РЕНОРМГРУППОВЫЕ ФУНКЦИИ ТЕОРИИ φ^4 В ПРЕДЕЛЕ СИЛЬНОЙ СВЯЗИ: АНАЛИТИЧЕСКИЕ РЕЗУЛЬТАТЫ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 4 мая 2008 г.

Предпринятые ранее попытки восстановления функции Гелл-Манна–Лоу $\beta(g)$ теории φ^4 путем суммирования рядов теории возмущений привели к асимптотике $\beta(g) = \beta_{\infty}g^{\alpha}$ при $g \to \infty$, где $\alpha \approx 1$ для размерностей пространства d = 2, 3, 4. Возникает гипотеза о том, что асимптотика имеет вид $\beta(g) \sim g$ для всех d. Рассмотрение нуль-мерного случая подтверждает гипотезу и вскрывает механизм ее реализации — он связан с обращением в нуль одного из функциональных интегралов. Обобщение анализа подтверждает асимптотику $\beta(g) \sim g$ в общем d-мерном случае. Асимптотическое поведение других ренормгрупповых функций (аномальных размерностей) оказывается постоянным. Обсуждается связь с проблемой «нуля заряда» и «тривиальностью» теории φ^4 .

PACS: 11.10.Gh, 11.10.Hi, 11.10.Jj, 11.10.Kk

1. ВВЕДЕНИЕ

Как показали Ландау, Абрикосов, Халатников [1], связь затравочного заряда (g_0) с наблюдаемым (g) в перенормируемых теориях поля определяется выражением

$$g = \frac{g_0}{1 + \beta_2 g_0 \ln(\Lambda/m)},$$
 (1)

где m — масса частицы, Λ — параметр обрезания по импульсу. При конечном g_0 и $\Lambda \to \infty$ возникает ситуация «нуля заряда» ($g \to 0$). Правильная интерпретация формулы (1) состоит в ее обращении:

$$g_0 = \frac{g}{1 - \beta_2 g \ln(\Lambda/m)},\tag{2}$$

так что g_0 относится к масштабу расстояний Λ^{-1} и выбирается из соответствия с наблюдаемым зарядом g. При увеличении Λ происходит рост g_0 и в области $g_0 \sim 1$ формулы (1), (2) теряют свою применимость, так что существование в выражении (2) так называемого полюса Ландау не имеет глубокого смысла.

Реальное поведение заряда g(L) как функции масштаба расстояний L определяется уравнением Гелл-Манна-Лоу

$$-\frac{dg}{d\ln L} = \beta(g) = \beta_2 g^2 + \beta_3 g^3 + \dots$$
(3)

и зависит от вида функции $\beta(g)$. Согласно классификации Боголюбова и Ширкова [2], рост g(L) прекращается, если $\beta(g)$ имеет нуль при конечных g, и продолжается до бесконечности, если $\beta(g)$ знакопостоянна и имеет асимптотику $\beta(g) \sim g^{\alpha}$ с $\alpha \leq 1$ при $g \to \infty$; если же $\beta(g) \sim g^{\alpha}$ с $\alpha > 1$, то $g(L) \to \infty$ при конечном $L = L_0$ (возникает реальный полюс Ландау) и теория внутренне противоречива ввиду неопределенности g(L) при $L < L_0$. Ландау и Померанчук [3] пытались обосновать реализацию последней возможности, аргументируя это тем, что формула (1) верна без ограничений; последнее, однако, возможно лишь при точном равенстве $\beta(g) = \beta_2 g^2$, которое заведомо не выполняется ввиду конечности β_3 .

Из сказанного ясно, что решение проблемы нуля заряда требует установления вида функции Гелл-Манна – Лоу $\beta(g)$ при произвольных g, и в частности — ее асимптотики при $g \to \infty$. Такая попытка предпринята в недавних работах автора для теории φ^4 [4], КЭД [5] и КХД [6] (см. также обзор [7]). Она основана на том, что первые четыре коэффициента β_N в выражении (3) известны из диаграммных вычислений [8–11], тогда как для больших N справедлива асимптотика вида $\beta_N^{as} = ca^N \Gamma(\gamma N + b)$, вы-

^{*}E-mail: suslov@kapitza.ras.ru

числяемая методом Липатова [7, 12–15]. Поправки к асимптотике имеют вид регулярного разложения по 1/N:

$$\beta_N = \beta_N^{as} \left\{ 1 + \frac{A_1}{N} + \frac{A_2}{N^2} + \dots + \frac{A_K}{N^K} + \dots \right\}, \quad (4)$$

что позволяет провести интерполяцию коэффициентной функции путем обрыва ряда и выбора коэффициентов A_K из соответствия с известными β_2 , β_3 , β_4 , β_5 . Для вариации интерполяционной процедуры можно переразложить ряд в формуле (4):

$$\beta_N = \beta_N^{as} \left\{ 1 + \frac{\hat{A}_1}{N - \tilde{N}} + \frac{\hat{A}_2}{(N - \tilde{N})^2} + \dots + \frac{\tilde{A}_K}{(N - \tilde{N})^K} + \dots \right\}, \quad (5)$$

вводя произвольный параметр \tilde{N} . Суммирование ряда для четырехмерной теории φ^4 [4] дает знакопостоянную β -функцию, а результаты для показателя α в пределах ошибки не зависят от \tilde{N} (рис. 1) и указывают на близость α к единице. Аналогичные результаты для трехмерной и двумерной теорий φ^4 (рис. 2) получены недавно [19, 20] в связи с вычислением критических индексов. Напрашивается гипотеза о линейной асимптотике $\beta(g) \sim g$ для произвольной размерности пространства d. Простота результата указывает на то, что он может быть получен аналитически.

Ниже показано, что это действительно так. Анализ нуль-мерного случая (разд. 3) подтверждает существование линейной асимптотики $\beta(g) \sim g$ и вскрывает механизм ее возникновения. Он связан с неожиданным обстоятельством, что предел $g \to \infty$ для перенормированного заряда g определяется не большими значениями затравочного заряда g_0 (что кажется интуитивно очевидным), а его комплексными значениями. Более того, оказывается возможным ограничиться областью $|g_0| \ll 1$, где функциональные интегралы могут оцениваться в перевальном приближении. Если направление в комплексной плоскости g₀ выбрано так, что вклад тривиального вакуума сравним по величине с перевальным вкладом от главного инстантона, то функциональный интеграл может обратиться в нуль. С нулем одного из функциональных интегралов и связан предел $g \to \infty$, который в результате оказывается вполне контролируемым, позволяя получить асимптотики как β -функции, так и аномальных размерностей (разд. 2): первая действительно оказывается линейной в общем *d*-мерном случае (разд. 4), в разумном согласии с результатами суммирования (разд. 5).

Рис. 1. Результаты для четырехмерной теории φ^4 : a — зависимость показателя α от \tilde{N} (его различные оценки описаны в работе [4]); δ — общий вид функции Гелл-Манна – Лоу согласно работе [4] (сплошная кривая) и результаты других авторов — штриховые кривые сверху вниз соответствуют результатам работ [16–18]

В четырехмерном случае асимптотика $\beta(g) =$ $=\beta_{\infty}g$ в комбинации со знакопостоянством β -функции (рис. 1б) соответствует реализации второй возможности в классификации Боголюбова и Ширкова: эффективное взаимодействие конечно на больних расстояниях $L\gtrsim m^{-1},$ но неограниченно растет (как $g(L) \sim L^{-\beta_{\infty}}$) при $L \rightarrow 0$. Это противоречит представлениям о тривиальности континуальной теории φ^4 , которые являются господствующими в литературе. Фактически оказывается (разд. 6), что в литературе были смешаны два различных определения тривиальности. Первое из них, введенное Вильсоном [21], эквивалентно положительности $\beta(g)$ при $g \neq 0$, которая подтверждается всей доступной информацией и может считаться твердо установленной. Второе определение, возникшее в математических работах [22-24], соответствует представлениям об истинной тривиальности и эквивалентно внутрен-

Рис.2. Результаты для показателя α в теории φ^4 для размерностей пространства d=3 [20] и d=2 [19]

ней противоречивости по Боголюбову и Ширкову: оно требует не только положительности β -функции, но и достаточно быстрого роста ее на бесконечности. Указания на истинную тривиальность немногочисленны и допускают другую интерпретацию (разд. 6). Настоящий анализ приводит к новому взгляду на эту проблему: чтобы получить нетривиальную теорию, нужно использовать комплексные значения затравочного заряда g_0 , которые никогда не рассматривались ни в математических доказательствах, ни в численных экспериментах.

2. ОПРЕДЕЛЕНИЕ РЕНОРМГРУППОВЫХ ФУНКЦИЙ

В дальнейшем рассматривается n-компонентная теория φ^4 с действием

$$S\{\varphi\} = \int d^d x \left\{ \frac{1}{2} \sum_{\alpha} (\nabla \varphi_{\alpha})^2 + \frac{1}{2} m_0^2 \sum_{\alpha} \varphi_{\alpha}^2 + \frac{1}{8} u \left(\sum_{\alpha} \varphi_{\alpha}^2 \right)^2 \right\},$$
$$u = q_0 \Lambda^{\epsilon}, \quad \epsilon = 4 - d \tag{6}$$

Рис.3. Связь «ампутированных» вершин $\Gamma^{(L,N)}$ с функциями Грина $G^{(M)}$

в *d*-мерном пространстве; g_0 и m_0 — затравочные заряд и масса. Наиболее общий функциональный интеграл этой теории содержит в предэкспоненте Mмножителей поля φ ,

$$Z^{(M)}_{\alpha_1...\alpha_M}(x_1,...,x_M) = = \int D\varphi \,\varphi_{\alpha_1}(x_1)\varphi_{\alpha_2}(x_2)\ldots\varphi_{\alpha_M}(x_M) \times \times \exp\left(-S\{\varphi\}\right), \quad (7)$$

и связан с M-точечными функциями Грина $G^{(M)} = Z^{(M)}/Z^{(0)}$. Знание последних позволяет определить «ампутированные» вершины $\Gamma^{(L,N)}$ с Nвнешними линиями поля φ и L внешними линиями взаимодействия¹⁾, простейшие из которых показаны на рис. 3. Мультипликативная перенормируемость вершины $\Gamma^{(L,N)}$ означает [26], что²⁾

$$\Gamma^{(L,N)}(p_i; g_0, m_0, \Lambda) = Z^{-N/2} \left(\frac{Z_2}{Z}\right)^{-L} \Gamma_R^{(L,N)}(p_i; g, m), \quad (8)$$

т. е. ее расходимость при $\Lambda \to \infty$ исчезает после выделения соответствующих Z-факторов и перехода к перенормированным заряду (g) и массе (m); p_i внешние импульсы. Примем условия ренормировки при нулевом импульсе:

$$\Gamma_{R}^{(0,2)}(p;g,m)\Big|_{p\to 0} = m^{2} + p^{2} + O(p^{4}),$$

$$\Gamma_{R}^{(0,4)}(p_{i};g,m)\Big|_{p_{i}=0} = gm^{\epsilon},$$
(9)

Имеется в виду диаграммная техника, изложенная в книге [25], в которой взаимодействие обозначается пунктирными линиями.

 $^{^{2)}}$ Теория φ^4 неперенормируема при d>4 и все дальнейшее рассмотрение осмысленно лишь при d<4.

