ИЗМЕРЕНИЕ ВЕРОЯТНОСТИ РАСПАДОВ $\omega, ho o \pi^0 e^+ e^-$

М. Н. Ачасов^{а,b}, К. И. Белобородов^{а,b}, А. В. Бердюгин^а, А. Г. Богданчиков^а,

А. Д. Букин^{а,b}, Д. А. Букин^а, А. В. Васильев^{а,b}, В. Б. Голубев^{а,b}, Т. В. Димова^{а,b*},

В. П. Дружинин^{а,b}, И. А. Кооп^{а,b}, А. А. Король^а, С. В. Кошуба^а,

Е. В. Пахтусова^a, Е. А. Переведенцев^a, С. И. Середняков^{a,b},

3. К. Силагадзе^{а,b}, А. Н. Скринский^а, Ю. М. Шатунов^{а,b}

^а Институт ядерной физики им. Будкера Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 18 февраля 2008 г.

В экспериментах со сферическим нейтральным детектором на e^+e^- -коллайдере ВЭПП-2М проведено исследование процессов $e^+e^- \to \omega, \rho \to \pi^0 e^+e^-$. Измерена вероятность конверсионного распада $\omega \to \pi^0 e^+e^-$: $\mathcal{B}(\omega \to \pi^0 e^+e^-) = (0.761 \pm 0.053 \pm 0.064) \cdot 10^{-3}$ и установлен верхний предел вероятности распада $\rho \to \pi^0 e^+e^-$: $\mathcal{B}(\rho \to \pi^0 e^+e^-) < 1.2 \cdot 10^{-5}$ (90 % CL). При трех значениях квадрата переданного 4-импульса измерена величина переходного формфактора.

PACS: 13.66.Bc, 14.40.Aq, 13.40.Gp, 12.40.Vv

1. ВВЕДЕНИЕ

Изучение конверсионных распадов вида $V \rightarrow$ $\rightarrow Pe^+e^-$, где V — векторный, а P — псевдоскалярный мезоны, дает информацию об электромагнитной структуре V-P-перехода. На рис. 1 изображена диаграмма этих процессов. Количественно электромагнитная структура V-Р-перехода описывается переходным формфактором $F(q^2)$, зависящим от квадрата 4-импульса q^2 виртуального фотона γ^* . Полная вероятность распада определяется преимущественно областью инвариантных масс e^+e^- -пары вблизи порога $q^2 = 4m_e^2 (m_e - \text{масса электрона}),$ где отличие переходного формфактора от единицы пренебрежимо мало. Влияние переходного формфактора проявляется, в основном, в жесткой части спектра инвариантных масс e^+e^- -пар. Вероятность конверсионного распада составляет около 1 % от вероятности соответствующего радиационного распада $V \to P\gamma$.

Рис.1. Диаграмма конверсионного распада $V o P e^+ e^-$

Целью данной работы является измерение вероятностей распадов $\omega, \rho \to \pi^0 e^+ e^-$, а также переходного формфактора $|F(q^2)|$. Ранее вероятность распада $\omega \to \pi^0 e^+ e^-$ измерялась на нейтральном де-

^{*}E-mail: baiert@inp.nsk.su

Таблица 1. Результаты предыдущих измерений и теоретические расчеты вероятностей распадов $\omega, \rho o \pi^0 e^+ e^-$

Процесс	Результаты измерений	Теория [4,5]
$\omega \to \pi^0 e^+ e^-$	$(0.59 \pm 0.19) \cdot 10^{-3} \ [1]$	$0.8 \cdot 10^{-3}$
	$(0.819 \pm 0.094) \cdot 10^{-3} \ [2]$	
$\rho \to \pi^0 e^+ e^-$	$< 1.6 \cdot 10^{-5} [2]$	$(0.5 - 0.6) \cdot 10^{-8}$

текторе (НД) [1] и криогенном магнитном детекторе (КМД-2) [2], а для вероятности распада $\rho \to \pi^0 e^+ e^$ был установлен верхний предел [2]. Результаты этих экспериментов и теоретических расчетов приведены в табл. 1. Переходный формфактор $|F(q^2)|$ в процессе $\omega \to \pi^0 e^+ e^-$ был измерен ранее на КМД [2]. Кроме того, ранее он также измерялся в процессе $\omega \to \pi^0 \mu^+ \mu^-$ [3].

