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It is shown that the model of underlying stochastic motion of a macromolecule leads to two modes of mo-
tion: reptative and isotropically diffusive. There is a length of a macromolecule M* ~ 10M., where M, is “the
macromolecule length between adjacent entanglements”, above which macromolecules of a melt can be regarded
as obstacles to motion of each other, and the macromolecules reptate. The transition to the reptation mode
of motion is determined by both topological restrictions and the local anisotropy of motion. The investiga-
tion confirms that the reptation motion determines the M ~2 molecular-weight dependence of the self-diffusion

coefficient of macromolecules in melts.

PACS: 36.20.-r, 61.25.H-, 83.10.Mj

1. INTRODUCTION

To interpret the diffusion and relaxation behavior
of macromolecules in entangled linear polymers (poly-
mer melts), some modeling situations were considered
in [1,2]. It was shown in [1] that in the case where
the motion of a macromolecule is confined by fixed ob-
stacles, such that it moves like a snake by reptation,
the diffusion coefficient for the center of mass of the
macromolecule is inversely proportional to its squared
length. Because this law of diffusion turned out to be
also valid for long macromolecules in polymer melts, it
was concluded that the neighbouring macromolecules
in polymer melts can be regarded as mobile obstacles
for a tagged macromolecule, which also moves via rep-
tation. It was a successful hypothesis, although some
discussion repeatedly emerged [3] regarding whether a
macromolecule reptates in a melt and if it does, what
is the macromolecule length that marks the beginning
of reptation.

A direct solution of the problem of simultaneous
motion of many macromolecules, which could yield
an answer to the question whether and under which
conditions a macromolecule reptates turned out to
be a rather difficult problem. The accurate solu-
tion is apparently available [4] only for short chains,
when reptation motion is not expected. For longer
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macromolecules, the most efficient approach appears
to be the mean-field one, when the average reac-
tion of many surrounding macromolecules on the se-
lected macromolecule is approximated as a reaction
of some medium, whose properties are chosen in a
proper way [2,5]"). In the conventional reptation-tube
model [2], the surrounding was schematized as a flex-
ible tube and the reptation of the macromolecule in
the tube is postulated; this allowed explaining some ef-
fects of dynamic behavior of polymers, but said nothing
about the conditions under which the tube and repta-
tion exist. On the other hand, the model of underly-
ing stochastic motion [5-7] led to justifying the con-
cepts of tube and reptation and allowed calculating a
mean length, which has the meaning of the tube ra-
dius and/or the macromolecule length between adja-
cent entanglements, and considering the effects associ-
ated with reptation motion. The model allows consis-
tently interpreting experimental data related to the dy-
namic behavior of linear macromolecules in the systems
of entangled macromolecules with the lengths above
2M,, where M, is the “macromolecule length between
adjacent entanglements” [5], and can be used to obtain
the conditions for the existence of reptation motion.

1) The preliminary version of the revised and enlarged
edition of monograph [5] can be found at the page
http://ecodynamics.narod.ru/polymer/content.html.
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2. DYNAMICS OF A MACROMOLECULE IN
AN ENTANGLED SYSTEM

The equation for the coordinates r® and velocities
u® of particles (e = 0,1,2,...,N) of a coarse-grained
polymer chain, associated with a tagged macromolecule
of length M, can be written [7] as an equation for the
Rouse chain in the presence of an additional random
force @,

d2 a
dt2

= —Qup + B~ 2T A0 + (1), (1)
where m is the mass of a Brownian particle associ-
ated with the macromolecule piece of length M /N, 2T u
is the elasticity coefficient of a “spring” between adja-
cent particles, and T' is temperature in energy units.
The matrix A, describes the connection of Brownian
particles in the entire chain. Such a representation of
the macromolecular dynamics was regarded as a pos-
sible description of the motion of a macromolecule in
an entangled system [8,9]. The presence of the ran-
dom force ® means that the Rouse chain is located
in some medium representing the surrounding chains
of the tagged macromolecule. We also note that the
above equation (at m = 0) is identical to the Langevin
equation, which was formulated [10] to study the be-
havior of a polymer chain in a random static field; the
equation was investigated numerically in [11].

To properly describe the dynamics of a chain in the
entangled system, the random force ®¢ in Eq. (1) has
to be not static but dynamic, with a relaxation time
7, which can be interpreted as the terminal viscoelastic
relaxation time of the environment [5, 7]. The force ¢
can be specially designed for a chain in the entangled
system, according to the equation

Ao
-
dt

= —®f — (BH;; u] — (BEG{'uj + o’ (t). (2)
The random processes ¢¢ and o¢ in stochastic equa-
tions (1) and (2) relate to the dissipative terms due to
the fluctuation—dissipation theorem [12].

The parameters B and E in Eq. (2) are introduced
as measures of the external and internal resistance of
the particle in a given medium, and we therefore as-
sume that the quantities B and E are given functions
of the molecular weight My of macromolecules of the
environment. The dependence can be specified by con-
sidering some simple heuristic models [5, 6] and/or by
comparing the derived results with the available em-
pirical evidence [5]. For example, these considerations
allow identifying the dependence of one of the param-
eters as
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In the linear case, H;;" and G} are numerical ma-
trices, but to imitate the dynamics of a macromolecule
properly, we must include nonlinear terms related to
the local anisotropy of mobility [7]. We thus obtain

the simplest approximation
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where a¢;; and a;,; are the local anisotropy parameters
introduced such that positive values of the parameters
correspond to an increase in mobility along the contour
of the chain. In the linear case, with ef'e¢ = (1/3)d;; on
average, we return to the linear form studied in detail
previously [5].

