ВЛИЯНИЕ СПИНОВЫХ КРОССОВЕРОВ НА ПЕРЕХОД МОТТА – ХАББАРДА ПРИ ВЫСОКИХ ДАВЛЕНИЯХ

С. Г. Овчинников*

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> Сибирский федеральный университет 660041, Красноярск, Россия

Поступила в редакцию 1 февраля 2008 г.

В рамках многоэлектронного подхода к описанию электронной структуры моттовских диэлектриков проанализировано влияние спиновых кроссоверов в d^n -термах на величину эффективного параметра Хаббарда U_{eff} , определяющего щель между нижней и верхней хаббардовскими зонами. Для d^5 -ионов получен новый механизм перехода диэлектрик-металл за счет уменьшения U_{eff} при спиновом кроссовере. Для других ионов U_{eff} либо не зависит от давления (d^2, d^4, d^7) , либо немонотонно растет (d^3, d^6, d^8) .

PACS: 71.27.+a, 74.20.-z

1. ВВЕДЕНИЕ

Хорошо известно, что для модели Хаббарда сильные электронные корреляции расщепляют одноэлектронную зону на нижнюю и верхнюю хаббардовские подзоны (соответственно LHB и UHB). С ростом ширины зоны 2W щель уменьшается и при достижении критического значения $W_c = aU$, где $a \sim 1$, происходит переход Мотта – Хаббарда [1, 2]. Причиной увеличения ширины зоны может быть уменьшение межатомного расстояния с ростом давления или при изовалентном замещении в твердых растворах с разными ионными радиусами («химическое» давление). При этом параметр Хаббарда внутриатомного кулоновского отталкивания U считается не зависящим от давления.

Для соединений 3*d*-металлов с преобладающим типом ионной связи (оксиды, галогениды и т.д.) эффекты сильных электронных корреляций определяют диэлектрические и магнитные свойства в режиме моттовских диэлектриков. Идеи, заложенные в модель Хаббарда, должны быть дополнены учетом многоорбитальности и наличия анионных *sp*-состояний. В низкоэнергетической области эффективный гамильтониан, тем не менее, может быть представлен в виде обобщенной модели Хаббарда, построенной на базисе локальных многоэлектронных термов d^n , d^{n+1} и d^{n-1} , аналогично тому, как модель Хаббарда формируется на базисе локальных d^1 -, d^2 -, d^0 -термов. Важное отличие обобщенной модели Хаббарда от стандартной заключается в величинах спинов термов d^n , d^{n+1} и d^{n-1} , которые могут принимать различные значения $0 \le S \le 5/2$.

Если катион имеет $3d^n$ -конфигурацию незаполненной d-оболочки, то можно ввести эффективный параметр Хаббарда $U_{eff} = E_0(d^{n+1}) +$ $+ E_0(d^{n-1}) - 2E_0(d^n)$ [3], определяющий щель между верхней хаббардовской зоной с энергией $\Omega_c = E_0(d^{n+1}) - E_0(d^n)$ и нижней хаббардовской зоной $\Omega_v = E_0(d^n) - E_0(d^{n-1})$. Здесь $E_0(d^n)$ есть энергия основного терма для d^n -конфигурации. В зависимости от соотношения между уровнем Ω_v и энергией потолка заполненной зоны ε_v , сформированной, в основном, *p*-состояниями аниона, диэлектрическая щель E_g определяется либо величиной U_{eff} (диэлектрик Мотта–Хаббарда по классификации [4]) при $\Omega_v > \varepsilon_v$, либо $E_g = \Omega_c - \varepsilon_v$ при $\Omega_v < \varepsilon_v$ (диэлектрик с переносом заряда).

