СВЕРХТОНКАЯ СТРУКТУРА *S*-УРОВНЕЙ ЭНЕРГИИ ИОНА МЮОННОГО ГЕЛИЯ

А. П. Мартыненко*

Самарский государственный университет 443011, Самара, Россия

Поступила в редакцию 16 октября 2007 г.

Вычислены поправки порядка α^5 , α^6 к спектрам энергии сверхтонкого расщепления 1S-, 2S-уровней иона мюонного гелия. Учтены эффекты электронной поляризации вакуума, поправки на структуру ядра и эффекты отдачи. Полученные численные значения сверхтонких расщеплений $\Delta E^{hfs}(1S) = -1334.56$ мэВ и $\Delta E^{hfs}(2S) = -166.62$ мэВ могут рассматриваться как надежная оценка для сравнения с экспериментальными данными, а интервал сверхтонкой структуры $\Delta_{12} = 8\Delta E^{hfs}(2S) - \Delta E^{hfs}(1S) = 1.64$ мэВ можно использовать для проверки предсказаний квантовой электродинамики.

PACS: 36.10.Dr, 12.20.Ds, 32.10.Fn

1. ВВЕДЕНИЕ

Ион мюонного гелия $(\mu_2^3 \text{He})^+$ представляет собой связанное состояние отрицательного мюона и гелиона (³₂He). Время жизни этого простейшего атома определяется временем распада мюона $au_{\mu} = 2.19703(4) \cdot 10^{-6}$ с. Увеличение массы лептона при переходе от электронных водородоподобных атомов к мюонным (отношение масс мюона и электрона $m_1/m_e = 206.7682838(54)$ [1]) приводит к росту трех эффектов в спектрах энергии: электронной поляризации вакуума, структуры и поляризуемости ядра, отдачи ядра. Первый из названных эффектов важен для мюонного гелия $(\mu_2^3 \text{He})^+$, поскольку отношение комптоновской длины волны электрона к радиусу боровской орбиты этого атома, $\mu Z \alpha / m_e \approx 1.45415 \ (Z = 2 - заряд)$ ядра гелия, *α* — постоянная тонкой структуры, *μ* — приведенная масса двух частиц), близко к единице. Второй эффект — структура ядра ³₂He имеет существенное значение, так как волновая функция мюона сильно перекрывается с областью распределения заряда ядра. Наконец рост эффектов отдачи связан с тем, что отношение масс мюона и ядра, $m_1/m_2 \approx 0.0376$ [1], хотя и является малой величиной, но превосходит значение постоянной

тонкой структуры α . Кроме того, некоторые эффекты отдачи содержат характерные значения логарифма отношения масс ядер гелия и мюона $\ln(m_2/m_1) \approx 3.28$, что приводит к численному росту вклада.

Высокая чувствительность характеристик связанного мюона к распределениям плотности заряда и магнитного момента ядра в легких мюонных атомах (мюонный водород, ионы мюонного гелия) может быть использована для более точного определения зарядовых радиусов протона, дейтрона, гелиона, α -частицы [2–4]. Измерение сверхтонкой структуры уровней энергии мюонных атомов позволит получить более точные значения радиусов Земаха для этих ядер и улучшить точность теоретических расчетов сверхтонкой структуры соответствующих электронных атомов.

Теоретические исследования уровней энергии легких мюонных атомов (Z = 1, 2) были выполнены много лет тому назад в работах [5–9] на основе уравнения Дирака. В этих расчетах энергетических интервалов ($2P_{3/2}-2S_{1/2}$), ($2P_{1/2}-2S_{1/2}$) в ионах мюонного гелия (${}_{2}^{4}$ He, ${}_{2}^{3}$ He) учитывались различные поправки с точностью 0.01 мэВ. Энергии перехода (2S-2P) в ионе мюонного гелия (μ_{2}^{3} He) с учетом сверхтонкой структуры уровней были вычислены в [10, 11] в рамках уравнения Дирака с точностью 0.1 мэВ.

^{*}E-mail: mart@ssu.samara.ru

Несмотря на то, что мюонные атомы $\mu_1^1 H$, $\mu_1^2 H$, $(\mu_2^3 \text{He})^+, (\mu_2^4 \text{He})^+$ можно было бы использовать для еще одной проверки квантовой электродинамики, экспериментальное изучение уровней энергии этих атомов сильно отстает от теории. Здесь следует упомянуть эксперимент по измерению лэмбовского сдвига (2Р-2S) в мюонном водороде, который проводится в PSI (Paul Scherrer Institut) уже много лет [12, 13], но пока не привел к измерению сдвига с необходимой точностью 30 ppm. Единственный результативный эксперимент был выполнен на мюонном пучке в CERN [14, 15] с мюонным гелием $(\mu_2^4 \text{He})^+$. В нем наблюдались два резонансных перехода с длинами волн 811.68(15) нм и 897.6(3) нм, которые соответствуют интервалам $(2P_{3/2}-2S_{1/2})$ и $(2P_{1/2}-2S_{1/2})$ тонкой структуры. В более поздних экспериментах [16] обнаружить резонансный переход в области $811.4 \le \lambda \le 812.0$ нм не удалось. Поэтому в настоящее время необходимо выполнить новое измерение как лэмбовского сдвига, так и сверхтонкой структуры атомов $(\mu_2^3 \text{He})^+, (\mu_2^4 \text{He})^+.$

Необходимо отметить, что в последние годы точность теоретических исследований спектров энергии простейших атомов существенно возросла [3]. Были вычислены новые квантовоэлектродинамические поправки порядка α^6 и α^7 к спектрам энергии позитрония, мюония, атома водорода, ионов электронного гелия [4]. Для ряда водородоподобных атомов (атом водорода, ионы гелия и др.) сравнение теоретических расчетов в рамках квантовой электродинамики с экспериментом затруднено, поскольку теоретическая ошибка при вычислении вкладов структуры и поляризуемости ядер в лэмбовский сдвиг и в сверхтонкую структуру остается еще очень большой и значительно превосходит ошибки эксперимента. Прогресс в этой области может быть достигнут как за счет новых экспериментальных исследований структуры и поляризуемости протона и других ядер, позволяющих измерить электромагнитные формфакторы протона, структурные функции неупругого электрон-протонного рассеяния, так и за счет использования новых атомов, включая легкие мюонные системы.