2. ДЕТЕКТОР, ЭКСПЕРИМЕНТ

Эксперимент по изучению процессов $e^+e^- \rightarrow \omega$, $\rho \rightarrow \pi^0 e^+ e^-$ проводился на e^+e^- -коллайдере ВЭПП-2М [6] со сферическим нейтральным детектором (СНД). СНД [7] представляет собой универсальный немагнитный детектор, главной частью которого является трехслойный электромагнитный калориметр, состоящий из 1632 счетчиков с кристаллами NaI(Tl). Энергетическое разрешение калориметра для фотонов составляет

$$\frac{\sigma_E}{E} = \frac{4.2 \%}{\sqrt[4]{E[\Gamma \Im B]}},$$

угловое разрешение — около 1.5° , телесный угол — 90% от 4π . Углы вылета заряженных частиц измеряются трековой системой, состоящей из двух цилиндрических дрейфовых камер. Телесный угол трековой системы составляет 95% от 4π , угловое разрешение — 0.5° и 2° соответственно для азимутального и полярного углов.

В этой работе использовались данные двух экспериментов в области энергии 360–970 МэВ, проведенных в 1998 (ОМЕ 98) и 2000 (ОМЕ 00) гг. [8], с полной интегральной светимостью 9.8 пб⁻¹. Полное число рождений ω - и ρ -мезонов составляет соответственно 3.8 · 10⁶ и 7.0 · 10⁶.

3. АНАЛИЗ ДАННЫХ

3.1. Отбор событий

В большей части событий изучаемого процесса угол разлета электрона и позитрона настолько мал, что в трековой системе СНД электрон-позитронная пара регистрируется как один трек.

Для отбора таких событий процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ использовались следующие критерии:

1) событие содержит одну заряженную частицу и два фотона;

2) расстояние R между треком заряженной частицы и пучком в плоскости $R-\phi$ не превышает 0.5 см, *z*-координата ближайшей к пучку точки трека ограничена условием |z| < 10 см;

3) полярные углы каждой из частиц находятся в пределах $36^\circ < \theta_i < 144^\circ;$

4) полное энерговыделение в калориметре E_{tot} не менее $0.8\sqrt{s}$, где $s = 4E_b^2$, E_b — энергия пучка;

5) величина суммарного импульса частиц P_{tot} в событии, измеренная по калориметру, ограничена условием $P_{tot}/E_{tot} < 0.15$;

6) энергия каждого из фотонов превышает 50 МэВ;

7) $\chi^2 < 20$, где χ^2 — параметр кинематической реконструкции события в гипотезе $e^+e^- \rightarrow \{e^+e^-\}\gamma\gamma$, где $\{e^+e^-\}$ обозначает e^+e^- -пару, зарегистрированную в детекторе как одна частица;

8) инвариантная масса пары фотонов лежит в пределах $100 < M_{\gamma\gamma} < 200 \text{ МэB}/c^2;$

9) ограничения на суммарную энергию e^+e^- -пары и квадрат массы отдачи π^0 -мезона

$$M_{rec}^2 = \sqrt{s} \left(\sqrt{s} - 2E_{\pi^0} \right) + m_{\pi^0}^2,$$

где $E_{\pi^0} = E_{\gamma,1} + E_{\gamma,2}$, а $E_{\gamma,i}$ — энергия *i*-го фотона, определенная по калориметру. На рис. 2 показаны двумерные распределения для процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ и основного фонового процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ и наложенные ограничения.

3.2. Фоновые процессы

Основными источниками резонансного фона для процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ являются реакции $e^+e^- \rightarrow \rho, \omega \rightarrow \rho, \omega \rightarrow \eta\gamma, e^+e^- \rightarrow \rho, \omega \rightarrow \pi^+\pi^-\pi^0$ и $e^+e^- \rightarrow \rho, \omega \rightarrow \pi^0\gamma$ с конверсией фотона в веществе перед дрейфовой камерой. Их вклад определялся по моделированию.

