МНОГОФОНОННАЯ РЕЛАКСАЦИЯ ВО ФТОРИДНЫХ И ТРОЙНЫХ СУЛЬФИДНЫХ ЛАЗЕРНЫХ КРИСТАЛЛАХ С ИОНАМИ НЕОДИМА

Ю. В. Орловский^{*}, Т. Т. Басиев, К. К. Пухов

Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 20 августа 2007 г.

Показано, что зависимость скорости многофононной релаксации (MP) от числа p_{eff} «эффективных фононов» (энергетического зазора ΔE_{min} между уровнями J' и J иона Nd³⁺) в тройных сульфидных кристаллических матрицах в отличие от фторидных со схожими фононными спектрами имеет крутой наклон, не уменьшающийся с ростом p_{eff} . Это свидетельствует о резком замедлении скорости MP на 3–4 порядка величины для переходов среднего ИК-диапазона 4–5 мкм по сравнению со фторидными кристаллами.

PACS: 78.20.Bh, 78.55.-m

1. ВВЕДЕНИЕ

Определение преобладающего механизма релаксации возбужденного электронного уровня, а именно, излучательного или безызлучательного, является одной из фундаментальных проблем физики твердого тела. Она является ключевой, когда необходимо исследовать возможности люминесцирующих систем для практических применений, в том числе лазерных. Особенно это касается получения эффективной лазерной генерации в среднем ИК-диапазоне длин волн 4–5 мкм без преобразования частоты, т.е. на одном твердотельном лазерном элементе. Особый интерес представляют компактные высокоэффективные и надежные в полевых условиях твердотельные лазеры, созданные на базе оптически прозрачных диэлектрических кристаллов, активированных редкоземельными (РЗ) ионами. Одной из основных проблем получения лазерной генерации на оптических переходах РЗ-ионов в среднем ИК-диапазоне $(\Delta E_{min} = 2000 - 2500 \text{ см}^{-1})$ является наличие многофононной релаксации (MP), шунтирующей излучательные переходы, поэтому исследование и интерпретация закономерностей скорости МР от типа лазерной матрицы до сих пор весьма актуально.

В данной работе исследуется обнаруженное экс-

периментально в работе [1] резкое замедление скорости многофононного перехода среднего ИК-диапазона ${}^4I_{15/2} \rightarrow {}^4I_{13/2}$ иона Nd^{3+} при переходе от фторидных кристаллических матриц типа LaF₃ и SrF₂ к тройным сульфидным соединениям типа $PbGa_2S_4$ и CaGa₂S₄. Интересно, что протяженность фононных спектров во всех четырех кристаллах близка, около $h\omega_{max} \approx 400 \text{ см}^{-1}$. Для объяснения полученного результата в рамках нелинейной теории МР и одночастотной модели колебаний кристаллической решетки были проанализированы измеренные скорости MP трех безызлучательных переходов иона Nd³⁺ в кристаллах LaF_3 и $PbGa_2S_4$ с числом p_{eff} «эффективных фононов» от трех до пяти. Ниже приведен краткий обзор теории многофононной релаксации и даны основные выражения нелинейной теории многофононной релаксации, используемые при анализе.

2. ТЕОРИЯ

Существует несколько подходов при теоретическом рассмотрении *p*-фононных переходов. Френкель [2, 3] был первым, кто показал, что линейный (по отношению к малым смещениям **u** ионов решетки от положения равновесия) член разложения в ряд Тейлора гамильтониана электрон-фононного взаимодействия может вызывать *p*-фононный переход, если колебательные состояния кристаллической

^{*}E-mail: orlovski@Lst.gpi.ru

решетки зависят от электронных состояний, участвующих в безызлучательном переходе (линейный механизм МР). Он также показал, что *р*-й член разложения по степеням и, точнее, по его компонентам может вызывать *p*-фононный переход даже тогда, когда колебательные состояния одинаковы для различных электронных состояний (нелинейный механизм). Для обоих механизмов было использовано гармоническое приближение для колебаний кристаллической решетки и первый порядок теории возмущения. Линейный механизм был впоследствии развит в работах [4-8] (см. также книги и обзоры [9–13]). С использованием дополнительных приближений авторами работы [14] на основе линейного механизма был теоретически обоснован закон энергетической щели для скорости многофононной релаксации W при нулевой температуре T, полученный ранее эмпирическим путем авторами работ [15, 16]:

