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The behavior of excess and intrinsic free electrons inside compressed inert gases is described as a function of
pressure by using a pairwise approximation for the electron interaction with atomic surroundings. The change
of sign from negative to positive for the xenon atom electric potential inside condensed xenon is predicted to
occur at a pressure around 3 GPa, preventing slow electron embedding into solid xenon from the gas phase at
higher pressure. To overcome this difficulty, the electrons should be injected into a solid sample just before
its pulsed shock loading. The ionization of xenon by pressure and its further metallization are described by
decreasing the forbidden gap at the account of increasing the xenon ground electronic term and simultaneous
splitting the upper ionized electronic state. A good coincidence between calculated and measured pressure of
the dielectric-metal transition in xenon is demonstrated.

PACS: 34.80.-i, 52.80.Wq, 52.80.Yr, 79.20.Kz
1. INTRODUCTION

When an excess electron is injected into a heavy
condensed inert gas, this system becomes similar to a
metal with respect to electron transport. Indeed, the
mean free path of a slow excess electron in condensed
argon, krypton, and xenon may be as large as several
meters, and the electron mobility in these condensed
systems is several times greater than that in metals [1].
Due to the smallness of the electron number density,
this system is convenient for the study of metal prop-
erties in the absence of the electron—electron interaction
and the electric field screening by space charge inherent
to standard metals [2-4]. In particular, such an anal-
ysis shows [5] that excess electrons propagate inside
condensed heavy inert gases along specific channels, the
lines of the Voronoi— Delone net for this system.

These matrices are also suitable for experimental
study [6-8]. Indeed, the electric potential for an elec-
tron inside dense inert gases is lower than that in the
vacuum [1], and an electron freely penetrates dense in-
ert gases from outside. The excess electrons inside a
condensed inert gas can be governed by an external
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electric field and can even excite the matrix, but ion-
ization processes are absent there [9], in contrast to
gases. Therefore, to organize an electric discharge in a
condensed inert gas, it is necessary to provide the elec-
tron multiplication outside the matrix. This scheme
of an electric discharge was realized in [10-12] by us-
ing the transformation of the exciton energy into the
energy of emitted VUV photons and then into the sec-
ondary electron photoemission from a cathode. Be-
cause the efficiency of the electric field energy transfor-
mation into VUV light is about 20 %, this effect can
be used for an effective generation of VUV photons.
The fast excess electrons appearing inside the matrix
can also induce various physical and chemical processes
inside condensed inert gases.

The systems under consideration are known to
be the most popular objects for studying the mat-
ter transformation at high and superhigh pressure.
The dielectric—metal transition has been experimen-
tally proved specifically for xenon [13-15] as proceeding
at the pressure 130-140 GPa. The aim of this paper
is to analyze the electric properties of condensed inert
gases with and without excess electrons at high pres-
sures from these standpoints.
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2. EXCESS ELECTRONS INSIDE DENSE
INERT GASES

In considering the conductivity of dense inert gases
involving excess electrons, we deviate from the tradi-
tional scheme [16-21] that assumes the interaction of
excess electrons inside inert gases to be a sum of inter-
actions with individual atoms. This approach is valid
only at low atom densities or at a high electric field. In
our case of high electron mobilities, every electron in-
teracts collectively with a system of surrounding atoms.
Based on experimental data, we found [5] that electrons
propagate through Voronoi—Delone channels [22, 23],
which are found to exist between nearest atoms of a
condensed inert gas. Indeed, in a rare inert gas, an
electron is repulsed from an atom in the vicinity of
the atom and is attracted to the atom at intermediate
distances between atoms. Hence, there is an optimal
density of a heavy inert gas [9] at which an electron
prefers to be located between neighboring atoms.

The Voronoi—Delone channels are shown in Fig. 1
in the case where atoms of a condensed inert gas form a
crystalline structure. We note that in reality, electrons
are located in tubes around the Voronoi— Delone chan-
nels, and therefore the crystal structure is not manda-
tory for the electron free motion if the curvature of
these tubes is sufficiently small. This character of elec-
tron conductivity in compressed inert gases is impor-
tant for the analysis of these processes at high pres-
sures.