которые обычно используются в теории фазовых переходов [27]. Подстановка формулы (8) в равенства (9) определяет g, m, Z, Z_2 в терминах затравочных величин:

$$Z(g_{0}, m_{0}, \Lambda) = \left(\frac{\partial}{\partial p^{2}} \Gamma^{(0,2)}(p; g_{0}, m_{0}, \Lambda)\Big|_{p=0}\right)^{-1},$$

$$Z_{2}(g_{0}, m_{0}, \Lambda) = \left(\Gamma^{(1,2)}(p_{i}; g_{0}, m_{0}, \Lambda)\Big|_{p_{i}=0}\right)^{-1}, \quad (10)$$

$$m^{2} = Z(g_{0}, m_{0}, \Lambda) \Gamma^{(0,2)}(p; g_{0}, m_{0}, \Lambda)\Big|_{p=0},$$

$$gm^{\epsilon} = Z^{2}(g_{0}, m_{0}, \Lambda) \Gamma^{(0,4)}(p_{i}; g_{0}, m_{0}, \Lambda)\Big|_{p_{i}=0}.$$

Уравнение Каллана – Симанчика получается применением к выражению (8) дифференциального оператора $d/d \ln m$ при фиксированных g_0 и Λ [26],

$$\left[\frac{\partial}{\partial \ln m} + \beta(g) \frac{\partial}{\partial g} + (L - N/2) \eta(g) - L\eta_2(g)\right] \times \Gamma^{(L,N)} \approx 0, \quad (11)$$

и справедливо асимптотически при больших p_i/m . Ренормгрупповые функции $\beta(g)$ (функция Гелл-Манна-Лоу) и $\eta(g)$, $\eta_2(g)$ (аномальные размерности) определяются как

$$\beta(g) = \frac{dg}{d\ln m} \bigg|_{g_0,\Lambda=\text{const}},$$

$$\eta(g) = \frac{d\ln Z}{d\ln m} \bigg|_{g_0,\Lambda=\text{const}},$$

$$\eta_2(g) = \frac{d\ln Z_2}{d\ln m} \bigg|_{g_0,\Lambda=\text{const}}$$
(12)

и в принципе зависят от всех переменных; но их фактическая зависимость только от g устанавливается общими теоремами [26].

3. НУЛЬ-МЕРНЫЙ СЛУЧАЙ

3.1. «Наивный» нуль-мерный предел

Для перехода к нуль-мерному пределу рассмотрим систему, пространственно-ограниченную во всех направлениях на достаточно малом масштабе, что позволяет пренебречь координатной зависимостью $\varphi(x)$ и опустить в уравнении (7) члены с градиентами. Интерпретируя функциональный интеграл как многократный интеграл на решетке и выбирая решетку достаточно редкой, можно

считать, что внутри системы находится только один ее узел; тогда

$$Z^{(M)}_{\alpha_1...\alpha_M} = \int d^m \varphi \,\varphi_{\alpha_1} \dots \varphi_{\alpha_M} \exp\left(-\frac{1}{2}m_0^2\varphi^2 - \frac{1}{8}u\varphi^4\right). \quad (13)$$

Диаграммная техника, порождаемая «функциональными интегралами» (13), имеет обычный вид, но все пропагаторы берутся при нулевом импульсе, а суммирование по импульсам отсутствует. В фиксированном порядке теории возмущений все диаграммы равны друг другу и их суммарный вклад определяется комбинаторикой диаграмм; последняя может изучаться с помощью «функциональных интегралов» (13) [29].

Описанные представления о нуль-мерной теории являются общепринятыми в литературе. Однако, вообще говоря, они не соответствуют правильному нуль-мерному пределу теории φ^4 . На примере простейших диаграмм легко убедиться (см. Приложение I), что указанная тривиализация диаграммной техники происходит лишь при нулевых внешних импульсах; если же последние отличны от нуля, то никаких видимых упрощений в нуль-мерном пределе не возникает. Последнее обстоятельство существенно при определении Z-фактора, который, как известно, вводится по схеме

$$G^{(2)}(p) = \left\{ \left(p^2 + m_0^2 + \Sigma(p, m_0) \right)^{-1} = \left(p^2 + m_0^2 + a_0(m_0) + a_2(m_0) p^2 + a_4(m_0) p^4 + \dots \right) \right\}^{-1} = \frac{Z}{p^2 + m^2 + O(p^4)}, \quad (14)$$

т.е. определяется импульсной зависимостью собственной энергии (ср. с уравнением (10)). В описанной выше «наивной» нуль-мерной теории импульсная зависимость отсутствует и не требует специальной нормировки; поэтому в дальнейшем полагаем Z = 1. Такая процедура является внутренне-непротиворечивой, но не соответствует правильному нуль-мерному пределу теории φ^4 . Последнее обстоятельство для нас несущественно, так как описанная модель используется только для иллюстрации: в дальнейшем мы сразу перейдем к рассмотрению общего *d*-мерного случая.

3.2. Общие выражения для ренормгрупповых функций

Полагая в формуле (13) $\varphi_{\alpha} = \varphi u_{\alpha}$ и вводя интегрирование по направлениям единичного вектора **u**,

$$Z^{(M)}_{\alpha_1\dots\alpha_M} = \int_0^\infty \varphi^{M+n-1} d\varphi \exp\left(-\frac{1}{2}m_0^2\varphi^2 - \frac{1}{8}u\varphi^4\right) \times \int d^n u\delta(|u|-1)u_{\alpha_1}\dots u_{\alpha_M}, \quad (15)$$

что после вычисления интеграла по $d^n u$ [28] для четных M приводится к виду

$$Z^{(M)}_{\alpha_1...\alpha_M} = \frac{2\pi^{n/2}}{2^{M/2}\Gamma(M/2 + n/2)} \times I_{\alpha_1...\alpha_M} K_M(m_0, u), \quad (16)$$

где $I_{\alpha_1...\alpha_M}$ — сумма членов вида $\delta_{\alpha_1\alpha_2}\delta_{\alpha_3\alpha_4}...$ со всевозможными спариваниями и

$$K_M(m_0, u) = \int_0^\infty \varphi^{M+n-1} d\varphi \times \exp\left(-\frac{1}{2}m_0^2\varphi^2 - \frac{1}{8}u\varphi^4\right). \quad (17)$$

Выделяя из функций Грина и вершин множитель $I_{\alpha_1...\alpha_M}$:

$$G_{\alpha\beta}^{(2)} = G_2 \delta_{\alpha\beta}, \quad G_{\alpha\beta\gamma\delta}^{(4)} = G_4 I_{\alpha\beta\gamma\delta},$$

$$\Gamma_{\alpha\beta}^{(0,2)} = \Gamma_2 \delta_{\alpha\beta}, \quad \Gamma_{\alpha\beta\gamma\delta}^{(0,4)} = \Gamma_4 I_{\alpha\beta\gamma\delta},$$
(18)

получаем

$$\Gamma_2 = 1/G_2, \quad G_4 = G_2^2 - G_2^4 \Gamma_4, \tag{19}$$

где

$$G_{2} = \frac{1}{n} \frac{K_{2}(m_{0}, u)}{K_{0}(m_{0}, u)},$$

$$G_{4} = \frac{1}{n(n+2)} \frac{K_{4}(m_{0}, u)}{K_{0}(m_{0}, u)}$$
(20)

и вершина $\Gamma^{(0,4)}_{\alpha\beta\gamma\delta}$ определяется обычным соотношением (рис. 3δ)

$$\begin{aligned} G^{(4)}_{\alpha\beta\gamma\delta} &= G^{(2)}_{\alpha\beta}G^{(2)}_{\gamma\delta} + G^{(2)}_{\alpha\gamma}G^{(2)}_{\beta\delta} + G^{(2)}_{\alpha\delta}G^{(2)}_{\beta\gamma} - \\ &- G^{(2)}_{\alpha\alpha'}G^{(2)}_{\beta\beta'}G^{(2)}_{\gamma\gamma'}G^{(2)}_{\delta\delta'}\Gamma^{(0,4)}_{\alpha'\beta'\gamma'\delta'}. \end{aligned}$$
(21)

Записывая условия ренормировки (10), получаем

$$m^2 = \Gamma_2 = \frac{nK_0}{K_2},\tag{22}$$

$$g = \frac{\Gamma_4}{m^4} = 1 - m^4 G_4 = 1 - \frac{n}{n+2} \frac{K_4 K_0}{K_2^2}.$$
 (23)

Дифференцируя (22) по m_0^2 и учитывая, что в результате дифференцирования K_M переходит в K_{M+2} (см. формулу (17)), получаем

$$\frac{dm^2}{dm_0^2} = \frac{n}{2} \left\{ -1 + \frac{K_4 K_0}{K_2^2} \right\}.$$
 (24)

Ввиду того, что все дифференцирования в уравнении (12) проводятся при g_0 , $\Lambda = \text{const}$, последние параметры удобно считать раз и навсегда зафиксированными; тогда m^2 является функцией только m_0^2 и формулу (24) можно «перевернуть», т. е. считать выражением для производной dm_0^2/dm^2 . Согласно определению β -функции (12) имеем

$$\beta(g) = 2 \frac{dg}{d \ln m^2} = -\frac{2m^4}{n(n+2)} \left[2 \frac{K_4}{K_0} + \left(\frac{K_4}{K_0}\right)'_{m_0^2} m^2 \frac{dm_0^2}{dm^2} \right], \quad (25)$$

что с учетом соотношения (24) дает

$$\beta(g) = -\frac{2n}{n+2} \frac{K_4 K_0}{K_2^2} \left[2 + \frac{K_6 K_0 / K_4 K_2 - 1}{1 - K_4 K_0 / K_2^2} \right].$$
(26)

Делая в интегралах (17) замену $\varphi \to \varphi(8/u)^{1/4}$, можно привести их к виду

$$K_M(t) = \int_0^\infty \varphi^{M+n-1} d\varphi \exp\left(-t\varphi^2 - \varphi^4\right),$$

$$t = \left(\frac{2}{u}\right)^{1/2} m_0^2.$$
(27)

Возникающие при этом множители выпадают из комбинаций K_4K_0/K_2^2 и K_6K_0/K_4K_2 , от которых зависят выражения (23), (26), и последние не меняют своего вида при переходе от интегралов $K_M(m_0, u)$ к интегралам $K_M(t)$. Правые части формул (23) и (26) являются функциями одной переменной t, и зависимость $\beta(g)$ определяется этими формулами в параметрическом виде.

раметрическом виде. Вершина $\Gamma^{(1,2)}_{\alpha\beta} = \Gamma_{12}\delta_{\alpha\beta}$ определяется тождеством Уорда [30]

$$\Gamma_{12} = \frac{dm^2}{dm_0^2} = 1 - \frac{n+2}{2}g, \qquad (28)$$

что позволяет получить выражение для $\eta_2(g)$:

$$\eta_2(g) = -\frac{d\ln\Gamma_{12}}{d\ln m} = \frac{\beta(g)}{2/(n+2) - g}.$$
 (29)

 Φ ункция же $\eta(g)$ в принятом приближении тождественно равна нулю.

