КАСКАДНОЕ РОЖДЕНИЕ ВСЕЛЕННЫХ В МНОГОМЕРНЫХ ПРОСТРАНСТВАХ

С. Г. Рубин*

Московский инженерно-физический институт 115409, Москва, Россия

Поступила в редакцию 30 октября 2007 г.

Рассмотрен механизм образования вселенных с существенно различающимися свойствами в рамках чистой гравитации в пространстве D > 4 измерений. Обсуждается возникновение планковского масштаба и его связь с массой инфлатона.

PACS: 04.50.-h, 04.50.Cd, 04.50.Kd

1. ВВЕДЕНИЕ

Динамика нашей Вселенной хорошо описывается современной теорией, содержащей 30-40 параметров. Число этих параметров, значения которых определяются экспериментально, слишком велико, чтобы считать теорию окончательной. Кроме того, известно, что для рождения и существования таких сложных структур, как наша Вселенная, область допустимых значений параметров должна быть крайне узкой (тонкая настройка параметров), что является трудно объяснимым фактом. Обсуждению данной проблемы посвящена обширная литература [1]. Один из путей решения основан на предположении о множественности вселенных с различными свойствами [2-4]. Богатые возможности для обоснования этого предположения содержатся в самой идее многомерности нашего пространства. Число дополнительных измерений давно является предметом дискуссий. Так, модель Калуцы-Клейна первоначально содержала одно дополнительное измерение. Сейчас уже обсуждаются, например, пространства бесконечной размерности [5] и даже пространства переменной размерности [6]. В настоящей статье понятие суперпространства расширяется до набора суперпространств с различным, не ограниченным сверху числом измерений. На основе введенного расширенного суперпространства предложены механизм образования вселенных с существенно различающимися свойствами и механизм появления планковского масштаба. Обсуждается вероятность квантовых переходов, в результате которых образуются подпространства меньшей размерности.

Определим суперпространство $\mathcal{M}_D = (M_D; g_{ij})$ как набор метрик g_{ij} в пространстве M_D с точностью до диффеоморфизмов. На пространственноподобном сечении Σ введем метрику h_{ij} (см. детали в книге [7] и в обзоре [8]) и определим пространство всех римановых (D-1)-метрик:

$$\operatorname{Riem}(\Sigma) = \{h_{ij}(x) | x \in \Sigma\}$$

Амплитуда перехода от одного произвольно выбранного сечения Σ_{in} с соответствующей метрикой h_{in} к другому сечению Σ_f с метрикой h_f есть

$$A_{f,in} = \langle h_f, \Sigma_f | h_{in}, \Sigma_{in} \rangle = \int_{h_{in}}^{h_f} Dg \exp[iS(g)].$$
(1)

Здесь и далее используются единицы $\hbar = c = 1$. Топологии сечений Σ_{in} и Σ_f могут быть различны. Нас будут интересовать квантовые переходы, при которых топология гиперповерхности Σ_f представляет собой прямое произведение подпространств $M_{D-1-d} \otimes M_d$. Пространство M_d предполагается компактным. Далее будет исследовано, какой класс геометрий на гиперповерхности Σ_f может инициировать классическую динамику.

Все рассмотрение проводится в рамках нелинейной гравитации в пространстве D > 4 измерений без включения полей материи. Обсуждается возникновение планковского масштаба и его связь с массой

^{*}E-mail: sergeirubin@list.ru

инфлатона. Редукция в пространства меньшей размерности осуществляется в несколько этапов, образуя каскад. Различные каскады приводят к формированию четырехмерных пространств с различными эффективными теориями и различным числом дополнительных измерений.

Параметры низкоэнергетической теории оказываются зависящими от топологии дополнительных пространств и варьируются в широких пределах (см. также [9, 10]), несмотря на то, что параметры исходной теории фиксированы. Это касается и таких фундаментальных понятий, как, например, масса Планка и топология дополнительного пространства.

Отсутствие полей материи, постулируемое в статье изначально, является принципиальным моментом. Предполагается, что при низких энергиях компоненты метрического тензора дополнительного (супер)пространства будут интерпретироваться как поля материи в духе теорий типа теории Калуцы – Клейна.

2. ОБРАЗОВАНИЕ ПРОСТРАНСТВА-ВРЕМЕНИ СОВМЕСТНО С ПАРАМЕТРАМИ ТЕОРИИ

Первоначально понятие суперпространства означало набор различных геометрий [11], затем в него был включен набор всевозможных топологий [7]. Сделаем следующий шаг и расширим суперпространство за счет добавления пространств различной размерности. Более точно, определим расширенное суперпространство Е как прямое произведение суперпространств \mathcal{M} различных размерностей:

$$\mathbf{E} = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \mathcal{M}_3 \otimes \ldots \otimes \mathcal{M}_D \dots$$
(2)

Здесь \mathcal{M}_n — суперпространство размерности $n = 1, 2, \ldots$, являющееся набором всевозможных геометрий (с точностью до диффеоморфизмов) и топологий.

Квантовые флуктуации порождают различные геометрии в каждом из суперпространств (пространственно-временная пена) [11, 7]. Вероятность квантового рождения «долгоживущих» 3-геометрий и условия, при которых это происходит, обсуждаются ниже в разд. 4. В данном разделе мы рассмотрим следствия гипотезы о существовании расширенного суперпространства.