Важно подчеркнуть, что для легких мюонных атомов все вклады в спектр энергии можно разделить на две группы. В первую входят поправки, полученные в аналитическом виде при изучении спектров мюония и атома водорода. Вторую группу образуют многочисленные вклады электронной поляризации вакуума, структуры ядра, эффекты отдачи, которые являются специфическими для каждого мюонного атома. Цель настоящей работы состоит в аналитическом и численном расчетах поправок порядка α^5 и α^6 к сверхтонкой структуре S-состояний иона мюонного гелия $(\mu_2^3 \text{He})^+$ в рамках квазипотенциального метода в квантовой электродинамике [17, 18]. Мы рассматриваем такие эффекты электронной поляризации вакуума, отдачи, структуры ядра ³₂Не, которые имеют принципиальное значение для достижения высокой точности расчета. Численные значения поправок получены с точностью 0.001 мэВ. Таким образом, цель данного исследования состояла в улучшении ранее проведенных вычислений [6-9] сверхтонкой структуры иона мюонного гелия и получении надежной оценки сверхтонкого расщепления 1S- и 2S-уровней энергии, которые могли бы служить надежным ориентиром при постановке соответствующих экспериментов при измерениях сверхтонкой структуры этого атома и интервалов 2*S*-2*P*-перехода. Современные численные значения фундаментальных физических констант взяты из работы [1]: масса электрона $m_e = 0.510998918(44) \cdot 10^{-3}$ ГэВ, масса мюона $m_1 = 0.1056583692(94)$ ГэВ, постоянная тонкой структуры $\alpha^{-1} = 137.03599911(46)$, масса гелиона $m_2 = 2.80839142(24)$ ГэВ, магнитный момент гелиона $\mu_h = -2.127497723(25)$ в ядерных магнетонах, аномальный магнитный момент мюона $a_{\mu} = 1.16591981(62) \cdot 10^{-3}.$

2. ЭФФЕКТЫ ОДНОПЕТЛЕВОЙ И ДВУХПЕТЛЕВОЙ ПОЛЯРИЗАЦИИ ВАКУУМА В ОДНОФОТОННОМ ПРИБЛИЖЕНИИ

Наш подход к исследованию сверхтонкой структуры иона мюонного гелия основан на квазипотенциальном методе в квантовой электродинамике [19–21], в котором двухчастичное связанное состояние описывается уравнением Шредингера. Основной вклад в оператор взаимодействия мюона и гелиона в S-состоянии определяется брейтовским гамильтонианом [22]

$$H_B = H_0 + \Delta V_B^{fs} + \Delta V_B^{hfs}, \quad H_0 = \frac{\mathbf{p}^2}{2\mu} - \frac{Z\alpha}{r}, \quad (1)$$

$$\begin{split} \Delta V_B^{fs} &= -\frac{\mathbf{p}^4}{8m_1^3} - \frac{\mathbf{p}^4}{8m_2^3} + \frac{\pi Z\alpha}{2} \left(\frac{1}{m_1^2} + \frac{1}{m_2^2}\right) \delta(\mathbf{r}) - \\ &- \frac{Z\alpha}{2m_1m_2r} \left(\mathbf{p}^2 + \frac{\mathbf{r} \cdot (\mathbf{r} \cdot \mathbf{p})\mathbf{p}}{r^2}\right), \quad (2) \end{split}$$

$$\Delta V_B^{hfs} = \frac{8\pi\alpha\mu_h}{3m_1m_p} \frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2}{4} \,\delta(\mathbf{r}),\tag{3}$$

р — относительный импульс частиц, образующих ион мюонного гелия, σ_1 и σ_2 — спиновые матрицы соответственно мюона и ядра, m_p — масса протона, μ_h — магнитный момент гелиона. Потенциал спин-спинового взаимодействия (3) дает основной вклад в энергию сверхтонкого расщепления *S*-уровней (энергия Ферми). Усредняя выражение (3) по кулоновским волновым функциям 1*S*- и 2*S*-состояний,

$$\psi_{100}(r) = \frac{W^{3/2}}{\sqrt{\pi}} e^{-Wr}, \quad W = \mu Z \alpha,$$
 (4)

$$\psi_{200}(r) = \frac{W^{3/2}}{2\sqrt{2\pi}} e^{-Wr/2} \left(1 - \frac{Wr}{2}\right), \qquad (5)$$

получим следующий результат (разность энергий триплетного и синглетного состояний):

$$\Delta E_F^{hfs}(nS) = \frac{8\mu^3 Z^3 \alpha^4 \mu_h}{3m_1 m_p n^3} = \\ = \begin{cases} 1S : -1370.725 \text{ мэB}, \\ 2S : -171.341 \text{ мэB} \end{cases}$$
(6)

(n - главное квантовое число). В выражении (6) не $учитывается аномальный магнитный момент <math>a_{\mu}$ мюона. Удобно представить поправку на a_{μ} к сверхтонкому расщеплению отдельно, взяв экспериментальное значение $a_{\mu} = 1.16591981(62) \cdot 10^{-3}$ [1]:

$$\Delta E_{a_{\mu}}^{hfs}(nS) = a_{\mu} \Delta E_{F}^{hfs}(nS) = = \begin{cases} 1S : -1.598 \text{ M} \Im B, \\ 2S : -0.200 \text{ M} \Im B. \end{cases}$$
(7)

В аналитическом виде известен также вклад релятивистских эффектов порядка α^6 в сверхтонкую структуру спектра [3]:

$$\Delta E_{rel}^{hfs}(nS) = \left[1 + \frac{11n^2 + 9n - 11}{6n^2} (Z\alpha)^2 + \dots\right] \Delta E_F^{hfs}(nS) = \left\{ \begin{aligned} 1S &: -0.438 \text{ M} \Rightarrow B, \\ 2S &: -0.078 \text{ M} \Rightarrow B. \end{aligned} \right.$$
(8)

Вклад однопетлевой электронной поляризации вакуума в потенциал взаимодействия частиц определяется следующим выражением в координатном представлении [22]:

$$\Delta V_{1\gamma,VP}^{hfs}(r) = \frac{8\alpha\mu_h}{3m_1m_2} \frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2}{4} \frac{\alpha}{3\pi} \times \int_{1}^{\infty} \rho(\xi) d\xi \left[\pi\delta(\mathbf{r}) - \frac{m_e^2\xi^2}{r} \exp(-2m_e\xi r) \right], \quad (9)$$

Рис.1. Эффекты однопетлевой и двухпетлевой поляризации вакуума в однофотонном взаимодействии

где $\rho(\xi) = \sqrt{\xi^2 - 1} (2\xi^2 + 1)/\xi^4$. При его получении использована следующая замена в фотонном пропагаторе:

$$\frac{1}{k^2} \to \frac{\alpha}{3\pi} \int_{1}^{\infty} \frac{\rho(\xi) \, d\xi}{k^2 + 4m_e^2 \xi^2}.$$
 (10)

