ОБ ИЗЛУЧЕНИИ НЕРЕЛЯТИВИСТСКОЙ ЧАСТИЦЫ ПРИ ФИНИТНОМ ДВИЖЕНИИ В ЦЕНТРАЛЬНОМ ПОЛЕ

Б. М. Карнаков^{*}, Ф. А. Корнеев^{**}, С. В. Попруженко

Московский инженерно-физический институт (государственный университет) 115409, Москва, Россия

Поступила в редакцию 2 июля 2007 г.

Найдены спектральное распределение и выражение для интенсивности линий дипольного излучения нерелятивистской заряженной классической частицы, совершающей финитное движение в произвольном центральном поле, когда траектория не является замкнутой и движение частицы не является периодическим во времени. Показано, что в этом случае условно-периодического движения спектр состоит из двух серий эквидистантных линий излучения. Отмечается, что появлению в классической теории таких двух серий в квантовой теории отвечает, в духе принципа соответствия, известное правило отбора $|\Delta l| = 1$, где l — орбитальный момент частицы, для дипольного излучения в центральном поле. Полученные результаты могут быть использованы для описания излучения и поглощательной способности классической бесстолкновительной электронной плазмы в наночастицах, облучаемых интенсивным лазерным полем. В качестве примера вычислена скорость бесстолкновительного поглощения энергии электромагнитной волны в равновесной изотропной наноплазме.

PACS: 52.25.Os, 52.38.Dx, 52.50.Jm

1. ВВЕДЕНИЕ

В последние годы наблюдается повышенный интерес к физике наноструктур в интенсивном лазерном поле. Это связано, в первую очередь, с появлением новых экспериментальных возможностей конструирования нанообъектов — кластеров, тонких пленок, нанотрубок — с заданными и хорошо контролируемыми свойствами. Появление мощных фемтосекундных лазеров стимулировало новые эксперименты по взаимодействию наночастиц с интенсивным электромагнитным излучением. Под воздействием коротких лазерных импульсов интенсивностью свыше 10^{14} $B_T/c_M{}^2$ в наносистемах происходит внутренняя ионизация и образуется плазма со средней энергией электронов от десятков до десятков тысяч электронвольт¹⁾. Часть электронов покидает систему (внешняя ионизация), в результате чего возникает нескомпенсированный заряд, запирающий оставшуюся плазму, которая эволюционирует в конечном объеме до распада ионного остова нанотела. Характерное время разлета электронной подсистемы составляет от десятков фемтосекунд до нескольких пикосекунд. Таким образом, на фемтосекундном временном масштабе возникает новый физический объект — плотная горячая электронная плазма, локализованная в нанометровом пространственном масштабе — наноплазма [1, 2]. В настоящее время физические свойства наноплазмы активно изучаются, в том числе экспериментально [3–6].

Сценарий взаимодействия наноструктур с интенсивными лазерными импульсами определяется многими параметрами (длительностью и интенсивностью импульса, длиной волны излучения, составом и размером нанотела), которые варьируются в довольно широких пределах. Соответственно, свойства наноплазмы могут быть весьма различными в зависимости от конкретных условий. В частности, наноплазма, возбужденная интенсивным лазерным импульсом до энергий электронов в сотни и тысячи электронвольт, часто может рассматриваться как бесстолкновительная. В случае, когда речь идет об эволюции наноплазмы после выключения лазерного импульса, критерием бесстолкновительности слу-

^{*}E-mail: karnak@theor.mephi.ru

^{**}E-mail: korneev@theor.mephi.ru

При интенсивностях лазерной волны более 10¹⁸ Вт/см² электроны в плазме становятся релятивистскими.

жит малость частот ν электрон-электронных и электрон-ионных соударений по сравнению с частотой ω_0 колебаний электрона в самосогласованном поле, создаваемом ионным остовом и запертыми электронами. Для частиц размером 1–10 нм условие $\omega_0 \gg \nu$ может быть легко реализовано²). В этом случае электроны движутся по орбитам в самосогласованном поле, создаваемом всеми частицами нанотела. Если степень деформации нанотела лазерным импульсом невелика, то самосогласованное поле будет центрально-симметричным, отличным от кулоновского. Естественным образом возникает вопрос о спектре спонтанного излучения наноплазмы, в которой финитное движение электрона не является периодическим во времени.

Содержание данной статьи следующее. В разд. 2 рассмотрено спектральное распределение интенсивности дипольного излучения в случае нерелятивистской частицы, движущейся в произвольном центральном поле U(r), когда ее орбита не является замкнутой кривой. Показано, что в этом случае условно-периодического движения спектр состоит из двух серий, ω_n^+ и ω_n^- , эквидистантных линий излучения. Получены (для данных значений энергии Е и момента импульса М частицы) выражения для спектра частот ω_n^{\pm} и интенсивностей I_n^{\pm} линий излучения; при этом расстояние $\Delta \omega$ между соседними линиями в каждой из указанных серий излучения совпадает с частотой ω_r радиального движения частицы. В разд. 3 обсуждается вопрос об изменении момента импульса частицы при дипольном излучении в центральном поле. Показано, что появление двух серий эквидистантных линий в спектре излучения частицы в рассматриваемом случае условно-периодического движения непосредственно связано с тем физическим обстоятельством, что излучение частицей электромагнитных волн приводит и к изменению ее орбитального момента, которое носит весьма специфический характер. Оказывается, что излучение на частотах ω_n^+ связано с увеличением орбитального момента M частицы, а на частотах ω_n^- , наоборот, с его уменьшением. В разд. 4 представлен ряд иллюстраций полученных результатов, а в разд. 5 обсуждается их связь с результатами квантовой электродинамики для дипольного излучения частицы в центральном поле в квазиклассическом приближении. Наконец, в разд. 6 полученные результаты применяются для описания поглощатель-

²⁾ Характерные параметры плазмы, возникающей при взаимодействии интенсивных лазерных импульсов с наноструктурами, приводятся, например, в обзорах [3-6]. ной способности равновесной наноплазмы при достаточно высоких температурах, т.е. когда основным механизмом поглощения энергии является бесстолкновительный.

2. СПЕКТРАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ ДИПОЛЬНОГО ИЗЛУЧЕНИЯ

Как хорошо известно [7], спектр дипольного излучения нерелятивистской частицы, совершающей финитное периодическое во времени движение, является дискретным с частотами, кратными основной частоте $\omega_0 = 2\pi/T_0$, где T_0 — период движения. При этом интенсивность I_n излучения на частоте $n\omega_0$ есть

$$I_n = \frac{4e^2\omega_n^4}{3c^3} |\mathbf{r}_n|^2, \quad \omega_n = n\omega_0.$$
(1)

Здесь е — заряд частицы, с — скорость света, а

$$\mathbf{r}_n = \mathbf{r}(\omega_n) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \mathbf{r}(t) \exp(in\omega_0 t) dt \qquad (2)$$

является компонентой Фурье радиус-вектора **r**(t) на частоте излучения.