Thus, in considering the collective character of the
electron drift in condensed inert gases, we are based on
two types of electron interaction with valent electrons
of atoms. The first type of exchange interaction occurs
if an electron penetrates inside an atom and is repulsed
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Fig. 1. Voronoi— Delone channels (solid lines) for prop-

agation of an excess electron in a solid inert gas. Po-

sitions of atoms of a lower (open circles) and upper
(solid circles) layer

Table 1. Parameters of the potential energy for an
excess electron inside condensed inert gases
Ar Kr Xe
Unin, €V [24-27] —-0.33 -0.53 —0.77
Npin, 102 cm—3 1.1 1.2 1.1
C, eV 0.44 0.71 1.04
a 4 4 4
A, eV 6 10 14
N, 1022 cm 3 24 2.6 24

from there in accordance with the Pauli exclusion prin-
ciple. The other type of the electron—atom interaction
proceeds above the atom surface. In principle, the set
of valent electrons can provide the interaction of dif-
ferent signs, but in the particular case of Ar, Kr, and
Xe atoms, this electron—atom interaction is attractive.
Based on the above consideration, we represent the in-
teraction potential for an electron with a condensed
rare gas as

U(N) = —C

N
A —q— 2.1
+ exp(ozN>7 (2.1)

mn
where IV is the current number density of atoms and
Nmin is the number density of atoms at which the in-
teraction potential has a minimum. Of course, only the
general form of the U(N) dependence can be predicted
this way, and therefore the parameters in (2.1) have
to be determined from experimental data [5]; they are
given in Table 1. We note that the value of this interac-
tion potential is proportional to the electric potential
for the electron placed in a condensed system. The
maximum attraction of an electron inside an inert gas
occurs at the number density N,,;, of atoms when the
electric potential of the electron is equal to —Up,in/e.
Figure 2 demonstrates the reliability of the electron
energy presentation in form (2.1) with the example of
Ar. As follows from (2.1), an electron can be attracted
by xenon inside a condensed matter only in a limited
range of the atom number densities. Table 1 contains
the critical atom number density N, at which the elec-
tron energy becomes zero. For the atom number densi-
ties exceeding this value, the Voronoi—Delone mecha-
nism of electron mobility is not valid because an excess
electron does not experience attraction inside the inert
gas anymore.
The existence of the critical atom number density
N, is important for experiment. Indeed, until the elec-
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Fig.2. The electron energy inside compressed argon.
Small squares, — experiment [24]; solid curve, — for-
mula (2.1)

tric potential inside an inert gas is below the potential
in the vacuum, electrons penetrate this inert gas from
outside freely, and electric discharge in a compressed
inert gas may be arranged as it was arranged at am-
bient pressure. According to the data in Table 1, this
possibility is lost at pressures of 3 GPa, which corre-
spond to the molar volume 25 em?. The mobility of an
excess electron inside the solid starts decreasing long
before that pressure is reached.

3. CONDUCTIVITY OF CONDENSED INERT
GASES AT HIGH PRESSURES

At a much higher pressure, another conductivity
mechanism of compressed inert gases can develop due
to a dielectric-metal transition in this system [28§].
From the general standpoint, this should happen for
xenon compressed such that the distances between
nearest neighbors become shorter than the distance be-
tween nuclei of the diatomic ion.

Indeed, the energy of the electron ground state in-
creases due to a repulsive interaction between atoms,
and the energy of the ionized state may decrease due
to an attractive interaction between an atomic ion and
surrounding atoms. Our goal is to find the pressure
at which the energy gap separating the ground elec-
tron state of this system and its ionized state starts to
significantly decrease and eventually disappears. The
experimenters describe that effect as the “ionization by
pressure”. In this consideration, we assume the pair
interaction potential between neighboring atomic par-

ticles to be relatively small. This is justified by a large
number (around 12) of the nearest-neighbor atoms.

As a condensed inert gas shrinks under the action of
an external pressure, repulsion of nearest atoms due to
overlapping of their electron shells increases. Because
the exchange interaction potential of two atoms due to
the overlap of their electron orbits is determined mainly
by a region of electron coordinates near the axis that
joins nuclei of the interacting atoms [29], the interac-
tion should be close to the pairwise one; therefore, the
interaction between two nearest atoms is almost inde-
pendent of the positions of other atoms. Then the total
interaction potential of a given atom is the sum of its
interaction potentials with neighboring atoms.

We next express the change in the total electron en-
ergy AFE of the atom ensemble depending on the atom
configuration as

U\|\H U
= <w‘w> !

where H is the electron Hamiltonian and, in the one-
electron approximation, the wave function ¥ of the to-
tal atom ensemble is expressed through the wave func-
tions of electrons of individual atoms ; as

v =[]vs

where v); is the wave function of electrons for the ith
atom.