3.3. Исследование ренормгрупповых функций

Используя асимптотики $K_M(t)$

$$K_{M}(t) = \begin{cases} \frac{1}{\sqrt{2}} t^{-(M+n)/2} \Gamma\left(\frac{M+n}{2}\right) \times \\ \times \left[1 - \frac{(M+n)(M+n+2)}{4t^{2}} + \dots\right], \\ t \to \infty, \\ \frac{1}{4} \left[\Gamma\left(\frac{M+n}{4}\right) - t\Gamma\left(\frac{M+n+2}{4}\right) + \dots\right], \\ t \to 0, \\ \frac{\sqrt{\pi}}{2} e^{t^{2}/4} \left(\frac{|t|}{2}\right)^{(M+n-2)/2} \times \\ \times \left[1 + \frac{(M+n-2)(M+n-4)}{4t^{2}} + \dots\right], \\ t \to -\infty, \end{cases}$$
(30)

легко убедиться, что зависимость величин g и $\beta(g)$ от t имеет вид, показанный на рис. 4a, т. е. изменение параметра t вдоль действительной оси определяет поведение $\beta(g)$ от нуля до неподвижной точки (рис. 4δ)³⁾

$$g^* = \frac{2}{n+2}.$$
 (31)

Для продвижения в область больших g нужно исследовать параметрическое представление (23), (26) при комплексных t. Пусть $t = |t|e^{i\chi}$ и $|t| \gg 1$; тогда в зависимости от фазы χ интегралы $K_M(t)$ определяются либо тривиальным перевалом в точке $\varphi = 0$, либо нетривиальным перевалом при $\varphi^2 = -t/2$. Перевальные значения интегралов $K_M(t)$ зависят от χ , но эта зависимость сокращается в комбинациях K_4K_0/K_2^2 и K_6K_0/K_4K_2 , которыми определяются

Рис. 4. Качественное поведение g и $\beta(g)$ при изменении t вдоль действительной оси (a) и соответствующая зависимость $\beta(g)$ (б)

выражения (23), (26). Поэтому в грубом приближении комплексная плоскость t разбивается на две части, в которых g и $\beta(g)$ принимают постоянные значения g = 0, $\beta(g) = 0$ и $g = g^*$, $\beta(g) = 0$. Между этими значениями имеется плавный переход, связанный с отклонениями от перевального приближения, которые возникают для $|t| \leq 1$; однако ожидаемые изменения происходят в конечных пределах, как это имеет место при действительных t (рис. 4*a*). Нетрудно сообразить, что большие значения g могут быть достигнуты лишь вблизи тех направлений в комплексной плоскости t, для которых вклады двух перевальных точек имеют сравнимую величину. Тогда для $K_M(t)$ имеем представление

$$K_M(t) = Ae^{i\psi} + A_1 e^{i\psi_1} = Ae^{i\psi} \left(1 + ke^{i\Delta}\right)$$
 (32)

и можно попытаться обратить интеграл в нуль, подстраивая параметры k и Δ . Имеющихся степеней свободы для этого достаточно ввиду возможности изменения действительной и мнимой частей t. Коэффициент k при изменении t заведомо проходит через единицу, так как в комплексной плоскости t имеются области, в которых доминирует тот или другой из двух членов (32). Изменение же фазы Δ фактически происходит в бесконечных пределах (см. ниже), так что количество нулей интеграла $K_M(t)$ оказывается бесконечным. Они лежат вдоль лучей $\chi = \pm 3\pi/4$, сгущаясь на бесконечности; приведенные соображения строго обоснованы для тех из них, которые расположены в области $|t| \gg 1$, где применимо перевальное приближение.

Нетрудно видеть, что предел $g \to \infty$ может быть достигнут, если устремить K_2 к нулю; тогда выражения (23), (26) упрощаются:

$$g \approx -\frac{n}{n+2} \frac{K_4 K_0}{K_2^2}, \quad \beta(g) \approx -\frac{4n}{n+2} \frac{K_4 K_0}{K_2^2},$$
 (33)

³⁾ Наличие неподвижной точки g^* не означает существования фазового перехода, который при d < 2 отсутствует. Дело в том, что уравнение Каллана – Симанчика, определяющее скейлинговое поведение корреляторов, справедливо лишь в области малых m, недостижимой при физических значениях m_0 и g_0 . Формула (31) согласуется с результатом $\tilde{g}^* = (n+8)/(n+2)$, полученным в работе [31], где определение заряда \tilde{g} отличается от нашего множителем, $\tilde{g} = (n+8)g/2$. Этот результат не соответствует правильному нуль-мерному пределу теории φ^4 и использование его в интерполяционной схеме, уточняющей зависимость g^* от размерности пространства d [31], является некорректным.

Рис. 5. Топология линий наискорейшего спуска для интеграла $K_M(t)$ в зависимости от $\chi = \arg t$: при $0 < |\chi| < \pi/2$ линия наискорейшего спуска проходит только через тривиальный перевал (*a*), тогда как при $\pi/2 < |\chi| < \pi$ проходятся обе перевальные точки (б)

и параметрическое представление разрешается в виде

$$\beta(g) = 4g, \quad g \to \infty, \tag{34}$$

тогда как из формулы (29) получим

$$\eta_2(g) = -4, \quad g \to \infty. \tag{35}$$

Как и ожидалось, асимптотика β-функции оказывается линейной.

3.4. Нули интегралов $K_M(t)$

При выводе результатов (34), (35) не использовался явный вид интегралов $K_M(t)$: существенными моментами были лишь принципиальная возможность их обращения в нуль и то, что нули различных интегралов $K_M(t)$ находятся в несовпадающих точках. Покажем, что эти предположения оправданы.

Значения действия для перевальных точек $\varphi = 0$ и $\varphi^2 = -t/2$ равны соответственно 0 и $t^2/4$, и вклады двух перевалов сравнимы при $\operatorname{Re} t^2 = 0$ или $\chi = \pm \pi/4, \pm 3\pi/4$. Однако значения $\chi = \pm \pi/4$ при ближайшем рассмотрении не подходят. Для интеграла $K_M(t)$ имеет место явление Стокса, связанное с изменением топологии линий наискорейшего спуска [32]; оно происходит при $|\chi| = \pi/2$, так что при $0 < |\chi| < \pi/2$ линия наискорейшего спуска проходит только через тривиальный перевал (рис. 5*a*), а при $\pi/2 < |\chi| < \pi$ проходятся обе перевальные точки (рис. 5δ). Поэтому компенсация перевальных вкладов (32) возможна при $\chi = \pm 3\pi/4$, но она не происходит при $\chi = \pm \pi/4$. Полагая $t = \rho e^{i\chi}, \rho \gg 1$ и $\chi = 3\pi/4 + \Delta, \Delta \ll 1$, имеем для вклада двух перевалов в интеграл $K_0(t)$

$$K_0(t) = \rho^{-n/2} \exp\left(-i\frac{3\pi}{8}n\right) \left[\frac{1}{2}\Gamma\left(\frac{n}{2}\right) + \frac{\sqrt{\pi}}{2^{n/2}} \times \exp\left(-i\frac{\pi}{4} + i\frac{\pi}{4}n - i\frac{1}{4}\rho^2\right)\rho^{n-1} \exp\left(\frac{1}{2}\rho^2\Delta\right)\right].$$
 (36)

Выбирая $\Delta(\rho)$ из условия

$$\rho^{n-1} \exp\left(\frac{1}{2}\rho^2 \Delta\right) = \frac{2^{n/2-1}}{\sqrt{\pi}} \Gamma\left(\frac{n}{2}\right), \dots,$$

T. e. $\Delta \sim \frac{\ln \rho}{\rho^2},$ (37)

получим

$$K_0(t) = \frac{1}{2} \Gamma\left(\frac{n}{2}\right) \rho^{-n/2} \exp\left(-i\frac{3\pi}{8}n\right) \times \left[1 + \exp\left(\frac{i}{4}(\pi + \pi n - \rho^2)\right)\right] \quad (38)$$

и нули интеграла $K_0(t)$ возникают в точках

$$\rho_s^2 = \pi(n+5) + 8\pi s, \quad s - \text{целое.}$$
(39)

Результаты для $K_M(t)$ получаются заменой $n \rightarrow n + M$ и из выражений (37), (39) ясно, что различные интегралы $K_M(t)$ обращаются в нуль в разных точках.

Другой способ получить нули интегралов $K_M(t)$ состоит в использовании специальных функций. Для простейшего интеграла нуль-мерной теории φ^4 существует соотношение

$$F(g) = \int_{-\infty}^{\infty} d\phi \exp\left(-\phi^2 - g\phi^4\right) =$$
$$= \frac{1}{2} g^{-1/2} e^{1/8g} \mathcal{K}_{1/4}\left(\frac{1}{8g}\right), \quad (40)$$

связывающее его с функцией Мак-Дональда $\mathcal{K}_{\nu}(x)$. Его легко вывести, замечая, что F(g) удовлетворяет уравнению [33]

$$4g^2F'' + (8g+1)F' + \frac{3}{4}F = 0$$
(41)

с граничным условием $F(0) = \sqrt{\pi}$. Отсюда при n = 0

$$K_0(t) = \int_0^\infty d\phi \, e^{-t\phi^2 - \phi^4} =$$
$$= \frac{1}{4} t^{1/2} \, e^{t^2/8} \, \mathcal{K}_{1/4}\left(\frac{t^2}{8}\right). \quad (42)$$

Функция Мак-Дональда $\mathcal{K}_{\nu}(z)$ не имеет нулей на главном листе римановой поверхности ($|\arg z| < \pi$),

$$z_s = -\frac{1}{2}\ln(2\cos\pi\nu) + e^{\pm 3\pi i/2} \left(\frac{3\pi}{4} + \pi s\right), \quad (43)$$

s — целое.

Из формул (42), (43) ясно, что $K_0(t)$ имеет нули в точках

$$t_s^2 = -2\ln 2 - 6\pi i + 8\pi s e^{3\pi i/2} \quad (|t| \gg 1), \qquad (44)$$

что при n = 0 согласуется с выражением (39). Результаты для $K_M(t)$ с $M = 2, 4, \ldots$ могут быть получены путем дифференцирования уравнения (41) по t, а их аналитическое продолжение на нецелые M и замена $M \to M + n$ дает обобщение на случай $n \neq 1$.

4. ОБЩИЙ *d*-МЕРНЫЙ СЛУЧАЙ

4.1. Выражения для ренормгрупповых функций

Поскольку (см. формулу (27)) комплексные t в пределе $|t| \to \infty$ соответствует комплексным g_0 с $|g_0| \to 0$, из проведенного исследования следует неожиданный вывод: большим значениям перенормированного заряда g соответствуют не большие значения затравочного заряда g_0 (как естественно думать⁵⁾), а его комплексные значения; более того, достаточно ограничиться областью $|g_0| \ll 1$, в которой обеспечена применимость метода перевала. Выше использовались лишь (а) возможность выражения РГ-функций через функциональные интегралы и (б) возможность исследования функциональных интегралов в перевальном приближении: и то и другое допускает обобщение на произвольный *d*-мерный случай.