В настоящей работе рассмотрим влияние конкуренции различных спиновых состояний d^n -иона и кроссовера между ними при уменьшении межатомного расстояния на электронную структуру. Как

^{*}E-mail: sgo@iph.krasn.ru

оказалось, параметр U_{eff} зависит от величины кристаллического поля $\Delta = 10Dq$ для кристаллов с локальной кубической симметрией катиона, которое увеличивается с ростом давления. В точках спинового кроссовера зависимость $U_{eff}(\Delta)$ меняется, причем для разных d^n -конфигураций по-своему. Так, для d^5 -ионов U_{eff} уменьшается при спиновом кроссовере, для d^6 -ионов, наоборот, растет. В работе получены зависимости $U_{eff}(\Delta)$ для $1 \leq n \leq 9$. Для систем с d^5 -ионами (Fe³⁺, Mn²⁺) выявлен новый механизм перехода Мотта–Хаббарда, обусловленный уменьшением корреляционной энергии с ростом давления.

2. СПИНОВЫЕ КРОССОВЕРЫ ДЛЯ d^n -термов

Для ионных кристаллов энергии термов d^n -конфигураций в кубическом кристаллическом поле давно получены численно, это так называемые диаграммы Танабэ – Сугано [5]. В этом разделе мы воспроизведем их в упрощенной модели, допускающей простые аналитические выражения для энергии термов. В этой модели предполагается, что все внутриатомные кулоновские матричные элементы не зависят от номера орбитали, e_g -электрон имеет энергию +6Dq, t_{2g} -электрон — энергию -4Dq, и каждая пара параллельных спинов дает выигрыш в энергии -J, где J > 0 — параметр хундовского обмена. Построив распределение n-электронов по t_{2g} - и e_g -орбиталям, мы легко можем записать энергию терма с данным спином S.

Для d^2 -конфигурации имеем терм со спином S = 1 и энергией

$$E_{HS}(d^2) = E_C(d^2) - 8Dq - J.$$
(1)

Это состояние основное при всех значениях параметров. Здесь и ниже $E_C(d^n)$ есть кулоновская (не зависящая от спина) часть энергии. Для d^3 -конфигурации основное состояние также всегда высокоспиновое с S = 3/2 и энергией

$$E_{HS}(d^3) = E_C(d^3) - 12Dq - 3J.$$
 (2)

Для d^4 -ионов возможны три спиновых состояния:

а) высокоспиновое (HS) с S = 2 и энергией

$$E_{HS}(d^4) = E_C(d^4) - 6Dq - 6J, \tag{3}$$

б) промежуточноспиновое (IS) с S = 1 и энергией

$$E_{IS}(d^4) = E_C(d^4) - 16Dq - 3J, \tag{4}$$

в) низкоспиновое (LS) с S = 0 и энергией

$$E_{LS}(d^2) = E_C(d^2) - 16Dq - 2J.$$
(5)

Видно, что низкоспиновое состояние всегда лежит выше промежуточноспинового на величину J, а состояния HS и IS конкурируют между собой по энергии. При $\Delta = 10Dq < 3J$ основным является высокоспиновое состояние, а при $\Delta > 3J$ состояние с S = 1 становится основным, т.е. при $\Delta = 3J$ происходит спиновый кроссовер HS–IS.

Для d^5 -ионов имеет место конкуренция двух термов:

а) высокоспинового сS=5/2и энергией

$$E_{HS}(d^5) = E_C(d^5) - 10J, \tag{6}$$

б) низкоспинового с S = 1/2 и энергией

$$E_{LS}(d^5) = E_C(d^5) - 20Dq - 4J.$$
(7)

Состояние d^5 со спином S = 3/2 всегда лежит выше. Спиновый кроссовер HS–LS происходит также при $\Delta > 3J$, как и для d^4 -ионов.