Выберем пространство M_D некоторой размерности. Его топологическая структура может меняться под влиянием квантовых флуктуаций [7, 12]. В частности, возможны топологии, допускающие расслоения пространства пространственноподобными поверхностями Σ , что подразумевается в выражении для амплитуды перехода (1). В дальнейшем рассматриваются пространства, допускающие разбиение вида

$$M_D = \mathbb{R} \otimes M_{D-1}^{(space)}, \tag{3}$$

где \mathbb{R} — времениподобное направление.

Конкретизируем топологию и метрику на пространственноподобном сечении Σ_f амплитуды (1), подчинив их следующим условиям:

а) топология сечения Σ_f имеет вид прямого произведения

$$\Sigma_f = M_{D-1}^{(space)} = M_{D_1} \otimes M_{d_1}, \tag{4}$$

где D_1 и d_1 — размерности соответствующих подпространств (здесь и далее компактное подпространство обозначается как M_{d_n} , n = 1, 2, ...);

б) выполняется условие для кривизны подпространств M_{D_1} и M_{d_1} :

$$R_{D_1}(g_{ab}) \ll R_{d_1}(\gamma_{ij}); \tag{5}$$

в) в наборе подпространств M_{d_1} выберем максимально симметричные пространства с постоянной кривизной R_{d_1} , которая связана с параметром кривизны k обычным образом:

$$R_{d_1}(\gamma_{ij}) = kd_1(d_1 - 1). \tag{6}$$

В остальном топология и геометрия подпространства M_{D_1} произвольны.

Выберем динамические переменные и форму лагранжиана. Метрику пространства M_D запишем в виде [13]

$$ds^{2} = G_{AB}dX^{A}dX^{B} =$$

$$= g_{ac}(x)dx^{a}dx^{c} - b^{2}(x)\gamma_{ij}(y)dy^{i}dy^{j} =$$

$$= dt^{2} - h_{\alpha\beta}dx^{\alpha}dx^{\beta} - b^{2}(x)\gamma_{ij}(y)dy^{i}dy^{j}.$$
 (7)

Здесь g_{ac} — метрика подпространства $\mathbb{R} \otimes M_{D_1}$ с сигнатурой (+ - - - ... -), b(x) — радиус кривизны компактного подпространства M_{d_1} , а $\gamma_{ij}(y)$ — его положительно определенная метрика. Для заданного расслоения пространства пространственноподобными поверхностями всегда можно выбрать нормальные гауссовы координаты, что и использовано в последнем равенстве (7).

Действие Эйнштейна – Гильберта для гравитационного поля, линейное по кривизне *R*, полностью описывает физические явления при низких энергиях, когда важна гравитация. Однако очевидно, что квантовые эффекты неизбежно приводят к нелинейным поправкам в выражении для действия [14]. При этом действие содержит слагаемые с высшими производными в виде полиномов различных степеней по скаляру Риччи и другим инвариантам. Таким образом, какое бы гравитационное действие мы ни приняли за основу, после учета квантовых поправок оно приобретает вид

$$S = \int d^{N} x \left(R + \varepsilon_{1} R^{2} + \varepsilon_{2} R^{3} + \varepsilon_{3} R^{4} + \dots + \alpha_{1} R_{AB} R^{AB} + \dots \right)$$

с набором неизвестных коэффициентов, зависящих от топологии пространства [15–17]. Однако проблема не так остра, поскольку нелинейные по скаляру Риччи теории могут быть сведены конформным преобразованием к линейной теории [18]. Более того, в статьях [19] предлагается более общий способ приведения произвольных лагранжианов к стандартному виду Эйнштейна – Гильберта в пределе низких энергий. При этом оказывается, что проблема стабилизации размеров дополнительных измерений [13] становится вполне решаемой.

Таким образом, при учете квантовых явлений неизбежно использование теорий с высшими производными. При низких энергиях такие теории способны давать те же предсказания, что и общая теория относительности, и при этом обладают более богатыми возможностями. Для простоты ограничимся действием, квадратичным по скаляру Риччи:

$$S_D = \frac{1}{2} \int d^D X \sqrt{-G} \left[R_D(G_{AB}) + CR_D(G_{AB})^2 - 2\Lambda \right] + \int_{\partial M_D} K d^{D-1} \Sigma. \quad (8)$$

Вклад от границы ∂M_D представляет собой слагаемое, введенное Хокингом и Гиббонсом (K — след второй фундаментальной формы границы [20]). В дальнейшем анализе параметры C и Λ полагаются фиксированными, а все многообразие низкоэнергетических теорий, порождаемых действием (8), возникает благодаря различным способам редукции к пространствам меньшей размерности.

Поскольку рассуждения проводятся в рамках чисто геометрического подхода, в теории (8) масштаб изначально не фиксирован, а параметры C и Λ безразмерны. В следующем разделе обсуждается возникновение планковского масштаба при низких энергиях.

Как было показано в работах [19, 21], теория (8) позволяет получить компактное стабильное пространство дополнительных измерений с ненулевой плотностью энергии вакуума. Наблюдаемое малое значение энергии вакуума требует чрезвычайно тонкой подгонки параметров С и Л. Ниже предлагается механизм, позволяющий естественным образом варьировать параметры эффективной теории в широких пределах. При этом в каждой вселенной, образующейся в результате квантовой флуктуации, значения параметров уникальны. Это означает, что существует доля вселенных с требуемыми значениями параметров и, следовательно, энергии вакуума. Таким образом, малость плотности темной энергии в нашей Вселенной означает малость доли вселенных, похожих на нашу.