Введем фурье-образы интегралов (7):

$$Z^{(M)}_{\alpha_1...\alpha_M}(p_1,\ldots,p_M)\mathcal{N}\delta_{p_1+\ldots+p_M} =$$

$$= \sum_{x_1,\ldots,x_M} Z^{(M)}_{\alpha_1...\alpha_M}(x_1,\ldots,x_M) \times$$

$$\times e^{ip_1x_1+\ldots+ip_Mx_M}, \quad (45)$$

где \mathcal{N} — число узлов решетки, на которой определен функциональный интеграл. При выборе импульсов, соответствующих так называемой симметричной точке, $p_i \cdot p_j = p^2 (4\delta_{ij} - 1)/3$, из $Z^{(M)}$ можно выделить δ -образные множители аналогично формуле (16):

$$Z^{(0)} = K_0, \quad Z^{(2)}_{\alpha\beta}(p, -p) = K_2(p)\delta_{\alpha\beta},$$

$$Z^{(4)}_{\alpha\beta\gamma\delta}\{p_i\} = K_4\{p_i\}I_{\alpha\beta\gamma\delta}.$$
(46)

Введем вершину $\Gamma^{(0,4)}$ соотношением (рис. 3δ)

$$G^{(4)}_{\alpha\beta\gamma\delta}(p_1,\ldots,p_4) = G^{(2)}_{\alpha\beta}(p_1)G^{(2)}_{\gamma\delta}(p_3) \,\mathcal{N}\delta_{p_1+p_2} + G^{(2)}_{\alpha\gamma}(p_1)G^{(2)}_{\beta\delta}(p_2) \,\mathcal{N}\delta_{p_1+p_3} + G^{(2)}_{\alpha\delta}(p_1)G^{(2)}_{\beta\gamma}(p_3) \,\mathcal{N}\delta_{p_1+p_4} - G^{(2)}_{\alpha\alpha'}(p_1)G^{(2)}_{\beta\beta'}(p_2) \times G^{(2)}_{\gamma\gamma'}(p_3)G^{(2)}_{\delta\delta'}(p_4)\Gamma^{(0,4)}_{\alpha'\beta'\gamma'\delta'}(p_1,\ldots,p_4) \quad (47)$$

и выделим δ -образные множители аналогично формуле (46):

$$G^{(2)}_{\alpha\beta}(p,-p) = G_2(p)\delta_{\alpha\beta},$$

$$G^{(4)}_{\alpha\beta\gamma\delta}\{p_i\} = G_4\{p_i\}I_{\alpha\beta\gamma\delta},$$

$$\Gamma^{(0,4)}_{\alpha\beta\gamma\delta}\{p_i\} = \Gamma_4\{p_i\}I_{\alpha\beta\gamma\delta}.$$
(48)

Полагать импульсы p_i строго равными нулю неудобно, так как при этом связь G_4 и Γ_4 содержит множители \mathcal{N} , пропорциональные объему; удобнее положить $p_i \sim \mu$, исключая специальные равенства типа $p_1 + p_2 = 0$, а затем выбрать μ так, что $\mathcal{L}^{-1} \leq \mu \ll m$, где нижняя граница уходит в нуль в пределе бесконечного размера системы \mathcal{L} . Тогда

$$G_4 = \frac{K_4}{K_0}, \quad \Gamma_4 = -\frac{G_4}{G_2^4} = -\frac{K_4 K_0^3}{K_2^4},$$
(49)

где интегралы берутся при нулевых импульсах, и

$$G_2 = \frac{K_2(p)}{K_0},$$

$$\Gamma_2(p) = \frac{1}{G_2(p)} = \frac{K_0}{K_2(p)} \approx \frac{K_0}{K_2} + \frac{K_0 \tilde{K}_2}{K_2^2} p^2,$$
(50)

где мы положили при малых р

6 ЖЭТФ, вып. 3 (9)

⁴⁾ В справедливость этого результата легко поверить, если вспомнить известное соотношение для функции Эйри, $\operatorname{Ai}(x) \sim \mathcal{K}_{1/3}\left(\frac{2}{3}x^{2/3}\right)$ или $\mathcal{K}_{1/3}\left(\frac{2}{3}te^{\pm 3\pi i/2}\right) \sim \operatorname{Ai}(-t^{2/3})$, и заметить, что $\operatorname{Ai}(x)$ имеет нули для отрицательных x.

⁵⁾ Обычно считается, что можно ввести универсальную функцию g = f(L), описывающую зависимость заряда от масштаба расстояний; тогда наблюдаемый заряд соответствует $g_{obs} = f(m^{-1})$, затравочный заряд соответствует $g_0 = f(\Lambda^{-1})$, а перенормированный заряд на масштабе L есть просто g = f(L), т.е. все заряды, возникающие в теории, являются в сущности одним и тем же зарядом, но относятся к разным масштабам. На самом деле это не совсем так и связано с неоднозначностью ренормировочной схемы. Определения затравочного и перенормированного зарядов технически различаются и вволятся соответственно в схеме обрезания и схеме вычитания [34]. Соответствующие функции $g_0 = f_1(L)$ и $g = f_2(L)$ совпадают друг с другом только на одно- и двухпетлевом уровнях, но различаются в высших петлях. Поэтому указанные интуитивные представления основаны на опыте работы в области слабой связи.

$$K_2(p) = K_2 - \tilde{K}_2 p^2 + \dots$$
 (51)

Тогда для Z-факторов, перенормированной массы и заряда имеем

$$Z = \left[\frac{\partial}{\partial p^2} \Gamma_2(p)\right]_{p=0}^{-1} = \frac{K_2^2}{K_0 \tilde{K}_2},\tag{52}$$

$$m^2 = Z\Gamma_2(p=0) = \frac{K_2}{\tilde{K}_2},$$
 (53)

$$g = m^{-\epsilon} Z^2 \Gamma_4 = -\left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \frac{K_4 K_0}{K_2^2}, \qquad (54)$$

$$\frac{1}{Z_2} = \Gamma_{12} \{ p_i = 0 \} = \frac{dm^2}{dm_0^2} = = -\left(\frac{K_2}{\tilde{K}_2}\right)' = \frac{K_2'\tilde{K}_2 - K_2\tilde{K}_2'}{\tilde{K}_2^2}, \quad (55)$$

где штрихами отмечаются производные по m_0^2 . Как и в разд. 3, параметры g_0 и Λ удобно считать фиксированными; тогда m^2 является функцией только m_0^2 и производная dm_0^2/dm^2 определяется выражением, обратным (55). Согласно определению ренормгрупповых функций (12) имеем

$$\beta(g) = \frac{dg}{d\ln m} = -dm^d \frac{K_4 K_0}{K_2^2} - \frac{2m^{d+2} \left(\frac{K_4 K_0}{K_2^2}\right)'_{m_0^2} \frac{dm_0^2}{dm^2}}{dm^2},$$

$$\eta(g) = \frac{d\ln Z}{d\ln m} = 2m^2 \left[\ln K_2^2 - \ln K_0 - \ln \tilde{K}_2 \right]'_{m_0^2} \frac{dm_0^2}{dm^2}, \quad (56)$$

$$\eta_2(g) = \frac{d\ln Z_2}{d\ln m} = -2m^2 \left[\ln \frac{K'_2 \tilde{K}_2 - K_2 \tilde{K}'_2}{\tilde{K}_2^2} \right]'_{m_0^2} \frac{dm_0^2}{dm^2},$$

откуда с учетом уравнения (55)

$$\beta(g) = \left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \left\{ -d\frac{K_4K_0}{K_2^2} + \frac{2(K'_4K_0 + K_4K'_0)K_2 - 2K_4K_0K'_2}{K_2^2} \times \frac{\tilde{K}_2}{K_2\tilde{K}'_2 - K'_2\tilde{K}_2} \right\}, \quad (57)$$

$$\eta(g) = -\frac{2K_2\tilde{K}_2}{K_2\tilde{K}_2' - K_2'\tilde{K}_2} \left[2\frac{K_2'}{K_2} - \frac{K_0'}{K_0} - \frac{\tilde{K}_2'}{\tilde{K}_2}\right], \quad (58)$$

$$\eta_2(g) = \frac{2K_2K_2}{K_2\tilde{K}_2' - K_2'\tilde{K}_2} \times \left\{ \frac{K_2\tilde{K}_2'' - K_2''\tilde{K}_2}{K_2\tilde{K}_2' - K_2'\tilde{K}_2} - 2\frac{\tilde{K}_2'}{\tilde{K}_2} \right\}.$$
 (59)

Выражения (54), (57), (58), (59) определяют $\beta(g)$, $\eta(g)$, $\eta_2(g)$ в параметрическом виде: при фиксированных g_0 и Λ правые части этих формул являются функциями только m_0^2 , тогда как зависимость от конкретного выбора g_0 и Λ отсутствует согласно общим теоремам (разд. 2).

4.2. Асимптотики ренормгрупповых функций

Из уравнения (54) ясно, что предел $g \to \infty$ может быть достигнут двумя способами: устремлением к нулю K_2 или \tilde{K}_2 . При $\tilde{K}_2 \to 0$ имеем

$$\beta(g) = -d \left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \frac{K_4 K_0}{K_2^2},$$

$$\eta(g) \to 2, \quad \eta_2(g) \to -4$$
(60)

и параметрическое представление разрешается в виде

$$\beta(g) = dg, \quad \eta(g) = 2, \quad \eta_2(g) = -4 \quad (g \to \infty).$$
 (61)

При $K_2 \to 0$ предел $g \to \infty$ достигается только для d < 4:

$$\beta(g) = (d-4)g, \quad \eta(g) = 4, \eta_2(g) \to 0 \quad (g \to \infty).$$
(62)

Результаты (61), (62), по-видимому, соответствуют двум ветвям функции $\beta(g)$. Легко понять, что физической является первая из них. По современным представлениям, свойства теории φ^4 плавно меняются при изменении размерности пространства и результаты для d = 2, 3 могут быть получены аналитическим продолжением с размерности $d = 4 - \epsilon$. Вся доступная информация свидетельствует о знакопостоянстве $\beta(g)$ при d = 4 (разд. 6), так что ее асимптотика при $q \to \infty$ положительна; по непрерывности положительная асимптотика ожидается и при d < 4. Таким свойством обладает результат (61), тогда как для ветви (62) область больших g вообще не достижима при d = 4. Приближенные результаты для $\beta(g)$, упомянутые в разд. 1, также указывают на справедливость результата (61). Наконец, при d = 2 выражение (61) согласуется с точным результатом $\beta(g) = 2g$ для асимптотики β -функции в модели Изинга, полученным из соотношения дуальности [35].

Выше мы исходили из того, что механизм возникновения асимптотики ренормгрупповых функций такой же, как в наивном нуль-мерном пределе. Строго говоря, нельзя исключить возможность реализации режима больших g за счет другого механизма, например большой величины К₄. Однако такая возможность выглядит маловероятной: считая поле $\varphi(x)$ локализованным на единичном масштабе и оценивая предэкспоненту в формуле (7) для некоторой типичной конфигурации, получим $K_M \sim \langle \varphi \rangle^M K_0$, $K_2 \sim K_2$ и подстановка в формулу (54) дает $g \sim 1$. Изменение общего масштаба всех длин не влияет на величину д просто в силу ее безразмерности. Поэтому получить большие значения g за счет изменения амплитуды поля $\varphi(x)$ или общего масштаба его пространственной локализации оказывается невозможным. Так или иначе придется предположить, что среднее $\langle \varphi \rangle$ по каким-то причинам (например, из-за знакопеременности $\varphi(x)$) аномально мало для одного из интегралов; но это возвращает нас к уже рассмотренным вариантам.