We divide the Hamiltonian of electrons of a given
system into the one-atom part h; and the two-atom
part ﬁj ks

ﬁ = Z/ﬁl = Z ?LZ +Ejk.
i i#4.k

The two-atom part of the Hamiltonian includes the in-
teraction between electrons of neighboring atoms. Tak-
ing only the exchange interaction for electrons belong-
ing to different atoms into account, we find the total
electron energy of this system as

<¢j(1)¢k(2) ‘/ﬁjk ‘ ¢k(1)¢j(2)>
L+ (9 (1) vn(2) [¥n (1) (2))
= By + n%U(RO), (3.1)

q
7

where for simplicity the distances between nearest
neighbors are assumed to be the same and equal to
Ry. Then ¢ is the average number of nearest neigh-
bors, U(R) is the interaction potential for two atoms
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Table 2.
two xenon atoms in the range of their strong repulsion,
where U(Rp) =1 eV

Parameters of the interaction potential for

Ry k
Experiment [30] 5.5 6.7
Experiment [31] 5.0 6.4
Theory [33, 34] 5.6 7.8

at the distance R between them, and n is total number
of atoms. The summation in formula (3.1) ranges all
the atoms and all the valence electrons of each atom.

Thus, we represent the interaction potential for an
atom located inside a system of inert gas atoms under
high pressure as a sum of the pair interaction potentials
between nearest neighbors, and the pair interaction po-
tentials are determined by exchange interactions, which
are expressed through the overlap of the wave func-
tions for electrons belonging to different atoms. As has
already been stated, the exchange interaction of two
atoms is assumed to be independent of their interaction
with other atoms, and hence the total interaction po-
tential can be represented as the sum of the pair inter-
action potentials. The factor one half in formula (3.1)
accounts for the fact that each interaction involves two
atoms.

At small distances, the pair interaction potential
of two atoms with completed electron shells is deter-
mined by the overlapping of electron shells and leads
to a strong repulsion of atoms. Hence, the repulsive
interaction potential U(R) of two atoms varies sharply
with the distance R between atoms, and we approxi-
mate it by the dependence

) k
)
In what follows, we consider only xenon atoms be-
cause the electric properties of compressed xenon are
better studied experimentally. Table 2 gives the param-
eters of the pair interaction potential of xenon atoms in
a range where it is close to 1 eV. Experimental parame-
ters [30-32] are determined from small-angle scattering
measurements in a system of two xenon atoms, and
the theoretical parameters [29, 33, 34] follow from the
asymptotic theory that assumes distances between the
interacting atoms to be sufficiently large, such that the
interaction potential of atoms is small compared to the
atom ionization potential. According to the asymptotic

Ry

R

_dlnU
" dlnRR=r,

U(R) = U(Ry) ( (3.2)
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theory [29, 33, 34|, the exchange interaction potential
of two atoms is given by

U(R) = A*F(y)R"/*~' exp(—2R7) (3.3)

3

where v2/2 is the atom ionization potential, A is the
asymptotic coefficient, and we use the atomic units
h = me €2 = 1; we note a confined accuracy of
the asymptotic coefficient. In the case of xenon, these
parameters are v = 0.944 and A = 2.0, and the inter-

action potential is [29, 33, 34]

U(R) = 14R>T e~ 1358, (3.4)

The reliability of the experimental data and of their
theoretical description can be seen from Table 2.

Thus, the main interaction in the ground electron
state of condensed inert gases is due to the exchange
interaction between valence electrons. Expressing this
interaction potential through pair exchange interaction
potentials between nearby atoms allows improving the
accuracy of the data by conjugation of experimental
and theoretical data. This interaction leads to a de-
crease in the ionization potential for a condensed inert
gas. We see that under the adopted conditions, this
value depends on the number of nearest neighbors of
a given structure. Guided by the solid state of xenon,
we note a nonuniform distribution of atoms there [35].
Indeed, this atomic system consists of individual clus-
ters — domains in which the number of nearest neigh-
bors is ¢ = 12, while an average number of near-
est neighbors is approximately ¢ = 10. This implies
that in the course of compression of inert gases, the
gap between the ground electron state and the ionized
state should disappear first inside the clusters, with the
boundaries between them remaining isolators. Thus,
the transition from the dielectric to the metal state has
a complex character in compressed inert gases.