Вернемся к вопросу о механизме варьирования параметров. Благодаря специальному виду выбранной метрики (7) (см. [13]) имеют место следующие соотношения:

$$\sqrt{-G} = b^{d_1} \sqrt{-g} \sqrt{\gamma},\tag{9}$$

$$R_D(G_{AB}) = R_{D_1}(g_{ac}) + b^{-2}R_{d_1}(\gamma_{ij}) + K_b, \qquad (10)$$

$$K_b \equiv -2d_1 b^{-1} g^{ac} \nabla_a \nabla_c b - - d_1 (d_1 - 1) b^{-2} g^{ac} (\nabla_a b) (\nabla_c b). \quad (11)$$

Ковариантная производная ∇ действует в пространстве M_{D_1} . Объем V_{d_1} дополнительного пространства M_{d_1} зависит от его топологии, поскольку выражается через внутреннюю метрику:

$$V_{d_1} = \int d^{d_1} y \sqrt{\gamma}.$$
 (12)

Для удобства введем скалярное поле

$$\phi(x) = b(x)^{-2} R_{d_1}(\gamma_{ij}), \qquad (13)$$

в терминах которого действие принимает вид

$$S_{D} = \frac{V_{d_{1}}}{2} \int d^{D_{1}} x \sqrt{-g} \left(\frac{R_{d_{1}}}{\phi(x)}\right)^{d_{1}/2} \{R_{D_{1}}(g_{ab}) + 2C\phi(x)R_{D_{1}}(g_{ab}) + CR_{D_{1}}(g_{ab})^{2} - 2\Lambda + \phi(x) + C\phi(x)^{2} + 2CK_{b} [R_{D_{1}}(g_{ab}) + \phi(x)] + K_{b} + CK_{b}^{2} \}.$$
(14)

Поскольку поле ϕ однозначно связано с радиусом кривизны b(x) компактного пространства M_{d_1} , наличие стационарных решений $\phi(x) = \phi_m$, минимизирующих действие, означало бы стабильность размеров этого пространства.

В рамках подхода Йордана, согласно (14), имеем

$$S_D = \frac{1}{2} \int d^{D_1} x \sqrt{-g} \left[f(\phi) R_{D_1}(g_{ab}) + C_J(\phi) R_{D_1}(g_{ab})^2 - 2U_J(\phi) + K_J(\phi) \right], \quad (15)$$

$$f(\phi) = \mathcal{V}_{d_1}\phi(x)^{-d_1/2} \left[1 + 2C\phi(x)\right], \qquad (16)$$

$$U_J(\phi) = \mathcal{V}_{d_1}\phi(x)^{-d_1/2} \left[\Lambda - \frac{1}{2} \left(\phi(x) + C\phi(x)^2 \right) \right], \quad (17)$$

$$C_J(\phi) = \mathcal{V}_{d_1}\phi(x)^{-d_1/2}C,$$
 (18)

$$K_J(\phi) = \mathcal{V}_{d_1} \phi(x)^{-d_1/2} \times \\ \times \left[K_b + 2CK_b(R_{D_1} + \phi(x)) + CK_b^2 \right], \quad (19)$$

$$\mathcal{V}_{d_1} = V_{d_1} R_{d_1}^{d_1/2}. \tag{20}$$

Отметим явную зависимость параметров получившейся эффективной теории от топологии дополнительного пространства.

Масса m_{ϕ} кванта скалярного поля $\phi(x)$ пропорциональна второй производной потенциала в минимуме (в рамках подхода Эйнштейна) и может варьироваться в широких пределах. Отметим, что определенная таким образом масса является безразмерной величиной. Наиболее интересны три ситуации.

 Минимум потенциала отсутствует, что означает нестационарность размера дополнительного пространства.

2) Минимум потенциала существует и выполняется условие

$$m_{\phi}^2 \le R_{D_1}(g_{ab}),$$
 (21)

при котором скалярное поле эволюционирует вместе с метрикой «основного» подпространства M_{D_1} . Именно такая ситуация реализуется в инфляционных моделях и обсуждается в следующем разделе.

 Минимум потенциала существует и выполняется условие

$$m_{\phi}^2 \gg R_{D_1}(g_{ab}). \tag{22}$$

В этом случае скалярное поле $\phi(x)$ быстро релаксирует к минимуму потенциала,

$$\phi(x) = \phi_m = \text{const},\tag{23}$$

и не меняется со временем при низкоэнергетических процессах.

Третий случай является наиболее естественным, поскольку время релаксации пропорционально масштабу дополнительного пространства M_{d_1} , малому по сравнению с масштабом пространства M_{D_1} . Обсудим подробнее эту ситуацию. Полагая выполненным условие (23), проведем конформное преобразование вида (см., например, [22])

$$g_{ab} = |f(\phi_m)|^{-\frac{2}{D_1 - 2}} \tilde{g}_{ab},$$

$$R_{D_1} = |f(\phi_m)|^{\frac{2}{D_1 - 2}} \tilde{R}_{D_1},$$

$$\sqrt{-g} = |f(\phi_m)|^{-\frac{D_1}{D_1 - 2}} \sqrt{-\tilde{g}},$$
(24)