$$W(T=0) = W_0 \exp(-\alpha \Delta E), \tag{1}$$

где W_0 и α — константы, зависящие только от типа кристалла, ΔE — энергетический зазор между уровнями, участвующими в безызлучательном переходе. Очевидно, что влияние особенностей конкретного РЗ-активатора, а также типа его электронных уровней никак не отражено в выражении (1). В дальнейшем в результате прямых квантовомеханических вычислений без использования каких-либо подгоночных параметров авторы работы [17] показали, что закон энергетической щели может выполняться только в интервале изменения p от двух до пяти.

Начиная с работ Кронига и Ван Флека [18, 19] другой подход (нелинейный механизм) был успешно использован при оценке электронных и ядерных спин-решеточных скоростей двухфононных (рамановских) релаксационных процессов. Хагстон и Лаутер провели первые оценки эффективности нелинейного механизма для многофононных процессов релаксации в активированных РЗ-ионами кристаллах [20]. Согласно этой работе, член, включающий в себя р-ю производную потенциала кристаллического поля, при разложении в ряд орбиталь-решеточного взаимодействия в рамках модели точечных зарядов играет определяющую роль в многофононных процессах безызлучательной релаксации в оптических кристаллах, активированных РЗ-ионами. В работах [21, 22] было показано, что перекрытие волновых функций 4f-электронов и лигандов (ковалентность, обменное взаимодействие), а также примешивание 5*p*-состояний сильно влияют на величину орбитально-решеточных параметров. Однако из-за математических трудностей в работах [20-22] не было получено конструктивного выражения, позволяющего вычислять скорости многофононных переходов в рамках нелинейного механизма. Решение этой задачи было найдено в работе [23], где к гамильтониану электрон-фононного взаимодействия было применено преобразование Фурье. Дальнейшее развитие нелинейный механизм получил в работе [24]. В работах [23, 24] учитывалось только кулоновское взаимодействие между РЗ-ионом и ближайшими лигандами, однако указывалось на необходимость учета некулоновского (обменного) взаимодействия. В работах [25, 26] разными методами был учтен вклад некулоновского (обменного) взаимодействия, а в работе [26] формула для скорости МР была доведена до конструктивного выражения (подробнее см. монографию [27]).

Линейное по смещениям **u** электронно-колебательное взаимодействие (диполь-дипольное, квадруполь-дипольное и т.п.) и ангармоничность колебаний матрицы могут индуцировать многофононный безызлучательный переход даже в том случае, если колебательные состояния матрицы не меняются при таком переходе [28-33]. Особенно эффективен такой процесс может быть в кристаллах и стеклах, содержащих высокочастотные молекулярные группировки типа ОН, H₂O, NO₃, WO₄, VO₄ и т.п., с сильной ангармоничностью. Процессы многофононной релаксации в этом случае естественно интерпретировать как процессы передачи энергии в духе теории Ферстера-Декстера, выражая вероятность многофононного перехода (в полной аналогии с теорией передачи энергии) через интеграл перекрывания спектра люминесценции РЗ-иона со спектром поглощения молекулярных группировок (индуктивно-резонансный механизм многофононной релаксации) [28, 29, 31, 32].

В рамках нелинейной теории многофононной релаксации и гармонического приближения колебаний решетки вероятность $W_{J\to J'}(p)$ *р*-фононного перехода между *J*-мультиплетами $4f^N$ -состояний трехвалентных редкоземельных ионов в кристалле может быть представлена в форме, аналогичной форме известного выражения Джадда – Офельта для вероятности межмультиплетного излучательного электродипольного перехода [23, 26, 34]:

$$W_{J \to J'}(p) = \sum_{k=2,4,6} \omega_1^2(k, p) (LSJ||U^{(k)}||L'S'J')^2 \times \frac{J^{(p)}(\Omega_{JJ'})}{2J'+1}.$$
 (2)