После усреднения по волновым функциям (4), (5) получим поправки порядка α^5 к энергии сверхтонкого расщепления:

$$\Delta E_{1\gamma,VP}^{hfs}(1S) = \frac{8\mu^3 Z^3 \alpha^5 \mu_h}{9m_1 m_p \pi} \int_{1}^{\infty} \rho(\xi) d\xi \times \left[1 - \frac{4m_e^2 \xi^2}{W^2} \int_{0}^{\infty} x \exp\left[-x \left(1 + \frac{m_e \xi}{W}\right)\right] dx\right] =$$
$$= -4.203 \text{ M}3B, \quad (11)$$

$$\Delta E_{1\gamma,VP}^{hfs}(2S) = \frac{\mu^3 Z^3 \alpha^5 \mu_h}{9m_1 m_p \pi} \int_{1}^{\infty} \rho(\xi) d\xi \times \left[1 - \frac{4m_e^2 \xi^2}{W^2} \int_{0}^{\infty} x \left(1 - \frac{x}{2}\right)^2 \times \exp\left[-x \left(1 + \frac{2m_e \xi}{W}\right)\right] dx\right] = -0.540 \text{ M} \cdot \text{B}.$$
(12)

Заменяя массу электрона m_e на массу мюона m_1 в выражениях (10), (11), можно найти вклад мюонной поляризации вакуума в сверхтонкую структуру. Он будет иметь более высокий порядок α^6 , поскольку отношение $W/m_1 \ll 1$. Его численное значение включено в таблицу. Вклад такого же порядка α^6

Вклад в СТС	1S, мэВ	2S, мэВ	Δ_{12}	Ссылка
Энергия Ферми	-1370.725	-171.341	0	(6), [3, 4]
AMM мюона (~ α^5 , α^6)	-1.598	-0.200	0	(7), [3, 4]
Релятивистская поправка ($\sim \alpha^6)$	-0.438	-0.078	-0.183	(8), [3]
Однопетлевая ПВ в однофотонном взаимодействии ($\sim \alpha^5$)	-4.203	-0.540	-0.119	(11)-(12)
Двухпетлевая ПВ в однофотонном взаимодействии ($\sim lpha^6$)	-0.050	-0.004	0.016	(14)-(16)
Однопетлевая мюонная ПВ в однофотонном взаимодействии ($\sim \alpha^6$)	-0.052	-0.007	0	(11)-(12)
Однопетлевая ПВ во втором порядке ТВ ($\sim \alpha^5)$	-9.260	-0.869	2.305	(23)-(24)
Двухпетлевая ПВ во втором порядке ТВ ($\sim \alpha^6)$	-0.105	-0.010	0.022	(27)-(30)
Структура ядра ($\sim \alpha^5)$	48.376	6.047	0	(33), (34)
ПВ и структура ядра ($\sim \alpha^6)$	0.760	0.095	0	(38)
Структура ядра ($\sim \alpha^6)$	2.553	0.272	-0.377	(41)-(42), (45)
Структура ядра и СЭ мюона ($\sim \alpha^6)$	-0.145	-0.018	0	(46), [31]
Отдача ядра ($\sim \alpha^6)$	0.330	0.038	-0.026	(47)-(48), [34]
Суммарный вклад	-1334.560	-166.615	1.638	

Сверхтонкая структура 1S- и 2S-состояний в ионе мюонного гелия $(\mu \frac{3}{2}\text{He})^+$, $\Delta_{12} = 8\Delta E^{hfs}(2S) - \Delta E^{hfs}(1S)$

Примечания: СТС — сверхтонкая структура, АММ — аномальный магнитный момент, ПВ — поляризация вакуума, ТВ — теория возмущений, СЭ — собственная энергия.

дают диаграммы двухпетлевой электронной поляризации вакуума (рис. 1*б-г*). Чтобы получить оператор взаимодействия частиц, отвечающий амплитуде с двумя последовательными петлями (рис. 1*б*), необходимо дважды использовать замену (10). В координатном представлении результат имеет вид

$$\Delta V_{1\gamma,VP-VP}^{hfs}(r) = \frac{8\pi\alpha\mu_h}{3m_1m_p} \frac{\sigma_1 \cdot \sigma_2}{4} \left(\frac{\alpha}{3\pi}\right)^2 \times \\ \times \int_{1}^{\infty} \rho(\xi) \, d\xi \int_{1}^{\infty} \rho(\eta) \, d\eta \left\{\delta(\mathbf{r}) - \frac{m_e^2}{\pi r(\eta^2 - \xi^2)} \times \right. \\ \left. \left. \left. \left[\eta^4 \exp(-2m_e\eta r) - \xi^4 \exp(-2m_e\xi r)\right] \right\} \right\}.$$
(13)

Соответствующую поправку к сверхтонкой структуре уровней 1S и 2S можно представить в виде ин-

теграла по r и параметрам ξ , η . Далее интеграл по r вычислялся аналитически, а по ξ , η численно. В результате получаем

$$\Delta E_{1\gamma,VP-VP}^{hfs}(r)(1S) = \frac{8\alpha^6 \mu^3 Z^3 \mu_h}{27m_1 m_p} \times \\ \times \int_{1}^{\infty} \rho(\xi) d\xi \int_{1}^{\infty} \rho(\eta) d\eta \left\{ 1 - \frac{4m_e^2}{W^2(\eta^2 - \xi^2)} \times \right. \\ \left. \times \int_{0}^{\infty} e^{-2x} x \, dx \left[\eta^4 \exp\left(-\frac{2m_e \eta x}{W}\right) - \right. \\ \left. - \xi^4 \exp\left(-\frac{2m_e \xi x}{W}\right) \right] \right\} = -0.017 \text{ мэB}, \quad (14)$$

$$\Delta E_{1\gamma,VP-VP}^{hfs}(r)(2S) = \frac{\alpha^6 \mu^3 Z^3 \mu_h}{27m_1 m_p} \times \\ \times \int_{1}^{\infty} \rho(\xi) d\xi \int_{1}^{\infty} \rho(\eta) d\eta \left\{ 1 - \frac{4m_e^2}{W^2(\eta^2 - \xi^2)} \times \right. \\ \left. \times \int_{0}^{\infty} e^{-x} x \, dx \left[\eta^4 \exp\left(-\frac{2m_e \eta x}{W}\right) - \xi^4 \times \right. \\ \left. \times \left. \exp\left(-\frac{2m_e \xi x}{W}\right) \right] \left(1 - \frac{x}{2} \right)^2 \right\} = -0.002 \text{ мэB.}$$
(15)

Аналогично можно вычислить вклад двухпетлевой поляризации вакуума порядка α⁶, показанной на рис. 1*в,г.* В этом случае потенциал взаимодействия мюона и ядра ³/₂He определяется выражением

$$\Delta V_{1\gamma,2\text{-}loop\ VP}^{hfs}(r) = \frac{8\alpha^{3}\mu_{h}}{3\pi m_{1}m_{p}} \int_{0}^{1} \frac{f(v)\,dv}{1-v^{2}} \times \left[\delta(\mathbf{r}) - \frac{m_{e}^{2}}{\pi r(1-v^{2})} \exp\left(-\frac{2m_{e}r}{\sqrt{1-v^{2}}}\right)\right],\quad(16)$$