4.3. Нули функциональных интегралов

При комплексных g_0 и $|g_0| \ll 1$ нули функциональных интегралов могут быть получены из условия компенсации вклада тривиального вакуума с перевальным вкладом инстантонной конфигурации, имеющей минимальное действие⁶. Последний вклад хорошо изучен и имеет вид (см., например, [36])

$$\left[Z^{(M)}_{\alpha_1 \dots \alpha_M} (p_1, \dots, p_M) \right]^{inst} = i c_M (-g_0)^{-(M+r)/2} \times e^{-S_0/g_0} \langle \phi_c \rangle_{p_1} \dots \langle \phi_c \rangle_{p_M} I_{\alpha_1 \dots \alpha_M}$$
(63)

при d < 4 и несколько более сложный вид при d = 4; здесь $\langle \phi_c \rangle_p$ — фурье-образ безразмерной инстантонной конфигурации $\phi_c(x)$, S_0 — соответствующее ей действие, r — число нулевых мод (r = n + d - 1 для d < 4 и r = n + 4 для d = 4), c_M — некоторая константа. Тогда для $M = 0, 2, \ldots$ имеем

$$Z_0 = 1 + ic_0(-g_0)^{-r/2} e^{-S_0/g_0},$$

$$Z_{\alpha\beta}^{(2)}(p,p') = \frac{\delta_{\alpha\beta}}{p^2 + m_0^2} + ic_2(-g_0)^{-(r+2)/2} e^{-S_0/g_0} \langle \phi_c \rangle_p^2 \,\delta_{\alpha\beta} \quad (64)$$

и т. д. Полагая $t^2 = -S_0/g_0$, придем к выражениям типа (36), которые анализируются аналогично. Легко убедиться, что нули различных интегралов K_M и их производных по m_0^2 реализуются в разных точках.

Нетрудно показать, что влияние высших инстантонов несущественно вблизи корня интеграла \tilde{K}_2 , где очевидно имеем $e^{-S_0/g_0} \sim |g_0|^{(r+2)/2}$. Высшие инстантоны могут быть классифицированы следующим образом:

а) Комбинации из k удаленных элементарных инстантонов. Для них число нулевых мод $r_k = kr$ и действие $S_k = kS_0$, что дает по сравнению с (63) лишний множитель

$$\left[(-g_0)^{-r/2} e^{-S_0/g_0} \right]^{k-1} \sim |g_0|^{k-1}.$$
 (65)

б) Высшие сферически-симметричные инстантоны. Они имеют такую же симметрию и то же число нулевых мод r, что и основной инстантон, но большее действие \tilde{S} . Их вклад отличается от вклада (63) лишним множителем

$$e^{-(\bar{S}-S_0)/g_0} \sim |g_0|^{(r+2)(\bar{S}-S_0)/2S_0},$$
 (66)

который мал в актуальном случае r + 2 > 0.

6) Локализованные несимметричные инстантоны. Они имеют большее действие S_{as} и большее число нулевых мод $r_{as} = r + d(d-1)/2$ ввиду возможности вращения в координатном пространстве [36]. Им соответствует лишний множитель

$$(-g_0)^{-d(d-1)/4} e^{-(S_{as}-S_0)/g_0} \sim$$

 $\sim |g_0|^{-d(d-1)/4+(r+2)(S_{as}-S_0)/2S_0}.$ (67)

Для известных несимметричных инстантонов отношение S_{as}/S_0 довольно велико (см. обсуждение в работе [36]) и показатель степени в уравнении (67) положителен.

г) Комбинации из нескольких удаленных инстантонов типа б и в. Их вклад, как легко проверить, содержит дополнительную малость по сравнению с (66) и (67).

5. ЗАМЕЧАНИЕ О РЕЗУЛЬТАТАХ СУММИРОВАНИЯ

Суммирование рядов теории возмущений позволяет получить для β -функции асимптотику вида $\beta_{\infty}g^{\alpha}$ с показателем α , близким к единице (разд. 1),

⁶⁾ В теории φ^4 все инстантонные сингулярности в борелевской плоскости лежат на отрицательной полуоси [7], поэтому при надлежащем выборе комплексной фазы g_0 значение действия для всех инстантонов можно считать положительным.

	d = 2	d = 3	d = 4
Формула (61)	$\alpha = 1$	$\alpha = 1$	$\alpha = 1$
	$\beta_{\infty} = 2$	$\beta_{\infty} = 3$	$\beta_{\infty} = 4$
Суммирование	$\alpha = 0.92 \pm 0.02$	$\alpha = 0.84 \pm 0.07$	$\alpha = 0.96 \pm 0.01$
рядов [4, 19, 20]	$\beta_{\infty} = 22 \pm 3$	$\beta_{\infty} = 60 \pm 10$	$\beta_{\infty} = 14.8 \pm 0.8$
Суммирование	$\beta_{\infty} = 10.6$	$\beta_{\infty} = 16.8$	$\beta_{\infty} = 10.6$
при $\alpha = 1$			

Сопоставление с результатами суммирования

в согласии с результатом (61). Результаты для коэффициента β_{∞} [4, 19, 20] приведены в таблице и согласуются с (61) значительно хуже⁷).

Последнее не является вполне неожиданным, так как к настоящему времени уже накоплена информация, указывающая на недостаточно надежную оценку β_{∞} . В частности, в процессе выполнения работы [5] проводился тестовый эксперимент по сокращению информации для теории φ^4 . Полная информация содержит значения коэффициентов β_2 , β_3 , β_4 , β_5 , параметров a, b, c, γ асимптотики Липатова (разд. 1) и коэффициента A_1 в формуле (4); при ее сокращении получалось следующее.

Полная информация:

$$\alpha = 0.96 \pm 0.01, \quad \beta_{\infty} = 14.8 \pm 0.8.$$

Без использования А1:

$$\alpha = 1.00 \pm 0.01, \quad \beta_{\infty} = 6.8 \pm 0.6.$$

Без использования A_1 и с:

 $\alpha = 1.02 \pm 0.03, \quad \beta_{\infty} = 3.4 \pm 0.6.$

Еще более эффектный тестовый эксперимент получился для КЭД в результате ошибки, когда при суммировании ряда в работе [5] асимптотика Липатова была взята с лишним множителем $(4\pi)^N$.

Правильная асимптотика:

 $\alpha = 1.0 \pm 0.1, \quad \beta_{\infty} = 1.0 \pm 0.3.$

Лишний множитель $(4\pi)^N$:

$$\alpha = 1.0 \pm 0.2, \quad \beta_{\infty} = -3 \cdot 10^3$$

Легко видеть, что оценки показателя α демонстрируют высокую устойчивость, тогда как коэффициент β_{∞} довольно чувствителен к количеству и качеству доступной информации.

Если при суммировании ряда значение $\alpha = 1$ считать известным, то результаты для β_{∞} существенно сдвигаются в сторону правильных значений (см. последнюю строчку таблицы)⁸⁾; при этом видна их высокая чувствительность даже к небольшим погрешностям в α . Она связана с очевидным обстоятельством, что при определении β_{∞} любые неопределенности в α умножаются на большой множитель и переходят в экспоненту.

Для функции $\eta(g)$ в работах [19, 20] получена асимптотика ~ g^2 , что, казалось бы, находится в вопиющем противоречии с уравнением (61). Фактически же в работах [19, 20] проводилось разбиение $\eta(g) = \eta_2 g^2 + \tilde{\eta}(g)$ и для асимптотики последней функции получен результат $\tilde{\eta}(g) = Ag^2$ с правильным показателем степени. Из формулы (61) ясно, что значение коэффициента A должно быть равно

 $^{^{7)}}$ Значения для β_∞ при d=4 в 2 раза отличаются от работ [4,7], поскольку уравнение (3) в них записывалось с L^2 вместо L. Результаты суммирования для d = 4 относятся к лругой ренормировочной схеме (МОМ), но, по-вилимому, это несущественно. В физических ренормировочных схемах перенормированный заряд определяется по одной и той же вершине Г₄, но она по-разному соотносится с масштабом расстояний L. При степенной зависимости g(L) это различие может давать лишь постоянный множитель, так что определения заряда в разных схемах совпадают по порядку величины и асимптотика $\beta_{\infty}g$ должна быть в них одинаковой (на малых расстояниях $g(L)\propto L^{-\,\beta\,\infty}$ и различие в β_∞ привело бы к сколь угодно сильному расхождению зарядов). Формальные результаты для МОМ-схемы не противоречат этим соображениям, но и не позволяют их подтвердить более убедительно (Приложение II).

⁸⁾ Оценка проводилась путем сдвига используемого в работах [4, 19, 20] параметра b_0 от первого минимума χ^2 до достижения точного значения $\alpha = 1$; использовалось оптимальное значение для параметра \tilde{N} ; погрешность результатов не исследовалась.

 $-\eta_2$, но точность численной процедуры не позволяла этого обнаружить⁹⁾. Аналогичная ситуация имела место для $\eta_2(g)$, для которой в работах [19, 20, 37] получена асимптотика $\sim g$.

6. ТРИВИАЛЬНА ЛИ ТЕОРИЯ φ^4 ?

В четырехмерном случае результат (61) для асимптотики β-функции, в комбинации с ее положительностью (рис. 16), означает реализацию второй возможности в классификации Боголюбова и Ширкова (разд. 1): эффективное взаимодействие конечно на больших расстояниях, но неограниченно растет при малых L (по закону $g(L) \sim L^{-4}$). Этот вывод противоречит представлениям о тривиальности континуальной теории φ^4 , которые являются господствующими в литературе [22-24, 38-60]. Последнее обстоятельство является довольно странным, так как реальные попытки исследования области сильной связи немногочисленны и их результаты не могут считаться устоявшимися. Как показано ниже, такая ситуация связана с тем, что в литературе были смешаны два различных определения тривиальности.

6.1. Тривиальность по Вильсону

В теории фазовых переходов формула (1) имеет совершенно другую интерпретацию. В этом случае параметр обрезания Λ и затравочный заряд g_0 имеют прямой физический смысл и связаны с постоянной решетки и коэффициентом в эффективном гамильтониане Ландау. При этом «нуль заряда» получается в пределе $m \to 0$ (что соответствует приближению к точке фазового перехода) и означает отсутствие взаимодействия между крупномасштабными флуктуациями параметра порядка. При переходе к размерности $d = 4 - \epsilon$ это взаимодействие оказывается конечным, но слабым в меру ϵ , что обеспечивает успех ϵ -разложения Вильсона [21].

В более поздних работах Вильсон переходит к углубленной постановке вопроса: является ли указанная тривиальность четырехмерной теории свойством малых g_0 или имеет глобальный характер? Ответ на этот вопрос определяется свойствами

Рис.6. Изменение $\beta(g)$ при интегрировании уравнения Гелл-Манна-Лоу в сторону больших L: а для знакопостоянной $\beta(g)$ эволюция заканчивается в гауссовской неподвижной точке $g = 0; \ b - b$ случае знакопеременной eta(g) возникает граница g_f области притяжения гауссовской неподвижной точки. При d < 4 функция $\beta(g)$ имеет отрицательный

участок (штриховая линия на рис. а)

 β -функции: если $\beta(g)$ не имеет нетривиального нуля (рис. 6а), то эффективное взаимодействие стремится к нулю в пределе больших расстояний независимо от начального значения g_0 . Если же $\beta(g)$ знакопеременна (рис. 66), то на больших расстояниях может возникать нетривиальный предел g^{*}. Последняя возможность представляет большой интерес для физики конденсированного состояния: это вопрос о существовании фазовых переходов нового типа, к которым неприменимо *є*-разложение Вильсона [61].