Здесь $\omega_1^2(k,p)$ зависит от параметров статического кристаллического поля, $(LSJ||U^{(k)}||L'S'J')$ приведенные матричные элементы единичного тензорного оператора $U^{(k)}$ k-го ранга, (величины $(LSJ||U^{(k)}||L'S'J')^2$ приведены в работе [35]), частота $\Omega_{JJ'} = \Delta E_{JJ'} / \hbar$, а $\Delta E_{JJ'} -$ энергетический зазор между нижним штарковским уровнем мультиплета J и верхним штарковским уровнем мультиплета J'. Спектральная функция $J^{(p)}(\Omega)$ равна

$$J^{(p)}(\Omega) = \int_{-\infty}^{\infty} e^{i\Omega t} [K(t)]^p dt, \qquad (3)$$

где

$$K(t) = \langle \mathbf{u}(t)\mathbf{u} \rangle / 3R \tag{4}$$

есть корреляционная функция смещений. В выражении (4) символ (...) обозначает усреднение по тепловым колебаниям решетки, *R* — равновесное расстояние между редкоземельным ионом и ближайшими лигандами, $\mathbf{u} = \mathbf{u}_L - \mathbf{u}_{RE}$; \mathbf{u}_L и \mathbf{u}_{RE} — соответственно, смещения лиганда и редкоземельного иона относительно их положения равновесия. Следует заметить, что функция $J^{(p)}(\Omega)$ зависит только от R и характеристик фононной подсистемы.

Комбинированный электронный фактор $\omega_1^2(k,p)$ учитывает как кулоновское, так и некулоновское взаимодействия между редкоземельным ионом и ближайшими лигандами и может быть представлен как [23, 26]

$$\omega_1^2(k,p) = \omega_{PC}^2(k,p) + \omega_{EX}^2(k,p), \qquad (5)$$

где

$$\omega_{PC}^{2}(k,p) = z \left(\frac{a_{k}^{0}}{4\pi\hbar}\right)^{2} \left(\begin{array}{cc} l & l & k\\ 0 & 0 & 0 \end{array}\right)^{2} \times \\ \times (2l+1)^{2} (2k+1) \frac{(2p+2k)!}{(2k)! p! 2^{p}}, \quad (6)$$

$$\omega_{EX}^{2}(k,p) = z \left(\frac{b_{k}^{0}}{4\pi\hbar}\right)^{2} \left(\begin{array}{cc} l & l & k\\ 0 & 0 & 0 \end{array}\right)^{2} \times (2l+1)^{2}(2k+1)F_{kp}.$$
 (7)

В выражениях (6) и (7) z — число анионов, ближайших к редкоземельному иону, *l* — угловой орбитальный момент оптических электронов (l = 3 для (l l k)4f-эл жени сталлического поля лигандов, рассматриваемых как точечные заряды:

$$(ektpohob), \begin{pmatrix} 0 & 0 \end{pmatrix} = 3j$$
-символ. В выра-
и (6) a_k^0 обозначает параметр кулоновского кри- І

$$a_k^0 = \frac{4\pi eq}{2k+1} \, \frac{\overline{\xi^k}}{R^{k+1}},\tag{8}$$

где e — заряд электрона, q — эффективный заряд лиганда, $\overline{\xi^k}$ — среднее значение k-й степени радиуса ξ оптического 4f-электрона. В выражении (7) b_k^0 параметр некулоновского кристаллического поля:

$$b_k^0 = \frac{8\pi e^2}{(2l+1)R} \left(G_s |S_s(R)|^2 + G_\sigma |S_\sigma(R)|^2 + \gamma_k G_\pi |S_\pi(R)|^2 \right).$$
(9)

Здесь G_s, G_σ, G_π — безразмерные параметры кристаллического поля в рамках модели «обменных зарядов» [36], которые определяются из подгонки рассчитанных и измеренных штарковских расщеплений мультиплетов редкоземельных ионов, (обычно для иона Nd^{3+} их значения лежат в пределах 5-10;

$$\gamma_k = 2 - k(k+1)/12,\tag{10}$$

$$S_{\nu}(r) = S_{\nu}^{0} \exp(-\alpha_{\nu} r)$$
 (11)

