ЭКСПЕРИМЕНТАЛЬНОЕ ОБНАРУЖЕНИЕ «КОНФИГУРАЦИОННЫХ» МОД БИСТАБИЛЬНЫХ ЦЕНТРОВ В КРИСТАЛЛАХ CdF₂:In

А. И. Ритус^{*}, В. Б. Анзин, Г. А. Командин, А. А. Волков

Институт общей физики Российской академии наук 119991, Москва, Россия

Поступила в редакцию 6 июля 2007 г.

Предсказанные нами ранее для CdF₂:ln новые «конфигурационные» моды обнаружены на частотах $\nu_1 \approx 32.4 \text{ cm}^{-1}$ и $\nu_2 \approx 96.3 \text{ cm}^{-1}$ соответственно для глубокого и мелкого состояний примеси. Частоты этих колебаний точно соответствуют рассчитанным нами потенциальным кривым для мелкого и глубокого состояний ln при учете приведенной массы $M = 2m_1m_2/(m_1 + 2m_2)$ иона ln (m_1) и двух ионов F $(2m_2)$, приходящихся на примитивную ячейку флюоритов. Это подтверждает заложенную в расчеты величину потенциального барьера 0.02 эВ между примесными состояниями ln в CdF₂. Определены диэлектрические вклады указанных мод, что позволило вычислить концентрации ионов ln в глубоком N_1 и в мелком N_2 состояния примеси. Полученное отношение $N_2/N_1 \approx 2$ непосредственно показывает, что при фотоионизации глубоких примесных центров ln образуется удвоенное количество мелких центров и что в глубоком состоянии на ионе ln локализуются 2 электрона, что характерно для DX-центров. Обнаружено фотоиндуцированное увеличение действительной ε' и мнимой ε'' частей диэлектрической постоянной (на частоте 25 см⁻¹ $\Delta \varepsilon' \approx 0.2$ и $\Delta \varepsilon'' \approx 0.06$). Эти изменения соответствуют изменениям диэлектрических вкладов конфигурационных мод при освещении. Обнаружено также фотоиндуцированное ymens mode conserver to примесных и вентурационных мод при освещении.

PACS: 61.72.Ji, 61.80.Ba, 78.20.Ci, 78.30.-j

1. ВВЕДЕНИЕ

Кристалл CdF₂ — ионный диэлектрик с шириной запрещенной зоны около 7.8 эВ, который становится электронным полупроводником при легировании его трехвалентными примесями с последующим отжигом в парах щелочных металлов [1]. В CdF₂ с примесью In, подвергнутом такой процедуре аддитивного окрашивания, примесные центры могут находиться в двух состояниях, характерных для «DX-центров». Мелкое состояние соответствует локализации электрона на водородоподобной орбите ($\ln^{3+} + e_{hydr}$). В основном, глубоком состоянии, на ионе примеси локализуются два электрона (In^{1+}) , а сам ион смещается в соседнее междоузлие, что сопровождается локальной перестройкой (релаксацией) решетки. Соответствующий потенциальный барьер Есар между мелким и глубоким со-

стояниями приводит к метастабильности мелкого состояния и к различию термической и оптической энергий ионизации глубокого состояния. Глубина залегания мелкого примесного уровня $E_{sh} = 0.1$ эВ, глубокого уровня $E_{deep} = 0.25$ эВ, оптическая энергия ионизации глубокого центра $E_{opt} \approx 1.9$ эВ [2]. Релаксация решетки качественно описывается параболическими энергетическими диаграммами состояний в зависимости от «конфигурационной координаты» [2], представляющей положение примесного центра относительно окружающих атомов. Положение точки пересечения парабол относительно «дна» параболы мелкого состояния дает высоту барьера. Последние два десятилетия такая качественная картина приводилась в большинстве работ по материалам с *DX*-центрами — указывались высота барьера *E*_{cap} и положение глубокого и мелкого уровней, а параболы изображались в зависимости от произвольных единиц. Однако в 1999 г. Парк и Чади [3] провели расчеты атомарной структуры кристалла CdF₂

^{*}E-mail: ritus@ran.gpi.ru

Рис.1. Потенциальные кривые для глубокого и мелкого состояний иона In в CdF₂ в зависимости от реальной конфигурационной координаты примеси