Однако в центральном потенциале при произвольных значениях энергии E и момента импульса M периодическое движение возможно только для сферического осциллятора, $U_{osc} = m\omega^2 r^2/2$, и в кулоновском поле $U_C = -\alpha/r$. Во всех других случаях траектории, вообще говоря, незамкнуты, движение частицы не является периодическим и поэтому выражения (1) и (2) неприменимы.

Основная цель настоящей работы состоит в обобщении этих формул на случай финитного движения заряженной частицы в центральном поле U(r) произвольного вида (но в отсутствие «падения на центр»). Для получения спектрального распределения интенсивности излучения используем разложение дипольного момента частицы в интеграл Фурье,

$$\mathbf{d}(t) = \frac{e}{2\pi} \int_{-\infty}^{\infty} \mathbf{r}(\omega) e^{-i\omega t} \, d\omega,$$

и прежде всего отметим ряд свойств фурье-компонент $\mathbf{r}(\omega)$ в рассматриваемом случае плоского условно-периодического движения частицы, которое, тем не менее, не является периодическим во времени.

Траектория частицы в плоскости xy; ее сплошная часть отвечает значению n = 0 в формулах (5). Отмечены также части траектории, соответствующие значениям $n = \pm 1$ (поворот радиус-вектора частицы происходит против часовой стрелки)

Выберем плоскость движения частицы в центральном поле U(r) как плоскость xy. Координаты траектории x(t) и y(t), которые, вообще говоря, не являются периодическими функциями, можно разложить в интеграл Фурье. Составим из фурье-компонент этих координат следующую комбинацию³:

$$\tilde{Z}_{+}(\omega) \equiv X(\omega) + iY(\omega) =$$

$$= \int_{-\infty}^{\infty} [x(t) + iy(t)] e^{i\omega t} dt. \quad (3)$$

Представим здесь интеграл по времени в виде суммы по последовательным периодам радиального движения, равным [8]

$$T_r(E,M) = \frac{2\pi}{\omega_r} = 2 \int_a^b \frac{dr}{\sqrt{\frac{2}{m} \left[E - U(r) - \frac{M^2}{2mr^2}\right]}}$$
(4)

(здесь E и M — энергия и орбитальный момент частицы; $a = r_{min}$ и $b = r_{max}$ — минимальное и максимальное удаления частицы от центра поля при ее движении — соответственно перигелий и афелий орбиты) и запишем выражение (3) в виде

$$X(\omega) + iY(\omega) = T_r \lim_{N \to \infty} \sum_{n=-N}^{N} R_n(\omega),$$

$$R_n(\omega) = \frac{1}{T_r} \int_{T_r(n-1/2)}^{T_r(n+1/2)} [x(t) + iy(t)] e^{i\omega t} dt.$$
(5)

При этом удобно выбрать начальные условия таким образом, что при t = 0 частица находится на оси x в точке наименьшего удаления от центра: x(0) = a, y(0) = 0; в этом случае часть траектории, отвечающая слагаемому с n = 0 в (5), является симметричной относительно оси x (см. рисунок).

Ввиду такой симметрии величины

$$x_{0}(\omega) = \int_{-T_{r}/2}^{T_{r}/2} x(t)e^{i\omega t} dt =$$

$$= \int_{-T_{r}/2}^{T_{r}/2} r(t)\cos\varphi(t)\cos\omega t dt,$$

$$iy_{0}(\omega) = i \int_{-T_{r}/2}^{T_{r}/2} y(t)e^{i\omega t} dt =$$

$$= -\int_{-T_{r}/2}^{T_{r}/2} r(t)\sin\varphi(t)\sin\omega t dt$$
(6')

(здесь r(t) и $\varphi(t)$ — полярные координаты частицы) являются вещественными функциями частоты ω , причем первая из них — четная функция, а вторая — нечетная; поэтому величины

$$R_{0}(\omega) = \frac{1}{T_{r}} [x_{0}(\omega) + iy_{0}(\omega)] =$$

$$= \frac{1}{T_{r}} \int_{-T_{r}/2}^{T_{r}/2} r(t) \cos(\varphi(t) + \omega t) dt,$$

$$R_{0}(-\omega) = \frac{1}{T_{r}} [x_{0}(-\omega) + iy_{0}(-\omega)] =$$

$$= \frac{1}{T_{r}} \int_{-T_{r}/2}^{T_{r}/2} r(t) \cos(\varphi(t) - \omega t) dt$$
(6")

также являются вещественными⁴⁾. Заметим также, что для данного значения частоты ω величины $R_0(\omega)$ и $R_0(-\omega)$ можно рассматривать как относящиеся к случаям вращения частицы в двух противоположных направлениях (т.е. замена ω на $-\omega$ в

³⁾ Аналогичным образом, как и ниже, можно рассмотреть компоненту $\tilde{Z}_{-}(\omega) \equiv X(\omega) - iY(\omega)$, см. формулы (10) и (11).

⁴⁾ Напомним, что в общем случае из условия вещественности $\mathbf{r}(t)$ следует равенство $\mathbf{r}(\omega) = \mathbf{r}^*(-\omega)$.

 $R_0(\omega)$ эквивалентна замене $\varphi(t)$ на $-\varphi(t)$). Именно это обстоятельство приводит к появлению двух серий эквидистантных линий излучения, сдвинутых относительно друг друга. Физически это связано с тем фактом, что излучение сопровождается изменением орбитального момента частицы, см. ниже разд. 3, а также разд. 5, в котором обсуждается квазиклассическое приближение для дипольного излучения частицы в центральном поле.

Вводя угол ϕ_0 между направлениями на соседние перигелий и афелий орбиты [8],

$$\phi_0 = M \int_a^b \frac{1}{\sqrt{2m\left[E - U(r) - \frac{M^2}{2mr^2}\right]}} \frac{dr}{r^2}, \quad (7)$$

замечаем, что на *n*-м периоде движения частицы «координата» $\tilde{z}(t) \equiv r(t)e^{i\varphi(t)} = x(t) + iy(t)$ траектории в (5) связана с «координатой» на нулевом, n = 0, периоде соотношением

$$\tilde{z}(t) = x(t) + iy(t) = \tilde{z}(t') \exp(2i\phi_0 n),$$

 $t = nT_r + t', \quad -T_r/2 < t' < T_r/2,$

поскольку после каждого периода T_r радиального движения происходит поворот радиус-вектора частицы на угол $2\phi_0$ в плоскости xy. Принимая во внимание это обстоятельство, из (5) получаем

$$R_n(\omega) = q^n R_0(\omega), \quad q = e^{2\pi i\beta}, \quad \beta = \frac{1}{\pi} \phi_0 + \frac{\omega}{\omega_r}.$$
 (8)

Теперь, учитывая равенство⁵⁾

$$\sum_{k=-\infty}^{\infty} e^{2i\pi kx} = \sum_{n=-\infty}^{\infty} \delta(x-n), \qquad (9)$$

согласно формулам (5), (8), (9) имеем

$$X(\omega) + iY(\omega) =$$

= $2\pi R_0(\omega) \sum_{n=-\infty}^{\infty} \delta \left[\omega - \omega_r \left(n - \frac{\phi_0}{\pi} \right) \right]$ (10)

(здесь использовано также равенство $\delta(ax) = = (1/|a|)\delta(x)$).