Число событий моделирования процесса $e^+e^- \rightarrow \eta \gamma$, прошедших описанные выше условия отбора,

6 ЖЭТФ, вып.1(7)

Рис.2. Двумерное распределение моделированных событий по квадрату массы отдачи π^0 -мезона и энерговыделению e^+e^- -пары: точки — процесс $e^+e^- \rightarrow \omega, \rho \rightarrow \pi^0 e^+ e^-$, треугольники — фоновый процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^0$, линией показано условие отбора

составило 31 при статистике, превышающей экспериментальную в 30 раз. Это соответствует ожидаемому фону от процесса $e^+e^- \rightarrow \eta\gamma$ около одного события.

Количество событий моделирования процесса $e^+e^- \to \pi^+\pi^-\pi^0$ близко к числу экспериментальных событий. После применения к ним условий отбора не осталось ни одного события, что соответствует ожидаемому вкладу от процесса $e^+e^- \to \pi^+\pi^-\pi^0$ менее трех событий на уровне достоверности 95%. Малость фона от процесса $e^+e^- \to \pi^+\pi^-\pi^0$, имеющего большое сечение, объясняется тем, что конфигурации конечного состояния с малым углом между пионами динамически подавлены.

Величина фона от процесса $e^+e^- \to \pi^0 \gamma$ определяется вероятностью конверсии фотона в веществе перед дрейфовой камерой. Для оценки точности моделирования конверсии фотона был экспериментально изучен процесс $e^+e^- \to \gamma\gamma$ с конверсией фотона в веществе перед дрейфовой камерой. При анализе также учитывались вклады следующих процессов: $e^+e^- \to e^+e^-\gamma$ с малым углом разлета e^+e^- -пары, $e^+e^- \to e^+e^-\gamma$ с незарегистрированным мягким электроном и $e^+e^- \to e^+e^-$ с одним из электронов, ошибочно идентифицированным как фотон. Вклад первого процесса вычитался по моделирован

нию, а двух последних — подавлялся с помощью условий на число сработавших проволочек в дрейфовой камере и величину dE/dx в слоях дрейфовой камеры. В результате проведенного сравнения с моделированием определена поправка к вероятности конверсии в веществе перед дрейфовой камерой

$$\kappa = \frac{N_{exp}^{conv}}{N_{mc}^{conv}} = 0.82 \pm 0.04$$

При этом характерная величина вероятности конверсии фотонов составляет около 1 % при нормальном падении.

Кроме описанного фона от резонансных процессов имеется фон от процессов квантовой электродинамики (КЭД): $e^+e^- \rightarrow e^+e^-\gamma$ с одним электроном, ошибочно идентифицированным как фотон, или с фоновым фотоном, наложившимся на событие с малым углом между заряженными частицами, $e^+e^- \rightarrow 3\gamma$ с конверсией одного из фотонов в веществе перед дрейфовой камерой, $e^+e^- \rightarrow e^+e^-\gamma\gamma$ с малым углом разлета e^+e^- -пары. Суммарный вклад от этих процессов, отличающихся от изучаемого энергетической зависимостью сечения, определялся при аппроксимации наблюдаемого сечения.

3.3. Параметризация сечения

Зависимость видимого сечения от *s* параметризовалась следующим образом:

$$\begin{aligned} \sigma_{tot}(s) &= \epsilon \sigma_{\pi^0 e^+ e^-}(s)(1 + \delta_{\pi^0 e^+ e^-}) + \\ &+ \kappa \epsilon_{\pi^0 \gamma} \sigma_{\pi^0 \gamma}(s)(1 + \delta_{\pi^0 \gamma}) + \sigma_{QED}^{vis}(E_0) \frac{E_0^2}{s} \end{aligned}$$