которое, будучи примененным к выражению (15), возвращает нас к начальному виду действия (в выражениях (25) тильды для краткости опущены):

$$S_{D_{1}} = \frac{1}{2} \int d^{D_{1}} x \sqrt{-g} \times \\ \times \left[R_{D_{1}}(g_{ab}) + C_{D_{1}} R_{D_{1}}(g_{ab})^{2} - 2\Lambda_{D_{1}} \right], \\ C_{D_{1}} = |f(\phi_{m})|^{(4-D_{1})/(D_{1}-2)} C_{J}(\phi_{m}) = \\ = \operatorname{sign}(f) \mathcal{V}_{d_{1}} |f(\phi_{m})|^{(4-D_{1})/(D_{1}-2)} \phi_{m}^{-d_{1}/2} C, \quad (25) \\ \Lambda_{D_{1}} = |f(\phi_{m})|^{-D_{1}/(D_{1}-2)} U_{J}(\phi) = \\ = \operatorname{sign}(f) \mathcal{V}_{d_{1}} |f(\phi_{m})|^{-D_{1}/(D_{1}-2)} \phi_{m}^{-d_{1}/2} \times \\ \times \left[\Lambda - \frac{1}{2} \left(\phi_{m} + C \phi_{m}^{2} \right) \right].$$

Напомним, что мы рассматриваем случай, когда выполнено условие (23), т.е. когда поле ϕ уже находится в минимуме, $\phi = \phi_m$, а кинетическим слагаемым можно пренебречь.

Вид действия (25) совпадает с исходным (8), но уже в подпространстве M_{D_1} и с перенормированными параметрами C_{D_1} и Λ_{D_1} , зависящими от объема V_{d_1} и кривизны R_{d_1} дополнительного пространства M_{d_1} . В табл. 1 и 2 приведены результаты численных расчетов. Однако предварительно необходимо сделать замечание. Обычное предположение $V_d \sim L^d$ (где L — характерный размер пространства) справедливо для «простых» пространств с положительной кривизной (типа *d*-мерных сфер). Для компактных гиперболических пространств ситуация является более интересной. Связь объема и характерного размера определяется асимптотическим соотношением [23, 24]

$$V_{d_1} \approx \exp\left[\left(d_1 - 1\right) L/b_m\right], \quad L \gg b_m, \qquad (26)$$

где b_m — радиус кривизны компактного пространства, соответствующий значению поля ϕ_m , при котором потенциал принимает минимальное значение.

Таблица 1. Зависимость параметров C_{D_1} и Λ_{D_1} от геометрии дополнительного пространства (фактор \mathcal{V}_{d_1}). Значения фиксированных параметров: $D = D_1 + d_1 = 11$, $D_1 = 4$, $\Lambda = -0.6$, C = -1.9

\mathcal{V}_{d_1}	10^{3}	10^{2}	10	1	10^{-1}	10^{-2}	10^{-3}
C_{D_1}	~ 0	~ 0	~ 0	$-4 \cdot 10^{-13}$	$-4 \cdot 10^{-6}$	-40	$-4 \cdot 10^{8}$
Λ_{D_1}	$-2 \cdot 10^{-6}$	$-2 \cdot 10^{-5}$	$-2 \cdot 10^{-4}$	$-2 \cdot 10^{-3}$	-0.016	-0.16	-1.6

Таблица 2. Зависимость параметров C_{D_1} и Λ_{D_1} от размерности подпространств M_{D_1} и M_{d_1} . В последней строке приведен радиус кривизны b_m дополнительного пространства M_{d_1} . Значения фиксированных параметров: $D = D_1 + d_1 = 40, \ V_{d_1} = 100, \ \Lambda = -0.6, \ C = -1.9$

D_1	4	10	20	30	38
C_{D_1}	~ 0	~ 0	~ 0	~ 0	$-3.5 \cdot 10^{-13}$
Λ_{D_1}	$-8.7 \cdot 10^{-10}$	$-8.4 \cdot 10^{-4}$	-0.025	-0.122	-0.343
b_m	50.2	44.5	39.2	32.8	13.0

Очевидно, что при достаточно большой размерности дополнительного пространства d_1 его объем может быть большим, а характерный размер пространства — малым. Таким образом, мы можем в широких пределах варьировать параметр \mathcal{V}_{d_1} , а вместе с ним и параметры C_{D_1} и Λ_{D_1} , не вступая в противоречие с экспериментальными ограничениями на размер дополнительного пространства. В качестве иллюстрации в табл. 1 и 2 представлены зависимости новых параметров C_{D_1} и Λ_{D_1} от топологии компактного дополнительного пространства M_{d_1} .

Таким образом, для подпространства M_{D_1} имеет место теория, аналогичная исходной, действующей в пространстве M_D , но с другими значениями параметров. Важно то, что хотя исходные параметры С и Λ фиксированы, эффективные «вторичные» параметры $C_{eff} = C_{D_1}$ и $\Lambda_{eff} = \Lambda_{D_1}$ редуцированной теории меняются в широком диапазоне. Конкретные значения эффективных параметров зависят от случайной геометрии и топологии подпространств M_{d_1} и M_{D_1} , сформировавшихся благодаря квантовым флуктуациям. Число различных топологий пространства данной размерности по крайней мере счетно. Следовательно, исходная теория с произвольными, но фиксированными параметрами (в данном случае $C = -1.9, \Lambda = -0.6$) порождает счетное множество редуцированных теорий в пространствах M_{D_1} меньшей размерности, различающихся значениями параметров. Интервал параметров C_{eff} и Λ_{eff} может быть еще более расширен, если принять во внимание последующую редукцию подпространства M_{D_1}

в еще меньшее подпространство *M*_{D₂} ∈ *M*_{D₁}. Это сделано в следующем разделе.