Аналогичным образом можно получить соотношение

$$X(\omega) - iY(\omega) =$$

$$= 2\pi R_0(-\omega) \sum_{n=-\infty}^{\infty} \delta \left[\omega - \omega_r \left(n + \frac{\phi_0}{\pi} \right) \right] \quad (11)$$

5) См. Приложение.

(обращаем внимание на изменение здесь знака частоты в аргументе функции R_0 по сравнению с (10)), после чего из формул (10) и (11) легко найти фурье-компоненты $X(\omega)$ и $Y(\omega)$:

$$\begin{aligned} X(\omega) &= \pi \sum_{n=-\infty}^{\infty} \left\{ R_0(\omega) \delta \left[\omega - \omega_r \left(n - \frac{\phi_0}{\pi} \right) \right] + \\ &+ R_0(-\omega) \delta \left[\omega - \omega_r \left(n + \frac{\phi_0}{\pi} \right) \right] \right\}, \\ Y(\omega) &= \\ &- i\pi \sum_{n=-\infty}^{\infty} \left\{ R_0(\omega) \delta \left[\omega - \omega_r \left(n - \frac{\phi_0}{\pi} \right) \right] - \\ &- R_0(-\omega) \delta \left[\omega - \omega_r \left(n + \frac{\phi_0}{\pi} \right) \right] \right\}, \end{aligned}$$
(12)

непосредственно определяющие спектральный состав излучения.

Как видно из этих формул, частотный спектр фурье-компонент $X(\omega)$ и $Y(\omega)$, а соответственно и интенсивности излучения — см. ниже формулы (14) — является дискретным и состоит из двух серий эквидистантных линий излучения с частотами

$$\omega_{n_1}^+ = \left(n_1 - \frac{\phi_0}{\pi}\right)\omega_r, \quad \omega_{n_2}^- = \left(n_2 + \frac{\phi_0}{\pi}\right)\omega_r, \quad (13)$$

где целые числа $n_{1(2)}$ принимают все возможные значения, совместимые с условиями $\omega_n^{\pm} > 0$, при этом в каждой из этих серий расстояние между соседними линиями одинаковое и равно $\Delta \omega = \omega_r$ (существенно, что эти спектры сдвинуты относительно точки $\omega = 0$).

Используя выражение для спектральной плотности полной излученной энергии [7],

$$\mathcal{E}_{rad} = \frac{2e^2}{3c^3} \int_{-\infty}^{\infty} \ddot{\mathbf{r}}^2(t) dt = \int_{0}^{\infty} \frac{d\mathcal{E}_{\omega}}{d\omega} d\omega, \qquad (14)$$
$$\frac{d\mathcal{E}_{\omega}}{d\omega} = \frac{2e^2}{3\pi c^3} \omega^4 \left[|X(\omega)|^2 + |Y(\omega)|^2 \right],$$

и приведенные выше формулы для фурье-компонент $X(\omega), Y(\omega)$ и $R_0(\omega)$, получаем

$$\frac{d\mathcal{E}_{\omega}}{d\omega} = \frac{4\pi e^2}{3\pi c^3} \times \\
\times \left\{ \sum_{n_1}^{\infty} \left(\omega_{n_1}^+\right)^4 R_0^2 \left(\omega_{n_1}^+\right) \delta^2 \left[\omega - \omega_r \left(n_1 - \frac{\phi_0}{\pi}\right) \right] + \\
+ \sum_{n_2}^{\infty} \left(\omega_{n_2}^-\right)^4 R_0^2 \left(-\omega_{n_2}^-\right) \times \\
\times \left\{ \delta^2 \left[\omega - \omega_r \left(n_2 + \frac{\phi_0}{\pi}\right) \right] \right\}. \quad (15)$$

Здесь первая сумма определяет вклад излучения на частотах ω_n^+ , а вторая — на частотах ω_n^- .

Очевидно, что полная излученная энергия, $\mathcal{E} = \int d\mathcal{E}_{\omega}$, за все время движения частицы — бесконечна. В формуле (15) это проявляется в том, что в ней фигурируют слагаемые, пропорциональные $\delta^2(\omega - \omega_n)$. Используя известный прием, состоящий в заменах

$$\delta^2(\omega - \omega_n) = \delta(0)\delta(\omega - \omega_n), \quad \delta(0) = \lim_{T \to \infty} \frac{1}{2\pi}T,$$

где T — длительность рассматриваемого процесса излучения, из формулы (15) интегрированием по частоте можно перейти к спектральному распределению интенсивности излучения

$$I(t) = 2e^2\ddot{\mathbf{r}}^2(t)/3c^3,$$

усредненной по периоду радиального движения, на соответствующих частотах ω_n^{\pm} и получить

$$\overline{I} = \frac{\mathcal{E}_{rad}(T)}{T} = \sum_{n} \left(I_n^+ + I_n^- \right), \qquad (16)$$

где

$$I_n^{\pm} = \frac{2e^2}{3c^3} \left(\omega_n^{\pm}\right)^4 R_0^2 \left(\pm \omega_n^{\pm}\right), \qquad (17)$$

а частоты излучения определяются формулами (13).

Иллюстрация приложений этих формул и их связь с формулами (1) и (2) для случая периодического движения частицы рассмотрены ниже в разд. 4.

3. ИЗМЕНЕНИЕ МОМЕНТА ИМПУЛЬСА ЧАСТИЦЫ ПРИ ДИПОЛЬНОМ ИЗЛУЧЕНИИ В ЦЕНТРАЛЬНОМ ПОЛЕ

Покажем, что появление двух серий эквидистантных линий в спектре излучения частицы в рассматриваемом случае условно-периодического движения непосредственно связано с тем физическим обстоятельством, что излучение частицей электромагнитных волн приводит также и к изменению ее орбитального момента.