вблизи примесных центров и показали, что в случае In и Ga в глубоком состоянии происходит сдвиг иона примеси вдоль оси 4-го порядка соответственно на величину 1.84 Å и 1.82 Å и вычислили энергии связи глубоких состояний. Используя эти данные и экспериментальные параметры E_{cap} , E_{sh} , E_{deep} , E_{opt} , мы рассчитали [4] конкретные потенциальные кривые для глубокого и мелкого состояний в зависимости от реальной конфигурационной координаты иона примеси для CdF₂:In (см. рис. 1) и для CdF₂:Ga и вычислили соответствующие частоты «конфигурационных локальных колебаний» примесных ионов:

$$\nu_1 = \frac{1}{2\pi} \sqrt{\frac{2a_1}{M}}, \quad \nu_2 = \frac{1}{2\pi} \sqrt{\frac{2a_2}{M}},$$
 (1)

где a_1 и a_2 — параметры крутизны парабол энергий глубокого и мелкого состояний, M — приведенная масса иона примеси. Для случая CdF₂:In при $E_{cap} = 0.02$ эВ [4] имеем $a_1 = 0.063$ эB/Å², $a_2 = 0.487$ эB/Å² и если в первом приближении положить $M \approx m_1$ (m_1 — масса иона In), то получаются частоты конфигурационных колебаний $\nu_1 = 17$ см⁻¹ и $\nu_2 = 48$ см⁻¹. Эти колебания должны быть ИК-активными. Обнаружение этих мод и исследование их динамики в зависимости от освещения и температуры являлось главной целью данной работы. Такие конфигурационные моды в принципе должны наблюдаться также в других кристаллах с бистабильными DX-центрами.

При температуре ниже $T_m \approx 40$ К метастабильные мелкие центры, фотоиндуцированные квантами $h\nu \approx 2$ эВ в ходе реакции [5]

$$\ln^{1+} + \ln^{3+} + h\nu \to 2(\ln^{3+} + e_{hydr}), \qquad (2)$$

могут существовать длительное время. Такой переход сопровождается уменьшением оптического показателя преломления в области частот между УФ-видимой полосой поглощения глубокого центра ($\lambda_{max} \approx 400$ нм) и ИК-полосой мелкого центра ($\lambda_{max} \approx 7$ мкм), что позволяет применять кристалл CdF₂:In для записи оптических голограмм [6]. При повышении температуры происходит распад мелких центров в соответствии с обратной реакцией

$$2(\ln^{3+} + e_{hydr}) + kT \to \ln^{1+} + \ln^{3+}$$
(3)

и фотоиндуцированные изменения показателя преломления исчезают. С понижением температуры ионы примеси постепенно переходят в глубокое состояние. Однако при достаточно быстром охлаждении кристалла CdF₂:In до температур $T < T_m$ из-за потенциального барьера между мелким и глубоким состояниями часть примесных центров остается в мелком состоянии.

В работе Казанского с сотрудниками [7] резонаторной методикой были обнаружены значительные фотоиндуцированные изменения микроволновой диэлектрической постоянной кристаллов CdF₂:In и CdF_2 :Ga (на 1.4 и 0.5 соответственно на частоте 1.2 см⁻¹) при гелиевых температурах. Авторы объяснили эффект микроволновым поглощением ионизованными донорными парами, которое должно простираться вплоть до частот порядка 200 см⁻¹. Однако таких больших изменений диэлектрической постоянной не было обнаружено в нашей работе [8], посвященной фотоиндуцированной в CdF₂:Ga амплитудной дифракционной решетке на частоте 15 см^{-1} , где оно должно было ярко проявиться, согласно расчетам, в резкой асимметрии и увеличении амплитуд максимумов дифракционной картины. С другой стороны, оптическая перекачка бистабильных центров из глубокого основного состояния в мелкое метастабильное состояние должна приводить к увеличению диэлектрического вклада мелких центров и соответствующим изменениям диэлектрической дисперсии на частотах ниже частот конфигурационных колебаний. Поэтому мы провели измерения фотоиндуцированных изменений диэлектрических свойств кристалла CdF_2 :In в диапазоне частот 10–200 см⁻¹ и сопоставили их с изменениями диэлектрических вкладов конфигурационных мод при освещении.

2. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Измерения спектров пропускания CdF_2 : In в субмиллиметровом диапазоне 11 см⁻¹–24 см⁻¹ в темноте и в зависимости от сине-зеленой подсветки при температуре T = 10 К выполнялись на квазиоптическом спектрометре «Эпсилон» [9]. При этом на окна криостата спектрометра надевались крышки с окошками из тонкого черного полиэтилена, хорошо пропускающего субмиллиметровое излучение и отсекающего видимый свет. Под одной из крышек располагались выше и ниже апертуры полиэтиленового окошка два светодиода для освещения образца сине-зеленым светом. Плоскопараллельный образец CdF₂:In для субмиллиметровых измерений пропускания имел толщину d = 1.586 мм.

Измерения спектров пропускания CdF_2 :In в дальнем ИК-диапазоне 10 см⁻¹–200 см⁻¹ в темноте и в зависимости от сине-зеленой подсветки при температуре T = 5 К выполнялись на фурье-спектрометре IFS 113V фирмы Bruker, причем ИК-приемником служил высокочувствительный болометр, охлаждаемый жидким гелием. Криостат фурье-спектрометра также был снабжен тремя светодиодами для сине-зеленой подсветки образца. Плоскопараллельный образец CdF₂:In для ИК-измерений пропускания имел толщину d = 0.150 мм.

Образцы CdF₂:In были вырезаны из одного и того же кристалла, предоставленного нам группой А. И. Рыскина из Государственного оптического института. Согласно данным этой группы, концентрация примеси In в кристалле составляет величину $(2 \pm 1) \cdot 10^{20}$ см⁻³ [7, 10].

Для обеспечения полного распада мелких центров в соответствии с реакцией (3) и перевода всех ионов примеси в основное глубокое состояние охлаждение образцов до температур 5-10 К в темноте перед регистрацией спектров пропускания проводилось в три этапа. Сначала образцы возможно быстро охлаждались до температуры около 120 К, затем область температур 120-35 К, включающая температуру «метастабильности» $T_m \approx 40~{\rm K},$ проходилась медленно со скоростью 1 К/мин, а далее следовало быстрое охлаждение образцов до минимальных температур. После этого регистрировались субмиллиметровые и ИК-спектры пропускания в темноте. Затем образцы CdF₂:In подвергались сине-зеленой подсветке с различными временами экспозиции. После каждой экспозиции регистрировались спектры пропускания. Каждая экспозиция приводила к переводу примесных ионов In из глубокого в мелкое

Рис.2. Субмиллиметровые спектры пропускания CdF_2 : In при T = 10 K, полученные в темноте (кружки) и после сине-зеленой подсветки с суммарной экспозицией 50 мин (квадраты). Сплошными линиями показаны расчетные кривые по формулам (5)-(9) с параметрами модели (10) из табл. 1, 2

состояние в соответствии с реакцией (2) и к уменьшению пропускания образцов. Благодаря метастабильности мелкого состояния воздействия отдельных экспозиций суммировались. Эксперименты показали, что субмиллиметровые спектры пропускания переставали изменяться после суммарной экспозиции 50 мин, а ИК-спектры Фурье — после суммарной экспозиции 30 мин. Это свидетельствовало о том, что при таких экспозициях все примесные ионы переведены в мелкое состояние. На рис. 2 приведены субмиллиметровые спектры пропускания образца CdF_2 : In при T = 10 K, полученные в темноте (кружки) и после сине-зеленой подсветки с суммарной экспозицией 50 мин (квадраты). ИК-спектры пропускания образца CdF_2 : In при T = 5 K в темноте и после сине-зеленой подсветки с суммарной экспозицией 30 мин, снятые со спектральным разрешением 0.5 см^{-1} , приведены на рис. 3, а ИК-спектры, снятые с разрешением 10 см^{-1} , приведены на рис. 4.

С помощью фурье-спектрометра также был получен ИК-спектр отражения образца чистого CdF_2 толщиной d = 3.5 мм при T = 5 К в диапазоне частот 20 см⁻¹–600 см⁻¹ (рис. 5, кружки) с целью определения параметров решеточных колебаний, дающих вклады в диэлектрическую дисперсию на низких частотах.