Для *d*⁶-конфигурации промежуточноспиновое состояние также всегда выше высокоспинового и низкоспинового термов, которые и конкурируют по энергии:

а) высокоспиновый сS=2и энергией

$$E_{HS}(d^6) = E_C(d^6) - 4Dq - 10J, \tag{8}$$

б) низкоспиновый сS=0и энергией

$$E_{LS}(d^6) = E_C(d^6) - 24Dq - 6J.$$
(9)

Спиновый кроссовер для d^6 -ионов происходит при меньших значениях $\Delta = 2J$, чем для d^4 - и d^5 -ионов.

Для *d*⁷-конфигурации возможны следующие термы:

а) высокоспиновый сS=3/2и энергией

$$E_{HS}(d^7) = E_C(d^7) - 8Dq - 11J, \tag{10}$$

б) низкоспиновый с S = 1/2 и энергией

$$E_{LS}(d^7) = E_C(d^7) - 18Dq - 9J.$$

Для этой конфигурации спиновый кроссовер происходит при $\Delta = 2J$, как и в случае d^6 -ионов.

Для d^8 -конфигурации реализуется только высокоспиновое состояние с S = 1 и энергией

$$E_{HS}(d^8) = E_C(d^8) - 12Dq - 13J.$$
(11)

Наконец, d^9 -состояние с S = 1/2 имеет энергию

$$E(d^9) = E_C(d^9) - 6Dq - 16J.$$
(12)

Для примера на рис. 1 показаны распределения электронов по *d*-орбиталям для высокоспинового и низкоспинового термов *d*⁵-конфигурации, которые поясняют расчет энергий каждого терма.

Рис. 1. Схема распределения электронов для d^5 -конфигурации в высокоспиновом (*a*) и низкоспиновом (*б*) состояниях

3. ПЕРЕХОД МОТТА-ХАББАРДА, ИНДУЦИРОВАННЫЙ КРОССОВЕРОМ ПРИ ВЫСОКОМ ДАВЛЕНИИ

Для d^5 -конфигурации эффективный параметр Хаббарда равен $U_{eff}(d^5) = E(d^6) + E(d^4) - 2E(d^5)$. Анализ термов d^4 -, d^5 - и d^6 -конфигураций и спиновых кроссоверов в них показывает, что при вычислении U_{eff} выделяются три области параметра Δ/J .

1) $\Delta/J < 2$. Все термы находятся в высокоспиновых состояниях:

$$U_{eff}(d^5) = U(d^5) + 4J - \Delta,$$
 (13)

где $U(d^5) = E_C(d^6) + E_C(d^4) - 2E_C(d^5).$

2) 2 < Δ/J < 3. В этой области d^6 -ион перешел в LS-состояние, а d^5 и d^4 остались высокоспиновыми. Для эффективного U получаем

$$U_{eff}(d^5) = U(d^5) + 8J - 3\Delta.$$
(14)

3) $\Delta/J>3.$ Ионы d^6 и d^5 находятся в низкоспиновом состоянии, а d^4 — в IS-состоянии:

$$U_{eff}(d^5) = U(d^5) - J.$$
(15)

Зависимость эффективного параметра Хаббарда $U_{eff}(d^5)$ от кристаллического поля показана на рис. 2, из которого видно значительное уменьшение электронных корреляций с ростом Δ . Общее уменьшение $\delta U_{eff} = 5J - \Delta_0$, при типичных для 3d-электронов значениях J = 0.8 эB, $\Delta_0 = 1-2$ эB имеем $\delta U_{eff} = 2-3$ эB. С ростом давления атомы сближаются, параметр кристаллического поля растет. Поскольку изменения расстояний относительно малы, с хорошей точностью можно предполагать линейную зависимость

$$\Delta(P) = \Delta_0 + \alpha_\Delta P, \tag{16}$$

Рис.2. Зависимость эффективного параметра Хаббарда от кристаллического поля для d^5 -конфигурации