где $\epsilon \to \varphi \Phi$ ективность регистрации событий процесса $e^+e^- \to \pi^0 e^+ e^-$, $\epsilon_{\pi^0\gamma} \to \varphi \Phi$ ективность регистрации процесса $e^+e^- \to \pi^0\gamma$, κ — поправка к вероятности конверсии фотона в моделировании, $\delta_{\pi^0e^+e^-}$, $\delta_{\pi^0\gamma} \to p$ адиационные поправки к сечениям соответствующих процессов, $E_0 = 760$ МэВ. Первый член суммы описывает сечение исследуемого процесса, второй член — сечение процесса $e^+e^- \to \pi^0\gamma$ с конверсией фотона в веществе перед дрейфовой камерой, третий член — вклад процессов квантовой электродинамики.

В модели векторной доминантности сечение процесса $\sigma_{\pi^0 e^+ e^-}(s)$ описывается следующим образом:

$$\sigma_{\pi^0 e^+ e^-}(s) = \frac{F(s)}{s^{3/2}} \left| \sum_{V=\rho,\omega,\phi} A_V \right|^2,$$
$$F(s) = \left(\frac{s - m_{\pi^0}^2}{2\sqrt{s}}\right)^3,$$

$$A_V =$$

$$= \sqrt{12\pi \frac{m_V^3 \mathcal{B}(V \to e^+ e^-) \mathcal{B}(V \to \pi^0 e^+ e^-)}{F(m_V^2)}} \frac{\Gamma_V e^{i\varphi_V}}{D_V(s)},$$

где

$$D_V(s) = m_V^2 - s - i\sqrt{s}\,\Gamma_V(s)$$

 m_V — масса мезона V, φ_V — относительная фаза векторного мезона, $\Gamma_V(s)$ — полная ширина векторного мезона как функция энергии. Энергетическая зависимость $\Gamma_V(s)$ вычислялась в соответствии с работой [9]. Массы, ширины и вероятности распадов векторных мезонов в e^+e^- , используемые в приведенных выше формулах, были взяты из работы [10]. Фазы были заданы следующим образом: $\varphi_{\omega} = 0, \varphi_{\rho} = -13^{\circ}, \varphi_{\phi} = 155^{\circ}$ [11]. Сечение процесса $\sigma_{\pi^0\gamma}(s)$ задавалось аналогичным образом. Радиационные поправки вычислялись согласно работе [12].

3.4. Аппроксимация сечения

В описанной выше параметризации сечения параметрами аппроксимации являются вероятности распадов $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$, $\mathcal{B}(\rho \to \pi^0 e^+ e^-)$ и величина видимого сечения КЭД-процессов $\sigma_{QED}^{vis}(E_0)$ при некоторой фиксированной энергии E_0 . Параметры $\mathcal{B}(\rho \to \pi^0 e^+ e^-)$ и $\sigma_{QED}^{vis}(E_0)$ являются коррелированными, поэтому при определении $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$ было зафиксировано отношение

$$\frac{\mathcal{B}(\rho \to \pi^0 e^+ e^-)}{\mathcal{B}(\omega \to \pi^0 e^+ e^-)} = r,$$

где

$$= \frac{\mathcal{B}(\rho \to \pi^0 \gamma)}{\mathcal{B}(\omega \to \pi^0 \gamma)},$$

что эквивалентно предположению равенства отношений вероятностей распадов $\mathcal{B}(\omega \rightarrow \pi^0 e^+ e^-)/\mathcal{B}(\omega \rightarrow \pi^0 \gamma)$ и $\mathcal{B}(\rho \rightarrow \pi^0 e^+ e^-)/\mathcal{B}(\rho \rightarrow \pi^0 \gamma)$.

Аппроксимация сечения проводилась с помощью программы [13]. Результаты, полученные для экспериментов ОМЕ 98 и ОМЕ 00, приведены на рис. 3, 4 и в табл. 2.