3. КАСКАДНАЯ РЕДУКЦИЯ

Как было показано в предыдущем разделе, редукция исходной теории на пространство меньшей размерности генерирует широкий спектр вторичных теорий, различающихся значениями параметров C_{D_1} и Λ_{D_1} , которые зависят от топологии пространства, возникающего в результате квантовых флуктуаций. Подпространство M_{D_1} , на котором строится эффективная теория (25), как и пространство M_D , подвержено квантовым флуктуациям, которые также приводят к его разбиениям вида

$$M_{D_1} = M_{D_2} \otimes M_{d_2}. \tag{27}$$

Последующие шаги образуют каскад:

$$M_{D_1} \to M_{D_2} \otimes M_{d_2},$$

$$M_{D_2} \to M_{D_3} \otimes M_{d_3} \to \ldots \to M_3 \otimes M_{d_{final}}.$$
(28)

При этом параметры лагранжиана на промежуточных этапах зависят от предыдущих этапов каскада. Поскольку число топологий на каждом этапе по крайней мере счетно, цепочка (28) быстро разветвляется, образуя в конечном итоге бесконечный набор эффективных теорий, различающихся величиной параметров. Имеется бесконечное число путей «спуска» от начального пространства M_D к конечному. Интересующие нас каскады заканчиваются образованием четырехмерных пространств $\mathbb{R} \otimes M_3$ и Обсудим появление в данном подходе планковского масштаба. Поскольку до сих пор мы имели дело с чисто геометрическими свойствами пространств, введение любого масштаба представлялось искусственным. На последнем же этапе каскада (28) возникает наше четырехмерное пространство, а компоненты метрического тензора дополнительного пространства $M_{d_{final}}$ воспринимаются будущими наблюдателями как скалярные и векторные поля. Следовательно, в отличие от предыдущего рассмотрения, кинетическим слагаемым K_J в действии (15) пренебрегать нельзя. Используя низкоэнергетический предел (5), пренебрежем высшими степенями скалярной кривизны R_4 , а в разложении по степеням производных

$$K_J = K(\phi)\partial_\mu \phi \,\partial \phi^\mu + \dots$$

оставим только первые члены. Очевидно, что в этом случае наиболее общий вид действия в рамках подхода Эйнштейна таков (см., например, [25]):

$$S \approx \frac{V_{d_1}}{2} \int d^4x \sqrt{-g} \left[R_4 + K(\phi)(\partial\phi)^2 - 2W(\phi) \right].$$
(29)

Заметим, что объем дополнительного пространства V_{d_1} входит в это выражение явно. Вид функций $K(\phi)$ и $W(\phi)$ зависит от топологии и геометрии дополнительного пространства [19]. Мы же продолжим анализ в общем виде.

Осцилляции поля ϕ вокруг положения равновесия $\phi = \phi_m$ воспринимаются наблюдателем как кванты скалярного поля. Вблизи минимума потенциала min $W(\phi) = W(\phi_m) = W_m$ действие (29) имеет вид

$$S \approx \frac{V_{d_1}}{2} \int d^4x \left[R_4 - K(\phi_m)(\partial \phi)^2 - 2W(\phi_m) - W''(\phi_m) (\phi - \phi_m)^2 \right].$$

Масса m_{ϕ} кванта скалярного поля, ответственного за инфляционный период (инфлатона), измеряется наблюдателем в размерных единицах. В то же время она непосредственно связана с видом эффективного потенциала в эйнштейновском подходе и при стандартном виде кинетического члена. Если кинетический член $K(\phi) > 0$ в области минимума потенциала $W(\phi)$, то замена переменных вида

$$x_{phys} = x \frac{\sqrt{W''(\phi_m)}}{m_\phi \sqrt{K(\phi_m)}},$$

$$\phi_{phys} = (\phi - \phi_m) m_\phi \sqrt{V_{d_1}} \frac{K(\phi_m)}{\sqrt{W''(\phi_m)}}$$
(30)

приводит к теории с обычным кинетическим членом:

$$S = \frac{1}{2} \int d^4 x_{phys} \left[V_{d_1} m_{\phi}^2 \frac{K(\phi_m)}{W''(\phi_m)} R_4 - (\partial \phi_{phys})^2 - m_{\phi}^2 \phi_{phys}^2 - 2\Lambda \right], \quad (31)$$

$$\Lambda \equiv W(\phi_m) V_{d_1} m_{\phi}^4 \frac{K^2(\phi_m)}{W''(\phi_m)^2}.$$
 (32)

Если ввести обозначение

$$M_{Pl}^2 = V_{d_1} m_{\phi}^2 \frac{K(\phi_m)}{W''(\phi_m)},$$
(33)

то мы получим стандартный вид действия для некоторого скалярного поля χ в размерных единицах:

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R_4 + \frac{1}{2} (\partial \chi)^2 - U(\chi) \right], \quad (34)$$
$$U(\chi) = \frac{1}{2} m_{\phi}^2 \chi^2 + \Lambda.$$

При этом наблюдаемая масса Планка связана с параметрами теории посредством формулы (33).

Таким образом, на последнем этапе каскада появляются сразу три масштаба: радиус кривизны дополнительного пространства b_m , масса Планка M_{Pl} (см. (33)) и энергия вакуума Λ (см. (32)), зависящие от массы кванта скалярного поля m_{ϕ} . Как видно, в предложенном подходе масса Планка не является фундаментальной постоянной и зависит от конечной конфигурации каскада.

