, we have

9S8

iop =
where H,,; is the noninteracting electron Hamiltonian
(the external field is dependent on the time T'), and
the action Sp is defined by Eq. (30). We note that
all creation operators are defined at the instant 7" and
the annihilation operators at ¢t = 0, and therefore, in
the commutator [Hezs, So (T')], only the terms with cre-
ation operators do not commute with Sp.

We can rewrite the last equation as

.OlnDet ® 0S8y
— —.
oT oT
To calculate the commutator in this equation, we can
use the well-known identity

[d(m) , exp </ dr' K (') af (f))} =

= /dxlA (21 —2") K (z1) exp </ de'K (2') af (x')),

= exp (—8o) [Hewt,exp So] — i (B.2)

which can be proved by expanding the exponentials.
(Here, K is an operator anticommuting with G and

A (z; — 2') is the anticommutator {a (z),al (")} de-
fined in Eq. (7).) The left-hand side of Eq. (B.2)
is a c-number; this means that all operators in the
right-hand side of this equation have to vanish. The
c-number parts arise only from the following commu-
tators:

/dm(x) {i)(m)d(m),
exo  [ayayat )6 /Tt =20 1) )]

As a result, we have

!
Z,81nDet<I> :/dxdydy B (2,7) x

or (2mi)?
[ GryTyl' —¢) |
(y' —x —1id) (y — x — i9)
Gr, (y'T,yT — ¢)
(x —y' —id) (x —y — i)

. (B.3)

This representation is general. To rewrite the right-
hand side of this equation in our case, we recall that
only the region y — y' — x is essential in the first
term. However, at the point y — y’, the argument of
the exponential in Green’s function (28) vanishes. This
means that the contribution is determined by the pre-
exponential pole and only the first and the second terms
of the expansion of the exponential can give nonvan-
ishing contributions. All singularities in the integrand
with respect to y in the function coming from the first
term are in the same halfplane. We can close the con-
tour in the other halfplane and prove that this integral
vanishes. In the next order in ®, only the part with a
singularity in the lower halfplane of y gives a nonvan-
ishing term. After the integration over y', we have (in
the momentum-space representation)

T 00
2—; / dtl / ;i—f_pcb_p (T) (I)p (tl) exp (—ipvf (T—tl)).
0 0
The L electrons give the same result but with the oppo-
site sign of p in the region p < 0. After the integration
of Eq. (B.3) and symmetrization, we obtain Eq. (31).
We note that Eq. (31) is gauge invariant: the fields
depending only on time do not contribute to Eq. (31).

APPENDIX C

Normalization coefficient and energy shift

We have seen that the matrix element in Eq. (9) can
be expressed as a Gaussian-type functional integral. It
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gives the normalization coefficient and the ground-state
energy shift. Indeed, we can expand the exact wave
function with respect to the free-electron functions. In
the limit 7" — oo, only the matrix element between the
lowest energy level survives. It can be represented as

Z = exp (~iAET)|[(QF)[2,

where AFE is the ground-state energy shift. Compar-
ing Z with the definition of the normalization coeffi-
cient Zy in Eq. (20), we can see that it is equal to the
overlap probability of the ground states of the free and
interacting electrons, [(Q|F)|?>. The normalization co-
efficient should be calculated for a finite-size system,
because it is exponentially small with the volume.

On the other hand, the matrix element in which we
are interested is

< [ Lap.0@ pt) VT - t) -
——/dtdt1 / ;i—i‘b( —p,t) ® (p,t1) |p| x
< exp [—z‘|pvf|t—t1|]} o

where 1/A is normalization coefficient (34).

It is convenient to transform the integral operator.
A more effective procedure is the transformation of in-
tegral operator (C.1) to a differential form. For this,
we note the identity

(2, /dt (t) x
—2i|plvy o2 P’ vf ! !

x exp (—i|pluslt — t1]) = @, (t). (C.2)
Thus, symbolically,
. 2i|plv
exp (=ilploglt — 1)) = 54— )
2 2
(m+#3)
and the kernel in Eq. (C.1) is equal to
’ 2
. ot w
7 8t2 p s
— 0 (t—t1). C.3
B (t—t) (©3)
ot
3 ZKOT®, Bem. 4 (10)

As a result, we have

T 00
1 i dp.. 4
2
88_t+w12’
x @ (=p.t) 5 ®(p.t)|. (C4)
2,2
w-l—pvf

Taking into account that the normalization coefficient
N cancels /Det (i/2V,) that arises from the differen-

tial kernel definition, we obtain

(m++3)

a5 tw

2

zZ" Dtat— D

0? - Dg’
atZ +p vf

To define the differential operator, we should have two
initial conditions. In exactly the same way as in the
derivation of the equation for the saddle-point field, we
obtain the conditions

815¢ (p7 0)
815@ (pa

—ilplvs® (p,0) = 0,

. (C.5)
T) +ilplvs® (p,T) = 0.