События от процесса $e^+e^- \to \pi^0 \gamma$ с конверсией фотона составляют примерно половину от всех событий в пике (рис. 3 и 4). Различие в уровнях фона от процессов квантовой электродинамики в двух экспериментах связано с тем, что в эксперименте OME 00 загрузка трековой системы пучковым фоном была значительно выше, чем в OME 98, из-за чего несколько понизилась эффективность реконструкции треков. В результате увеличился фон от имеющего большое сечение процесса $e^+e^- \to e^+e^-\gamma$.

Рис. 3. Измеренное сечение процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ в эксперименте ОМЕ 98. Точки с ошибками — экспериментальные данные, сплошная кривая — результат аппроксимации

Рис. 4. Измеренное сечение процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ в эксперименте ОМЕ 00. Точки с ошибками — экспериментальные данные, сплошная кривая — результат аппроксимации

Таблица 2. Результаты аппроксимации измеренного сечения

Экспе- римент	$\mathcal{B}(\omega \to \pi^0 e^+ e^-) \cdot 10^3$	$\sigma^{vis}_{QED}(E_0)$ нб	χ^2/ndf
OME 98	0.807 ± 0.092	0.017 ± 0.003	31.9/29
OME00	0.734 ± 0.064	0.025 ± 0.003	18.8/29

Рис. 5. Распределения по инвариантной массе двух фотонов $M_{\gamma\gamma}$ при разных значениях энергии в с.ц.м.: a — полный энергетический интервал, $\delta - E_b = 391$ МэВ, $e - E_b = 392$ МэВ, $e - E_b = 393$ МэВ. Гистограмма — экспериментальные события, кривая — результат аппроксимации

Также была изучена зависимость полученной вероятности распада $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$ от предположений о величине $\mathcal{B}(\rho \to \pi^0 e^+ e^-)$. Для этого проводилась аппроксимация со значениями $\mathcal{B}(\rho \to \pi^0 e^+ e^-) = 0$ и $\mathcal{B}(\rho \to \pi^0 e^+ e^-) = 1.1 \cdot 10^{-5}$, соответствующими верхнему пределу, полученному в данной работе и описанному ниже в п. 3.5. При этом величина $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$ изменялась менее чем на одно стандартное отклонение.

3.5. Поиск распада $ho ightarrow \pi^0 e^+ e^-$

При наличии заметного фона от процессов КЭД результаты аппроксимации для величин $\mathcal{B}(\rho \to \pi^0 e^+ e^-)$ и $\sigma_{QED}^{vis}(E_0)$ сильно коррелированы. Поэтому для измерения вероятности распада $\rho \to \pi^0 e^+ e^-$ необходимо полностью подавить фон от событий процессов КЭД. События искомого процесса можно отделить от фона, считая инвариантную массу фотонов равной массе π^0 -мезона. Для этого в каждой точке по энергии спектр инва-

риантной массы фотонов $M_{\gamma\gamma}$ аппроксимировался суммой гауссова распределения, соответствующего событиям с π^0 -мезоном, и полинома второй степени, описывающего фон от процессов КЭД:

$$f(x) = \frac{N_{\pi^0}}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right) + (a_0 + a_1 x + a_2 x^2).$$

Свободными параметрами аппроксимации являлись полное число событий в пике N_{π^0} и параметры полинома a_i . Параметры σ и x_0 фиксировались на значениях, полученных при аппроксимации суммарного спектра $M_{\gamma\gamma}$ для всех энергий. Результаты аппроксимации для нескольких точек по энергии показаны на рис. 5.

В результате описанной выше процедуры в каждой энергетической точке было получено число событий $\pi^0 e^+ e^-$. Аппроксимация полученного видимого сечения была проведена с использованием параметризации, описанной в п. 3.3. Результаты приведены в табл. 3 и на рис. 6.