Along with an increase in the energy of the electron
term of the ground state of condensed xenon, there is a
decrease in the energy of the electron term for an ion-
ized state. But the nature of this effect is different from
that for the ground state. Indeed, on average, the elec-
tron term of the ionized state does not change under
compression, but splits in energy, transforming into a
band with its edges moving up and down. In what fol-
lows, we assume the steady distribution of atoms in the
crystal in the interaction frame between nearest neigh-
bors only. We additionally assume that the pressure
is so high that the distances between an ion and sur-
rounding atoms are identical to those between neigh-
boring atoms. Under these conditions, we construct the
electron terms of the ionized state. Evidently, due to
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the exchange ion-atom interaction with nearest neigh-
bors, each electron term of the ionized state splits into
12 electron terms. There is also an additional split-
ting of each of these terms due to translation symmetry
along the crystal, but because this additional splitting
is identical for all terms, we do not take this part of
interaction into account.

We derive the wave function of the ionized state in

the form
U= e,
i

where ¢; is the wave function describing an ion con-
nected to the ith nucleus. Restricting ourselves by
the interaction of a test nucleus with nearest neighbors
only, we obtain 12 electron states with a different set of
coefficients ¢;, which are determined by the state sym-
metry. To find the minimal gap between the ionized
and ground state, we find the term with the lowest en-
ergy. A test nucleus forms with its 12 nearest neighbors
an octahedron; this geometric figure has the symmetry
with respect to certain reflections and rotations of the
frame of reference, and each operation leads to a certain
transformation of the coefficients ¢; in the expansion of
the wave function. In the lowest electron state, these
coefficients should be conserved under any symmetry
operation. Hence, the wave function of this state has

the form
¥ = Z CU%

and the coefficient ¢ originates from the normalization
condition. The corresponding negative energy shift per
ion related to the symmetric lowest-energy state is

(3.5)

(3.6)

U H|U
AE=<<\If|\1‘/>>_

q <¢i [ ¢k>
T271+

(Yiltor)

where the wave function 1); means that the ion is con-
nected to ith nucleus, Ry is the average distance be-
tween nearest neighbors, and we reduced the change in
the electron term of the ionized state to the pair ex-
change interaction potential A(R) for the interaction
of the ion with the parent atom at a separation R. The
exchange interaction potential between atoms i and k
is here defined as
1/)k> -

- 2(v,

= 1A(Ro).  (37)

A(Rji,) =2 <¢i i

hig

¢i> (Vilr), (3.8)
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where Eik is the one-electron Hamiltonian describing
the electron located in the field of two nuclei. The
above expression is valid at large distances between nu-
clei when the overlap of the wave functions centered on
different cores is not large.

We recall that in contrast to the single-electron term
of the ground state, we have in this case the number
of electron terms coincident with the number of nuc-
lei. These electron terms are concentrated with respect
to energy into separate groups. The number of such
groups is approximately equal to the number of nearest
neighbors, and their energies differ remarkably. For-
mula (3.7) relates to the lowest electron term of the
symmetric state. Only this state is interesting to us
because it opens the shortest route for the electron pas-
sage from the ionized to ground state, i.e., for atom ion-
ization. Eventually, the intersection of electron terms
related to the ionized and ground states of the atom
system leads to the dielectric-metal transition.

We use formula (3.7) in the particular case of the
interaction of an ion with the parent atom. Setting
q = 1, we obtain the electron energy

cy = ~3AR), (3.9)

where R is the distance between the nuclei. There are
two electron terms in this case, even (gerade g) and odd
(ungerade u) ones, and if we account for the exchange
interaction only, the energies of these states are

€g €y = —%A(R). (3.10)
This means that the gerade (even) electron term goes
down, the ungerade (odd) electron term goes up, and
the splitting of these terms ¢4 — ¢, the exchange inter-
action potential, is A(R).

For xenon, it is important that the exchange in-
teraction potential depends on the angular momentum
projection for a p-electron transferring valence. With
the angle between the axis that joins the interacting
atoms and the quantization axis on which the angular
momentum projection for a transferring p-electron is
zero denoted by #, the exchange interaction potential
of an ion and the parent atom is given by [29, 33, 36]

A(R) = 3Aq(R) cos? 8, (3.11)

where Ag(R) is the exchange interaction potential for
a transferring s-electron with the same asymptotic pa-
rameters. Averaging over the angle # and assuming the
nearest neighbors to be located in different directions,
we obtain

AE = %AO(RO), (3.12)
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Table 3. The distance R. between nearest neigh-
PY PY PY bors corresponding to the dielectric-metal transition in

Fig.3. Displacement of atoms near a forming ion

where Ry is the average distance between nearest
neighbors. In the framework of the asymptotic the-
ory [29, 33, 36], the expression for the exchange in-
teraction potential for an ion with the parent atom is
equal to

A(R) = A2R?/ " Vexp(—=Ry — 1/). (3.13)

Correspondingly, the exchange interaction potential of
a xenon atom and an ion is equal to

A(R) = 1.4R"'? exp(—0.944R) (3.14)

in atomic units.