Рис. 3. ИК-спектры пропускания CdF_2 : In при T = 5 К в темноте и после сине-зеленой подсветки с суммарной экспозицией 30 мин, снятые со спектральным разрешением 0.5 см⁻¹

Рис. 4. ИК-спектры пропускания CdF_2 : In при T = 5 К в темноте и после сине-зеленой подсветки с суммарной экспозицией 30 мин, снятые со спектральным разрешением 10 см⁻¹

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ОБСУЖДЕНИЕ

Фотоиндуцированные изменения диэлектрических свойств образцов CdF₂:In качественно обнаруживаются в субмиллиметровых и ИК-спектрах уже при первом взгляде на рис. 2, 3, 4: после сине-зеленой подсветки уменьшаются периоды осцилляций пропускания, обусловленных интерференцией излучения в плоскопараллельных образцах, и уменьшаются величина пропускания и амплитуда его осцилляций. Очевидно, что уменьшение периода связано с увеличением показателя преломления *n*, так как максимумы пропускания наблюдаются на

Рис. 5. ИК-спектр отражения образца чистого CdF_2 при T = 5 К (кружки) и расчетные кривые по формулам (6) и (9) с параметрами модели (10) из табл. 1, 2 для CdF_2 : In. Квадратами показана величина коэффициента отражения, рассчитанная по экспериментальным значениям $n(\lambda_m)$, полученным из спектра рис. 3

длинах волн λ_m , для которых

$$2nd \approx m\lambda_m,$$
 (4)

где *m* — целое число. Очевидно также, что уменьшение пропускания после сине-зеленой экспозиции связано с увеличением поглощения, причем на рис. 4 видно, что наибольшее увеличение поглощения происходит в районе 90 см⁻¹–110 см⁻¹.

Пропускание *Tr* плоскопараллельного образца для нормального падения плоской монохроматической волны описывается выражением [9, 11]

$$= \frac{(1-R)^2 + 4R\sin^2\psi}{(1-Re^{\alpha d})^2 + 4Re^{-\alpha d}\sin^2(2\pi nd/\lambda + \psi)} e^{-\alpha d}.$$
 (5)

В этом выражении R — френелевский коэффициент отражения от среды с комплексным показателем преломления $\tilde{n}(\nu) = n(\nu) + ik(\nu)$:

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2},$$
(6)

 ψ — сдвиг фазы волны при отражении:

$$\psi = \operatorname{arctg} \frac{2k}{n^2 + k^2 - 1}, \qquad (7)$$

а *α* — коэффициент поглощения среды,

$$\alpha = 4\pi k / \lambda. \tag{8}$$

Tr =

Выражение (4) для максимумов пропускания образца получается из (5) при условии $\psi \ll 1$, которое обычно выполняется, если наблюдаются интерференционные осцилляции пропускания, т.е. когда $k \ll n$. Формулы (5)–(8) можно выразить через диэлектрическую проницаемость среды $\varepsilon(\nu) = \varepsilon'(\nu) + i\varepsilon''(\nu)$ с помощью соотношений

$$\varepsilon' = n^2 - k^2, \quad \varepsilon'' = 2nk. \tag{9}$$

Используя формулы (4)-(9), мы предприняли попытку описать полученные спектры пропускания и отражения образцов CdF₂:In в диапазоне 10 см⁻¹-600 см⁻¹ дисперсионной моделью диэлектрического отклика из шести осцилляторов, соответствующих двум искомым конфигурационным модам и четырем решеточным модам:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j=1}^{6} \frac{\Delta \varepsilon_{j} \omega_{j}^{2}}{\omega_{j}^{2} - \omega^{2} - i\omega\gamma_{j}}, \qquad (10)$$

где ε_{∞} — диэлектрическая постоянная, описывающая вклад высокочастотных механизмов дисперсии, ω — угловая частота, ω_j — собственные частоты, γ_j — коэффициенты затухания, $\Delta \varepsilon_j$ — диэлектрические вклады осцилляторов,

$$\Delta \varepsilon_j = \frac{N_j q_j^2}{M_j \omega_j^2 \varepsilon_0} \,. \tag{11}$$