Точность определения вероятности распада

Эксперимент	$\mathcal{B}(\omega \to \pi^0 e^+ e^-) \cdot 10^3$	$\mathcal{B}(\rho \to \pi^0 e^+ e^-) \cdot 10^6$	$\sigma_{QED}^{vis}(E_0),$ нб	χ^2/ndf
$\mathrm{OME}98+00$	0.756 ± 0.123	$\mathcal{B}_{\rho \to \pi^0 ee} = r \mathcal{B}_{\omega \to \pi^0 ee}$	0.0 ± 0.0005	43.6/55
$\mathrm{OME}98+00$	0.802 ± 0.154	0.0 ± 6.2	0 (фиксир.)	42.6/55

Таблица 3. Результаты аппроксимации сечения для измерения вероятности распада $ho o \pi^0 e^+ e^-$

Рис. 6. Измеренное сечение процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ для определения $\mathcal{B}(\rho \rightarrow \pi^0 e^+e^-)$. Точки с ошибками — экспериментальные данные, сплошная кривая — результат аппроксимации

 $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$ в данном методе ниже, чем в описанном выше, поскольку вычитание фона из процессов КЭД проводится независимо в каждой энергетической точке, что ведет к увеличению статистической погрешности. Результат аппроксимации полученного таким образом видимого сечения процесса $e^+e^- \to \pi^0 e^+e^-$ (табл. 3) при фиксированном отношении вероятностей распадов r подтверждает отсутствие остаточного фона от процессов КЭД.

Систематическая ошибка в определении эффективности регистрации процесса $\rho \to \pi^0 e^+ e^-$ составляет примерно 5 %. Для определения вклада ошибки эффективности регистрации в систематическую ошибку вероятности распада $\mathcal{B}(\rho \to \pi^0 e^+ e^-)$ была проведена аппроксимация с разными значениями эффективности (±5 %). В итоге было получено значение

$$\mathcal{B}(\rho \to \pi^0 e^+ e^-) = (0.0 \pm 6.2 \pm 3.2) \cdot 10^{-6},$$

что позволяет установить верхний предел (согласно работе [14]): $\mathcal{B}(\rho \to \pi^0 e^+ e^-) < 1.2 \cdot 10^{-5}$ (90 % CL).

Рис.7. Распределения по инвариантной массе e^+e^- -пары для процессов $e^+e^- \to \pi^0 e^+e^-$ (1), $e^+e^- \to \pi^+\pi^-\pi^0$ (2), $e^+e^- \to e^+e^-\gamma\gamma$ (3) и эксперимента (4). Моделирование нормировано на светимость в эксперименте

3.6. Систематические погрешности $\mathcal{B}(\omega o \pi^0 e^+ e^-)$

Полная систематическая погрешность измерения вероятности распада $\omega \to \pi^0 e^+ e^-$ определяется следующими источниками: точность измерения светимости — 2 %, статистическая погрешность моделирования процесса $e^+e^- \to \pi^0 e^+ e^- - 2$ %, статистическая точность определения вероятности конверсии на основе моделирования процесса $e^+e^- \to \pi^0\gamma - 4$ %, точность определения экспериментальной поправки к вероятности конверсии — 5 %, неопределенность формы энергетической зависимости фона от процессов КЭД при аппроксимации сечения — 1%.

Для оценки систематической погрешности $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$, связанной с выбором формы КЭД-подложки, была проведена аппроксимация в предположении постоянного сечения КЭД. Изменение величины вероятности распада $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$ составило около 1%, что и было учтено в полной систематической погрешности.

Существует также модельная зависимость эффективности регистрации, связанная с неопределен-

Рис.8. *а*) Переходный формфактор |*F*(*q*)|, точки — результат настоящей работы, кривая — теоретическое ожидание [4]. *б*) Сравнение результатов измерений переходного формфактора |*F*(*q*)|: • — данная работа (СНД), $\Delta - \text{КМД-2}$ [2], ▼ — измерение в распаде $\omega \to \pi^0 \mu^+ \mu^-$ [3], кривая — теоретическое ожидание [4]

ностью величины переходного формфактора F(q). В моделировании использовалась следующая параметризация формфактора:

$$F(q) = \frac{1}{1-q^2/\Lambda^2}$$

 $1/\Lambda^2 = 1.7 \, \Gamma
m s B^{-2}$ [4]. Для оценки влияния величины Λ на определение вероятности распада $\mathcal{B}(\omega \to \pi^0 e^+ e^-)$ было проведено моделирование при разных значениях Λ :

1) |F| = 1 (формфактор отсутствует);

2) $1/\Lambda^2 = 2.5 \ \Gamma \Im B^{-2}$ (соответствует результату, полученному в работе [2]).