В дипольном приближении усредненное по времени изменение момента, связанное с излучением, описывается выражением [7]

$$\overline{\frac{d\mathbf{M}}{dt}} = -\frac{2}{3c^3} \overline{\dot{\mathbf{d}}(t) \times \ddot{\mathbf{d}}(t)}.$$
(18)

В нашем случае вектор $\mathbf{M} = (0, 0, M)$ направлен вдоль оси z, а вектор $\mathbf{d}(t)$ и его производные по времени лежат в плоскости xy; поэтому

$$\overline{\frac{dM}{dt}} = -\frac{2e^2}{3c^3}\varepsilon_{ik3}\overline{\dot{x}_i(t)\ddot{x}_k(t)} =$$
$$= -\frac{2e^2}{3c^3}\overline{[\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t)]} \quad (19)$$

(ε_{ikl} — антисимметричный псевдотензор, $\varepsilon_{123} = 1$). Подставляя в эту формулу выражения для x(t) и y(t) через их фурье-компоненты (12) и поступая так же, как при выводе формул (16) и (17), получаем

$$\overline{\frac{dM}{dt}} = \frac{M_{rad}(T)}{T} = \sum_{n} \left(\dot{M}_{n}^{+} + \dot{M}_{n}^{-} \right), \qquad (20)$$

где

$$\dot{M}_{n}^{\pm} = \pm \frac{2e^{2}}{3c^{3}} \left(\omega_{n}^{\pm}\right)^{3} R_{0}^{2} \left(\pm \omega_{n}^{\pm}\right), \qquad (21)$$

а спектр частот определяется прежними выражениями (13).

Интересно сопоставить формулы (20), (21) для изменения момента импульса частицы с аналогичными формулами (16), (17) для спектрального распределения интенсивности излучения. Здесь видны два существенных обстоятельства:

1) согласно формуле (21), излучение на частотах ω_n^+ связано с увеличением орбитального момента M частицы, а на частотах ω_n^- , наоборот, с его уменьшением;

2) интенсивность излучения $I_n^{\pm}(\omega)$ (17) по своей величине в обеих сериях частот излучения отличается от скорости изменения момента $\dot{M}_n^{\pm}(\omega)$ (21) на соответствующих частотах ω_n^{\pm} множителем, равным этой частоте.

Последнее замечание играет важную роль в вопросах сопоставления, в духе принципа соответствия, классических и квантовых законов излучения, так как позволяет понять известное правило отбора $\Delta l = \pm 1$ для дипольного излучения частицы, движущейся в центральном поле, см. ниже разд. 5.

4. ОБСУЖДЕНИЕ И ИЛЛЮСТРАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Отметим некоторые закономерности дипольного излучения для рассматриваемого условно-периодического движения, следующие из полученных выше результатов.

1. Отмеченный результат, свидетельствующий о возникновении двух серий линий излучения в случае незамкнутых орбит, наглядно можно понять, если воспользоваться переходом во вращающуюся с угловой скоростью

$$\omega_{rot} = \frac{\pi - \phi_0}{\pi} \omega_r \tag{22}$$

3*

систему отсчета, в которой траектория становится замкнутой, а движение чисто периодическим. При этом отличны от нуля фурье-компоненты на частотах $n\omega_r$, как следует из формулы (1). При переходе в исходную инерциальную систему отсчета частотный спектр фурье-компонент координаты изменяется в соответствии с (13).

2. Как и в случае обычного периодического во времени движения, спектр излучения является дискретным; при этом расстояния $\Delta \omega = \omega_r$ между соседними линиями в каждой из двух серий излучения — одинаковы и равны именно частоте радиального движения.

В то же время возможна такая ситуация, когда при некоторых значениях энергии E и момента Mчастицы ее траектория оказывается замкнутой кривой и изменение вектора $\mathbf{r}(t)$ является периодическим во времени, как и в условиях применимости формул (1) и (2). Это имеет место в случае, когда

$$\phi_0 = \pi \frac{s}{k},$$

где *s* и k — целые числа (не имеющие общего делителя). Тогда за k радиальных периодов T_r начальный радиус-вектор частицы поворачивается на угол $2\phi_0 k$, и если при этом угол равен $2\pi s$, то радиус-вектор возвращается в прежнее положение, так что соответствующий период движения равен $T_0 = kT_r$ и

$$\omega_r = k\omega_0 \ge \omega_0. \tag{23}$$

Сравнивая спектры линий излучения согласно (13),

$$\omega_{\tilde{n}_{\pm}}^{\pm} = \left(\tilde{n}_{\pm} \mp \frac{s}{k}\right)\omega_r = \frac{k\tilde{n}_{\pm} \mp s}{k}\omega_r, \qquad (24')$$

со спектром из формулы (1),

$$\omega_n = n\omega_0 = \frac{n}{k}\omega_r, \qquad (24'')$$

замечаем, что в случае $k \ge 2$ эти спектры отличаются друг от друга (спектр (24") более «густой» и содержит по сравнению с (24') «лишние» линии). На первый взгляд, такое различие спектров представляется удивительным. Тем не менее можно сразу указать его причину. В рассматриваемом нами случае излучения частицы в центральном поле ее траектория $\mathbf{r}(t)$ лежит в одной плоскости. Формулы же (1) и (2) такого ограничения не предполагают: для их применимости существен лишь сам факт замкнутости орбиты без каких-либо ограничений на зависимость $\mathbf{r}(t)$. Поэтому благодаря более высокой симметрии траектории в первом случае появляются ограничения на характер спектра излучения по

сравнению с более общим случаем (проявление правил отбора для дипольного излучения в центральном поле). Так, в случае $\phi_0 = \pi/2$, s = 1, k = 2 и $\omega_r = 2\omega_0$, спектры частот $\omega_n^{\pm} = (2n-1)\omega_0$ совпадают друг с другом, но отличаются от спектра частот $\omega_n = n\omega_0$ в формуле (1); последний содержит «лишние» частоты $\omega_{2n} = 2n\omega_0$. В данном случае отсутствие таких частот в спектре ω_n^{\pm} легко объяснить. Действительно, полный период движения частицы T_0 при $\phi_0 = \pi/2$ состоит из двух радиальных периодов в амплитуду излучения различаются множителем q, который на частотах $\omega = n\omega_0$ равен

$$q = \exp[\pi i (1+n)],$$

и суммарный вклад обоих радиальных периодов обращается в нуль для четных значений *n*.

3. В качестве иллюстрации рассмотрим случай искаженного кулоновского потенциала притяжения:

$$U(r) = -\frac{\alpha}{r} + \frac{\beta}{r^2}$$

При этом орбита задается уравнением

$$r = \frac{p}{1 + e\cos\gamma\varphi},\tag{25}$$

где использованы следующие обозначения:

$$p = \frac{\tilde{M}^2}{m\alpha}, \quad e = \sqrt{1 + \frac{2E\tilde{M}^2}{m\alpha^2}},$$
$$\gamma = \frac{\tilde{M}}{M}, \quad \tilde{M} = \sqrt{M^2 + 2m\beta}$$

(при $\beta = 0$ орбита — кулоновский эллипс, один из фокусов которого находится в начале координат).