которая нарушается, очевидно, в точках структурных фазовых переходов первого рода, сопровождаемых скачком параметров решетки и объема элементарной ячейки. В таких точках параметр $\Delta(P)$ будет также меняться скачком для изоструктурных переходов. Если же меняется и симметрия кристалла, то необходимо более детально рассчитывать энергии термов с учетом низкосимметричных компонент кристаллического поля. Во многих случаях низкосимметричные компоненты малы по сравнению с кубической, что позволяет их не учитывать. Именно так обстоят дела, по-видимому, в ферроборатах $FeBO_3$ и $GdFe_3(BO_3)_4$, спиновые кроссоверы и вся совокупность изменений электронных, магнитных и оптических свойств которых рассматривались нами в работах [6-8]. Скачок U_{eff}, обсуждаемый в этих работах, обусловлен сопутствующим структурным фазовым переходом первого рода при давлениях $P \approx 50$ ГПа с изменением объема.

Физический смысл параметра U_{eff} прост: это энергия, необходимая для перескока d-электрона с атома на атом. Действительно, в начальном состоянии имеем два d^n -иона. После перескока электрона с одного на другой в конечном состоянии имеем один d^{n+1} - и другой d^{n-1} -ион. Именно эта энергия определяет критерий перехода Мотта – Хаббарда

$$W_C = a U_{eff}, \tag{17}$$

где полуширина зоны W также зависит от давления:

$$W(P) = W_0 + \alpha_W P. \tag{18}$$

Заметим, что мы не ставим своей целью развитие

Рис. 3. Схема, поясняющая новый механизм перехода Мотта – Хаббарда. Сплошная линия изображает зависимость $U_{eff}(P)$, штриховая — постоянный параметр U_0 . Штрихпунктирные линии 1, 2, 3 соответствуют разным зависимостям ширины зоны от давления из формулы (18): $\alpha_{W1} > \alpha_{W2} > \alpha_{W3}$; P_{C1} , P_{C2} и P_{C3} — точки перехода Мотта – Хаббарда

теории перехода Мотта – Хаббарда, которая рассматривалась для модели Хаббарда многими методами: расщеплением высших функций Грина [9], в приближении когерентного потенциала [10], с помощью диаграммной техники для Х-операторов Хаббарда [11], в рамках динамической теории среднего поля [12]. Мы хотим обсудить, почему условие перехода (17) может реализоваться. Как уже обсуждалось во Введении, в стандартной модели Хаббарда $U_{e\!f\!f} = U_0$ есть константа, не зависящая от давления. Переход диэлектрик-металл в такой модели обусловлен ростом кинетической энергии электронов с давлением. В англоязычной литературе имеется термин «bandwidth control», явно указывающий на параметр W, рост которого с давлением приводит к переходу.

Как мы видели выше, для d^5 -ионов ситуация заметно отличается от модели Хаббарда: наряду с ростом ширины зоны одновременно уменьшается корреляционная энергия. Различные варианты перехода Мотта-Хаббарда для d^5 -конфигурации показаны на рис. 3. Здесь изображены левая и правая части критерия перехода (17) как функции давления, для сравнения с механизмом уширения зоны штриховой линией указан постоянный уровень $U_0 = U + 4J - \Delta(0)$. Три варианта зависимости ширины зоны W(P) с разными барическими коэффи-

циентами $\alpha_{W1} > \alpha_{W2} > \alpha_{W3}$ соответствуют трем разным сценариям перехода. В случае 1 (сильная зависимость ширины зоны от давления) переход Мотта-Хаббарда происходит на фоне высокоспиновых термов d^5 , d^4 и d^6 . Точки пересечения зависимости $W_1(P)$ с $U_{eff}(P)(P_{C1})$ и постоянным уровнем $U_0(P_{C1}^*)$ мало различаются, основной механизм перехода — уширение зоны. В случае 2 (умеренная зависимость ширины зоны $W_2(P)$) переход имеет место в окрестности спиновых кроссоверов для всех термов d^5 , d^4 и d^6 . Истинная точка перехода P_{C2} отвечает значению намного меньшему, чем соответствующая механизму уширения зоны точка P_{C2}^* . Наконец, в случае 3 (слабая зависимость ширины зоны от давления) переход происходит на фоне низкоспиновых термов d^5 , d^6 и промежуточного спина d^4 -конфигураций. Здесь точка перехода $P_{C3} \ll P_{C3}^*$. Из-за слабой зависимости $W_3(P)$ переход по механизму уширения зоны был бы недоступен, в то время как уменьшение корреляционной энергии $U_{eff}(P)$ за счет спинового кроссовера значительно уменьшает значение P_{C3} . Таким образом, в случае 2 и особенно в случае 3 спиновый кроссовер, индуцирующий переход Мотта-Хаббарда, является преобладающим механизмом перехода.