где функция

$$f(v) = v \left\{ (3 - v^2)(1 + v^2) \left[\operatorname{Li}_2 \left(-\frac{1 - v}{1 + v} \right) + \frac{1}{2} \operatorname{Li}_2 \left(\frac{1 - v}{1 + v} \right) + \frac{3}{2} \ln \frac{1 + v}{1 - v} \ln \frac{1 + v}{2} - \ln \frac{1 + v}{1 - v} \ln v \right] + \left[\frac{11}{16} (3 - v^2)(1 + v^2) + \frac{v^4}{4} \right] \ln \frac{1 + v}{1 - v} + \left[\frac{3}{2} v(3 - v^2) \ln \frac{1 - v^2}{4} - 2v(3 - v^2) \ln v \right] + \frac{3}{8} v(5 - 3v^2) \right\}, \quad (17)$$

 $Li_2(z)$ — дилогарифм Эйлера. Численные значения вклада оператора (16) в сверхтонкую структуру находятся так же, как в случае потенциала (13). Они включены в таблицу. Роль влияния поляризации вакуума на сверхтонкую структуру иона мюонного гелия этим не исчерпывается. Имеется также ряд вкладов, в которых электронная поляризация вакуума входит в потенциал вместе с эффектами структуры ядра, отдачи, релятивистскими поправками во втором порядке теории возмущений.

3. ЭФФЕКТЫ ОДНОПЕТЛЕВОЙ И ДВУХПЕТЛЕВОЙ ПОЛЯРИЗАЦИИ ВАКУУМА ВО ВТОРОМ ПОРЯДКЕ ТЕОРИИ ВОЗМУЩЕНИЙ

Поправки второго порядка теории возмущений к спектру энергии водородоподобного атома определяются редуцированной кулоновской функцией Грина \tilde{G} [23], парциальное разложение которой имеет вид

$$\tilde{G}_n(\mathbf{r}, \mathbf{r}') = \sum_{l,m} \tilde{g}_{nl}(r, r') Y_{lm}(\mathbf{n}) Y_{lm}^*(\mathbf{n}'), \qquad (18)$$

где \mathbf{n} , \mathbf{n}' — единичные векторы в направлении радиус-вектора. Радиальная функция $\tilde{g}_{nl}(r,r')$ была получена [23] в виде штурмовского разложения по полиномам Лагерра. Основной вклад электронной поляризации вакуума в сверхтонкую структуру во втором порядке теории возмущений (SOPT) имеет вид (рис. 2*a*)

$$\Delta E_{SOPT VP 1}^{hfs} = 2\langle \psi | \Delta V_{VP}^C \times \tilde{G} \times \Delta V_B^{hfs} | \psi \rangle, \quad (19)$$

где

$$\Delta V_{VP}^C(r) = \frac{\alpha}{3\pi} \int_{1}^{\infty} \rho(\xi) \, d\xi \left(-\frac{Z\alpha}{r}\right) \exp(-2m_e \xi r)$$
(20)

— модифицированный кулоновский потенциал, а «×» обозначает свертку редуцированной кулоновской функции Грина с потенциалом. Поскольку величина $\Delta V_B^{hfs}(r)$ пропорциональна $\delta(\mathbf{r})$, необходимо знать редуцированную кулоновскую функцию Грина с одним нулевым аргументом. В этом случае она была получена на основе представления Хостлера после вычитания полюсного члена и имеет вид [24, 25]

$$\tilde{G}_{1S}(\mathbf{r},0) = \frac{Z\alpha\mu^2}{4\pi} \frac{e^{-x}}{x} g_{1S}(x), \qquad (21)$$

где

$$g_{1S}(x) = \left[4x(\ln 2x + C) + 4x^2 - 10x - 2\right],$$
$$\tilde{G}_{2S}(\mathbf{r}, 0) = -\frac{Z\alpha\mu^2}{4\pi} \frac{e^{-x/2}}{2x} g_{2S}(x), \qquad (22)$$

$$g_{2S}(x) = \left[4x(x-2)(\ln x + C) + x^3 - 13x^2 + 6x + 4\right],$$

C = 0.5772... — постоянная Эйлера, x = Wr. В результате необходимые поправки к сверхтонкой структуре спектра энергии иона $(\mu_2^3 \text{He})^+$ можно представить следующим образом:

$$\Delta E_{VP\ 1}^{hfs}(1S) = -E_F^{hfs}(1S)\frac{2\alpha}{3\pi}(1+a_{\mu})\int_{1}^{\infty}\rho(\xi)\,d\xi \times \\ \times \int_{0}^{\infty} \exp\left[-2x\left(1+\frac{m_e\xi}{W}\right)\right]g_{1S}(x)\,dx = \\ = -9.260 \text{ M3B}, \quad (23)$$

Рис.2. Эффекты однопетлевой и двухпетлевой поляризации вакуума во втором порядке теории возмущений. Штриховой линией обозначен кулоновский фотон, \tilde{G} — редуцированная кулоновская функция Грина

$$\Delta E_{VP \ 1}^{hfs}(2S) = E_F^{hfs}(2S) \frac{\alpha}{3\pi} (1+a_\mu) \int_{1}^{\infty} \rho(\xi) \, d\xi \times \\ \times \int_{0}^{\infty} \exp\left[-x \left(1+\frac{2m_e\xi}{W}\right)\right] g_{2S}(x) \, dx = \\ = -0.869 \text{ M3B.} \quad (24)$$

Здесь включен множитель $1 + a_{\mu}$, так что эти выражения содержат поправки порядка α^5 и α^6 .

