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OPTICAL SUM RULE IN STRONGLY CORRELATED SYSTEMSE. Z. Kuhinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii *Institute for Eletrophysis, Russian Aademy of Sienes, Ural Branh620016, Ekaterinburg, RussiaReeived Marh 27, 2008We disuss the problem of a possible �violation� of the optial sum rule in the normal (nonsuperonduting)state of strongly orrelated eletroni systems, using our reently proposed DMFT+� approah applied to twotypial models: the �hot spot� model of the pseudogap state and disordered Anderson�Hubbard model. Weexpliitly demonstrate that the general Kubo single-band sum rule is satis�ed for both models. But the optialintegral itself is in general dependent on temperature and harateristi parameters, suh as the pseudogapwidth, orrelation strength, and disorder sattering, leading to an e�etive �violation� of the optial sum rule,whih may be observed in the experiments.PACS: 74.25.Gz, 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h, 74.72.-h1. INTRODUCTIONMany years ago, Kubo [1℄ proved the general sumrule for the diagonal dynami (frequeny-dependent)ondutivity �(!), whih holds for any system ofharged partiles irrespetive of interations, tempera-ture, or statistis. This sum rule is usually written as2� 1Z0 Re�(!) d! =Xr nre2rmr ; (1)where r spei�es the type of harged partiles, and nrand er are the respetive densities and harges.For the system of eletrons in a solid, Eq. (1) takesthe form 1Z0 Re�(!) d! = !2pl8 ; (2)where n is the density of eletrons and !2pl = 4�ne2=mis the plasma frequeny.In any real experiment, however, we are not dealingwith an in�nite range of frequenies. If we onsidereletrons in a rystal and limit ourselves to the ele-trons in a partiular (e.g., ondution) band, negletinginterband transitions, the general sum rule (2) reduesto the single-band sum rule of Kubo [1, 2℄:*E-mail: sadovski�iep.uran.ru

W = !Z0 Re�(!) d! = f(!)�e22 Xp �2"p�p2x np; (3)where "p is the bare dispersion de�ned by the e�e-tive single-band Hamiltonian, and np is the momen-tum distribution funtion (oupation number), whihis in general de�ned by the interating retarded ele-tron Green's funtion GR(";p) [3, 4℄:np = � 1� 1Z�1 d" n(") ImGR(";p); (4)where n(") is the usual Fermi distribution. In Eq. (3),! represents an ultraviolet ut-o�, a frequeny thatis assumed to be larger than the bandwidth of thelow-energy band but smaller than the gap to otherbands. The funtion f(!) aounts for the ut-o� de-pendene, whih arises from the presene of the Drudespetral weight beyond ! [5℄; this funtion is equal tounity if we formally set ! to in�nity and ignore theinterband transitions.Although the general sum rule is ertainly pre-served, the optial integralW (!; T ) is not a onservedquantity beause both f(!) [5℄ and np [4, 6℄ dependon the temperature T and also on details of intera-tions [3℄. This dependene of W on T and other pa-rameters of the system under study has been termedthe �sum rule violation�. It was atively studied ex-perimentally, espeially in uprates, where pronouned330



ÆÝÒÔ, òîì 134, âûï. 2 (8), 2008 Optial sum rule in strongly orrelated systemsanomalies were observed in both the -axis and in-plane ondutivity, in normal as well as superondut-ing states [8�13℄.The �nite ut-o� e�ets were extensively studied inseveral theoretial papers on the T dependene of theoptial integral [4, 5, 7℄. In Refs. [5, 7℄, the e�et ofthe ut-o� was onsidered in the ontext of eletronsoupled to phonons. In a simple Drude model,�(!) = !2pl4� .�1� � i!�and the sum rule an only be �violated� due to thepresene of f(!). Integrating over ! and expandingfor !� � 1, we an see thatf(!) = �1� 2� 1!� � : (5)For the in�nite ut-o�, f(!) = 1 and W = !2pl=8, butfor a �nite ut-o�, f(!) ontains the term proportionalto 1=!