Для количественного определения точки перехода обозначим точки изломов на рис. З как $P_{\rm I}$ и $P_{\rm II}$. Эти особые значения давления удовлетворяют условиям $\Delta(P_{\rm I}) = 2J$ и $\Delta(P_{\rm II}) = 3J$ и равны

$$P_{\rm I} = \frac{2J - \Delta_0}{\alpha_\Delta}, \quad P_{\rm II} = \frac{3J - \Delta_0}{\alpha_\Delta}.$$
 (19)

Полагая для простоты в критерии перехода Мотта-Хаббарда (17) постоянную a = 1, запишем условия для перехода за счет уширения зоны в точке P_C^* и с учетом спинового кроссовера в точке P_C для случая 2 на рис. 3:

$$U_0 = 2(W_0 + \alpha_W P_C^*), \tag{20}$$

$$U + 8J - 3\Delta(P_C) = 2(W_0 + \alpha P_C).$$
(21)

Здесь $U_0 = U + 4J - \Delta_0 - эффективный параметр$ при нулевом давлении. Таким образом, критическиезначения давления равны

$$P_C^* = \frac{U_0 - 2W_0}{2\alpha_W},$$
 (22)

$$P_C = \frac{U_0 - 2W_0 + 4J - 2\Delta_0}{2\alpha_W + 3\alpha_\Delta}.$$
 (23)

Без конкретных численных параметров непросто сравнить P_C и P_C^* . Однако учитывая, что $P_C \leq P_{II}$, выражение (23) для P_C можно представить в виде

$$P_C \approx P_C^* - \frac{5J - \Delta_0}{2\alpha_W},\tag{24}$$

из которого явно следует, что $P_C < P_C^*$ (поскольку $\Delta_0 < 3J$). Численные оценки для параметров, соответствующих FeBO₃ и BiFeO₃, будут приведены ниже в разд. 6, из них будет видно, что $P_C \ll P_C^*$ для BiFeO₃.

4. УСИЛЕНИЕ ЭЛЕКТРОННЫХ КОРРЕЛЯЦИЙ, ИНДУЦИРОВАНИЕ СПИНОВЫМ КРОССОВЕРОМ ДЛЯ *d*⁶-КОНФИГУРАЦИИ

Анализ энергий разных спиновых термов d^5 -, d^6 - и d^7 -конфигураций, определяемых выражениями (6)–(10), показывает, что

$$U_{eff}(d^6) = E(d^7) + E(d^5) - 2E(d^6)$$
(25)

также различается в трех областях параметра Δ/J . 1) При $\Delta/J < 2$ все термы высокоспиновые и

$$U_{eff} = U - J.$$

2) При 2 < Δ/J
 < 3 терм d^5 высокоспиновый, а d^6 и
 d^7 — низкоспиновые:

$$U = U + 3\Delta - 7J.$$

3) При $\Delta/J > 3$ все термы низкоспиновые и

$$U_{eff} = U - J + \Delta.$$

В отличие от d^5 -конфигурации, где U_{eff} уменьшалось с ростом кристаллического поля (и давления),