Используя логику доказательства от противного, Вильсон предположил существование границы gf области притяжения гауссовой неподвижной точки g = 0 (что эквивалентно знакопеременности $\beta(g)$) и вывел из этого следствия, удобные для численной проверки. Согласно его результатам [21], никаких указаний на существование точки g_f обнаружить не удается. Исторически это была первая реальная попытка исследования области сильной связи для теории φ^4 и первое свидетельство знакопостоянства $\beta(g)$.

6.2. Тривиальность в математическом смысле

Другое определение тривиальности было предложено в математических работах [22–24]. Если понимать теорию поля как предел решеточных теорий, то можно ввести затравочный заряд g_0 как функцию межатомного расстояния a_0 . Если при некотором выборе функции $g_0(a_0)$ можно перейти к пределу $a_0 \rightarrow 0$ и обеспечить конечное взаимодействие на больших расстояниях, то теория нетривиальна; если же это невозможно ни при каком выборе $g_0(a_0)$, то теория тривиальна. Такое определение соответствует представлению об истинной тривиальности, т.е.

⁹⁾ Выделение члена $\eta_2 g^2$ мотивировалось тем, что (a) при интерполяции с использованием всех коэффициентов возникал резкий выброс в интервале 2 < N < 3, который интерпретировался как указание на наличие сингулярности, и (б) результаты для асимптотики оказывались очень неопределенными. Сейчас ясно, что эти факты требуют другой интерпретации.

принципиальной невозможности построения континуальной теории с конечным взаимодействием на больших расстояниях; оно эквивалентно внутренней противоречивости по Боголюбову и Ширкову (разд. 1). Действительно, в последнем случае конечность заряда g_{∞} на больших расстояниях делает теорию несуществующей на масштабах $L < L_0$; реализация предела $a_0 \to 0$ требует уменьшения L_0 до нуля, что возможно только при $g_{\infty} \to 0$.

В работах [22-24] строго доказана тривиальность теории φ^4 при d > 4 и ее нетривиальность при d < 4; на основе опыта этих доказательств приведены нестрогие аргументы в пользу тривиальности при d = 4. С физической точки зрения указанные результаты довольно очевидны. Действительно, неперенормируемость теории φ^4 при d > 4 означает, что предел $a_0 \rightarrow 0$ не может быть реализован без разрушения структуры теории; поскольку в принятом определении тривиальности структура теории φ^4 поддерживается искусственно при сколь угодно малых a_0 , единственная возможность для нее состоит в том, чтобы «сбросить» взаимодействие и перейти в гауссову теорию. Нетривиальность теории φ^4 при *d* < 4 связана с наличием отрицательного участка для β -функции (рис. 6a, штриховая кривая), которое можно проверить для $d = 4 - \epsilon$ с малым ϵ и подтвердить численно для d = 2 и d = 3: легко видеть, что для этого участка $g(L) \to g^*$ на больших расстояниях и $g(L) \to 0$ на малых.

Из сказанного ясно, что доказанные в работах [22–24] результаты не требуют анализа области сильной связи, и на их основании нельзя высказывать никаких суждений о ситуации при d = 4, где такой анализ необходим. Наконец, заметим, что в математических работах не рассматривались комплексные значения затравочного заряда, использование которых необходимо для построения нетривиальной теории при d = 4.

Из сказанного ясно различие двух определений тривиальности. Для тривиальности по Вильсону достаточно лишь знакопостоянства $\beta(g)$, тогда как для истинной тривиальности требуется еще достаточно быстрый рост $\beta(g) \sim g^{\alpha}$ с $\alpha > 1$ в области сильной связи. Тем не менее, это различие практически не осознается в литературе. В некоторых работах (см., например, [40, 47]) прямо утверждается, что пределы $\Lambda \to \infty$ и $m \to 0$ эквивалентны. Формальное решение уравнения (3)

$$\int_{g_m}^{g_\Lambda} \frac{dg}{\beta(g)} = \ln \frac{\Lambda}{m} \tag{68}$$

действительно определяется лишь отношением Λ/m ; однако его физические следствия зависят от постановки задачи. Если фиксированы Λ и g_{Λ} , то при $\beta(g) > 0$ всегда имеем $g_m \to 0$ при $m \to 0$. Если же фиксированы m и g_m , то возможность $g_{\Lambda} \to \infty, \Lambda \to \infty$ реализуется только при $\alpha \leq 1$, тогда как в противном случае предел $\Lambda \to \infty$ вообще невозможен.

6.3. Специфика β -функции при d = 4

Общий вид *β*-функции для четырехмерной теории φ^4 , полученный в работе [4] в результате суммирования ряда теории возмущений, показан на рис. 16, наряду с результатами других авторов¹⁰. Не вызывает сомнения положительность $\beta(g)$, а следовательно, существование тривиальности по Вильсону. Имеются основания ожидать проявлений и истинной тривиальности. Заметим, что на рис. 16 используется «естественная» нормировка заряда, при которой параметр а асимптотики Липатова равен единице — она соответствует записи члена взаимодействия в виде $(16\pi^2/4!)g\varphi^4$: при этом ближайшая особенность борелевского образа находится на единичном расстоянии от начала координат, так что характерные изменения $\beta(g)$ происходят на масштабе порядка единицы. Тем не менее, область применимости однопетлевого закона оказывается несколько затянутой и поведение, близкое к квадратичному, продолжается до $g \sim 10$. В традиционных нормировках заряда такая затянутость оказывается еще больше — до $g \sim 10^3$ при записи члена взаимодействия в виде $g\varphi^4/8$ или $g\varphi^4/4!$. А если учесть, что выпуклость β -функции книзу сохраняется (в «естественной» нормировке) до $g \sim 100$ [4], то становится ясно, что поведение любых величин будет неотличимо от тривиального в широкой области значений параметров.

6.4. Численные результаты

Существующие численные результаты можно разделить на несколько групп.

а) Убывание g(L) с ростом L. Убывание эффективного взаимодействия g(L) получено во многих работах (см., например, [38–40]) и свидетельствует лишь о положительности $\beta(g)$. Детальный анализ этого убывания в принципе позволяет получить ин-

¹⁰⁾ Разумеется, конкретный вид $\beta(g)$ несколько изменится при использовании правильной асимптотики (61) вместо приближенно установленной в работе [4].

формацию о β-функции, но он фактически никогда не проводился.

б) Ренормгрупповые функции в реальном пространстве. Это — приближенная реализация построения Каданова [25] в духе ранних работ Вильсона. Рассматривается процедура сокращения описания путем разбиения системы на блоки и их последующего укрупнения; блоки характеризуются конечным числом параметров, эволюция которых затем прослеживается. Работы этого направления характеризуются высоким качеством [41, 42], но они лишь демонстрируют стремление системы к гауссовской неподвижной точке и подтверждают исходный анализ Вильсона.

6) Логарифмические поправки к скейлингу. Фазовые переходы при d > 4 описываются теорией среднего поля, тогда как при d = 4 к соответствующим степенным законам имеются логарифмические поправки [26,61]:

$$M \propto (-\tau)^{1/2} \left[\ln(-\tau) \right]^{3/(n+8)},$$

$$\chi^{-1} \propto |\tau| \left[\ln |\tau| \right]^{-(n+2)/(n+8)},$$

$$H \propto M^3 / |\ln M|, \quad \tau = 0,$$

(69)

и т. д., где M, H, χ, τ — соответственно намагниченность, магнитное поле, восприимчивость и расстояние до перехода по температуре. Существование логарифмических поправок не вызывает сомнений и их численная проверка [43–50] является либо (при $g_0 \ll 1$) подтверждением результатов главного логарифмического приближения [61], либо (при $g_0 \gtrsim 1$) подтверждением вильсоновской картины критических явлений. Тем не менее, большинство авторов прямо связывает свои результаты с тривиальностью теории φ^4 .

г) Распространение формулы (1) в область больших g_0 . Зависимость перенормированного заряда от затравочного при фиксированном отношении Λ/m , изучавшаяся в работах [51–54], на наш взгляд, является единственным указанием на истинную тривиальность теории φ^4 . Характерные результаты такого рода [51] представлены на рис. 7 и свидетельствуют о том, что зависимость g_0 от L содержит полюс Ландау.

Если внимательно приглядеться к результатам, то обнаруживается типичное недоразумение, связанное с нормировкой заряда. Дойдя до $g_0 \approx 400$, авторы работы [51] были уверены, что заведомо вышли в область сильной связи. Фактически же (см. п. 6.3) все результаты для конечных g_0 попадают в область квадратичного закона для β -функции и

Рис.7. Зависимость перенормированного заряда $g_R(0)$, взятого при нулевых импульсах, от затравочного заряда g_0 , относящегося к межатомному расстоянию a_0 , в четырехмерной теории φ^4 при фиксированных значениях Na_0 и m, но различном числе N^4 узлов решетки (согласно работе [51])

потому не обнаруживают существенных отклонений от формулы (1) (см. прямое свидетельство этого в работе [52]). Нетривиально выглядят лишь точки для $g_0 = \infty$, полученные путем редукции к модели Изинга; но эта редукция основана на том, что эмпирическая зависимость $m_0^2 = -\text{const} g_0$ (фактически соответствующая однопетлевому закону) экстраполируется в область произвольно больших g₀. Поскольку для такой экстраполяции нет оснований, результаты для $g_0 = \infty$ ненадежны: без них же из рис. 7 ничего не следует. Зависимости $g(g_0)$, аналогичные показанным на рис. 7, получаются также из высокотемпературных рядов [54] и решеточных разложений сильной связи [53]; но и они используют сомнительную экстраполяцию, основанную на убеждении, что редукция к модели Изинга происходит указанным выше способом.

На наш взгляд, серьезные исследования такого рода должны прежде всего обнаружить реальные отклонения от формулы (1), связанные с неквадратичностью β -функции, анализ которых только и может дать информацию о поведении $\beta(g)$ в области сильной связи.

Использованный выше подход (разд. 3, 4) дает новый взгляд на обсуждаемые результаты. Ввиду неограниченного роста g(L) при $L \rightarrow 0$, для построения нетривиальной континуальной теории нужно использовать комплексные значения затравочного заряда: такая возможность не учитывалась в работах [51–54], а потому полученная в них картина (рис. 7) ничего не доказывает, даже если с ней согласиться буквально.

d) Работы последних лет. В последнее время проблематика, связанная с тривиальностью, интенсивно обсуждается в серии работ Агоди, Консоли и др. [55–57]. В них предлагается нетривиальный континуальный предел теории φ⁴, фактически приводящий к отрицанию стандартной теории возмущений.

Авторы иллюстрируют свою идею на примере неидеального бозе-газа с боголюбовским спектром $(\epsilon(k) \sim k \text{ при малых } k \text{ и } \epsilon(k) \sim k^2 \text{ при } k \to \infty)$. Если переходить к «континуальному пределу», устремляя к нулю два характерные масштаба задачи — длину рассеяния и расстояние между частицами, — то в зависимости от соотношения между масштабами может либо восстанавливаться квадратичный спектр идеального газа («вполне тривиальная теория»), либо возникать строго линейный спектр невзаимодействующих фононов («тривиальная теория с нетривиальным вакуумом»). Последний сценарий авторы предлагают для континуального предела теории φ^4 , утверждая, что он является логически непротиворечивым.