� . If 1=� hanges with T , then we obtain a sumrule �violation� even if !pl is independent of T [5, 7℄.Other aspets of the ut-o� dependene were reentlydisussed in detail in Ref. [2℄.In this paper, we neglet the ut-o� e�ets in theoptial integral from the outset. Our goal is to studythe dependene of W on T and a number of inter-ation parameters determining the eletron propertiesof strongly orrelated systems, suh as uprates. Inthis ontext, we disuss the problem of a possible �vio-lation� of the optial sum rule in the normal (non-superonduting) state of strongly orrelated eletronisystems, using our reently proposed DMFT+� ap-proah [14�16℄ applied to dynami ondutivity in twotypial models of suh systems: the �hot spot� model ofthe pseudogap state [19℄ and the disordered Anderson�Hubbard model [20℄. Our aim is to hek the onsis-teny of the DMFT+� approah applied to alula-tions of optial ondutivity as well as to demonstraterather important dependenes of the optial integralW not only on T but also on important harateris-tis suh as the pseudogap width, disorder, and or-relation strength, whih makes the (single-band) sumrule �violation� rather ubiquitous in strongly orrelatedsystems, even if the ut-o� e�ets are negleted.2. OPTICAL SUM RULE IN THEGENERALIZED DMFT+� APPROACHA harateristi feature of the general sum rule ex-pressed by Eqs. (3) and (4) is that the integral Wover frequeny in the left-hand side is alulated based

on a two-partile property (the dynami ondutivity,whih is determined by the two-partile Green's fun-tion, with appropriate vertex orretions in general),but the right-hand side is determined by single-partileharateristis, suh as the bare dispersion and o-upation number (4) (determined by a single-partileGreen's funtion). Thus, heking the validity of thissum rule, we are in fat thoroughly heking the on-sisteny of any theoretial approah used in our modelalulations.Our generalized dynami mean �eld theory(DMFT+�) approah [14�16℄, supplementing thestandard dynami mean �eld theory (DMFT) [17, 18℄with an additional �external� self-energy � (due to anykind of interation outside the sope of the DMFT,whih is exat only in in�nitely many dimensions),provides an e�etive method to alulate both single-partile and two-partile properties [19, 20℄. Theonsisteny hek of this new approah is obviously ofgreat interest by itself. We also see in what followsthat it gives a kind of a new insight into the sum-rule�violation� problem.A. Pseudogap state, the �hot spot� modelPseudogap phenomena in strongly orrelatedsystems have an essential spatial length sale de-pendene [21℄. To merge pseudogap physis andstrong eletron orrelations, we have generalized theDMFT [17, 18℄ by inlusion of the dependene on theorrelation length of pseudogap �utuations via anadditional (momentum-dependent) self-energy �p(").This self-energy �p(") desribes nonloal dynamiorrelations indued either by short-ranged olletiveSDW-like antiferromagneti spin or CDW-like harge�utuations [22, 23℄.To alulate �p(") in two-dimensional �hot spot�model [21℄ for an eletron moving in the random�eld of pseudogap �utuations (onsidered to be statiand Gaussian) with dominant sattering momentumtransfers of the order of the harateristi vetorQ = (�=a; �=a) (where a is the lattie spaing),we used [15, 16℄ the reursion proedure proposed inRefs. [22, 23℄, whih is ontrolled by two main physi-al harateristis of the pseudogap state: the pseudo-gap amplitude �, whih haraterizes the energy saleof the pseudogap, and the inverse orrelation length� = ��1 of short-range SDW (CDW) �utuations.Both parameters � and �, determining pseudogap be-havior, an in priniple be alulated from the relevantmirosopi model [15℄.331