Рис. 4. Зависимость U_{eff} от давления для d^6 -конфигурации. Штрихпунктирные линии 1, 2, 3, 4 соответствуют $\alpha_{W1} > \alpha_{W2} > \alpha_{W3} > \alpha_{W4}$

для d^6 -конфигурации ситуация противоположная: корреляционная энергия увеличивается с ростом давления, причем максимальный рост наблюдается в области спиновых кроссоверов (рис. 4). Как и ранее, штрихпунктирные линии 1-4 соответствуют различным барическим коэффициентам α_{W_i} . В случае 1 (сильная зависимость W от P) переход происходит на фоне высокоспиновых термов d^5 , d^6 и d^7 и механизм перехода полностью определяется уширением зоны. В случае 3 (умеренная зависимость W от Р) спиновый кроссовер заметно увеличивает щель и критическое значение P_{C3} по сравнению с механизмом уширения зоны. В случае 4 при $\alpha_W < \alpha_\Delta$ переход вообще невозможен и при всех параметрах сохраняется диэлектрическая фаза. Отметим, наконец, экзотический случай 2, при котором с ростом давления происходит последовательность переходов диэлектрик-металл-диэлектрик-металл, т.е. в окрестности спинового кроссовера возникают промежуточные металлическое и диэлектрическое состояния. Этот случай возможен при выполнении условий

$$\frac{U - J - W_0}{P_{\rm I}} < \alpha_W < \frac{U + 2J - W_0}{P_{\rm II}} \,.$$
(26)

5. ЭФФЕКТИВНЫЙ ПАРАМЕТР ХАББАРДА ДЛЯ ДРУГИХ КОНФИГУРАЦИЙ

Используя результаты разд. 2, легко показать, что для конфигураций d^2 , d^4 и d^7 параметр U_{eff} не зависит от давления и равен $U_{eff} = U - J$. Иначе говоря, спиновый кроссовер, имеющий место для d^4 и d^7 -ионов, не приводит к зависимости U_{eff} от давления. Для d^1 - и d^9 -конфигураций спиновые кроссоверы отсутствуют, и для U_{eff} получаем то же значение U - J. В многоорбитальном случае нижний уровень d^2 -конфигурации имеет S = 1, поэтому U_{eff} на величину J меньше параметра U, характерного для орбитально невырожденной модели с синглетным d^2 -термом.

Для конфигураций d^3 и d^8 спиновый кроссовер проявляется в возбужденных состояниях (соответственно d^4 и d^7). Тем не менее это приводит к следующей зависимости $U_{eff}(\Delta)$:

а) d³-конфигурация —

$$U_{eff}(\Delta) = \begin{cases} U - J + \Delta, & \Delta < 3J, \\ U + 2J, & \Delta > 3J, \end{cases}$$
(27)

б) *d*⁸-конфигурация —

$$U_{eff}(\Delta) = \begin{cases} U - J + \Delta, & \Delta < 2J, \\ U + J, & \Delta > 2J. \end{cases}$$
(28)

Мы видим, что для этих конфигураций корреляционная энергия линейно растет с давлением в области высокоспиновых термов d^3 , d^4 и d^2 , а также d^7 , d^8 и d^6 , а после кроссовера в низкоспиновые состояния достигает значения насыщения. В результате критическое давление перехода Мотта–Хаббарда возрастает по сравнению с механизмом уширения зоны.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