При этом изменение эффективности регистрации составило 2.5%. Таким образом, систематическая ошибка, связанная с неопределенностью переходного формфактора, составляет 2.5%.

Кроме того, имеется вклад в систематическую ошибку, связанный с моделированием критериев отбора событий. Из-за малого количества экспериментальных событий процесса $e^+e^- \rightarrow \pi^0 e^+e^$ исследование вкладов в систематическую ошибку по каждому из параметров, использованному при отборе, проводилось на событиях КЭД-процесса $e^+e^- \rightarrow e^+e^-\gamma$, который имеет большое сечение и сходное конечное состояние. Погрешность определялась из изменения отношения числа отобранных событий в эксперименте и моделировании при варьировании ограничений на соответствующий параметр. Таким образом, было показано, что ограничение на полное нормированное энерговыделение в событии E_{tot}/\sqrt{s} дает вклад в систематическую погрешность 0.15 %, на полный нормированный импульс $P_{tot}/E_{tot} - 0.2$ %, на полярный угол заряженной частицы -1.3 %, на полярные углы фотонов -1.5 %, на энергию заряженной частицы -0.6 %, на энергию фотонов -2 %, на величину χ^2 кинематической реконструкции -2 %. В итоге суммарная систематическая ошибка, связанная с условиями отбора, составила 3.8 %, а полная систематическая погрешность -8.4 %.

4. ИЗМЕРЕНИЕ ПЕРЕХОДНОГО ФОРМФАКТОРА

Для измерения переходного формфактора необходимо провести изучение событий с большим углом разлета электрон-позитронной пары, при этом в трековой системе СНД регистрируются два трека от заряженных частиц. В данной конфигурации событий присутствует фон от процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$, который имеет полное сечение в 1500 раз больше, чем процесс $e^+e^- \rightarrow \pi^0 e^+e^-$.

Однако в области инвариантных масс e^+e^- -пары $M_{ee} < 170$ МэВ количество событий от процесса $e^+e^- \to \pi^0 e^+ e^-$ превышает количество событий фо-

	$40~{\rm M}{\scriptscriptstyle 9}{\rm B} < M_{ee} < 110~{\rm M}{\scriptscriptstyle 9}{\rm B}$	110 Мэ B $< M_{ee} < 170$ МэВ
Число эксперим. соб. N _{exp}	53 ± 7	67 ± 8
Фон от $e^+e^- \rightarrow \pi^+\pi^-\pi^0$	5 ± 3	18 ± 5
Фон от $e^+e^- \rightarrow e^+e^-\gamma\gamma$	5 ± 1	8 ± 2
Фон от $e^+e^- o \pi^0 \gamma$	9 ± 1	0
Результ. число $e^+e^- \rightarrow \pi^0 e^+e^-$	34 ± 8	41 ± 10

Таблица 4. Количество зарегистрированных событий и расчетных фоновых событий в двух областях по инвариантной массе e^+e^- -пары

Таблица 5. Результат измерения переходного формфактора |F| в трех областях по инвариантной массе e^+e^- -пары

	$M_{ee} < 40 \ {\rm M}$ эВ	$40~{\rm M} {\rm yB} < M_{ee} < 110~{\rm M} {\rm yB}$	110 Мэ B $< M_{ee} < 170$ МэВ
F	1.01 ± 0.06	1.06 ± 0.13	1.19 ± 0.18

новых процессов (рис. 7) и можно измерить величину переходного формфактора. Эта область была разбита на три части: M_{ee} < 40 МэВ (эта область соответствует событиям с одним треком), 40 МэВ < $<~M_{ee}~<~110~{\rm M}$ э
В $~и~110~{\rm M}$ э
В $<~M_{ee}~<~170~{\rm M}$ э
В. Для событий с M_{ee} < 40 МэВ количество событий процесса $e^+e^- \rightarrow \pi^0 e^+e^-$ определялось из результатов аппроксимации сечения (см. п. 3.4) и составило $N~=~493~\pm~34$ событий. Для событий с 40 Мэ
B < $< M_{ee} < 110$ МэВ и 110 МэВ $< M_{ee} < 170$ МэВ применялись условия отбора, аналогичные описанным в п. 3.1, но требовалось наличие двух заряженных центральных треков. Количество зарегистрированных экспериментальных событий и количество событий от фоновых процессов, определенное с помощью моделирования, приведены в табл. 4.