E. Z. Kuhinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 134, âûï. 2 (8), 2008The weakly doped one-band Hubbard model witha repulsive Coulomb interation U on a square lat-tie with nearest and next-to-nearest neighbor hop-ping was numerially investigated within this general-ized DMFT+� self-onsistent approah, as desribedin detail in Refs. [14�16℄.Brie�y, the DMFT+� self-onsistent loop is as fol-lows. First, we guess some initial loal (DMFT) elet-ron self-energy �("). Seond, we ompute the p-depen-dent �external� self-energy �p("), whih is in general afuntional of �("). Then, negleting interferene e�etsbetween the self-energies (whih is in fat the major as-sumption of our approah), we an set up and solve thelattie problem of DMFT [17, 18℄. Finally, we de�nean e�etive Anderson single-impurity problem, whihis to be solved by any �impurity solver� (we mostly usethe numerial renormalization group, NRG) to losethe DMFT+� equations.The additive form of self-energy is in fat an ad-vantage of our approah [14�16℄. It allows preser-ving the set of self-onsistent equations of the standardDMFT [17, 18℄. But there are two distintions from theonventional DMFT. During eah DMFT iteration, werealulate the orresponding p-dependent self-energy�p(�; "; [�(!)℄) via an approximate sheme, taking in-terations with olletive modes or order parameter�utuations into aount, and the loal Green funtionGii(i!) is �dressed� by�p(") at eah step. When the in-put and output Green's funtions (or self-energies) on-verge to eah other (with presribed auray), we on-sider the obtained solution selfonsistent. Physially,this orresponds to aounting for some �external� (e.g.,pseudogap) �utuations, haraterized by an importantlength sale �, in the fermioni �bath� surrounding thee�etive Anderson impurity of the usual DMFT. Theases of strongly orrelated metals and doped Mott in-sulators were onsidered in [15, 16℄. Energy dispersions,quasipartile damping, spetral funtions, and ARPESspetra alulated within the DMFT+� sheme, allshow a pseudogap e�et lose to the Fermi level of thequasipartile band.In Ref. [19℄, this DMFT+� proedure was gener-alized to alulate two-partile properties, suh as thedynami ondutivity, using the previously developedreursion proedure for vertex orretions due to pseu-dogap �utuations [24℄, produing typial pseudogapanomalies of the optial ondutivity and a dependeneof these anomalies on the orrelation strength U . Be-low, we use the approah in Ref. [19℄ to investigate thesum-rule in the �hot spot� model.To alulate the optial integral W , we have justused the ondutivity data in Ref. [19℄ (extended to a
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4Fig. 1. Real part of the optial ondutivity for astrongly orrelated system in the pseudogap state(t0 = �0:4t, t = 0:25 eV, and T = 0:089t) in theDMFT+�p approximation, the U dependene. Band�lling n = 0:8, pseudogap amplitude � = t, orrela-tion length � = 10a. Condutivity is given in units of�0 = e2=~wider frequeny range needed to alulate W ), whilethe right-hand side of (3) was realulated using reur-sion relations for �p(") and the whole self-onsistenyDMFT+� loop. All alulations were done for atight-binding �bare� spetrum on the square lattie,with the nearest-neighbor transfer integral t and thenext-to-nearest-neighbor transfer integral t0.In Fig. 1, we present our typial data for the realpart of ondutivity (with t0 = �0:4t, t = 0:25 eV,the band �lling n = 0:8, and the temperatureT = 0:089t) for di�erent values of Hubbard interationU = 4t; 6t; 10t; 40t and a �xed pseudogap amplitude� = t (at the orrelation length � = 10a). It is ob-vious from these data that the optial integral W isdi�erent for all of these urves; its value atually de-reases with an inrease in U (along with damping ofpseudogap anomalies [19℄). However, the single bandoptial sum-rule in (3) is satis�ed within our numeri-al auray, as an be seen from Table 1. The small�de�ieny� in the values of W in Table 1 is naturallydue to a �nite frequeny integration interval over theondutivity data in Fig. 1.In Fig. 2, we show the real part of the optialondutivity for a doped Mott insulator (at a �xedU = 40t, t0 = �0:4t, t = 0:25 eV, and the band �ll-332