Двухпетлевые вклады на рис. $26-\partial$ имеют порядок α^6 . Рассмотрим первый из этих вкладов, который определяется потенциалами (9), (20), редуцированной кулоновской функцией Грина (21), (22), а также редуцированной кулоновской функцией Грина с ненулевыми аргументами. Удобное представление для нее было получено в работах [24, 26]:

$$\tilde{G}_{1S}(r,r') = -\frac{Z\alpha\mu^2}{\pi} \exp[-(x_1+x_2)]g_{1S}(x_1,x_2),$$

$$g_{1S}(x_1,x_2) = \frac{1}{2x_<} -\ln 2x_> -\ln 2x_< +\operatorname{Ei}(2x_<) + \quad (25)$$

$$+\frac{7}{2} - 2C - (x_1+x_2) + \frac{1 - \exp(2x_<)}{2x_<},$$

И

$$\tilde{G}_{2S}(r,r') = -\frac{Z\alpha\mu^2}{16\pi x_1 x_2} \times \\
\times \exp[-(x_1 + x_2)]g_{2S}(x_1, x_2), \\
g_{2S}(x_1, x_2) = 8x_{<} - 4x_{<}^2 + 8x_{>} + 12x_{<}x_{>} - \\
-26x_{<}^2x_{>} + 2x_{<}^3x_{>} - 4x_{>}^2 - 26x_{<}x_{>}^2 + 23x_{<}^2x_{>}^2 - \\
-x_{<}^3x_{>}^2 + 2x_{<}x_{>}^3 - x_{<}^2x_{>}^3 + 4e^x(1 - x_{<}) \times \\
\times (x_{>} - 2)x_{>} + 4(x_{<} - 2)x_{<}(x_{>} - 2)x_{>} \times \\
\times [-2C + \operatorname{Ei}(x_{<}) - \ln(x_{<}) - \ln(x_{>})],$$
(26)

где $x_{<} = \min(x_1, x_2), x_{>} = \max(x_1, x_2), C = 0.577216... - постоянная Эйлера, Ei(x) - интегральная экспоненциальная функция.$

Подставляя выражения (9), (20), (25) и (26) в (19), получим для каждого уровня 1S и 2S по два вклада:

$$\Delta E_{SOPT \ VP \ 21}^{hfs}(1S) = -\frac{16\alpha^6 Z^3 \mu^3 \mu_h (1+a_\mu)}{27\pi^2 m_1 m_p} \times \\ \times \int_{1}^{\infty} \rho(\xi) \, d\xi \int_{1}^{\infty} \rho(\eta) \, d\eta \int_{0}^{\infty} dx \times \\ \times \exp\left[-2x \left(1+\frac{m_e \xi}{W}\right)\right] g_{1S}(x), \quad (27)$$

$$\begin{split} \Delta E_{SOPT \ VP \ 22}^{hfs}(1S) &= -\frac{256\alpha^6 Z^3 \mu^3 \mu_h (1+a_\mu) m_e^2}{27\pi^2 m_1 m_p W^2} \times \\ &\times \int_{1}^{\infty} \rho(\xi) \, d\xi \int_{1}^{\infty} \rho(\eta) \eta^2 d\eta \int_{0}^{\infty} x_1 dx_1 \times \\ &\times \exp\left[-2x_1 \left(1+\frac{m_e \xi}{W}\right)\right] \times \\ &\times \int_{0}^{\infty} x_2 dx_2 \exp\left[-2x_2 \left(1+\frac{m_e \xi}{W}\right)\right] g_{1S}(x_1, x_2), \quad (28) \end{split}$$

$$\Delta E_{SOPT VP 21}^{hfs}(2S) = \frac{\alpha^6 Z^3 \mu^3 \mu_h (1 + a_\mu)}{27 \pi^2 m_1 m_p} \times \\ \times \int_{1}^{\infty} \rho(\xi) \, d\xi \int_{1}^{\infty} \rho(\eta) \, d\eta \int_{0}^{\infty} \left(1 - \frac{x}{2}\right) \, dx \times \\ \times \exp\left[-x \left(1 + \frac{2m_e \xi}{W}\right)\right] g_{2S}(x), \quad (29)$$

$$\Delta E_{SOPT VP 22}^{hfs}(2S) = -\frac{2\alpha^6 Z^3 \mu^3 \mu_h (1 + a_\mu) m_e^2}{27\pi^2 m_1 m_p W^2} \times \int_{1}^{\infty} \rho(\xi) d\xi \int_{1}^{\infty} \rho(\eta) \eta^2 d\eta \int_{0}^{\infty} \left(1 - \frac{x_1}{2}\right) dx_1 \times \exp\left[-x_1 \left(1 + \frac{2m_e \xi}{W}\right)\right] \int_{0}^{\infty} \left(1 - \frac{x_2}{2}\right) dx_2 \times \exp\left[-x_2 \left(1 + \frac{2m_e \xi}{W}\right)\right] g_{2S}(x_1, x_2).$$
(30)

По отдельности вклады (27), (28) и (29), (30) расходятся, но их сумма является конечной. Соответствующие численные значения представлены выше в таблице. Вклады двух других диаграмм в сверхтонкую структуру могут быть получены по формулам (23) и (24), в которых необходимо заменить потенциал (20) последовательно на следующие потенциалы [21]:

$$\Delta V_{VP-VP}^{C}(r) = \left(\frac{\alpha}{3\pi}\right)^{2} \int_{1}^{\infty} \rho(\xi) \, d\xi \times \\ \times \int_{1}^{\infty} \rho(\eta) \, d\eta \left(-\frac{Z\alpha}{r}\right) \frac{1}{\xi^{2} - \eta^{2}} \times \\ \times \left[\xi^{2} \exp(-2m_{e}\xi r) - \eta^{2} \exp(-2m_{e}\eta r)\right], \quad (31)$$

$$\Delta V_{2\text{-loop VP}}^{C}(r) = -\frac{2Z\alpha^{3}}{3\pi^{2}r} \times \int_{0}^{1} \frac{f(v) \, dv}{(1-v^{2})} \exp\left(-\frac{2m_{e}r}{\sqrt{1-v^{2}}}\right). \quad (32)$$

Опуская дальнейшие промежуточные соотношения, структура которых аналогична (23), (24), мы включили в таблицу численные значения поправок от потенциалов (31), (32).

4. ЭФФЕКТЫ СТРУКТУРЫ И ОТДАЧИ ЯДРА

Основной вклад эффектов структуры ядра в сверхтонкое расщепление S-уровней, включающий поправку Земаха, определяется двухфотонными обменными диаграммами (рис. 3). Мы считаем, что заряд и магнитный момент ядра гелия распределены в пространстве с некоторыми плотностями. Вершинный оператор ядра ³₂Не включает электрический G_E

Рис. 3. Эффекты структуры ядра порядка α^5 . Приведены прямая (*a*) и перекрестная (*б*) двухфотонные диаграммы

и магнитный G_M формфакторы, которые определяют взаимодействие с электромагнитным полем. Для численного расчета поправки на структуру ядра воспользуемся полученным ранее [20] выражением (здесь и далее для обозначения поправки на структуру ядра использован индекс «str»):

$$\Delta E_{str}^{hfs} = -\frac{(Z\alpha)^5}{3\pi m_1 m_2 n^3} \delta_{l0} \int_0^\infty \frac{dk}{k} V(k), \qquad (33)$$