— интегралы перекрытия волновых функций 4f-электронов с волновыми функциями внешних электронных оболочек лигандов. Параметры α_{ν} и S^0_{ν} определяются из зависимости от r интегралов перекрытия $S_{\nu}(r)$. Функция $S_{\nu}(r)$ рассчитывается на основании известных радиальных волновых функций Хартри-Фока для редкоземельных ионов и лигандов. Для важных практических случаев (хлоридное, серное, фторидное и кислородное окружение трехвалентных редкоземельных ионов) это p_{σ} -, p_{π} - и *s*-орбитали лигандов; $F_{kp} = \Phi_{kp}/(b_k^0)^2$, а функция Φ_{kp} может быть рассчитана из следующих выражений, представленных в работах [26, 37]:

$$\Phi_{kp} = \sum_{\nu\nu'} b_{k\nu}^{0} b_{k\nu'}^{0} (\tau_{\nu} \tau_{\nu'})^{p} \times \\ \times \sum_{j=0}^{\text{Int}(p/2)} \frac{2p - 4j + 1}{(2j)!!(2p - 2j + 1)!!} \times \\ \times T_{p-2j}(\tau_{\nu})T_{p-2j}(\tau_{\nu'}), \quad (12)$$

где

$$\tau_{\nu} = 2\alpha_{\nu}R, \quad \nu = s, \sigma, \pi, \tag{13}$$

$$T_{p-2j}(x) = \sum_{m=0}^{p-2j} \frac{(p-2j+m)!}{m!(p-2j-m)!(2x)^m},$$
 (14)

Int(p/2) есть целая часть от p/2,

 $(2p)!! = 2 \cdot 4 \cdot \ldots \cdot 2p, \quad (2p+1)!! = 1 \cdot 3 \cdot \ldots \cdot (2p+1).$

Наибольшие трудности возникают в случае расчета спектральной плотности $J^{(p)}(\Omega)$. Самой простой моделью кристаллических колебаний является одночастотная фононная модель (так называемая модель «эффективного фонона»).

Для одночастотной фононной модели спектральная плотность определяется как [23]

$$J^{(p)}(\Omega_{JJ'}) = 2\pi [K(0)]^p \frac{\overline{n}([\omega_{eff}/T) + 1]^p}{\omega_{max}} = 2\pi [2\eta]^p \frac{\overline{n}([\omega_{eff}/T) + 1]^p}{\omega_{max}}.$$
 (15)

Здесь $p = \Omega_{JJ'} / \omega_{eff}$,

$$\eta = \frac{K(0)}{2} = \frac{\langle \mathbf{u}^2 \rangle}{6R^2} = \frac{\langle (\mathbf{u}_L - \mathbf{u}_{RE})^2 \rangle}{6R^2}$$
(16)

является параметром одночастотной фононной модели,

$$\overline{n}(\omega/T) = \left[\exp(\hbar\omega/kT) - 1\right]^{-1} \tag{17}$$

— населенность фононной моды с частотой ω при температуре T, описываемая распределением Планка. Таким образом, для одночастотной фононной модели имеем

$$W_{J\to J'}(p,T) = W^0_{J\to J'}(p)\eta^p \left[\overline{n}(\omega_{eff}/T) + 1\right]^p, \quad (18)$$

где

$$W^{0}_{J \to J'}(p) = \frac{2\pi}{\omega_{max}(2J+1)} \times \\ \times \sum_{k=2,4,6} \omega^{2}_{1}(k,p) \left(LSJ \parallel U^{(k)} \parallel L'S'J' \right)^{2} 2^{p}.$$
(19)

3. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Для трех переходов иона Nd³⁺ в кристаллах ${\rm LaF_3}$ и ${\rm PbGa_2S_4}$ с числом p_{eff} «эффективных фононов» от трех до пяти была проведена попытка найти соответствие скоростей MP, рассчитанных теоретически и измеренных авторами экспериментально. Расчет и подгонка скоростей проводились при помощи выражения (18), справедливого для одночастотной модели колебаний кристаллической решетки. При низких температурах (до 100 К) влияние температурного члена несущественно. В качестве подгоночного параметра был использован только фононный фактор η . В отличие от работ [37, 38] при расчете скорости МР учитывались все переходы с нижнего состояния возбужденного мультиплета на все состояния ближайшего лежащего ниже мультиплета. Параметры моделей кулоновского и обменного

Таблица 1. Параметры точечной и обменной моделей кристаллического поля иона Nd³⁺ в кристаллах PbGa₂S₄ и LaF₃, использующиеся для расчета скоростей многофононной релаксации