Из уравнения (25) находим значение угла

$$\varphi_0 = \frac{\pi}{\gamma} = \pi \frac{M}{\tilde{M}}.$$

Для частоты и периода радиального движения имеем

$$\omega_0 = \frac{2\pi}{T_r} = \frac{\pi \alpha \sqrt{m}}{2(2|E|)^{3/2}}.$$

Эти выражения полностью определяют спектральный состав излучения.

Отметим характерные особенности спектра.

а) Так как частота ω_0 не зависит от значения момента $^{6)}~M$ частицы, в каждой из двух серий линий

⁶⁾ Такое свойство связано с тем, что период движения в чисто кулоновском потенциале (совпадающий с радиальным периодом) не зависит от значения момента, а его искажение β/r^2 сводится формально к замене $M \to \tilde{M}$. Интересно, что замкнутый характер кулоновских орбит не связан со значением момента, однако указанная замена $M \to \tilde{M}$ уже существенно сказывается на виде траектории.

излучения ω_n^{\pm} расстояние между соседними частотами также не зависит от M (как и в случае чисто кулоновского потенциала). Однако в данном случае спектральный состав излучения от M уже зависит, ввиду зависимости от M угла φ_0 .

б) При значении $\gamma = 2$ угол $\varphi_0 = \pi/2$ и обе серии линий излучения выступают в виде одной последовательности эквидистантных линий, но уже с основной частотой $\tilde{\omega}_0 = \omega_0/2$ (см. выше разд. 2).

в) Интересной физической особенностью обладает спектр излучения при слабом искажении кулоновского потенциала, когда $\gamma \approx 1$, т. е. при $m\beta/M^2 \ll 1$. В этом случае

$$\varphi_0 \equiv \pi + \Delta \varphi_0, \quad \Delta \varphi_0 \approx -\frac{\pi}{2} \frac{m\beta}{M^2}, \quad \text{причем} \quad |\Delta \varphi_0| \ll 1$$

и появляется линия излучения с аномально малой частотой $(\gamma/\pi)\omega_0$. Объяснение структуры спектра излучения в этом случае следует из разд. 1 (см. выше). Более наглядная интерпретация появления такой линии излучения будет дана в следующем разделе.

4. Другой пример, часто используемый при модельном описании наноплазмы — потенциал равномерно заряженного шара радиуса R с полным зарядом Ze (-e — заряд частицы):

$$U(r) = \begin{cases} -\frac{Ze^2}{2R^3} \left(3R^2 - r^2\right), & r \le R, \\ -\frac{Ze^2}{r}, & r \ge R. \end{cases}$$

Этот случай также допускает полное аналитическое исследование, которое, однако, является весьма громоздким. Поэтому здесь ограничимся качественными замечаниями.

а) Потенциальная энергия внутри шара совпадает с потенциалом неискаженного сферического осциллятора с собственной частотой $\omega_{osc} = \sqrt{Ze^2/mR^3}$, причем эта энергия больше чисто кулоновской $U_C = -Ze^2/r$, ее минимальное значение $U_{min} = U(0) = -(3/2)Ze^2/R$, а максимальное значение $U_{max} = -Ze^2/R$. Поэтому при значениях энергии связанного электрона, $U(0) \leq E \leq -Ze^2/R$, орбита является осцилляторным эллипсом, центр которого находится в начале координат, и симметрична относительно отражения координат в отличие от кулоновского эллипса.

б) Наряду с осцилляторными орбитами имеются также чисто кулоновские, лежащие полностью за пределами шара. Так, это имеет место, если орбитальный момент удовлетворяет неравенству $M^2 \ge M_{cr}^2$, где $M_{cr}^2 = 2mZe^2R$.

в) Для произвольной орбиты, в том числе и кулоновской, частоты излучения зависят от параметров Е и М. Поэтому если рассматривать ансамбль частиц (электронов) с достаточно широким интервалом их распределения по энергиям и орбитальным моментам, то вследствие такой зависимости результирующий спектр излучения будет иметь квазинепрерывный характер. Однако это замечание уже не относится к частицам с энергией в нижней части спектра, $U(0) \leq E \leq -Ze^2/R$, поскольку они движутся внутри шара под действием квазиупругой силы, а характерная особенность дипольного излучения осциллятора — его монохроматичность. Поэтому в данной модели самосогласованного потенциала можно было бы ожидать появления в спектре излучения пика в этой области частот. Возможность экспериментального наблюдения такого эффекта на фоне непрерывного спектра требует более тщательного исследования вопроса об интенсивности линий излучения.

5. Интересно проследить за предельным переходом полученных результатов к случаю финитного движения частицы по круговой орбите радиуса r_0 . При этом движение частицы является периодическим с круговой частотой ω_0 ,

$$x(t) = r_0 \cos \omega_0 t, \quad y(t) = r_0 \sin \omega_0 t,$$

а частота $\omega_0 = M/mr_0^2$ связана с орбитальным моментом M частицы при ее движении по окружности радиуса r_0 . В свою очередь, связь значений M и r_0 определяется из условия минимума эффективной потенциальной энергии

$$U_{eff}(r) = U(r) + M^2/2mr^2$$

на круговой орбите:

$$U'_{eff}(r_0) = U'(r_0) - \frac{M^2}{mr_0^3} = 0,$$

$$m\omega_r^2 \equiv U''(r_0) + \frac{3M^2}{mr_0^4} > 0.$$
(26)

На этой орбите энергия частицы равна $E_0 = U_{eff}(r_0)$, а введенная здесь частота ω_r является частотой малых радиальных колебаний частицы при энергии E, близкой к E_0 , когда орбита заключена в узкой кольцеобразной области $a \leq r(t) \leq b$, где

$$a+b \approx 2r_0, \quad b-a = \sqrt{(E-E_0)/2m\omega_r^2} \ll r_0$$

 $(a, b \to r_0$ при $E \to E_0).$

По формулам (1) и (2) в рассматриваемом случае сразу находим, что излучение происходит только на

основной частоте ω_0 (n = 1, т. е. является монохроматическим), при этом

$$x(\omega_0) = -iy(\omega_0) = \frac{1}{2}r_0, \quad z(\omega) \equiv 0,$$

$$I_1 = \frac{2e^2r_0^2\omega_0^4}{3c^3}$$
(27)

(излучение электрического диполя, вращающегося в одной плоскости с угловой скоростью ω_0 [7]).