где δ_{l0} — символ Кронекера, а

$$V(k) = \frac{2F_2^2k^2}{m_1m_2} + \frac{\mu}{(m_1 - m_2)k(k + \sqrt{4m_1^2 + k^2})} \times \\ \times \left[-128F_1^2m_1^2 - 128F_1F_2m_1^2 + 16F_1^2k^2 + 64F_1F_2k^2 + \right. \\ \left. + 16F_2^2k^2 + \frac{32F_2^2m_1^2k^2}{m_2^2} + \frac{4F_2^2k^4}{m_1^2} - \frac{4F_2^2k^4}{m_2^2} \right] + \\ \left. + \frac{\mu}{(m_1 - m_2)k(k + \sqrt{4m_2^2 + k^2})} \times \right] \\ \times \left[128F_1^2m_2^2 + 128F_1F_2m_2^2 - 16F_1^2k^2 - \right. \\ \left. - 64F_1F_2k^2 - 48F_2^2k^2 \right].$$

Чтобы устранить инфракрасную расходимость в выражении (33), необходимо учесть вклад итерационного слагаемого квазипотенциала в сверхтонкую структуру иона (μ_2^3 He)⁺:

$$\Delta E_{iter,str}^{hfs} = -\langle V_{1\gamma} \times G^f \times V_{1\gamma} \rangle_{str}^{hfs} = = -\frac{64}{3} \frac{\mu^4 Z^4 \alpha^5 \mu_h}{m_1 m_p \pi n^3} \int_0^\infty \frac{dk}{k^2}, \quad (34)$$

где угловые скобки обозначают усреднение оператора взаимодействия по кулоновской волновой функции, а индекс «hfs» указывает на выделение сверхтонкой части в итерационном слагаемом квазипотенциала, $V_{1\gamma}$ — квазипотенциал однофотонного взаимодействия, G^f — свободный двухчастичный пропагатор. При интегрировании в выражениях (33), (34) использовалась дипольная параметризация для паулиевского F₁ и дираковского F₂ формфакторов [27, 28]. Параметр Λ^2 этой параметризации может быть связан с зарядовым радиусом r_N ядра 3_2 Не: $\Lambda^2 = 12/r_N^2$. Численное значение $r_N = 1.844 \pm 0.045 \,$ фм взято из работы [8]. Поскольку зависимость от главного квантового числа n в выражении (33) определяется множителем $1/n^3$, численные значения поправки на структуру ядра для уровней 1S и 2S,

Рис.4. Эффекты структуры ядра и поляризации вакуума порядка α^6 . Штриховой линией обозначен кулоновский фотон, G^f — свободный двухчастичный пропагатор

$$\Delta E_{str}^{hfs} = \begin{cases} 1S : 48.376 \text{ M} \Im B, \\ 2S : 6.047 \text{ M} \Im B, \end{cases}$$
(35)

в интервале $\Delta_{12} = 8\Delta E_{str}^{hfs}(2S) - \Delta E_{str}^{hfs}(1S)$ сокращаются. Поэтому теоретический расчет интервала Δ_{12} не содержит неопределенностей, связанных со структурой ядра по крайней мере в основном порядке. Величина поправки (33) зависит от формы распределений $G_{E,M}$. Так, замена дипольной параметризации на гауссову параметризацию приводит к изменению численного значения (33) приблизительно на 2%.

В шестом порядке по α имеется вклад в сверхтонкую структуру, показанный на рис. 4, который включает эффекты как структуры ядра, так и поляризации вакуума. Используя подстановку (10), а также выражение (33), его можно представить в виде

$$\Delta E_{str,VP}^{hfs} = -\frac{2\alpha (Z\alpha)^5 \mu^3}{m_1 m_2 \pi^2 n^3} \int_0^\infty V_{VP}(k) \, dk \times \\ \times \int_0^1 \frac{v^2 \left(1 - v^2/3\right) \, dv}{k^2 (1 - v^2) + 4m_e^2}, \quad (36)$$

где потенциал $V_{VP}(k)$ отличается от V(k) в формуле (33) только дополнительным множителем k^2 . Амплитудный вклад (36) в спектр энергии необходимо

6 ЖЭТФ, вып.4

Рис.5. Эффекты структуры ядра порядка α^6 в однофотонном взаимодействии и втором порядке теории возмущений (\tilde{G} — редуцированная кулоновская функция Грина)

дополнить двумя итерационными членами, которые показаны на диаграммах рис. 4*6*,*г*:

$$\Delta E_{iter,str \ VP}^{hfs} = -2\langle V^C \times G^f \times \Delta V_{VP}^{hfs} \rangle^{hfs} =$$

$$= -2\langle V_{VP}^C \times G^f \times \Delta V_B^{hfs} \rangle^{hfs} =$$

$$= -E_F \frac{4\mu\alpha(Z\alpha)}{m_e\pi^2} \int_0^\infty dk \int_0^1 \frac{v^2\left(1 - v^2/3\right) dv}{k^2(1 - v^2) + 1}.$$
 (37)

Численные значения суммы поправок (36) и (37) равны

$$\Delta E^{hfs}_{str,VP} + 2\Delta E^{hfs}_{iter,str\ VP} = \\ = \begin{cases} 1S : 0.760 \text{ M} \Im B, \\ 2S : 0.095 \text{ M} \Im B. \end{cases} (38)$$

Во втором порядке теории возмущений имеется вклад эффектов структуры ядра, который определяется сверхтонкой частью брейтовского потенциала и оператором однофотонного взаимодействия (рис. 5δ),

$$\Delta V_{str} = \frac{2\pi (Z\alpha)}{3} r_N^2 \delta(\mathbf{r}), \qquad (39)$$

в котором влияние структуры ядра учитывается в терминах зарядового радиуса r_N . Этот вклад имеет вид

$$\Delta E_{str\ SOPT}^{hfs}(nS) = 2\langle \psi_n | \Delta V_B^{hfs} \times \tilde{G} \times \Delta V_{str} | \psi_n \rangle =$$
$$= \frac{4\pi (Z\alpha)}{3} E_F(nS) r_N^2 \tilde{G}(0,0). \quad (40)$$

Значение редуцированной кулоновской функции Грина при нулевых аргументах в координатном представлении $\tilde{G}(0,0)$ является расходящимся. Причина появившейся расходимости кроется в использованном разложении потенциалов в выражении (40) при малых относительных импульсах и их последующем интегрировании по всем значениям импульсов. Для вычисления $\tilde{G}(0,0)$ можно использовать метод размерной регуляризации [29–31]. Вычитая из (40) вклад итерационного слагаемого $2\langle\psi_n|\Delta V_B^{hfs}\times G^f\times\Delta V_{str}|\psi_n\rangle$, получим следующие результаты:

$$\Delta E_{str\ SOPT}^{hfs}(1S) = \\ = \frac{4}{3} (Z\alpha)^2 m_1^2 r_N^2 E_F(1S) \left[\ln(Z\alpha) - \frac{3}{2} \right], \quad (41)$$

$$\Delta E_{str\ SOPT}^{hfs}(2S) = \frac{4}{3} (Z\alpha)^2 m_1^2 r_N^2 E_F(2S) \left[\ln(Z\alpha) - \ln 2 \right]. \quad (42)$$