Let R. be the average distance between the nearest
neighbors corresponding to the intersection of electron
terms belonging to the ground state of repulsing atoms
and to the ionized state. This value follows from the
equation

J = %U(R*) n %A(R*), (3.15)
where J is the atom ionization potential, U(R) is the
repulsive interaction potential at a distance R for two
atoms due to their exchange interaction, A(R) is the
exchange interaction potential of an ion with its par-
ent atom, and ¢ is the number of nearest atoms. In
principle, we should include the terms describing the
interactions of the formed ion and the electron with
xenon surroundings into this equation. The energy of
the ion is determined by the displacement of Xe atoms
in the direction to the ion as is shown in Fig. 3. This
energy is negative and cannot be significant in the rigid
matrix of compressed xenon. The energy of the electron
inside compressed xenon at the pressure of interest is
positive because the number density of atoms N then
exceeds N, in Table 1. Hence, the contributions to

xenon, the atom number density N., and the molar

volume V.
R.,a0 | N, 1022 cm™3 | Vi, cm® /mol
Case 1| 5.16 5.8 10
Case 2| 5.15 5.8 10
Case 3| 5.29 5.4 11
40 T T T T T T T
351 ° Xe 4
'_d (e}
| -
g o
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<
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Fig.4. The equation of state for xenon at high pres-
sures according to the experiment in [37]

the energy from the electron and the ion have differ-
ent signs and compensate each other. Because each of
them is less than 1 eV, their inclusion is not significant
in any case because the sum of the two leading terms
in (3.15) exceeds 10 eV.

The data in Table 3 are the results of using the pa-
rameters of the atom—atom interaction in Table 1 and
formulas (3.12) and (3.14) for the exchange ion—atom
interaction potential of xenon. In cases 1 and 2, we use
the experimental data in [30] and [31, 32] for the pair
interaction potential of two xenon atoms, and in case 3,
we use formula (3.4) [33, 34]. As can be seen, the num-
ber density of atoms N, for the dielectric-metal tran-
sition is approximately twice the critical atom number
density N, for the Voronoi—Delone mechanism of elec-
tron drift.

To pass from the molar volume V' to the pressure
p measured in experiment, we need the Xe equation of
state valid at high pressure. Figure 4 gives the equa-
tion of state for compressed xenon measured up to the
range of the dielectric-metal transition. According to
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it, the molar volume at the dielectric—metal transition
for xenon V, = 10-11 ¢cm? /mol corresponds to the pres-
sure 120-140 GPa, which nicely fits the experimental
results in [13, 14, 15].

4. CONCLUSION

The aim of this analysis was to describe the changes
in the behavior of a free electron embedded into con-
densed inert gases at high and extrahigh pressure, to
reveal the connection of their characteristics with the
structure of solids, and to develop the strategy for ex-
perimentally studying the mobility and conductivity of
excess and intrinsic electrons in solid xenon. It was
shown, in particular, that under the pressure exceed-
ing 3 GPa, the slow electrons cannot be embedded into
solid xenon from the gas. Thus, the approach has been
proposed for the blasting experiments when the elec-
trons are introduced into the xenon crystal at ambient
pressure, and then the sample is subjected to a shock
wave action. Because shock loading lasts less than 1
microsecond and the electron lifetime in a sample is 3
microseconds, there is enough time for measurements.

The special attention has been devoted to under-
standing the nature of xenon metallization at high
pressure. As a matter of fact, the absolute value of
xenon molar volume corresponding to the dielectric—
metal transition was predicted with good accuracy by
exclusively using the characteristics of atom—atom and
electron—atom interactions obtained theoretically or in
the experimental study of elementary processes in the
gas. If the proposed interpretation of the “ionization
by pressure” is correct, the whole dependence of the
forbidden electron band on pressure for any condensed
heavy inert gas can be readily found, and, in particu-
lar, the pressures of the dielectric-metal transition for
at least argon and krypton can be predicted.

This work is supported in part by the RFBR
(grant Ne(07-03-00393). The authors are thankful to
P. V. Kashtanov for some numerical calculations.
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