Рассмотрим теперь на основе формул (6), (13), (16), (17) излучение частицы в случае, когда ее движение является малыми радиальными колебаниями. В этом случае радиальная зависимость r(t) легко может быть найдена с помощью известной формулы [8] (ср. с (4)):

$$t = \int_{a}^{r} \frac{dr}{\sqrt{\frac{2}{m}(E - E_0) - \omega_r^2(r - r_0)^2}}$$
(28)

(здесь мы ограничились квадратичным разложением эффективной потенциальной энергии в окрестности точки *r*₀ круговой орбиты); она имеет вид

$$r(t) = r_0 - \frac{1}{2}(b-a)\,\cos\omega_r t$$

Аналогичным образом с помощью уравнения для орбиты частицы в центральном поле [8] (ср. с (7)),

$$\varphi(r) = \frac{M}{r_0^2} \int_a^r \frac{dr}{\sqrt{2m(E - E_0) - m^2 \omega_r^2 (r - r_0)^2}},$$

и уравнений (24) получаем

$$\varphi(t) = \frac{M}{mr_0^2} t. \tag{29}$$

Эта зависимость имеет очевидный смысл, так как означает, что изменение угловой переменной $\varphi(t)$ в случае малых радиальных колебаний частицы происходит как и в случае кругового движения и представляет собой (приближенно) равномерное вращение с частотой $\omega_0 = M/mr_0^2$, указанной выше. Из формулы (29) при $t = T_r/2 = \pi/\omega_r$ следует

$$\frac{\phi_0}{\pi}\omega_r = \frac{M}{mr_0^2} = \omega_0 \tag{30}$$

(это соотношение в случае малых радиальных колебаний можно получить и непосредственно из уравнения (7)).

Теперь, используя формулы (6), (13), (29) и (30), находим амплитуды $R_0(\pm \omega_n^{\pm})$, определяющие

согласно соотношениям (16) и (17) интенсивности спектральных линий излучения в рассматриваемом случае:

$$R_0(\omega_n^+) \approx \frac{r_0}{T_r} \times \int_{-T_r/2}^{T_r/2} \cos\left[\frac{M}{mr_0^2}t + \omega_r\left(n - \frac{\phi_0}{\pi}\right)t\right] dt = 0 \quad (31')$$

(здесь учтено, что для частот $\omega_n^+ > 0$ минимальное значение $n \ge 1$), а также

$$R_0(-\omega_n^-) \approx \frac{r_0}{T_r} \times \\ \times \int_{-T_r/2}^{T_r/2} \cos\left[\frac{M}{mr_0^2}t - \omega_r\left(n + \frac{\phi_0}{\pi}\right)t\right] dt = \\ = r_0 \,\delta_{n0}, \quad (31'')$$

т.е. в рассматриваемом предельном случае доминирующим является излучение на частоте ω_n^- при n = 0, равной $\omega_0^- = (\phi_0/\pi)\omega_r$ и совпадающей с введенной ранее частотой ω_0 . При этом интенсивность излучения согласно формулам (17) и (31) совпадает с приведенной выше в формуле (27), как и следовало ожидать.

Подчеркнем, что полученное выше обращение в нуль всех амплитуд излучения $R_0(\omega_n^+)$ на частотах ω_n^+ можно было предвидеть заранее на основании результатов предыдущего раздела. Действительно, эти амплитуды связаны с излучением, сопровождающимся увеличением орбитального момента частицы. Однако из физических соображений представляется очевидным, что при движении частицы по окружности уменьшение ее энергии (за счет излучения) приводит и к уменьшению ее момента импульса.

Заметим, что для кулоновского потенциала $U_C = -\alpha/r$ в книге [7] приведено вычисление фурье-компонент x_n и y_n радиус-вектора частицы. Принимая во внимание их связь с амплитудами $R_0(\pm \omega_n)$,

$$R_0(\pm\omega_n) = x_n \pm iy_n, \quad \omega_n = n\omega_0, \tag{32}$$

можно убедиться, что при переходе к круговым орбитам излучение определяется только амплитудой $R_0(-\omega_n^+)$ с n = 0.

5. КВАЗИКЛАССИЧЕСКОЕ ПРИБЛИЖЕНИЕ ДЛЯ ДИПОЛЬНОГО ИЗЛУЧЕНИЯ ЧАСТИЦЫ В ЦЕНТРАЛЬНОМ ПОЛЕ

Основной полученный выше качественный результат — появление двух серий эквидистантных линий дипольного излучения в случае условно-периодического движения, когда траектория частицы незамкнута — наглядно можно интерпретировать в терминах квантовой механики в квазиклассическом приближении в духе принципа соответствия.

Дипольное излучение в центральном поле связано с переходами частицы между стационарными состояниями с произвольным изменением радиального квантового числа n_r (допустимым законами сохранения энергии и момента) и с изменением при этом орбитального квантового числа l на $\Delta l = \pm 1$ (правило отбора для дипольного излучения). Соответствующая частота излучаемого фотона

$$\omega(n_r l \to n'_r l') = \frac{1}{\hbar} \left[E(n_r l) - E(n'_r l') \right], \qquad (33)$$

где $E_{n_r l}$ и $E_{n'_r l'}$ — энергии начального и конечного состояний частицы. В квазиклассическом приближении квантовые числа велики, $n_r, l \gg 1$, в то время как $|n| \ll n_r$, где $n \equiv n_r - n'_r$; поэтому, согласно (33),

$$\omega(n_r l \to n'_r l') \approx \frac{1}{\hbar} \left\{ \frac{\partial E(n_r l)}{\partial n_r} n + \frac{\partial E(n_r l)}{\partial l} \Delta l \right\}, \quad (34)$$
$$\Delta l = l - l' = \pm 1.$$

Далее, из правила квантования Бора-Зоммерфельда для энергетических уровней [9],

$$\int_{a}^{b} p_r \left(E_{n_r l}, l; r \right) dr = \pi \hbar \left(n_r + \frac{1}{2} \right), \qquad (35)$$

где⁷⁾

$$p_r (E_{n_r l}, l; r) = \sqrt{2m \left[E_{n_r l} - U(r) - \frac{\hbar^2 (l+1/2)^2}{2mr^2} \right]} \quad (36)$$

— квазиклассический импульс, *a* и *b* — точки остановки радиального движения, дифференцировани-

ем выражения (35) по n_r и l находим значения производных в формуле (34):

$$\frac{\partial E_{n_r l}}{\hbar \partial n_r} = \pi \left\{ \int_{a}^{b} \frac{m \, dr}{p_r \left(E_{n_r l}, l; r \right)} \right\}^{-1} \equiv \\ \equiv \hbar \omega_r \left(E_{n_r l}, M \right), \quad M = \hbar \left(l + \frac{1}{2} \right), \quad (37)$$

$$\frac{\partial E_{n_r l}}{\hbar \partial l} = \frac{1}{\pi} \omega_r \left(E_{n_r l}, M \right) \int_a^b \frac{M \, dr}{r^2 p_r \left(E_{n_r l}, l; r \right)} \equiv \\ \equiv \frac{1}{\pi} \omega_r \left(E_{n_r l}, M \right) \phi_0(E_{n_r l}, M). \tag{38}$$