Спиновые кроссоверы при высоких давлениях в оксидах 3*d*-металлов в последнее время активно исследуются. Помимо фундаментальной для физики конденсированного состояния проблемы формирования диэлектрического состояния за счет сильных электронных корреляций и перехода Мотта-Хаббарда, свойства окислов железа при высоких давлениях представляют интерес для геофизики, поскольку эти окислы входят в состав многих минералов, составляющих мантию Земли [13]. Спиновые кроссоверы были обнаружены и исследованы в кристаллах FeBO₃ [14], GdFe₃(BO₃)₄ [7], BiFeO₃ [15]. Bo BCEX случаях мы имеем ион Fe³⁺ в d⁵-конфигурации. Анализ экспериментов в рамках описанного выше многоэлектронного подхода требует знания не только параметров модели при P = 0: кулоновского U и обменного Ј взаимодействий, ширины зоны 2W и критического поля Δ , но и барических коэффициентов α_W и α_Δ . Для ферроборатов эти параметры были определены из сопоставления с экспериментальными данными в работах [6, 7] и получены из расчетов из первых принципов [16]. Для FeBO₃ диэлектрическая щель уменьшается от 3 эВ в высокоспиновом состоянии до 0.8 эВ в низкоспиновом, что хорошо коррелирует с уменьшением U_{eff} , показанным на рис. 3. Ширина зоны W и ее зависимость от давления в $FeBO_3$ и $GdFe_3(BO_3)_4$ очень малы в меру малости *p*-*d*-гибридизации, характерной для бороксидных соединений. Дело в том, что sp-гибридизация внутри ВО3-группы очень сильна, и *p*-орбитали кислорода настолько деформируются, что их гибридизация с катионом ничтожно мала. Этот вывод следует и из расчетов из первых принципов [17]. Зависимость ширины зоны W(P) для ферроборатов соответствует случаю 3 на рис. 3, причем точка перехода P_{C3} лежит выше максимальных значений давления (140 ГПа), до которых измерялась проводимость в работе [18].

Параметры модели для FeBO₃ следующие [8]:

$$U_0 = 4.2 \ \Im B, \quad J = 0.8 \ \Im B, \quad \Delta_0 = 1.5 \ \Im B,$$

 $W_0 = 0.36 \ \Im B, \quad \alpha_W = 0.002 \ \Im B/\Gamma\Pi a,$ (29)
 $\alpha_{\Lambda} = 0.02 \ \Im B/\Gamma\Pi a.$

Точка перехода для ${\rm FeBO}_3$ определяется случаем 3 на рис. 3 и равна

$$P_C = (U_0 - 2W - 5J + \Delta_0)/2\alpha_W = 250 \ \Gamma\Pi a.$$
 (30)

Аналогичный спиновый кроссовер из высокоспинового в низкоспиновое состояние Fe³⁺ в BiFeO₃ происходит в том же диапазоне давлений около 50 ГПа, что и в ферроборатах, но в противоположность ферроборатам он сопровождается переходом диэлектрик-металл [15]. Основное отличие электронной структуры BiFeO₃ от ферроборатов обусловлено более сильной *p*-*d*-гибридизацией, т. е. большей шириной зоны W(P). Случай 2 на рис. 3 описывает именно такую ситуацию, в которой спиновый кроссовер приводит к резкому уменьшению U_{eff}, что индуцирует переход Мотта-Хаббарда при давлениях P_{C2}, много меньших, чем было бы при обычном механизме уширения зоны P_{C2}^* . По-видимому, этот случай соответствует BiFeO₃. В случае BiFeO₃ параметры неизвестны. Мы можем предположить, что усиление эффектов ковалентности, в первую очередь, скажется на ширине зоны, поэтому возьмем следующие значения параметров:

$$W_0 = 0.6 \ \mathrm{sB}, \quad \alpha_W = 0.006 \ \mathrm{sB}/\Gamma\Pi \mathrm{a}.$$

Остальные параметры, не связанные напрямую с ковалентностью, возьмем такими же, как для FeBO₃ из равенств (29). Тогда находим из формул (22) и (23), что

$$P_C^* = 250 \ \Gamma \Pi a, \quad P_C = 44.4 \ \Gamma \Pi a.$$

Заметим, что расчет P_C по упрощенной формуле (24) дает $P_C = 41.7 \ \Gamma \Pi a$, что показывает применимость этой формулы при $P_{\Pi} - P_C \ll P_C$. Экспериментальное значение $P_C \approx 54 \ \Gamma \Pi a$ для BiFeO₃, что показывает адекватность наших параметров для случая BiFeO₃.