	$\rm PbGa_2S_4{:}Nd^{3+}$	${\rm LaF_3:Nd^{3+}}$			
Атомные	q = 2, z = 8,	q = 1, z = 8,			
параметры	R = 3.12 Å,	R = 2.50 Å,			
	$\hbar\omega_{max} = 400 \text{ cm}^{-1}$	$\hbar\omega_{max} = 400 \ \mathrm{cm}^{-1}$			
$\langle \xi^2 \rangle$ [39]	1.0010	1.0010			
$\langle \xi^4 \rangle \ [39]$	2.4010	2.4010			
$\langle \xi^6 \rangle$ [39]	12.396	12.396			
S_{s}^{0}	-1.1368	2.0851			
S^0_{σ}	0.3978	0.5344			
S^0_{π}	0.9663	1.3144			
α_s	0.8585	1.0742			
α_{σ}	0.6030	0.7241			
α_{π}	0.8333	1.0094			

взаимодействий примесного редкоземельного иона и ближайших лигандов, используемые при расчетах скоростей MP, приведены в табл. 1.

Для обоих кристаллов по данным, представленным в табл. 1, были вычислены величины комбинированного электронного фактора $\omega_1^2(k,p)$ (выражение (5)), связанного со скоростью МР линейной зависимостью. Величины скоростей МР определяются, во-первых, слагаемым $\omega_{PC}^2(k,p)$ (выражение (6)), связанным с кулоновским взаимодействием РЗ-ион-лиганд, и, во-вторых, слагаемым $\omega_{EX}^{2}(k,p)$ (выражение (7)), связанным с обменным взаимодействием. Зависимость первого слагаемого от типа кристаллической матрицы, активированной РЗ-ионами, определяется параметром a_k^0 (выражение (8), где k = 2, 4, 6), который зависит от эффективного заряда q лиганда, среднего значения k-й степени радиуса 4f-электрона и от (k + 1)-й степени равновесного расстояния R между РЗ-ионом и лигандом. Величины параметра a_k^0 для двух матриц отличаются мало (табл. 2), а параметр a_2^0 , который согласно работе [34] вносит наибольший вклад в скорость от трех- до пятифононных переходов, несмотря на большее расстояние R даже больше в кристалле ${\rm PbGa}_2{
m S}_4:{
m Nd}^{3+}$ благодаря удвоенному эффективному заряду q лиганда.

Аналогичный анализ члена b_k^0 (выражение (9)),

			Параме	гры криста	ллического поля	Параметры кристаллического поля				
				обменных	зарядов	кулоновских зарядов				
Матрица	$R, \mathrm{\AA}$	G	b_2^0, cm^{-1}	b_4^0, cm^{-1} b_6^0, cm^{-1}		a_2^0, cm^{-1}	a_4^0, cm^{-1}	$a_6^0, \ \mathrm{cm}^{-1}$		
ТБ	<u>م ت</u>	5	552	430	240	5237	313	50		
LaF_3	2.5	10	1103	861	480					
DLC - C	0.10	5	171	132	70	5388	206	21		
$PbGa_2S_4$	3.12	10	343	264	141					

Таблица 2. Рассчитанные параметры кристаллического поля в модели обменных и кулоновских зарядов в кристаллических матрицах, активированных ионами Nd³⁺

Таблица 3. Изменение фононного фактора η с ростом числа p_{eff} фононов в рамках одночастотной модели «эффективного фонона» в кристалле PbGa₂S₄:Nd³⁺

	$U^{(2)}$	$U^{(4)}$	$U^{(6)}$	$\Delta E_{min}, \mathrm{cm}^{-1}$	p_{eff}	$ au^{MR}_{meas}$	G, параметр кристалли- ческого поля обмен- ных зарядов	Φ ононный фактор $\eta, 10^{-4}$
${}^{2}G_{7/2} \rightarrow {}^{2}H_{11/2}$	0.0066	0.3467	0.3467	1110	3	156 нс [1]	5	1.73
						T = 14 K	10	1.48
${}^4G_{7/2} \rightarrow {}^4G_{5/2}$	0	0.2246	0.0503	1 5 0 0		46 мкс [1]	5	0.87
${}^4G_{7/2} \to {}^2G_{7/2}$	0.0575	0.0005	0.0377	1500	4	$T = 77 \ \mathrm{K}$	10	0.78
${}^4I_{15/2} \rightarrow {}^4I_{13/2}$	0.0196	0.1189	1.4511	1680	5	970 мкс [1]	5	1.76
						T = 14 K	10	1.59