В этих формулах частота $\omega_r(E_{n_rl}, M)$ и угол $\phi_0(E_{n_rl},M)$ в точности совпадают с соответствующими выражениями для ω_r и ϕ_0 в классической механике (см. формулы (4) и (7)) при одинаковых значениях энергии, $E = E_{n_r l}$, и орбитального момента $M = \hbar (l + 1/2)$. Соответственно и квантовомеханическая формула (34) для частот излучаемых фотонов в квазиклассическом приближении, которая уже не содержит постоянной Планка \hbar , совпадает с формулой (13) классической теории поля для частот излучения электромагнитных волн. При этом, как видно из сравнения спектров (13) и (34), частоты излучения $\omega^+(n)$ связаны с переходами с увеличением орбитального момента l' = l + 1, а частоты $\omega^{-}(n)$, наоборот, с его уменьшением, l' = l - 1. Этот квазиклассический результат совпадает с результатом, полученным в разд. 3 в классической теории.

Подчеркнем, что факт отмеченного совпадения частот в классической и квантовой теориях излучения, конечно, хорошо известен и лежит в основе принципа соответствия Бора между классическими и квантовомеханическими закономерностями. Однако, насколько нам известно, такое сопоставление основано на предположении о периодичности во времени изменения дипольного момента [10,11]. При этом квантовомеханическая формула для интенсивности излучения,

$$I = \frac{4\omega^4}{3c^3} \left| \mathbf{d}_{fi} \right|^2, \quad \hbar\omega = E_i - E_f, \quad (39)$$

получается из классических формул (1) и (2) заменой фурье-компонент \mathbf{d}_n дипольного момента частицы матричными элементами \mathbf{d}_{fi} для соответствующих переходов и подстановкой $\hbar \omega = E_i - E_f$ для частоты перехода. Рассмотренная нами задача, не

⁷⁾ В выражении для радиального квазиклассического импульса p_r введена поправка Лангера — т.е. сделана известная замена l(l+1) на $(l+1/2)^2$ — в центробежной энергии, при этом орбитальный момент частицы $M = \hbar(l+1/2)$.

связанная с предположением о периодичности движения, демонстрирует хорошо известный факт, что часто некоторые классические закономерности допускают физически более наглядное объяснение при квантовомеханическом рассмотрении.

В качестве иллюстрации обсудим вопрос о спектре излучения классической частицы, когда выполнено соотношение $\phi_0 = \pi \pm \gamma$ с $\gamma \ll 1$. В этом случае появляется линия излучения с аномально малой частотой, равной $(\gamma/\pi)\omega_0$. Наглядное объяснение структуры спектра излучения в этом случае можно дать, если заметить, что подобная ситуация реализуется при слабом искажении кулоновского потенциала. В квантовой теории кулоновский спектр энергий E_n вырожден и включает состояния с орбитальными моментами различной четности и дипольные переходы происходят между уровнями с разными значениями п. При слабом искажении этого потенциала снимается отмеченное выше «случайное» вырождение по орбитальному моменту и, в отличие от случая неискаженного потенциала, возникают переходы между соответствующими близкими расщепленными подуровнями, для которых $\Delta l = \pm 1$.

6. БЕССТОЛКНОВИТЕЛЬНОЕ ПОГЛОЩЕНИЕ ЭНЕРГИИ РАВНОВЕСНОЙ НАНОПЛАЗМОЙ

Полученные в работе выражения позволяют вычислить спектр дипольного излучения системы заряженных частиц, движущихся в центральном поле произвольного вида. Как было упомянуто выше, такие системы в настоящее время могут быть реализованы в экспериментах по взаимодействию интенсивных лазерных импульсов с наноструктурами, в частности с атомарными или металлическими кластерами. Однако, будучи некогерентным, такое излучение имеет малую интенсивность. Отсутствие когерентности связано в данном случае с тем, что все частицы системы движутся независимо в статическом центральном самосогласованном поле, так что их суммарный дипольный момент равен нулю. В результате интенсивность излучения пропорциональна числу частиц в системе, а не его квадрату. Квадратичная зависимость интенсивности излучения от числа частиц возникает при возбуждении лазерным полем коллективных колебаний наноплазмы, приводящих к излучению гармоник лазерной частоты. Интенсивность такого когерентного излучения достаточно велика, оно наблюдается в экспериментах (см. в этой связи работы [12, 13]). Что более суще-

ственно, знание компонент Фурье радиус-вектора частицы (12) позволяет вычислить также поглощающую способность сферически-симметричной наносистемы в важном частном случае равновесного распределения электронов в ней. Этот случай реализуется, если частота электрон-электронных столкновений мала по сравнению с частотой ω_0 колебаний электрона в самосогласованном поле, но велика по сравнению с обратным временем жизни $1/\tau$ наноплазмы. Первое условие нужно, чтобы пренебречь столкновениями при рассмотрении движения электронов, второе обеспечивает установление в системе равновесия раньше, чем она прекратит свое существование. Как известно, для систем, находящихся в состоянии термодинамического равновесия, среднее значение квадрата дипольного момента связано с мнимой частью поляризуемости $\alpha''(\omega)$ флуктуационно-диссипативным соотношением [14]

$$\frac{2T_e}{\omega}\alpha''(\omega) = \frac{n_e}{T} \langle |(\mathbf{d}(\omega)\mathbf{n})|^2 \rangle.$$
(40)

Здесь $\mathbf{d}(\omega) = e\mathbf{r}(\omega)$ — дипольный момент одного электрона, а угловые скобки означают усреднение по направлению единичного вектора **n** и по равновесному распределению электронов с температурой T_e ; n_e — плотность электронов в системе, $T \to \infty$ формально бесконечное время наблюдения, введенное выше. При этом мнимая часть поляризуемости α'' определяет энергию Q, поглощаемую системой из внешнего поля в единицу времени [14]:

$$Q = \frac{1}{2} V \omega \alpha'' \varepsilon_0^2, \tag{41}$$

где V — объем системы, а ε_0 — амплитуда внешнего периодического поля с частотой ω . В сферически-симметричной системе электронная функция распределения имеет вид

$$f(E,M) = \frac{1}{A(T_e)} \frac{\exp(-E/T_e)}{\omega_r(E,M)},$$
 (42)

где $A(T_e)$ — нормировочная постоянная. Выражение (42) легко получить, переходя к квазиклассическому пределу в распределении Гиббса $\rho(n_r, l) = Z^{-1} \exp(-E(n_r, l)/T_e)$ с использованием соотношений из разд. 5.