Ковалентность не только увеличивает ширину *d*-зоны, но и может внести вклад в конкуренцию различных спиновых состояний. Так, недавно в работе [19] было показано методом точной диагонализации кластера MeO₆ для Me = Fe²⁺, Co³⁺, т. е. для d^6 -катиона, что при определенных параметрах системы возможна стабилизация промежуточно-спинового состояния с S = 1. Тем не менее этот вывод

12 ЖЭТФ, вып. 1 (7)

справедлив для довольно специфического набора параметров и не является общим. В общем случае, конечно же, основным эффектом *p*-*d*-гибридизации является увеличение интеграла *d*-*d*-перескоков, ширины *d*-зоны, параметра сверхобмена.

В заключение отметим, что эффективный параметр Хаббарда зависит от давления, наиболее сильная зависимость наблюдается в окрестности спиновых кроссоверов. Для d^5 -ионов корреляционные эффекты значительно ослабляются, для d^6 -ионов, наоборот, усиливаются с ростом давления. Для других конфигураций зависимость либо слабая, либо совсем отсутствует.

Автор благодарен Д. Хомскому, Дж. Завадскому и М. Хаверкорту за обсуждение результатов. Работа выполнена при финансовой поддержке РФФИ (грант № 07-02-00226) и в рамках программы Президиума РАН «Квантовая макрофизика». Исследование было начато во время работы автора в Институте теоретической физики Кавли при Университете Калифорнии в г. Санта-Барбара и поддержано NSF (грант № РНY05-51164).

ЛИТЕРАТУРА

- N. F. Mott, *Metal-Insulator Transitions*, Taylor and Francis, London (1974).
- 2. J. C. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).
- J. Zaanen and G. A. Sawatzky, J. Sol. St. Chem. 88, 8 (1990).
- J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
- Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).

- 6. А. Г. Гаврилюк, И. А. Троян, С. Г. Овчинников,
 И. С. Любутин, В. А. Саркисян, ЖЭТФ 99, 556 (2004).
- А. Г. Гаврилюк, С. А. Харламова, И. С. Любутин, И. А. Троян, С. Г. Овчинников, А. М. Поцелуйко, М. И. Еремец, Р. Бёллер, Письма в ЖЭТФ 80, 482 (2004).
- S. G. Ovchinnikov, J. Magn. Magn. Mat. 300, 243 (2006).
- 9. J. C. Hubbard, Proc. Roy. Soc. A 281, 401 (1964).
- B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968).
- 11. Р. О. Зайцев, ЖЭТФ 70, 1100 (1976).
- A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- S. A. Gramsch, R. E. Cohen, and S. Yu. Savrasov, American Mineralogist 88, 257 (2003).
- 14. В. А. Саркисян, И. А. Троян, И. С. Любутин, А. Г. Гаврилюк, А. Ф. Кашуба, Письма в ЖЭТФ 76, 788 (2002).
- A. G. Gavriliuk, V. V. Strujkin, I. S. Lyubutin, S. G. Ovchinnikov, M. Y. Hu, and P. Chow, Phys. Rev. B 77, 155112 (2008).
- 16. С. Г. Овчинников, В. И. Анисимов, И. А. Некрасов,
 3. В. Пчелкина, ФММ 99, № 1, 93 (2005).
- A. V. Postnikov, St. Bartkowski, M. Neumann et al., Phys. Rev. B 50, 14849 (1994).
- И. А. Троян, М. И. Еремец, А. Г. Гаврилюк, И. С. Любутин, В. А. Саркисян, Письма в ЖЭТФ 78, 16 (2003).
- **19**. С. Г. Овчинников, Ю. С. Орлов, ЖЭТФ **131**, 485 (2007).