Здесь N_j — концентрация носителей заряда с массой M_j , зарядом q_j и с собственной частотой ω_j , €0 — диэлектрическая постоянная вакуума. Путем подгонки параметров, входящих в формулы (10) и (11), получено хорошее модельное описание субмиллиметровых спектров пропускания CdF₂:In совместно с ИК-спектром отражения чистого CdF₂, однако для ИК-спектров пропускания CdF₂:In в диапазоне 40 см^{-1} — 200 см^{-1} модельное описание давало сильно завышенную амплитуду интерференционных осцилляций, особенно для высоких частот диапазона. Это связано с тем, что выражение (5) справедливо для пропускания идеального плоскопараллельного образца и плоской монохроматической волны, в то время как трудности обработки образца толщиной 150 мкм, необходимого для получения ИК-спектров пропускания, приводят к отклонениям от плоскостности и параллельности. Отношение величины этих отклонений к длине волны растет с ростом частоты. Кроме того, в фурье-спектрометре волна не плоская (из-за не точечного источника) и не монохроматичная (сказывается конечная разрешающая сила). Все это приводит к сильному дополнительному уменьшению амплитуды интерференционных осцилляций с

ростом частоты, не связанному с поглощением материала. Поэтому для сопоставления ИК-спектров пропускания в диапазоне 20 см⁻¹–200 см⁻¹ и дисперсионной модели (10) мы применили метод, описанный в работах [11, 12].

1. Из ИК-спектров рис. 3 с помощью формулы (4) для каждого максимума находилось приближенное значение $n(\lambda_m)$. Поскольку на низких частотах $n(80 \text{ K}) \approx 2.79$ для CdF_2 [11], пользуясь формулой (4) для максимумов вблизи частоты 25 см⁻¹, мы получили номер порядка m = 2.

2. ИК-спектры низкого разрешения (рис. 4) соответствуют некогерентному пропусканию образца, когда суммируются интенсивности прошедших пучков, испытавших многократное отражение в образце. Для такого случая легко получить

$$Tr = \frac{(1-R)^2 e^{-\alpha d}}{1-R^2 e^{-2\alpha d}}.$$
 (12)

Для каждого значения $n(\lambda_m)$ приближенно вычислялся коэффициент отражения $R \approx (n-1)^2/(n+1)^2$ и уравнение (12) решалось относительно α с помощью значений пропускания $Tr(\lambda_m)$ из спектров рис. 4.

3. По формуле (8) находилось значение k и по формуле (6) вычислялся уточненный коэффициент отражения R. С этим значением R уравнение (12) снова решалось относительно α . С новым улучшенным α посредством (8) определялось уточненное k.

4. Это значение $k(\lambda_m)$ вместе с $n(\lambda_m)$ использовалось для вычисления ψ по формуле (7). При этом оказалось, что во всем диапазоне 20 см⁻¹–200 см⁻¹ для нашего образца CdF₂:In ψ не превышает 0.008, т. е. уравнение (4) и значения $n(\lambda_m)$, вычисленные с его помощью, практически точные.

5. С помощью полученных $k(\lambda_m)$ и $n(\lambda_m)$ по формулам (9) вычислялись ε' и ε'' для каждой частоты $1/\lambda_m$ (см⁻¹). Эти значения ε' и ε'' для образца CdF₂:In до и после сине-зеленой экспозиции показаны на рис. 6 и рис. 7 соответственно кружками и квадратами.

Теперь параметры дисперсионной модели (10) подбирались таким образом, чтобы обеспечить наилучшее совместное описание формулами (5)–(9) экспериментальных спектров субмиллиметрового пропускания на рис. 2, ИК-спектра отражения на рис. 5 и ИК-спектров $\varepsilon'(\nu)$ и $\varepsilon''(\nu)$ на рис. 6 и рис. 7. Результирующие модельные кривые на всех этих рисунках показаны сплошными линиями. Отметим, что на рис. 5 на частотах ниже 200 см⁻¹ эксперимент дает завышенное значение коэффициента отражения R по сравнению с модельным, найденным по фор-