Используя выражения (12) для компонент Фурье координат и вычисляя интегралы с δ -функциями согласно

$$\int dE\delta(\omega - \omega^{\pm}(n, E, M)) = \left| \frac{d\omega^{\pm}}{dE} \right|_{E = E_n^{\pm}(M)}^{-1},$$

для среднего квадрата дипольного момента находим

$$\frac{1}{T} \langle |(\mathbf{d}(\omega)\mathbf{n})|^2 \rangle = \frac{\pi}{3A(T_e)} \sum_n \int M \, dM \times \\ \times \left\{ \frac{\exp(-E_n^+/T_e)R_0^2(\omega)}{\omega_r(n, E_n^+, M) \left| \frac{d\omega^+}{dE} \right|_{E=E_n^+(M)}} + \frac{\exp(-E_n^-/T_e)R_0^2(-\omega)}{\omega_r(n, E_n^-, M) \left| \frac{d\omega^-}{dE} \right|_{E=E_n^-(M)}} \right\}.$$
(43)

Сумма в (43) вычисляется по корням $E_n^{\pm}(M)$ уравнения

٢

$$\omega^{\pm}(n, E_n^{\pm}, M) = \omega, \qquad (44)$$

где величины ω^{\pm} определяются формулой (13). После подстановки всех величин в (41) получим выражение для скорости диссипации энергии электромагнитной волны, взаимодействующей с классической сферически-симметричной равновесной электронной плазмой. Физическим механизмом диссипации является поглощение энергии из внешней волны электронами, движущимися в самосогласованном поле, создаваемом всеми частицами наноплазмы. Такой механизм поглощения, известный также как бесстолкновительное поглощение или затухание Ландау в конечной системе, играет существенную роль в нагреве электронной плазмы в наночастицах, облучаемых интенсивным лазерным полем (см. в этой связи работы [15-18]). Выражение (43) и вытекающая из него формула для скорости поглощения энергии получаются как частный случай из более общих соотношений для скорости линейного бесстолкновительного поглощения энергии, не предполагающих наличия в системе теплового равновесия [18].

Авторы благодарны С. П. Гореславскому, Д. Ф. Зарецкому, С. Р. Кельнеру и В. С. Попову за обсуждение результатов и интерес к работе.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 07-02-01116, 06-02-16916), Немецкого научно-исследовательского общества (DFG 436 RUS 113/852/0-1), а также Президентской программы поддержки ведущих научных школ (грант № НШ-320.2006.2) и Министерства науки и образования РФ «Развитие научного потенциала высшей школы» (грант № РНП 2.1.1.1972).

ПРИЛОЖЕНИЕ

Приведем вывод соотношения (9). Введем функцию

$$F(x) \equiv \sum_{k=-\infty}^{\infty} q^k = \sum_{k=-\infty}^{\infty} e^{2i\pi kx}.$$
 (II.1)

Умножая ее на $q = e^{2i\pi x}$, получаем

$$e^{2i\pi x}F(x) = F(x).$$

Отсюда следует, что эта функция отлична от нуля только в точках x = 0 и $x = \pm n$ (n — целое число), т. е. является обобщенной функцией, и поэтому равна

$$F(x) = \sum_{n=-\infty}^{\infty} C\delta(x-n), \qquad (\Pi.2)$$

где $\delta(x)$ — дельта-функция Дирака.

Коэффициент C здесь при всех значениях n — одинаковый, что следует из трансляционной инвариантности функции F(x) (она остается неизменной при замене x на x+1). Для его определения запишем F(x) в виде

$$F(x) = F_{+}(x) + F_{-}(x) - 1,$$

$$F_{\pm}(x) = \sum_{k=0}^{\infty} e^{\pm 2i\pi kx - 2\varepsilon k},$$
(II.3)

где $\varepsilon > 0$ — бесконечно малая величина (введение такого «обрезающего» множителя связано с тем, что F(x) является обобщенной функцией). Теперь замечаем, что

$$F_{\pm}(x) = \frac{1}{1 - q_{\pm}} = \left(1 - e^{\pm 2i\pi x - 2\varepsilon}\right)^{-1} = \frac{e^{\pm i\pi x + \varepsilon}}{e^{\pm i\pi x + \varepsilon} - e^{\pm i\pi x - \varepsilon}}.$$

Полагая здесь $|x| \ll 1$, имеем

$$F_{\pm}(x) = \frac{1}{\mp 2i\pi x + 2\varepsilon} + \frac{1}{2}$$

и соответственно, согласно (П.3),

$$F(x) = \frac{\varepsilon}{\pi^2 x^2 + \varepsilon^2} = \delta(x), \qquad (\Pi.4)$$

поскольку $\varepsilon > 0$ — бесконечно малая величина.

Отсюда следует значение коэффициента C в формуле (П.2): C = 1.

ЛИТЕРАТУРА

- T. Ditmire, T. Donnelly, A. M. Rubenchik et al., Phys. Rev. A 53, 3379 (1996).
- J. Zweiback, T. Ditmire, and M. D. Perry, Opt. Express 6, 236 (2000).
- Р. В. Волков, В. М. Гордиенко, М. С. Джиджоев и др., КЭ 24, 1114 (1997).
- F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. A. Ullrich, Phys. Rep. 337, 493 (2000).
- V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).
- U. Saalmann, Ch. Siedschlag, and J. M. Rost, J. Phys. B 39, R39 (2006).
- 7. Л. Д. Ландау, Е. М. Лифшиц, *Теория поля*, Наука, Москва (1988).
- 8. Л. Д. Ландау, Е. М. Лифшиц, *Механика*, Наука, Москва (1988).
- 9. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика (нерелятивистская теория), Наука, Москва (1989).

- 10. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, Квантовая электродинамика, Наука, Москва (1989).
- А. Б. Мигдал, Качественные методы в квантовой теории, Наука, Москва (1975).
- 12. S. V. Fomichev, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, J. Phys. B 36, 3817 (2003).
- B. Shim, G. Hays, R. Zgadzaj et al., Phys. Rev. Lett. 98, 123902 (2007).
- 14. Л. Д. Ландау, Е. М. Лифшиц, *Статистическая физика*, ч. I, Наука, Москва (1976).
- 15. D. F. Zaretsky, Ph. A. Korneev, S. V. Popruzhenko, and W. Becker, J. Phys. B 37, 4817 (2004).
- 16. Ph. A. Korneev, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, Laser Phys. Lett. 2, 452 (2005).
- 17. M. Kundu and D. Bauer, Phys. Rev. Lett. 96, 123401 (2006); Phys. Rev. A 74, 063202 (2006).
- 18. Д. Ф. Зарецкий, Ф. А. Корнеев, С. В. Попруженко, КЭ 37, 565 (2007).