Космологическая постоянная $\Lambda \propto W(\phi_m)$ зависит от эффективных параметров. Последние могут меняться в широких пределах, как это следует из предыдущего обсуждения (см. табл. 1 и 2). Значит и величина космологической постоянной в пространстве M_4 варьируется в широких пределах в зависимости от свойств каскада (28), в результате которого образовалось это пространство. Некоторые каскады могут, по-видимому, приводить к пространствам M_4 с наблюдаемым значением Λ -члена. Чрезвычайная малость последнего означает, что только лишь малая доля каскадов приводит к желаемому результату. «Тонкая настройка» параметров Вселенной происходит при выборе соответствующего каскада. Вычислим отношение массы Планка к массе инфлатона

$$\frac{M_{Pl}}{m_{\phi}} = \sqrt{V_{d_1} \frac{K(\phi_m)}{W''(\phi_m)}}.$$
(35)

Выбирая подпространство M_{10} из набора (2) и задавая параметры C = -1.9 и $\Lambda = -0.6$ (см. табл. 1 и 2), для размерности дополнительного пространства $d_1 = 6$ получим

$$M_{Pl}/m_{\phi} \approx 2 \cdot 10^6$$
.

Полученное численное значение хорошо согласуется с тем, которое обычно используется в инфляционных моделях.

4. ВЕРОЯТНОСТЬ РОЖДЕНИЯ ВСЕЛЕННЫХ С ДОПОЛНИТЕЛЬНЫМИ КОМПАКТНЫМИ ИЗМЕРЕНИЯМИ

До сих пор мы предполагали, что на структуру пространства наложены свойства (3)–(6). В данном разделе обсуждается возможность появления подобных топологий в результате квантовых флуктуаций. Проблеме квантового рождения Вселенной посвящено множество работ. В данном случае ситуация осложняется тем, что рассматривается нелинейный вариант гравитации и, кроме того, имеются дополнительные измерения, стабильность которых должна учитываться особо. Рождение *n*-мерного пространства с дополнительными измерениями в рамках стандартной гравитации рассматривалось в работах [26, 27], где изучались также и области стабильности компактного подпространства. В работах [21, 26] изучалась возможность инфляции при наличии дополнительных измерений. Квадратичная по скаляру Риччи гравитация исследовалась в этом аспекте в работе [28].

Вероятности рождения Вселенной, получаемые в разных подходах, кардинально отличаются друг от друга [29], что может указывать как на несовершенство современных теорий, так и на сложность предмета. Конечной целью подобных вычислений является определение вероятности появления вселенной нашего типа. Вряд ли стоит ожидать, что эта вероятность высока, учитывая факт тонкой настройки параметров Вселенной. В таком случае вычисление вероятности представляет чисто академический интерес ввиду отсутствия причинных связей между вселенными. По-видимому, на современном этапе для обоснования перспективности исследования необходимо и достаточно доказать, что доля вселенных нашего типа не равна нулю в рамках конкретного подхода. В нашем случае это означает, что вероятность каждого перехода (4) в каскаде отлична от нуля.

Основной вклад в амплитуду перехода (1) дают классические траектории, на которых действие стационарно. Их форма зависит от граничных условий и, в частности, от свойств многообразия Σ_f . В нашем случае метрика на гиперповерхности Σ_f определяется условиями (4)–(6). Поэтому будем искать классические траектории, подчиняющиеся тем же условиям на любом сечении Σ между сечениями Σ_{in} и Σ_f . Начальная гиперповерхность Σ_{in} может либо вовсе отсутствовать (подход Хартля–Хокинга), либо иметь «нулевую геометрию» (интервал между двумя любыми точками этой гиперповерхности равен нулю — подход Виленкина). Ниже показано, что в этих случаях вероятность перехода слабо зависит от свойств гиперповерхности Σ_{in} .

В качестве примера рассмотрим вероятность формирования структуры

$$\Sigma_f = \Sigma_{final} = M_3 \otimes M_{d_{final}},\tag{36}$$

возникающей на последнем этапе каскада. Основной вклад в амплитуду перехода вносят классические траектории. Смена топологии при классическом движении маловероятна. Поэтому для нас будут важны классические траектории, состоящие из гиперповерхностей, также удовлетворяющих условию (36). Тогда топология *D*-мерного риманова пространства между сечениями Σ_{in} и Σ_f есть

$$\mathbb{R} \otimes M_3 \otimes M_{d_{final}}.$$
 (37)

Как и ранее (см. (5)), предполагается выполненным неравенство $R_3 \ll R_{d_{final}}$, которое позволяет воспользоваться результатами предыдущего раздела. Действительно, в использованном приближении действие (8) трансформируется в теорию вида (29), а затем в привычное действие Эйнштейна–Гильберта (34).

Действие (34) неоднократно использовалось для изучения проблемы квантового рождения Вселенной, см., например, [29–34]. Однако в работах, посвященных квантовому рождению Вселенной, наличие скалярного поля обычно постулируется, в то время как в нашем подходе это поле является компонентами метрического тензора дополнительного пространства. Поэтому можно воспользоваться результатами многочисленных исследований, кратко воспроизводя их основные результаты. Квантовое рождение Вселенной изучается обычно в рамках минисуперпространства, в котором интервал записывается как [29]

$$ds^{2} = \sigma^{2} \left[N(t)^{2} dt^{2} - a(t)^{2} d\Omega_{3}^{2} \right],$$

$$\sigma^{2} = \frac{1}{12\pi^{2} M_{Pl}^{2}}$$
(38)

(здесь N(t) — функция хода, a(t) — масштабный фактор). Волновая функция $\psi(a)$ удовлетворяет уравнению Уилера—ДеВитта

$$\left[\frac{\partial^2}{\partial a^2} - W(a)\right]\psi(a) = 0, \tag{39}$$

где потенциал

$$W(a) = a^2(1 - H^2 a^2), \quad a > 0, \quad H = \frac{\sqrt{U(\chi)}}{6\pi M_{Pl}^2}.$$