Таблица 4. Изменение фононного фактора η с ростом числа p_{eff} фононов в рамках одночастотной модели «эффективного фонона» во фторидных кристаллах, активированных ионами Nd³⁺

	$U^{(2)}$	$U^{(4)}$	$U^{(6)}$	$\Delta E_{min}, \mathrm{cm}^{-1}$	p_{eff}	$ au^{MR}_{meas}$	G	$\eta, 10^{-4}$
${}^2G_{7/2} \to {}^2H_{11/2}$	0.0066	0.3467	0.3467	1200	3	29 нс (LaF ₃) T = 77 K [40]	5 10	$1.78 \\ 1.2$
$ \begin{array}{c} {}^{4}G_{7/2} \rightarrow {}^{4}G_{5/2} \\ {}^{4}G_{7/2} \rightarrow {}^{2}G_{7/2} \end{array} $	$\begin{array}{c} 0 \\ 0.0575 \end{array}$	$0.2246 \\ 0.0005$	$0.0503 \\ 0.0377$	1546	4	110 нс (LaF ₃) T = 77 K [40]	5 10	2.96 2.22
${}^4I_{11/2} \rightarrow {}^4I_{9/2}$	0.0195	0.1073	1.1653	1360	4	$> 5 \text{ Hc } (\text{SrF}_2)$ T = 300 K [41]	5 10	9.27 8.00

обусловленного вкладом некулоновского (обменного) взаимодействия РЗ-ион-лиганд, показывает, что он может уменьшаться в пределах одного порядка величины при переходе от кристалла LaF₃:Nd³⁺ к кристаллу PbGa₂S₄:Nd³⁺, что связано с сильным ростом R (табл. 2). Параметр кристаллического поля обменных зарядов G_{ν} считался независимым от ν . Для обоих кристаллов расчет проводился при двух значениях G = 5, 10. Это давало возможность определить изменение параметра η при значитель-

ЖЭТФ, том 133, вып. 4, 2008

ном изменении вклада обменного взаимодействия в суммарную скорость МР. Значения величины фононного фактора, полученные из сравнения измеренной и теоретически рассчитанной скоростей MP для трех переходов иона $Nd^{3+} {}^2G_{7/2} \rightarrow {}^2H_{11/2}$, ${}^4G_{7/2} \rightarrow {}^4G_{5/2}, \, {}^2G_{7/2}$ и ${}^4I_{15/2} \rightarrow {}^4I_{13/2},$ представлены для кристалла ${\rm PbGa_2S_4:Nd^{3+}}$ в табл. 3 и для кристалла LaF₃:Nd³⁺ в табл. 4. Видно, что при фиксированном G для кристалла $PbGa_2S_4:Nd^{3+}$ параметр η практически не меняется с ростом числа p_{eff} «эффективных фононов» от трех до пяти, а для четырехфононного перехода даже меньше, чем для трех- и пятифононного. Последнее, по-видимому, связано с переоценкой значения радиационного времени жизни высоколежащего уровня ${}^{4}G_{7/2}$ при определении скорости МР из измеренного времени жизни [1], полученного с помощью теории Джадда-Офельта. Напротив, для кристалла LaF₃:Nd³⁺ наблюдается значительный рост подгоночного параметра η в два раза при увеличении числа «эффективных фононов» безызлучательного перехода от трех до четырех. К сожалению, для уровня ${}^4I_{15/2}$ в кристалле ${\rm LaF_3:Nd^{3+}}$ отсутствует измеренное время распада. В литературе удалось найти только время распада ($\tau > 5$ нс) для уровня ${}^{4}I_{11/2}$ в кристалле SrF₂:Nd³⁺ [41], который с точки зрения расчета величины комбинированного электронного фактора $\omega_1^2(k,p)$ является аналогом кристалла LaF_3 :Nd³⁺. Если положить время жизни уровня ${}^{4}I_{11/2}$ равным 10 нс, то значения подгоночного параметра η в зависимости от значения параметра G получается еще в 3-4 раза больше, чем для упомянутого выше четырехфононного перехода с уровня ${}^{4}G_{7/2}$ в кристалле LaF₃:Nd³⁺. Полученные зависимости скорости MP от числа peff «эффективных фононов» $(W_{MR}(p))$ для кристаллов ${\rm LaF_3:Nd^{3+}}$ и ${\rm SrF_2:Nd^{3+}}$ аналогичны результату, полученному авторами для ряда фторидных кристаллов со структурой флюорита CaF₂, SrF₂ и BaF₂, активированных ионами Nd^{3+} , Ho^{3+} и Er^{3+} [42], и для кристаллов LiYF₄:Er³⁺ [34] и LiYF₄:Nd³⁺ [38], где также наблюдался плавный рост подгоночного параметра η с ростом числа p_{eff} «эффективных фононов» от 4 до 7. Важно отметить, что учет реального спектра колебаний кристаллической решетки для кристаллов со структурой флюорита также приводит к плавному росту параметра η [42], тем самым подтверждая правомерность использования модели «эффективного фонона». Другими словами, для фторидных кристаллов наблюдается плавное уменьшение наклона зависимости $W_{MR}(p)$, тогда как наклон аналогичной зависимости для