Usually, determinants are calculated with zero

boundary conditions
@, (0) = @, (T) = 0.

To reduce our problem to the problem with zero bound-
ary conditions, we introduce

Dy (1) = By (t) + (1)

The field ®,(t) is assumed to obey the equation
A;®, (t) = 0 with the initial conditions in Eq. (C.5).
(As usual, A; = 9%/0t* + w}.) The field ¢ (t) is arbi-
trary but with zero boundary conditions. The solution
&, (t) can be expressed as

% ()=, (0) o2 1 1) S
(The constants @, (0) and @, (T") are arbitrary.) This
means that the determinant is given by

D2 = / d®, (0)d®, (T) x

x exp [i (®p (T) 0y (T') — @p (0) B9 (0))] %
< [ D6y () exp (65 (1) A6, (). (C)
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The integral over ¢, can be calculated in the usual way,
w

Cp=0)—=2—,
(p=0) sin(w,T')’

where C' (p = 0) is the p = 0 contribution. It cancels in
the final expression. With the identity

@, (T) at¢p (T) -, (0) at¢p (0) =
= = (8, (00 + @, (1)) (Ipluy — iwpctg(epT)) +
2iwp
sm(pr) p (0) (I>ZD (T) 9
we have
P sin(w,T)

E

o sin (vy|p|T)

pQ’U; — 2iwp|p|vy ctg(wpT) + %2)

2|plvswy (1 —ictg(w,T)) (C.7)

If the temperature is nonzero, we should substitute 7'
by 1/©. We note that Eq. (C.7) is valid even at the
temperatures © < O.pirai, because only the Green’s
functions with equal-time arguments were used. In this
temperature region, Z can be expressed as

7= s (_wp - plUf) 4V/Iplvswp

20 wp + [plvy
It is convenient to rewrite this equation in the form

(C.8)

—pvy) +

4= Zl \/ |plvswp
wp + |ploy
which shows the energy shift (the first term in the ex-
ponent) and the normalization coefficient (the second
term) explicitly. The sums in this equation diverge be-
cause of the gapless spectrum. They have to be cut
off at pyaz ~ 1/d. To take the preexponential factor
into account, we should calculate the next correction
after the Riemann sum. As a result, for a short-range
potential, we have

(C.9)

L Uf Vo
AR~ 4rd d
for the energy shift and
U L Vg
Zy =4, — —— In—
0 Vo exp< 4rd nm)f)

for the normalization coefficient.
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APPENDIX D

Calculation of Sums

All the sums in the equation for the action can be
calculated by differentiating S («) with respect to the
parameter a:

(a ranges within (1,4i00)). After summation of the ge-
ometric series, we can rewrite it as

1—yo
[
Y
1

Yo () = exp (27i/L) (x + id) .

It is understood that # <« L here. This result can ap-
ply at & ~ L as an order-of-magnitude estimate only.
The final expression appearing in the action is

S(lx) = (1—y)"n

where

z+1id .
S(La) —S(1,y) = —exp<—5), (1)
y+id
where ¢ = L/27 (nymin — 1)_1. If npmin ~ LG)/Zﬂ'vJCc,

then ( is equal to the coherence length in Eq. (68).
We consider the influence of the boundary condi-
tions on the action. In principle, any of them can be
rewritten as p, = 27 (n + 6n) /L, |0n| < 1/2. In this
case, at © = 0, the action is determined by the sum

<1
*%27 0|

In the same way, we obtain

27mi (n + on) a

7 (z +i5)}

z+1id
dz 2mizén
' Q! — “e _
S'(1,z)—S"(1,y) / - exp< T >
y+id

The result is that up to |z —y| ~ L at ©® = 0, the
action is independent of the boundary conditions. For
O > 0., we should cut off the sum at some n = nmpin.
As aresult, € is substituted by L/27 (npin + 0n — 1)71
in Eq. (D.1). This suggests the replacement of ©. by
(1—6n)0,'9. However, the transition temperature
can be defined only up to a factor of the order of unity.
Therefore, we should not take this into account.

10) This means that ©, is determined by the excitation energy
with the smallest momentum.
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