Еще один вклад шестого порядка по α можно получить из амплитуды однофотонного взаимодействия (рис. 5*a*), разлагая магнитный формфактор ядра при малых относительных импульсах. Это приводит к тому, что потенциал сверхтонкого взаимодействия (3) в координатном представлении получает добавочное слагаемое

$$\Delta V_{1\gamma \ str}^{hfs}(r) = -\frac{4\pi\alpha(1+a_{\mu})}{9m_1m_p}r_M^2\frac{\boldsymbol{\sigma}_1\cdot\boldsymbol{\sigma}_2}{4}\nabla^2\delta(\mathbf{r}), \quad (43)$$

где r_M — магнитный радиус ядра. При вычислении среднего значения оператора (43) по кулоновским волновым функциям использовалось следующее соотношение:

$$\int \delta(\mathbf{r}) \, d\mathbf{r} \nabla^2 \psi_n^2(\mathbf{r}) =$$
$$= 2 \left(\psi(0) \nabla^2 \psi(0) + \left(\frac{d\psi_n}{dr}\right)_{r=0}^2 \right), \quad (44)$$

и значение [17, 32]

$$\nabla^2 \psi(0) = \psi(0) \mu^2 (Z\alpha)^2 \frac{3 + 2(n^2 - 1)}{n^2}.$$

В результате получаем, что поправка, пропорциональная магнитному радиусу ядра, имеет вид

$$\Delta E_{1\gamma,str}^{hfs}(nS) = -\frac{4}{3}(Z\alpha)^2 \mu^2 r_M^2 E_F(nS) \frac{1-n^2}{4n^2}.$$
 (45)

В приведенную выше таблицу включен полный вклад поправок на структуру ядра, который определяется выражениями (41), (42) и (45) для 1*S*и 2*S*-уровней энергии при $r_M \approx r_N$. Приведем здесь также выражение для поправки, связанной со структурой ядра и собственно-энергетическими (SE) вкладами в мюонную линию, которая также имеет порядок α^6 [31]:

$$\Delta E_{str\ SE}^{hfs} = \frac{5}{2} \frac{\alpha(Z\alpha)}{\pi} m_1 R_Z E_F = \\ = \begin{cases} 1S : -0.145 \text{ M} \Im B, \\ 2S : -0.018 \text{ M} \Im B, \end{cases} (46)$$

где R_Z — радиус Земаха.

Часть поправок на отдачу уже была учтена при вычислении диаграмм рис. 3, 4. Так, основной вклад от отдачи порядка $(Z\alpha)(m_1/m_2)\ln(m_1/m_2)E_F$ содержится в потенциале (34). Поправки на отдачу порядка $(Z\alpha)^2(m_1/m_2)E_F$ для основного состояния атома водорода были получены в работах [33, 31], а для сверхтонкого интервала Δ_{12} в [34]. Используя эти результаты, мы можем представить аналитические выражения для поправок на отдачу и их численные значения в сверхтонком расщеплении 1*S*- и 2*S*-состояний в виде

$$\Delta E_{rec}^{hfs}(1S) = = (Z\alpha)^2 \frac{\mu^2}{m_1 m_2} E_F(1S) \left[-\frac{17}{12} + \frac{25}{3\zeta} + \frac{31\zeta}{72} + + \ln 2 \left(\frac{1}{2} - \frac{23}{2\zeta} - \frac{11\zeta}{8} \right) + \ln \left(\frac{1}{Z\alpha} \right) \left(-\frac{3}{2} + \frac{7}{2\zeta} + \frac{7\zeta}{8} \right) \right] = = 0.330 \text{ M} \cdot \text{B}, \quad (47)$$

$$\Delta E_{rec}^{hfs}(2S) = \\ = (Z\alpha)^2 \frac{\mu^2}{m_1 m_2} E_F(2S) \left[-\frac{265}{96} + \frac{821}{96\zeta} - \frac{809\zeta}{1152} + \\ + \ln 2 \left(1 - \frac{12}{\zeta} - \frac{\zeta}{2} \right) + \ln \left(\frac{1}{Z\alpha} \right) \left(-\frac{3}{2} + \frac{7}{2\zeta} + \frac{7\zeta}{8} \right) \right] = \\ = 0.038 \text{ m} \cdot \text{B}, \quad (48)$$

где $\zeta = 2m_2\mu_h/m_p Z.$

5. ЗАКЛЮЧЕНИЕ

В данной работе проведен расчет квантовоэлектродинамических поправок, эффектов структуры и отдачи ядра порядка α^5 и α^6 в сверхтонком расщеплении 1*S*- и 2*S*-уровней энергии иона мюонного гелия (μ_2^3 He)⁺. Изучение 1*S*- и 2*S*-состояний данного атома имеет экспериментальную перспективу. В отличие от ранее проведенных исследований спектров энергии легких мюонных атомов [6–8], использовался трехмерный квазипотенциальный метод для описания связанного состояния мюона и гелиона. Все рассмотренные поправки к сверхтонкой структуре иона мюонного гелия можно разбить на две группы. В первую группу входят вклады, специфические для данного мюонного атома. Они связаны прежде всего с эффектами электронной поляризации вакуума. В нашем исследовании эти вклады были представлены в интегральной форме и получены численно. Вторую группу составляют поправки, известные в аналитическом виде из вычислений сверхтонкой структуры спектра атома водорода и мюония [3]. Численные значения всех поправок представлены в таблице, которая содержит также ряд основных ссылок на работы, в которых рассматривалось прецизионное вычисление сверхтонкой структуры простейших атомов. Другие ссылки можно найти в обзорных работах [3, 4].

Как уже отмечалось выше, сверхтонкая структура легких экзотических атомов исследовалась на основе уравнения Дирака много лет назад в работах [10, 11]. В них были получены энергии 2S-2P-переходов в мюонном водороде и в ионе мюонного гелия $(\mu_2^3 \text{He})^+$. При этом учитывались лишь основные вклады в сверхтонкую структуру с точностью 0.1 мэВ. Из табл. 2 работы [11] следует, что энергии переходов ${}^{1}S_{1/2} - {}^{3}P_{1/2}$ и ${}^{3}S_{1/2} - {}^{3}P_{1/2}$ равны соответственно 1167.3 мэВ и 1334.1 мэВ, что для сверхтонкого расщепления 2S-уровня дает величину –166.8 мэВ. Как следует из нашей таблицы, величина -166.587 мэВ сверхтонкого расщепления 2S-уровня хорошо согласуется с результатом работы [11]. Таким образом, проведенные нами вычисления сверхтонкой структуры для иона мюонного гелия уточняют полученное ранее значение для уровня 2S за счет вычисления поправок порядка α^6 и дают новое значение для сверхтонкого расщепления уровня 1S. Для основного вклада следующего порядка по α получена оценка

$$\alpha^3 \ln(1/\alpha) E_E^{hfs}(1S) \approx 0.003$$
 мэВ.