тройных сульфидных кристаллов не уменьшается, а его величина значительно больше, чем во фторидных кристаллах. Аналогичный результат, который здесь не приводится из-за экономии места, был получен нами и для кристалла CaGa₂S₄:Nd³⁺. Видно (табл. 3, 4), что искусственное изменение вклада обменного взаимодействия в скорость МР не приводит к изменению поведения наклона указанной зависимости в обоих типах кристаллов, что дает повод исключить из дальнейшего рассмотрения возможность неправильного учета вклада обменного взаимодействия при расчете скоростей МР. По-видимому, во фторидных кристаллах существует дополнительный механизм MP, который связан с существенно меньшим, чем в сульфидных кристаллах, расстоянием РЗ-ион-лиганд, и вклад которого увеличивается с ростом числа peff «эффективных фононов» (с ростом энергетического зазора ΔE_{min}), что увеличивает значение подгоночного параметра η при совпадении рассчитанных и экспериментально измеренных значений скорости MP.

В результате разница между скоростями МР во фторидных и сульфидных кристаллах увеличивается с ростом числа p_{eff} «эффективных фононов». Если для $p_{eff} = 3$ эта разница составляет всего полпорядка величины скорости МР в пользу фторидных кристаллов, для $p_{eff} = 4$ — два с половиной порядка, то для $p_{eff} = 5$ эта разница может составлять уже 3–4 порядка величины (см. табл. 3, 4).

4. ЗАКЛЮЧЕНИЕ

Для тройных сульфидных кристаллов с ионами Nd^{3+} показано, что фононный фактор η , определенный из сравнения рассчитанных теоретически и измеренных экспериментально скоростей многофононной релаксации, не увеличивается с ростом числа *p_{eff}* «эффективных фононов» безызлучательного перехода, а его величина значительно меньше, чем у растущей с ростом p_{eff} величины η , полученной при исследовании безызлучательных переходов во фторидных кристаллах. Это приводит к замедлению на 3-4 порядка величины скорости многофононной релаксации для переходов среднего ИК-диапазона в активированных ионами Nd³⁺ кристаллах тиогаллата свинца и кальция по сравнению с фторидными кристаллами, что позволяет ожидать получения на них лазерной генерации в области пяти микрон.

Работа выполнена при частичной поддержке РФФИ (гранты №№ 05-02-17447а, 07-02-12104офи), а также CRDF (проект RUP2-1517-MO-06).