ÆÝÒÔ, òîì 134, âûï. 2 (8), 2008 Optial sum rule in strongly orrelated systemsTable 1. Single-band optial sum rule hek in the�hot spot� model, the U dependene. The optial in-tegral is given in units of e2t=~U �e22 Xp �2"p�p2x np W = 1Z0 Re�(!) d!4t 0.456 0.4086t 0.419 0.38710t 0.371 0.35940t 0.323 0.306
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ω/tFig. 2. Real part of the optial ondutivity for a dopedMott insulator (U = 40t, t0 = �0:4t, t = 0:25 eV,and T = 0:089t) in the DMFT+�p approximation fordi�erent values of the pseudogap amplitude � = 0,� = t, and � = 2t. Correlation length � = 10a, band�lling fator n = 0:8ing n = 0:8, T = 0:089t) for di�erent values of thepseudogap amplitude � = 0, � = t, and � = 2t. Theorrelation length is again � = 10a and the band �llingfator n = 0:8. The �violation� of the sum rule hereis espeially striking: the optial integral obviously de-reases with an inrease in �. However, again, thesingle-band optial sum rule in (3) is stritly valid, asan be seen from Table 2.To study the details of the sum-rule �violation�, i.e.,the dependene of the optial integralW on the param-eters of the model, we performed extensive alulations

Table 2. Single-band optial sum rule hek in the�hot spot� model, the � dependene. The optial in-tegral is given in units of e2t=~� �e22 Xp �2"p�p2x np W = 1Z0 Re�(!) d!0 0.366 0.36t 0.314 0.3042t 0.264 0.252
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Fig. 3. Dependene of the normalized optial integralon the orrelation strength U in the pseudogap state(T = 0:089t, t = 0:25 eV, t0 = �0:1 eV, n = 0:8).Inset: the orrelation length dependene of the optialintegral in units of the e2t=~of the appropriate dependenes of the right-hand side ofEq. (3) and the optial integral W on the temperatureT , doping, the pseudogap amplitude �, the orrelationlength of pseudogap �utuations � = ��1, and the or-relation strength U . Some of the results are presentedin Figs. 3�5.A typial dependene of the (normalized) optial in-tegral on the orrelation strength U is shown in Fig. 3for two values of �. We an see a rather signi�antderease in W with an inrease in U . As regards theorrelation length dependene, whih is shown in theinset to Fig. 3, it was found to be very weak (prati-ally negligible) in the whole region of realisti valuesof �, and we therefore do not disuss it further. The333
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in Fig. 5. In all other ases, the hange of the relevantparameters of the model leads to a rather signi�antderease in the values of W . As regards the temper-ature dependene (shown in the inset to Fig. 5), it israther weak, quadrati in T and quite similar to thatfound in Refs. [4℄.Basially, these results show that the value of theoptial integral depends on all the major parameters ofthe model and, in this sense, its value is not universaland hene the optial sum rule is signi�antly �violated�if we restrit ourselves to a single-band ontribution.B. Disordered Anderson�Hubbard modelIn Ref. [20℄, we used the DMFT+� approximationto alulate the density of states, the optial ondutiv-ity, and the phase diagram of a strongly orrelated andstrongly disordered paramagneti Anderson�Hubbardmodel, with a Gaussian site disorder. Strong orre-lations were taken into aount by the DMFT, whiledisorder was taken into aount via the appropriategeneralization of the self-onsistent theory of loal-ization [25�28℄. We onsidered the three-dimensionalsystem with a semi-ellipti density of states. Theorrelated metal, Mott insulator, and orrelated An-derson insulator phases were identi�ed via the evolu-tion of the density of states and dynami ondutiv-ity, demonstrating both Mott�Hubbard and Andersonmetal�insulator transitions and allowing the onstru-tion of the omplete zero-temperature phase diagramof the Anderson�Hubbard model.For the �external� self-energy entering theDMFT+� loop, we used the simplest possibleapproximation (negleting �rossing� diagrams fordisorder sattering), i.e., just the self-onsistentBorn