Несмотря на то, что все вклады представлены в таблице с точностью 0.001 мэВ, точность самого теоретического расчета сверхтонкой структуры уровней 1S и 2S пока не является столь высокой. Это следует из того, что поправка на структуру ядра порядка α^5 имеет наибольшую неопределенность, которая связана с погрешностями измерения электромагнитных формфакторов ядра 3_2 Не. При использовании дипольной параметризации для формфакторов ядра 3_2 Не величина теоретической ошибки определяется погрешностью определения зарядового радиуса ядра $r_N({}^3_2$ Не) = 1.844 ± 0.045 фм. В результате теоретические ошибки в сверхтонком

расщеплении могут составлять не менее ±1.5 мэВ для 1S-уровня и ± 0.20 мэВ для 2S-уровня. Ядерные поправки к сверхтонкой структуре водородоподобных атомов с ядрами $^2\mathrm{H},~^3\mathrm{H},~^3\mathrm{He^+}$ исследовались в [35, 36], где учитывалось движение нуклонов, образующих ядро. Другой источник теоретической неопределенности связан с эффектом поляризуемости ядра [37-43], который необходимо исследовать дополнительно, имея экспериментальные данные по рассеянию поляризованных лептонов на ядрах ³2He. Величина вклада поляризуемости ядра ³2He в сверхтонкую структуру данного атома может достигать значения нескольких миллиэлектронвольт. Ядерные поправки и поправки на поляризуемость ядра следует рассматривать совместно, поскольку оба эти эффекта связаны со взаимодействием многонуклонной системы с электромагнитным полем. Интервал сверхтонкого расщепления Δ_{12} не содержит неопределенностей, связанных со структурой и поляризуемостью ядра. Поэтому впервые полученная в данной работе величина $\Delta_{12} = 1.638$ мэВ может быть использована для проверки предсказаний квантовой электродинамики для иона мюонного гелия с точностью 0.01 мэВ.

Автор благодарит Р. Н. Фаустова за полезные обсуждения, коллег из университета им. Гумбольдта (Берлин), где была выполнена заключительная часть работы, за гостеприимство и отличные условия для работы. Работа выполнена при финансовой поддержке РФФИ (грант № 06-02-16821).

ЛИТЕРАТУРА

- P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000).
- Р. Энгфер, Х. Вальтер, Х. Шнойфли, ЭЧАЯ 5, 382 (1974).
- M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 62 (2001).
- 4. S. G. Karshenboim, Phys. Rep. 422, 1 (2005).
- 5. A. Di Giacomo, Nucl. Phys. B 11, 411 (1969).
- 6. E. Borie, Z. Phys. A 275, 347 (1975).
- E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978).
- E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982).

- G. W. F. Drake and L. L. Byer, Phys. Rev. A 32, 713 (1985).
- 10. E. Borie, Z. Phys. A 278, 127 (1976).
- 11. E. Borie, Z. Phys. A 297, 17 (1980).
- 12. F. Kottmann, F. Biraben, C. A. N. Conde et al., AIP Conf. Proc. 564, 13 (2001).
- R. Pohl, A. Antognini, F. D. Amaro et al., Can. J. Phys. 83, 339 (2005).
- 14. G. Carboni, G. Gorini, G. Torelli et al., Nucl. Phys. A 278, 381 (1977).
- 15. K. Jungmann, Z. Phys. C 56, S59 (1992).
- P. Hauser, H. P. von Arb, A. Biancchetti et al., Phys. Rev. A 46, 2363 (1992).
- **17**. А. П. Мартыненко, Р. Н. Фаустов, ЖЭТФ **125**, 48 (2004).
- 18. A. P. Martynenko, Phys. Rev. A 71, 022506 (2005).
- 19. А. П. Мартыненко, Р. Н. Фаустов, ЖЭТФ 115, 1221 (1999).
- 20. А. П. Мартыненко, ЖЭТФ 128, 1169 (2005).
- 21. A. P. Martynenko, Phys. Rev. A 76, 012505 (2007).
- 22. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинамика*, Наука, Москва (1980).
- 23. С. А. Запрягаев, Н. Л. Манаков, В. Г. Пальчиков, Теория многозарядных ионов с одним и двумя электронами, Энергоатомиздат, Москва (1985).
- 24. S. D. Lakdawala and P. J. Mohr, Phys. Rev. A 22, 1572 (1980).
- **25**. В. Г. Иванов, С. Г. Каршенбойм, ЖЭТФ **109**, 1219 (1996).

- 26. K. Pachucki, Phys. Rev. A 53, 2092 (1996).
- 27. J. L. Friar, Lecture Notes in Phys. 627, 285 (2003).
- 28. J. L. Friar and I. Sick, Phys. Lett. 579B, 212 (2004).
- 29. A. H. Hoang, Phys. Rev. D 57, 1615 (1998).
- 30. A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev. A 59, 4316 (1999).
- **31**. S. G. Karshenboim, Phys. Lett. **225A**, 97 (1997).
- I. B. Khriplovich and A. I. Milstein, E-print archives, hep-ph/9607374.
- 33. G. T. Bodwin and D. R. Yennie, Phys. Rev. D 37, 498 (1988).
- 34. M. M. Sternheim, Phys. Rev. 130, 211 (1963).
- 35. J. L. Friar and J. L. Payne, Phys. Rev. C 72, 014002 (2005).
- 36. F. Low, Phys. Rev. 77, 361 (1950).
- 37. А. И. Мильштейн, С. С. Петросян, И. Б. Хриплович, ЖЭТФ 109, 1146 (1996).
- 38. R. N. Faustov and A. P. Martynenko, Eur. Phys. J. C 24, 281 (2002).
- 39. E. V. Cherednikova, R. N. Faustov, and A. P. Martynenko, Nucl. Phys. A 703, 365 (2002).
- 40. А. И. Мильштейн, И. Б. Хриплович, ЖЭТФ 125, 205 (2004).
- 41. V. Nazaryan, C. E. Carlson, and K. A. Griffioen, Phys. Rev. Lett. 96, 163001 (2006).
- 42. C. E. Carlson, E-print archives, physics/0610289.
- 43. K. Pachucki, Phys. Rev. A 76, 022508 (2007).