The model in (1)—(4) is formulated such that the
derived results are independent of the number N of
particles of a coarse-grained chain, but depend on the
length of a probe macromolecule M. The parameters
of the model are combined to form the characteristic
quantities [5, 7]

T ~ M—l * CNQ ~
27*B ’ 4r2uT

X = (5)

3. THE TRANSITION POINT

The model in (1)—(4) allows systematically studying
deviations from the Rouse dynamics when adding non-
Markovian and anisotropic noise. Figure 1 shows an
example of calculation of the squared centre-of-mass
displacement A of a macromolecule as a function of
time. At ®¢ = 0, Eq. (1) determines the well-known
Rouse dynamics of a macromolecule, which in particu-
lar provides the diffusion coefficient
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Fig.1. Displacement of a macromolecule in time. The
straight line depicts the analytic result for the Rouse dy-
namics. The solid curves represent the results for the
displacement for a macromolecule of length M = 251/,
among similar macromolecules in accordance with sys-
tem (1)-(4) with the parameter values B = 429 and
x = 0.04. The local anisotropy parameter values acz¢
are shown at the curves. Internal resistance (parame-
ters E and aint) does not affect mobility of a macro-
molecular coil

T
— ~M"
N¢

Dy = (6)

In the linear case, with aerr = aijnr = 0, Egs. (1)—(4)
determine the large-time diffusion coefficient [5]

D=DyB '~ M;?*M 1, (7)
where M and M, are respectively the lengths of the
probe macromolecule and macromolecules of the envi-
ronment. Introducing a local anisotropy of the mo-
bility of particles, which could be related to induc-
tion of the reptation mode of motion of the macro-
molecule [7], leads to an increase in the large-time dif-
fusion coefficient (Fig. 1). The method of simulation
described in [7] is used to study mobility of a macro-
molecule in the medium made up of similar macro-
molecules of equal or different lengths, which allows cal-
culating the diffusion coefficient of a macromolecule at
large times. Considering diffusion of a macromolecule
of length 250, among macromolecules with different
lengths shows that there is a critical length AM* above
which the mobility of the macromolecule is indepen-
dent of the properties of the environment (Fig. 2). In
this case, macromolecules of the environment make up
topological obstacles, which are similar to fixed obsta-
cles for the macromolecule, which therefore turns out
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Fig. 2. Diffusion coefficient of a macromolecule. Each
point shows a value of the ratio of asymptotic values
of the displacement of a macromolecule for large times
to values of the displacement for the Rouse case of a
macromolecule of length 251/, among macromolecules
with different lengths Mj. The local anisotropy param-
eter value is 0.3 for the circles and 0.1 for the squares.
The slope of the dashed lines is —2.4 for short macro-
molecules and 0 for long ones, and hence the simulation
determines the point of transition between the diffusive
and reptation modes of motion

to be effectively confined [7] to “a tube” whose radius ¢
is calculated in terms of model (1)—(4) as

& =Dog. ®)

In the region above the point M*, the described model
leads to the known [2] law for self-diffusion of the
macromolecular coil, as illustrated in Fig. 3. A value
of the local anisotropy coefficient can be chosen such
that the position of the transition point in the case
of self-diffusion coincides with the typical experimen-
tal value M* ~ 10M, [13]. By virtue of the universal
topological structure, the melts of linear polymers seem
to be characterized by the universal value of the local
anisotropy coefficient in accordance with the picture
developed in [14]. Figure 4 shows that the position of
transition points depends on the lengths of both diffus-
ing and matrix macromolecules.
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Fig.3. Self-diffusion coefficient of a macromolecule.

Each point shows a value of the ratio of asymptotic
values of the displacement of a macromolecule for large
times to values of the displacement for the Rouse case
of a macromolecule of different lengths among macro-
molecules with the same lengths. The local anisotropy
parameter value is 0.3 for the circles and 0.1 for the
squares. The slope of the dashed lines is —2.4 for short
macromolecules and —1 for long ones, and hence the
simulation gives the well-known dependence D o M ~?
for coefficient of self-diffusion of macromolecules above
the point of transition

4. CONCLUSION

The described model of the underlying stochastic
motion of a macromolecule leads to two modes of mo-
tion, which alternatively determine two kinds of sys-
tems: weakly entangled systems (M < M*), in which
the local anisotropy of motion does not affect isotropic
stochastic motion of macromolecules, and systems of
strongly entangled linear polymers (M > M*). For the
latter, the model provides the confinement of a macro-
molecule in “a tube” and easier (reptation) motion of
the macromolecule along its contour — the features
envisaged by Edwards [15] and de Gennes [1] for en-
tangled systems. The considered model allows demon-
strating that the existence of the reptation mode of mo-
tion is determined by both topological restrictions and
local anisotropy of motion, and stating that rather long
macromolecules can indeed be regarded as obstacles to
the motion of a probe macromolecule. This investiga-
tion also confirms that the reptation motion determines
the M 2 universal molecular-weight dependence of the
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Fig.4. Alternative modes of motion of a macro-
molecule. The realization of a certain mode of mo-

tion of a macromolecule among other macromolecules
depends on the lengths of both the diffusing macro-
molecule and the macromolecules of the environment.
The positions of transition points between two modes
are depicted by a solid line. The dashed line marks the
systems with macromolecules of equal lengths

self-diffusion coefficient of melt. However, estimating
the empirical value of the index in the reptation law of
diffusion requires measuring the mobility of a macro-
molecule above the transition point.
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