Рождение Вселенной описывается подбарьерным переходом с запрещенной областью

$$0 < a < H^{-1}.$$
 (40)

Волновая функция в этой области имеет вид [26]

$$\psi(a) \approx \exp\left[\int_{a}^{H^{-1}} \sqrt{-2W(a')} \, da'\right]. \tag{41}$$

Интеграл, входящий в это выражение, плохо определен на нижнем пределе, где $a \to 0$. В этой области не работает приближение $R_3 \ll R_{d_{final}}$, поскольку $R_3 = k/a^2 \to \infty$, и явное выражение для потенциала не определено. Эта же проблема имеет место и в других моделях квантового рождения Вселенной [35]. Тем не менее, вычисленный таким образом интеграл имеет смысл в пределе

$$H \ll M_{Pl},\tag{42}$$

когда область $a \sim 0$ мала по сравнению со всей областью интегрирования. Наша Вселенная образовывалась при $H \sim 10^{-6} M_{Pl}$, так что неравенство (42) выполняется уже на инфляционной стадии. Вывод о слабой зависимости результата от поведения функции вблизи сингулярности подтверждается и в работах других авторов. Так, в работе [28] предлагалась начальная волновая функция вида $\delta(a - a_{in})$, а в работах [33, 34] изучался распад метастабильного вакуума из состояния с фиксированной энергией. В обоих случаях было показано, что начальные условия слабо влияют на вероятность перехода. Подробное обсуждение квантового рождения вселенных в многомерной гравитации содержится в работах [26, 36]. В подходе Виленкина вероятность рождения Вселенной есть

$$dP \propto \exp\left[\frac{+2}{3U(\chi)}\right],$$

в то время как приближение Хартля-Хокинга дает

$$dP \propto \exp\left[\frac{-2}{3U(\chi)}\right]. \label{eq:dP}$$

Величина скалярного поля χ однозначно связана с размером дополнительного пространства, поэтому вероятность рождения дополнительных измерений зависит от их характерного размера. При всех различиях главным в обоих подходах является то, что вероятность события отлична от нуля и, следовательно, доля вселенных с заданными свойствами, образующихся в результате каскада редукций, отлична от нуля.

5. ОБСУЖДЕНИЕ

Существует несколько проблем, решение каждой из которых представляет собой серьезную задачу.

1) Проблемы, связанные с дополнительными измерениями — их число, механизм компактификации, возможность экспериментальной проверки их существования.

2) Проблема нелинейности гравитационного действия, неизбежно возникающей в результате квантовых эффектов.

3) Проблема, связанная с тем, что лишь при некоторых численных значениях параметров теории происходит образование Вселенной со сложной структурой. Вообще говоря, формулировка будущей теории, претендующей на роль «окончательной», не должна содержать конкретных численных значений. В противном случае потребуется еще более общая теория, объясняющая их происхождение.

В настоящей работе показана взаимосвязь этих проблем. При этом оказывается, что совместное их рассмотрение не усложняет, а облегчает понимание путей их решения. Процесс каскадной редукции (28) позволяет получить по крайней мере счетное множество вселенных с различными свойствами. На конечном этапе каскада образуется Вселенная, которая описывается эффективной низкоэнергетической теорией с параметрами, значения которых определяются конкретным каскадом. Значения параметров варьируются в широких пределах, что указывает на возможность решения проблемы тонкой настройки.

Идея каскадной редукции, разработанная в статье, в низкоэнергетическом пределе приводит к тем

ЖЭТФ, том 133, вып. 4, 2008

же результатам, что и теория струн, в рамках которой введено понятие «ландшафта», см., например, [2,4]. «Ландшафтом» обозначается сложная форма потенциала с множеством минимумов, в которых существуют вселенные различных типов. В отличие от теории (супер)струн, механизм каскадной редукции основан лишь на предположении о многомерности пространства и нелинейности действия.

Масса Планка, размер дополнительных измерений и космологическая постоянная оказываются зависящими от конкретного каскада и способа определения масс частиц наблюдателем.

Необходимой составной частью каскадной редукции является возможность квантового рождения вселенных с компактными дополнительными измерениями. В статье обсуждается способ вычисления вероятности такого процесса в рамках гравитационного действия с высшими производными.

Выбор подходящего каскада, образовавшего нашу Вселенную, в настоящей работе не обсуждается. Остается нерешенной также проблема выбора начального лагранжиана. В качестве примера рассмотрен простейший нелинейный по кривизне лагранжиан. Используя подход, предложенный в работе [19], нетрудно обобщить рассмотрение на более сложные формы исходного лагранжиана.

Автор благодарен К. А. Бронникову, В. Д. Иващуку, М. И. Калинину и В. Н. Мельникову за интерес к работе и полезные обсуждения.