ЛИТЕРАТУРА

- Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov et al., Opt. Mater. 29, 1115 (2007).
- 2. J. Frenkel, Phys. Rev. 37, 17 (1931).
- **3**. Я. Френкель, ЖЭТФ **6**, 647 (1936).
- K. Huang and A. Rhys, Proc. Roy. Soc. A 204, 406 (1950).
- **5**. А. С. Давыдов, ЖЭТФ **24**, 197 (1953).
- **6**. М. А. Кривоглаз, ЖЭТФ **25**, 191 (1953).
- R. Kubo and Y. Toyozawa, Progr. Theor. Phys. (Kyoto) 13, 160 (1955).
- 8. Ю. Е. Перлин, УФН 80, 533 (1963).
- R. Englman, Non-Radiative Decay of Ions and Molecules in Solids, North-Holland, Amsterdam, New York, Oxford (1979).
- 10. F. K. Fong, in: Handbook on the Physics and Chemistry of Rare Earths, ed. by K. A. Gschneidner. Jr. and L. Eyring, North-Holland, Amsterdam (1979), Vol. 4, p. 317.
- B. Di Bartolo, in: Advances in Nonradiative Processes in Solids, ed. by B. Di Bartolo, Plenum Press, New York, London, (1991), p. 29.
- 12. F. Auzel, in: Advances in Nonradiative Processes in Solids, ed. by B. Di Bartolo, Plenum Press, New York, London (1991), p. 135.
- 13. R. H. Bartram, J. Phys. Chem. Sol. 51, 641 (1990).
- 14. T. Miyakawa and D. L. Dexter, Phys. Rev. B 1, 2961 (1970).
- L. A. Riseberg and H. W. Moos, Phys. Rev. 174, 429 (1968).
- 16. M. J. Weber, Phys. Rev. B 8, 54 (1973).
- А. А. Каминский, Ю. Е. Перлин, в кн. Физика и спектроскопия лазерных кристаллов, под ред. А. А. Каминского, Наука, Москва (1986), с. 125.
- 18. R. L. Kronig, Physica 6, 33 (1939).
- 19. J. H. Van Vleck, Phys. Rev. 57, 426 (1940).
- 20. W. E. Hagston and J. E. Lowther, Physica 70, 40 (1973).
- 21. J. E. Lowther and W. E. Hagston, Physica 65, 172 (1973).
- 22. J. E. Lowther and W. E. Hagston, Physica 70, 27 (1973).

- 23. K. K. Pukhov and V. P. Sakun, Phys. Stat. Sol. (b)
 95, 391 (1979).
- 24. Ю. Е. Перлин, А. А. Каминский, М. Г. Блажа и др., ФТТ 24, 685 (1982).
- 25. Ю. Е. Перлин, А. А. Каминский, О. В. Алифанов, ФТТ 29, 3296 (1987).
- 26. К. К. Пухов, ФТТ 31, 144 (1989); К. К. Пухов, А. А. Каминский, Институт кристаллографии АН СССР, Препринт № 8, Москва (1989).
- 27. А. А. Каминский, Б. М. Антипенко, Многоуровневые функциональные схемы кристаллических лазеров, Наука, Москва (1989).
- 28. J. Heber, Phys. Kondens. Materie 6, 381 (1967).
- 29. V. P. Gapontsev, M. R. Sirtlanov, and W. Yen, J. Luminescence 31/32, 201 (1984).
- 30. О. В. Балагура, А. И. Иванов, Опт. и спектр. 62, 1043 (1987).
- 31. В. Л. Ермолаев, Е. Б. Свешникова, Е. Н. Бодунов, УФН 166, 279 (1996).
- 32. S. A. Payne and C. Bibeau, J. Luminescence 79, 143 (1998).
- 33. K. K. Pukhov, F. Pellé, and J. Heber, Mol. Phys. 101, 1001 (2003).
- 34. Yu. V. Orlovskii, R. J. Reeves, R. C. Powell et. al., Phys. Rev. B 49, 3821 (1994).
- 35. W. T. Carnall, Hannah Crosswhite, and H. M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃, Aragone Nat. Lab., Internal Rep. (1977).
- 36. B. Z. Malkin, Spectroscopy of Solids Containing Rare Earth Ions, ed. by A. A. Kaplyanskii and R. M. Macfarlane, North-Holland, Amsterdam (1987), Ch. 2, p. 13.
- 37. Yu. V. Orlovskii, K. K. Pukhov, T. T. Basiev et al., Opt. Mater. 4, 583 (1995).
- 38. T. T. Basiev, Yu. V. Orlovskii, K. K. Pukhov et al., J. Luminescence 68, 241 (1996).
- 39. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962).
- 40. Т. Т. Басиев, А. Ю. Дергачев, Е. О. Кирпиченкова и др., КЭ 14, 2021 (1987).
- 41. C. Bibeau, S. A. Payne, and H. T. Powell, J. Opt. Soc. Amer. B 12, 1981 (1995).
- 42. Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov et al., in *Proc. Advanced Solid-State Photonics 2004*, ed. by G. Quarles, Opt. Soc. Amer., Washington (2004), Vol. 94, p. 440.

⁴ ЖЭТФ, вып.4