Даже если согласиться с последним утверждением, то остается вопрос, почему именно такой предельный переход происходит физически. Так, в случае бозе-газа из нейтральных атомов нет реальной возможности одновременно менять плотность газа и длину рассеяния. Желаемая для авторов ситуация может возникнуть при специальном законе дальнодействия — тогда при изменении плотности меняется «дебаевский радиус экранирования», определяющий длину рассеяния; но такой сценарий не является произвольным и может быть предсказан на основе исходного гамильтониана.

Авторы работ [55–57] считают, что предположение о нетривиальном характере континуального предела подтверждается их численным моделированием на решетке. Однако этот вывод основан не на прямых «экспериментальных» данных, а исключительно на их интерпретации: численные эксперименты проводятся глубоко в области однопетлевого закона и никакой информации о «тривиальности» содержать не могут — их результаты (какими бы экзотическими они не были) должны иметь объяснение в рамках теории слабой связи.

6.5. Теоретические результаты

а) Аргументы Ландау – Померанчука. Ландау н Померанчук [3] заметили, что согласно формуле (1) с ростом g_0 наблюдаемый заряд g выходит на значение $1/(\beta_2 \ln \Lambda/m)$, не зависящее от g_0 . Такое поведение можно получить, сделав в функциональном интеграле (7) замену $\varphi \to \tilde{\varphi} g_0^{-1/4}$ и опустив в действии (6) квадратичные по φ члены; в уравнении (47) такая замена дает $G^{(4)}/[G^{(2)}]^2 = \operatorname{const}(g_0)$, $\Gamma^{(0,4)}[G^{(2)}]^2 \propto \Gamma^{(0,4)}Z^2 \propto \Gamma_R^{(0,4)} = g = \operatorname{const}(g_0)$. Если такая процедура оправдана уже при $g_0 \ll 1$, то она тем более верна при $g_0 \gtrsim 1$, что и дает основания считать формулу (1) применимой при произвольных g_0 .

На качественном уровне эти соображения могут оказаться правильными¹¹⁾ для действительных значений g_0 , которые в них предполагались. Согласно разд. 3, 4, изменение g_0 вдоль действительной оси соответствует изменению д от нуля до конечного значения g_{max} . Если окажется, что $g_{max} \rightarrow 0$ при $\Lambda \to \infty$, то это и будет означать качественную справедливость формулы (1); приведенные выше результаты метода Монте-Карло (рис. 7) указывают именно на такую возможность. Для построения же нетривиальной теории требуется использование комплексных значений g_0 с $|g_0| \lesssim 1$: при этом несправедливо ни приведение функционального интеграла к безразмерному виду (обоснованное при $|g_0| \gg 1$), ни сама формула (1); последнее связано с тем, что несмотря на возможность использования значений $|g_0| \ll 1$ теория возмущений неприменима из-за существенности инстантонного вклада.

б) Суммирование рядов теории возмущений. Первые попытки восстановления функции Гелл-Манна–Лоу путем суммирования рядов теории возмущений [16–18] привели к асимптотике $\beta_{\infty}g^{\alpha}$ с $\alpha > 1$, указывая на внутреннюю противоречивость (или истинную тривиальность) теории φ^4 (рис. 16): для своего времени это был один из самых сильных аргументов. Противоположный

¹¹⁾ Их правильность на количественном уровне исключается неквадратичностью β -функции. Фактически результат $g = \text{const}(g_0)$ следует из обезразмеривания функционального интеграла только при $g_0 \gg 1$, тогда как его справедливость при $g_0 \ll 1$, вытекающая из формулы (1), может быть связана с другими причинами; при $g_0 \sim 1$ он, по-видимому, нарушается, но совпадения постоянных значений по порядку величины можно ожидать из условия сшивки.

результат работы [4], как минимум, означает, что этот вывод не может быть однозначно сделан на основе таких исследований¹²⁾. С другой стороны, все результаты свидетельствуют о положительности $\beta(g)$ и подтверждают тривиальность по Вильсону.

в) Работы синтетического плана. Работы [58] широко цитируются как систематическое обоснование тривиальности теории φ^4 . Они представляют собой попытку синтеза всей имеющейся информации, но не содержат ничего нового с точки зрения исследования области сильной связи. Выводы работ [58] не вызывают удивления, так как вся легкодоступная информация должна с неизбежностью свидетельствовать о тривиальности ввиду обсуждавшейся выше специфики β -функции (п. 6.3).

г) Теории со взаимодействием φ^p . Некоторое представление о свойствах теории φ^4 можно получить, изучая теории с более общим взаимодействием φ^p . Рассмотрение случая $p = 2 + \delta$ с разложением по параметру δ дает, по мнению авторов работы [59], серьезные аргументы в пользу тривиальности теории φ^4 . С другой стороны, точное вычисление β -функции в пределе $p \to \infty$ [62] дает для нее асимптотику вида $g(\ln g)^{-\gamma}$, доказывающую нетривиальность теории. Второй результат более надежен, так как он не связан с действительностью затравочного заряда, предполагавшейся в работе [59].

d) Предел $n \to \infty$. В пределе $n \to \infty$ теория φ^4 считается точно решаемой [25,60]. При этом ее β -функция эффективно оказывается однопетлевой и приводит к результатам типа (1), соответствующим асимптотике $\beta(g) \sim g^2$. Этот факт часто рассматривается как свидетельство тривиальности φ^4 , причем даже в авторитетных работах [60].

Фактически коэффициенты β -функции являются полиномами по n и для $d = 4 - \epsilon$ имеют структуру

$$\beta(g) = -\epsilon g + \beta_2 (n+a)g^2 + \beta_3 (n+b)g^3 + + \beta_4 (n^2 + cn + d)g^4 + \dots, \quad (70)$$

где $\beta_2, \beta_3, a, \ldots \sim 1$. Замена переменных

$$g = \frac{\tilde{g}}{n}, \quad \beta(g) = \frac{\dot{\beta}(\tilde{g})}{n}$$
 (71)

дает

$$\tilde{\beta}(\tilde{g}) = -\epsilon \tilde{g} + \beta_2 \tilde{g}^2 + \frac{1}{n} f_1(\tilde{g}) + \frac{1}{n^2} f_2(\tilde{g}) + \dots \quad (72)$$

и при $n \to \infty$ остаются лишь два первых члена. Этот вывод справедлив для $\tilde{g} \sim 1$ или $g \sim 1/n$, что достаточно для исследования $\beta(g)$ в окрестности неподвижной точки и определения критических индексов. Но такая процедура не дает никакой информации об области $g \sim 1$ и тем более $g \gg 1$. Поэтому никакие суждения о тривиальности теории φ^4 не могут быть сделаны.

Из сказанного ясно, что тривиальность по Вильсону подтверждается всей доступной информацией и может считаться твердо установленной. Указания же на истинную тривиальность немногочисленны и допускают другую интерпретацию; согласно результатам настоящей работы, такая тривиальность заведомо отсутствует.

Работа выполнена при финансовой поддержке РФФИ (грант № 06-02-17541).

приложение і

Предел d ightarrow 0 в диаграммной технике

Рассмотрим простейший интеграл

$$\Pi(q) = \int \frac{d^d k}{(2\pi)^d} G(k) G(k+q), \qquad (\Pi.1)$$

соответствующий поляризационной петле. Преобразуя пропагаторы по схеме [26]

$$G(k) = \frac{1}{k^2 + m^2} = \int_0^\infty da \, e^{-am^2 - ak^2} \tag{II.2}$$

и вычисляя возникающий гауссовский интеграл по k, получим

$$\Pi(q) = \frac{1}{(2\pi)^d} \int_0^\infty da_1 \int_0^\infty da_2 \left(\frac{\pi}{a_1 + a_2}\right)^{d/2} \times \\ \times \exp\left\{-\frac{a_1 a_2}{a_1 + a_2} q^2 - m^2(a_1 + a_2)\right\}. \quad (\Pi.3)$$

Нуль-мерный предел этого интеграла тривиально вычисляется при q = 0:

$$\Pi(0) = \frac{1}{m^4} \tag{\Pi.4}$$

и соответствует сформулированному в разд. 3 рецепту — все пропагаторы берутся при нулевых импульсах, а интегрирование по k отсутствует. При конеч-

¹²⁾ Результаты работ [16, 17] носят объективный характер и связаны с упоминавшейся затянутостью однопетлевого закона. Они воспроизводятся в работе [4] как промежуточная асимптотика и объясняются характерным провалом в коэффициентной функции. Вариационная теория возмущений [18] в области g < 10 дает результаты, близкие к результатам работы [4], но не гарантирует получение правильной асимптотики сильной связи даже теоретически.

ных *q* вычисление интеграла дает нетривиальную импульсную зависимость

$$\Pi(q) = \frac{2}{m^2(q^2 + 4m^2)} + \frac{8}{q(q^2 + 4m^2)^{3/2}} \times \\ \times \ln \frac{\sqrt{q^2 + 4m^2} + q}{2m}, \quad (\Pi.5)$$

установление которой для произвольной диаграммы выглядит проблематичным.

В общем случае выражение для диаграммы содержит M пропагаторов и L интегрирований по k_1, \ldots, k_L . Преобразование пропагаторов по схеме (П.2) дает гауссовский интеграл, который вычисляется по формуле [26]

$$\int \prod_{l=1}^{L} d^{d}k_{l} e^{-M_{ll'}k_{l} \cdot k_{l'} - 2v_{l} \cdot k_{l}} = \left(\frac{\pi^{L}}{\det M}\right)^{d/2} e^{M_{ll'}^{-1}v_{l} \cdot v_{l'}}.$$
 (II.6)

Величины v_l линейны по внешним импульсам; при нулевых значениях последних нуль-мерный предел выражения (П.6) равен единице, а общее выражение для диаграммы сводится к интегралу

$$\int_{0}^{\infty} da_1 \dots \int_{0}^{\infty} da_M \, e^{-m^2(a_1 + \dots + a_M)}, \qquad (\Pi.7)$$

который вычисляется тривиально.

приложение п

Другие ренормировочные схемы

В приложениях часто используется так называемая MOM-схема, соответствующая критической точке в теории фазовых переходов; при этом для затравочной массы m_0 фиксируется значение m_c , соответствующее нулевому значению перенормированной массы m. Условия ренормировки вместо (9) записываются в виде

$$\begin{split} & \left. \Gamma_{R}^{(0,2)}(p;g,m) \right|_{p^{2}=0} = 0, \\ & \left. \frac{\partial}{\partial p^{2}} \Gamma_{R}^{(0,2)}(p;g,m) \right|_{p^{2}=\mu^{2}} = 1, \\ & \left. \Gamma_{R}^{(0,4)}(p_{i};g,m) \right|_{p_{i}\sim\mu} = g\mu^{\epsilon}, \\ & \left. \Gamma_{R}^{(1,2)}(p_{i};g,m) \right|_{p_{i}\sim\mu} = 1, \end{split}$$
(II.8)

где μ — произвольный масштаб импульса¹³⁾. Выражение Z-факторов и перенормированного заряда через затравочные параметры имеет вид

$$Z = \left(\frac{\partial}{\partial p^2} \Gamma^{(0,2)}(p;g_0,m_c,\Lambda)\Big|_{p^2 = \mu^2}\right)^{-1},$$

$$Z_2 = \left(\left.\Gamma^{(1,2)}(p_i;g_0,m_0,\Lambda)\Big|_{p_i \sim \mu}\right)^{-1},$$

$$g = \mu^{-\epsilon} Z^2 \left.\Gamma^{(0,4)}(p_i;g_0,m_0,\Lambda)\Big|_{p_i \sim \mu},$$

(II.9)

а m_c определяется уравнением $\Gamma^{(0,2)}(0; g_0, m_c, \Lambda) = 0$. Используя определение β -функции в MOM-схеме

$$\beta(g) = \left. \frac{dg}{d\ln \mu} \right|_{g_0,\Lambda=\text{const}},\qquad(\Pi.10)$$

нетрудно получить для нее параметрическое представление

$$g = -\mu^{-\epsilon} \frac{K_4 K_0}{(K_2')^2},\tag{\Pi.11}$$

$$\beta(g) = \mu^{-\epsilon} \frac{K_4 K_0}{(K_2')^2} \left[\epsilon + 4\mu^2 \left(\frac{K_2''}{K_2'} - \frac{K_4'}{2K_4} \right) \right], \quad (\Pi.12)$$

где μ используется в качестве бегущего параметра, а штрихами обозначены производные по μ^2 . Из (П.11) ясно, что предел $g\to\infty$ может быть достигнут несколькими разными способами.