ЛИТЕРАТУРА

1. J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle, Clarendon Press, Oxford (1986); M. J. Rees, Our Cosmic Habitat, Princeton Univ. Press, Princeton (2002); N. Bostrom, Anthropic Bias: Observation Selection Effects in Science and Philosophy, Routledge, New York (2002); M. Tegmark, E-print archives astro-ph/0302131; A. Aguirre and M. Tegmark, E-print archives hep-th/0409072; G. L. Kane, M. J. Perry, and A. N. Zytkow, New Astron. 7, 45 (2002); P. Danies, Mod. Phys. Lett. A 19, 727 (2004); C. J. Hogan, in Universe or Multiverse?, ed. by B. J. Carr, Cambridge University Press (2005); E-print archives astro-ph/0407086; W. R. Stoeger, G. F. R. Ellis, and U. Kirchner, E-print archives, astro-ph/0407329; A. Aguirre, in Universe or Multiverse?, ed. by B. Carr, Cambridge University Press (2005); E-print archives astro-ph/0506519; M. Livio and M. J. Rees, Science **309**, 1022 (2005); S. Weinstein, Class. Quant. Grav. 23, 4231 (2006);

E-print archives hep-th/0508006; M. Tegmark et al., Phys. Rev. D **73**, 023505 (2006).

- W. Lerche, D. Lust, and A. N. Schellekens, Nucl. Phys. B 287, 477 (1987).
- S. G. Rubin, in *Chaos Solitons Fractals* Vol. 14, p. 891 (2002); E-print archives astro-ph/0207013;
 S. G. Rubin, Grav and Cosmol. 9, 243 (2003); E-print archives hep-ph/0309184.
- 4. S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68, 046005 (2003); E-print archives hep-th/0301240.
- 5. C. Castro, A. Granik, and M. S. El Naschie, E-print archives hep-th/0004152.
- U. Bleyer, M. Mohazzab, and M. Rainer, E-print archives gr-qc/9508035.
- Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*, W. H. Freeman and Company, San Francisco (1973).
- D. L. Wiltshire, in Cosmology: the Physics of the Universe, ed. by B. Robson, N. Visvanathan, and W. S. Woolcock, World Scientific, Singapore (1996), p. 473; E-print archives gr-qc/0101003.
- 9. S. Coleman, Nucl. Phys. B 307, 867 (1988).
- H. Firouzjahi, S. Sarangi, and S.-H. Henry Tye, E-print archives hep-th/0406107.
- J. A. Wheeler in *Groups and Topology*, ed. by B. S and C. M. DeWitt, Gordon and Breach, New York (1963).
- M. Yu. Konstantinov, Int. J. Mod. Phys. D 7, 1 (1998);
 E-print archives gr-qc/9508050.
- 13. S. M. Carroll et al., E-print archives hep-th/0110149.
- 14. J. F. Donoghue, Phys. Rev. D 50, 3874 (1994).
- 15. A. Strominger, Phys. Rev. D 24, 3082 (1981).
- 16. T. G. Rizzo, E-print archives hep-ph/0503163.
- Rong-Gen Cai, Nobuyoshi Ohta, E-print archives hep-th/0604088.
- R. Kerner, Gen. Rel. and Grav. 14, 453 (1982);
 J. D. Barrow and A. C. Ottewill, J. Phys. A 10, 2757 (1983);
 J. P. Duruisseu and R. Kerner, Gen. Rel. and Grav. 15, 797 (1983);
 B. Whitt, Phys. Lett. B 145, 176 (1984);
 J. D. Barrow and S. Cotsakis, Phys. Lett. B 214, 515 (1988);
 K. Maeda, J. A. Stein-Schabes, and T. Futamase, Phys. Rev. D 39, 2848 (1989);
 G. Magnano and L. M. Sokolowski, Phys. Rev. D 50, 5039 (1994), E-print archives gr-qc/9312008;
 J. Ellis, N. Kaloper, K. A. Olive, and J. Yokoyama, Phys. Rev. D 59, 103503 (1999);

- 19. K. A. Bronnikov and S. G. Rubin, Phys. Rev. D 73, 124019 (2006); E-print archives gr-qc/0510107;
 K. A. Bronnikov, R. V. Konoplich, and S. G. Rubin, Class. Quant. Grav. 24, 1261 (2007); E-print archives gr-qc/0610003.
- 20. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
- U. Günther, P. Moniz, and A. Zhuk, Astrophys. Space Sci. 283, 679 (2003); E-print archives gr-qc/0209045.
- 22. K. A. Bronnikov and V. N. Melnikov, E-print archives gr-qc/0310112.
- 23. S. Nasri, P. J. Silva, G. D. Starkman, and M. Trodden, Phys. Rev. D 66, 045029 (2002); E-print archives hep-th/0201063.
- 24. N. Kaloper et al., Phys. Rev. Lett. 85, 928 (2000).
- 25. J. Morris, E-print archives gr-qc/0106022.
- 26. E. Carugno et al., Phys. Rev. D 53, 6863 (1996); E-print archives gr-qc/9510066.

- Каскадное рождение вселенных . . .
- H. Ochiai and K. Sato, E-print archives gr-qc/0007059;
 X. M. Hu and Z. C. Wu, Phys. Lett. B 149, 87 (1984).
- 28. W.-M. Suen and K. Young, Phys. Rev. D 39, 2201 (1989).
- 29. A. Vilenkin, Phys. Rev. D 37, 888 (1988).
- 30. J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).
- 31. A. D. Linde, Lett. Nuovo Cimento 39, 401 (1984).
- 32. A. Vilenkin, Phys. Lett. B 117, 25 (1982).
- 33. U. Weiss and W. Haeffner, Phys. Rev. D 27, 2916 (1983).
- I. Dymnikova and M. Fil'chenkov, E-print archives gr-qc/0209065.
- 35. M. B. Mijić, M. S. Morris, and W. M. Suen, Phys. Rev. D 39, 1496 (1989).
- 36. H. van Elst, J. E. Lidsey, and R. Tavakol, Class. Quant. Grav. 11, 2483 (1994), E-print archives gr-qc/9404044.