approximation, whih in the ase of Gaussiansite-energy disorder takes the usual form�(") = �2Xp G(";p); (6)where � now denotes the amplitude of site disorder.Calulations of the optial ondutivity are onsid-erably simpli�ed [20℄ beause there are no ontributionsto ondutivity due to vertex orretions determinedby a loal Hubbard interation. The ondutivity is es-sentially determined by the generalized di�usion oe�-ient, whih is obtained from the appropriate general-ization of the self-onsisteny equation in Refs. [25�28℄,whih is to be solved in onjuntion with the DMFT+�loop.In Fig. 6, we show typial results for the real partof the dynami ondutivity of a orrelated metal de-334
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Fig. 6. Real part of the dynami ondutivity for thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 2:5D, typial for a orre-lated metal. Lines 1 and 2 are for the metalli phase,line 3 orresponds to the mobility edge (Anderson tran-sition), and lines 4 and 5 orrespond to the orrelatedAnderson insulator. The ondutivity is in units ofe2=~aTable 3. Single-band optial sum rule hek in theAnderson�Hubbard model, the � dependene. Theoptial integral is in units of 2e2D=~a�=2D �e22 Xp �2"p�p2x np W = 1Z0 Re�(!) d!0 0.063 0.0640:25 0.068 0.070:37 0.06 0.0560:5 0.049 0.05sribed by the half-�lled Anderson�Hubbard model(with the bandwidth 2D) for di�erent degrees of disor-der � and U = 2:5D; the results demonstrate a on-tinuous transition to the orrelated Anderson insulatoras disorder inreases.Again, the diret hek shows that the single-bandoptial sum rule in (3) is satis�ed within our numerialauray, as an be seen from Table 3. At the sametime, the optial integral W itself obviously hangeswith disorder.
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In Fig. 9, we show the temperature dependene ofthe normalized optial integral, for di�erent degreesof disorder. In the Anderson�Hubbard model, it ap-pears to be signi�antly stronger than in the �hot spots�model (see above), and dereases as disorder inreases.Moreover, in a relatively weakly orrelated state, thesituation is qualitatively the same, the optial integraldereases as T inreases, but in a disordered Mott in-sulator, the integral inreases, as an be seen from line3 in the inset to Fig. 9.Again, as in the ase of the pseudogap �hot spot�model, these results for the Anderson�Hubbard modellearly demonstrate that the value of the optial in-tegral is not universal and depends on all the majorparameters of the model, and therefore the single-bandoptial sum rule is strongly �violated�.3. CONCLUSIONBased on the DMFT+� approah, we have studiedthe single-band optial sum rule for two typial stronglyorrelated systems, whih are outside the sope of thestandard DMFT sheme: (i) the �hot spot� model ofthe pseudogap state, whih takes important nonloalorrelations due to AFM(CDW) short-range order �u-tuations into aount and (ii) the Anderson�Hubbardmodel, whih inludes strong disorder e�ets leading tothe disorder-indued metal�insulator (Anderson) tran-sition alongside with the Mott transition.We have expliitly demonstrated that the sing-le-band optial sum rule in (3) is satis�ed for both mo-dels, on�rming the self-onsisteny of the DMFT+�approah for alulation of two-partile properties.However, the optial integralW = 2 1Z0 Re�(!) d!entering single-band sum rule (3) is nonuniversal anddepends on the parameters of the model under on-sideration. Most of the previous studies addressed its(relatively weak) temperature dependene. Here, wehave analyzed dependenes on the essential parametersof our models, showing that these may lead to ratherstrong �violations� of the optial sum rule. Beausemost of the parameters under disussion may be var-ied in di�erent kinds of experiments, these dependenesshould be taken into aount in the analysis of optialexperiments on strongly orrelated systems.336
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