а) $\mu \to 0$ при конечных K_M и их производных. Тогда

$$g = -\mu^{-\epsilon} \, \frac{K_4 K_0}{(K_2')^2}, \quad \beta(g) = \epsilon \mu^{-\epsilon} \, \frac{K_4 K_0}{(K_2')^2}, \qquad (\Pi.13)$$

и параметрическое представление разрешается как $\beta(g) = -\epsilon g$, что соответствует нефизической ветви разд. 4.

б) $\mu={\rm const},~K_2'\to 0.$ Исключая $K_2',$ получим для $\beta\text{-}функции$

$$\beta(g) = 4ig^{3/2}\mu^{2+\epsilon/2} \frac{K_2''}{\sqrt{K_4 K_0}}.$$
 (II.14)

Поскольку свойства теории φ^4 плавно меняются при изменении d, формула (П.14) должна быть справедлива при произвольных ϵ . Но вблизи корня K'_2 интегралы K_M и их производные являются аналитическими функциями μ^2 (см. (64)), и в (П.14) не происходит исчезновения зависимости от μ , которое гарантируется общими теоремами. Следовательно, этот вариант является внутренне противоречивым.

¹³⁾ Для $\Gamma^{(0,4)}\{p_i\}$ обычно выбирается симметричная точка, $p_i \cdot p_j = \mu^2 (4\delta_{ij} - 1)/3$, тогда как для $\Gamma^{(1,2)}(q, p_1, p_2)$ принимается $p_1^2 = p_2^2 = \mu^2$, $p_1 \cdot p_2 = -\mu^2/3$.

в) $\mu \to 0, \, K_2' \to 0.$ Тогда для
 $\beta\text{-функции имеем}$

$$\beta(g) = -g\left[\epsilon + 4\mu^2 \frac{K_2''}{K_2'}\right],\qquad(\Pi.15)$$

и зависимость от μ можно исключить, если устремить $K'_2(\mu)$ к нулю пропорционально μ^2 . Тогда

$$\beta(g) = \operatorname{const} g, \quad g \to \infty, \qquad (\Pi.16)$$

где величина const должна быть просто числом, не зависящим ни от каких параметров. Этот результат качественно соответствует формулам (61), но является менее определенным.

Что касается схемы минимальных вычитаний (MS), то к ней излагаемый подход не может быть применен в принципе. В этой схеме определение заряда не соответствует вершине Г₄ при каком-то определенном выборе импульсов, поэтому выражения РГ-функций через функциональные интегралы не могут быть получены. Как объясняется в книге [63], для каждой отдельной диаграммы можно выбрать масштаб импульса λ порядка μ , так что обычное вычитание на масштабе λ эквивалентно минимальному вычитанию на масштабе μ . Однако универсального соотношения $\lambda = C\mu$ ввести не удается, так как коэффициент С различен для разных диаграмм. Тем не менее, для любой диаграммы соотношение $\lambda \sim \mu$ верно просто из размерных соображений. Поэтому MS-схема соответствует усреднению вершины Γ_4 по импульсам с весовой функцией, локализованной на масштабе μ . С этой точки зрения MS-схема может считаться «физической» и к ней применимы аргументы, высказанные в примечании 7.

ЛИТЕРАТУРА

- 1. Л. Д. Ландау, А. А. Абрикосов, И. М. Халатников, ДАН СССР **95**, 497, 773, 1177 (1954).
- 2. Н. Н. Боголюбов, Д. В. Ширков, *Введение в теорию* квантованных полей, Наука, Москва (1976).
- Л. Д. Ландау, И. Я. Померанчук, ДАН СССР 102, 489 (1955); И. Я. Померанчук, ДАН СССР 103, 1005 (1955).
- 4. И. М. Суслов, ЖЭТФ 120, 5 (2001).
- 5. И. М. Суслов, Письма в ЖЭТФ 74, 211 (2001).
- 6. И. М. Суслов, Письма в ЖЭТФ 76, 387 (2002).
- 7. И. М. Суслов, ЖЭТФ **127**, 1350 (2005).

- 8. А. А. Владимиров, Д. И. Казаков, О. В. Тарасов, ЖЭТФ 77, 1035 (1979).
- Ф. М. Диттес, Ю. А. Кубышин, О. В. Тарасов, ТМФ 37, 66 (1978).
- S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Phys. Lett. B 256, 81 (1991).
- 11. T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B 400, 379 (1997).
- 12. Л. Н. Липатов, ЖЭТФ 72, 411 (1977).
- E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 71, 93 (1977).
- 14. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76, 210 (1978).
- 15. E. B. Bogomolny, V. A. Fateyev, and L. N. Lipatov, Sov. Sci. Rev. A — Physics Reviews, ed. by I. M. Khalatnikov, 2, 247 (1980), Harwood Academic Press, NY.
- Д. И. Казаков, О. В. Тарасов, Д. В. Ширков, ТМФ 38, 15 (1979).
- 17. Ю. А. Кубышин, ТМФ 58, 137 (1984).
- 18. A. N. Sissakian et al., Phys. Lett. B 321, 381 (1994).
- 19. А. А. Погорелов, И. М. Суслов, ЖЭТФ 132, 406 (2007).
- А. А. Погорелов, И. М. Суслов, Письма в ЖЭТФ 86, 41 (2007).
- **21.** К. Вильсон, Дж. Когут, *Ренормализационная группа и є-разложение*, Мир, Москва (1975).
- 22. J. P. Eckmann and R. Epstein, Comm. Math. Soc. 64, 95 (1979).
- 23. J. Frolich, Nucl. Phys. B 200 [FS4], 281 (1982).
- 24. M. Aizenman, Comm. Math. Soc. 86, 1 (1982).
- 25. Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- 26. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in *Phase Transitions and Critical Phenomena*, ed. by C. Domb and M. S. Green, Academic, New York (1976), Vol. VI.
- 27. G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. B 17, 1365 (1978); J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980).
- 28. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. D 15, 1544 (1977).

- 29. А. Г. Басуев, А. Н. Васильев, ТМФ 18, 129 (1974);
 Р. Cvitanovic, В. Lautrup, and R. В. Pearson, Phys. Rev. D 18, 1939 (1978); Э. З. Кучинский, М. В. Садовский, ЖЭТФ 113, 664 (1998); L. G. Molinary, N. Manini, Eur. Phys. J. B 51, 331 (2006).
- 30. А. И. Ларкин, Д. Е. Хмельницкий, ЖЭТФ 56, 2087 (1969).
- 31. A. Pelissetto and E. Vicari, Nucl. Phys. B 519, 626 (1998).
- **32**. А. И. Никишов, В. И. Ритус, ТМФ **92**, 24 (1992); ЖЭТФ **105**, 769 (1994).
- **33**. Д. И. Казаков, ТМФ **46**, 426 (1981).
- **34**. А. А. Владимиров, Д. В. Ширков, УФН **129**, 407 (1979).
- 35. G. Jug and B. N. Shalaev, J. Phys. A 32, 7249 (1999).
- **36**. Д. А. Лобаскин, И. М. Суслов, ЖЭТФ **126**, 268 (2004).
- 37. А. А. Погорелов, И. М. Суслов, ЖЭТФ 133, 1277 (2008).
- 38. M. G. do Amaral and R. C. Shellard, Phys. Lett. B 171, 285 (1986).
- 39. I. A. Fox and I. G. Halliday, Phys. Lett. B 159, 149 (1985).
- 40. J. K. Kim and A. Patrascioiu, Phys. Rev. D 47, 2558 (1993).
- 41. D. J. E. Callaway and R. Petronzio, Nucl. Phys. B 240 [FS12], 577 (1984).
- 42. C. B. Lang, Nucl. Phys. B 265 [FS15], 630 (1986).
- 43. P. Butera and M. Comi, arXiv:hep-th/0112225.
- 44. A. Vladikas and C. C. Wong, Phys. Lett. B 189, 154 (1987).
- 45. R. Kenna and C. B. Lang, Phys. Rev. E 49, 5012 (1994).
- 46. A. J. Guttmann, J. Phys. A: Math. Gen. 11, L103 (1978).
- 47. C. A. de Carvalho, S. Caracciolo, and J. Frolich, Nucl. Phys. B 215 [FS7], 209 (1983).

- 48. P. Grassberger, R. Hegger, and L. Schafer, J. Phys. A: Math. Gen. 27, 7265 (1994).
- 49. S. Mc Kenzie, M. F. Sykes, and D. S. Gaunt, J. Phys. A: Math. Gen. 12, 743 (1978); 12, 871 (1979); 13, 1015 (1980).
- 50. W. Bernreuther, M. Cockeler, and M. Kremer, Nucl. Phys. B 295 [FS21], 211 (1988).
- B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. B 113, 481 (1982).
- 52. I. T. Drummond, S. Duane, and R. R. Horgan, Nucl. Phys. B 280 [FS18], 25 (1987).
- 53. G. A. Baker, L. P. Benofy, F. Cooper, and D. Preston, Nucl. Phys. B 210 [FS6], 273 (1982).
- 54. G. A. Baker and J. M. Kincaid, Phys. Rev. Lett. 22, 1431 (1979).
- 55. M. Consoli and P. M. Stevenson, Z. Phys. C 63, 427 (1994).
- 56. A. Agodi, G. Andronico, P. Cea et al., Mod. Phys. Lett. A 12, 1011 (1997); Nucl. Phys. Proc. Suppl. 63, 637 (1998).
- 57. P. Cea, M. Consoli, and L. Cosmai, Mod. Phys. Lett. A 13, 2361 (1998); Nucl. Phys. Proc. Suppl. 73, 727 (1999).
- M. Luscher and P. Weisz, Nucl. Phys. B 290 [FS20], 25 (1987); 295 [FS21], 65 (1988); 318, 705 (1989).
- 59. C. M. Bender and H. F. Jones, Phys. Rev. D 38, 2526 (1988).
- 60. M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).
- 61. А. З. Паташинский, В. Л. Покровский, Флуктуационная теория фазовых переходов, Наука, Москва (1982), с. 368.
- **62**. Л. Н. Липатов, ЖЭТФ **71**, 2010 (1976).
- 63. А. А. Славнов, Л. Д. Фаддеев, Введение в квантовую теорию калибровочных полей, Наука, Москва (1988).