Используя измеренное количество экспериментальных и фоновых событий в каждом диапазоне по M_{ee} в приведенной ниже формуле, можно получить значения переходного формфактора:

$$|F|^{2} = \frac{N_{exp} - N_{bg}}{N_{\omega}\mathcal{B}(\omega \to \pi^{0}e^{+}e^{-}) \int\limits_{q_{min}}^{q_{max}} w(q)\epsilon(q) \, dq},$$

где N_{exp} — число зарегистрированных событий, N_{bg} — суммарное число фоновых событий, N_{ω} число рожденных в эксперименте ω -мезонов, $\mathcal{B}(\omega \rightarrow \pi^0 e^+ e^-)$ — вероятность распада, измеренная в данной работе, $q = M_{ee}$, w(q) — плотность вероятности, взятая из результатов моделирования, проведенного согласно формулам из работы [4] при условии |F| = 1, $\epsilon(q)$ — зависимость эффективности регистрации процесса $\omega \to \pi^0 e^+ e^-$ от инвариантной массы e^+e^- -пары в данном диапазоне по M_{ee} . Полученные значения переходного формфактора |F(q)| приведены в табл. 5 и на рис. 8*a*. Данные согласуются с предыдущими измерениями [2, 3] и теоретическим расчетом. Результаты сравнения измеренного формфактора |F(q)| с полученными ранее значениями показано на рис. 8*b*.

5. ЗАКЛЮЧЕНИЕ

В работе измерена вероятность распада $\omega \to \pi^0 e^+ e^- :$

$$\mathcal{B}(\omega \to \pi^0 e^+ e^-) = (0.761 \pm 0.053 \pm 0.064) \cdot 10^{-3}.$$

Полученный результат хорошо согласуется с теоретическими расчетами [4, 5] и результатами предыдущих измерений [1, 2]. Установлен верхний предел вероятности распада $\rho \to \pi^0 e^+ e^-$:

$$\mathcal{B}(\rho \to \pi^0 e^+ e^-) < 1.2 \cdot 10^{-5} (90 \% \text{ CL}).$$

В трех диапазонах по инвариантной массе e^+e^- -пары измерена величина переходного формфактора, значение которого не противоречит теоретическому ожиданию [4].

Работа выполнена при частичной финансовой поддержке РФФИ (гранты №№ 06-02-16294-а, 06-02-16192-а).

ЛИТЕРАТУРА

- 1. С. И. Долинский и др., ЯФ 48, 442 (1988).
- 2. R. R. Akhmetshin et al., Phys. Lett. B 613, 29 (2005).
- 3. R. I. Dzhelyadin, Phys. Lett. B 102, 296 (1981).
- 4. L. G. Landsberg, Phys. Rep. 128, 301 (1985).
- 5. M. Hashimoto, arXiv:hep-ph/9605422.
- I. A. Koop et al., Physics and Detectors for DAPHNE, Frascati (1999), p. 393.
- M. N. Achasov et al., Nucl. Instr. Meth. A 449, 125 (2000).

- 8. M. N. Achasov et al., Phys. Rev. D 68, 052006 (2003).
- N. N. Achasov et al., Int. J. Mod. Phys. A 7, 3187 (1992).
- 10. S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
- 11. M. N. Achasov et al., Phys. Lett. B 559, 171 (2003).
- 12. E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985).
- 13. A. V. Bozhenok et al., Preprint BINP 99-103 (1999).
- 14. G. I. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).