Рис. 6. Спектры $\varepsilon'(\nu)$ CdF₂:In при T = 5 K до и после сине-зеленой экспозиции (соответственно кружки и квадраты), полученные обработкой данных ИК-спектров пропускания на рис. 3, 4, и расчетные кривые $\varepsilon'(\nu)$ по модели (10) с параметрами из табл. 1, 2

Рис.7. Спектры $\varepsilon''(\nu)$ CdF₂:ln при T = 5 K до и после сине-зеленой экспозиции (соответственно кружки и квадраты), полученные обработкой данных ИК-спектров пропускания на рис. 3, 4, и расчетные кривые $\varepsilon''(\nu)$ по модели (10) с параметрами из табл. 1, 2

муле (6). Это связано с отражением от задней поверхности образца чистого CdF_2 , благодаря уменьшению поглощения на низких частотах. Квадратами на рис. 5 показаны значения R, вычисленные по формуле (6), с помощью n и k, соответствующих экспериментальным данным $\varepsilon'(\nu)$ и $\varepsilon''(\nu)$ на рис. 6 и рис. 7.

Параметры полученной модели диэлектрического отклика CdF_2 : In при T = 5-10 K приведены в табл. 1, 2 для случаев соответственно до и после

Таблица	1.		араметры	диэлек	грич	еского
отклика	$CdF_2:In$	до	экспозици	и (ε∞	=	2.50,
ε	$\varepsilon'(0) = \varepsilon_{\infty}$	+	$\sum_{j=1}^{6} \Delta \varepsilon_j = 7.$	9768)		

Номер моды <i>ј</i>	$\omega_j, \mathrm{cm}^{-1}$	$\Delta \varepsilon_j$	γ_j , cm ⁻¹
1	32.38	0.143	51.7
2	96.28	0.005	49.7
3	141.1	0.0028	23.0
4	224.3	5.150	0.78
5	257.9	0.162	24.4
6	390.9	0.014	59.1

Табли	ца 2.	Параметры ди	электриче	еского	от-
клика	$CdF_2{:}In$	после экспозиц	ции ($arepsilon_\infty$	= 2	.50,
	$\varepsilon'(0) = 0$	$\varepsilon_{\infty} + \sum_{j=1}^{6} \Delta \varepsilon_j = \delta$	8.2378)		

Номер моды <i>ј</i>	$\omega_j, \mathrm{cm}^{-1}$	$\Delta \varepsilon_j$	$\gamma_j, \ \mathrm{cm}^{-1}$
1	32.38	0.000	51.7
2	96.28	0.302	420
3	141.1	0.0028	23.0
4	224.3	5.150	0.84
5	257.9	0.202	30.7
6	390.9	0.081	375.8

сине-зеленой подсветки образцов. Модельная величина $\varepsilon_{\infty} = 2.50$ до и после подсветки оказалась несколько выше значения $\varepsilon_{\infty} = 2.40$ для чистого CdF₂ при T = 80 K [11].

В этих таблицах моды 1 и 2 — искомые конфигурационные колебания соответственно глубокого и мелкого состояний, мода 4 — это поперечное оптическое колебание решетки с частотой ω_{TO} , моды 5 и 6 описывают небольшие провалы в спектре отражения рис. 5, а мода 3 описывает слабый пик в спектрах $\varepsilon''(\nu)$ на рис. 7. Отметим, что наше значение частоты $\omega_{TO} = 224.3 \text{ см}^{-1}$ и вычисленная по соотношению Лиддейна–Сакса–Теллера частота продольного оптического колебания $\omega_{LO} = \omega_{TO} \sqrt{\varepsilon'(0)/\varepsilon_{\infty}} = 400.8 \text{ см}^{-1}$ совпадают с соответствующими частотами $224 \pm 3 \text{ см}^{-1}$ и

Таким образом, предсказанные нами ранее [4] новые конфигурационные моды обнаружены на частотах $\nu_1 = 32.38 \text{ см}^{-1}$ и $\nu_2 = 96.28 \text{ см}^{-1}$ соответственно для глубокого и мелкого состояний. Оказалось, что в темноте при T = 5-10 К это заторможенные осцилляторы с близкими величинами затуханий γ_1 и γ_2 порядка 50 см⁻¹. После сине-зеленой экспозиции затухание конфигурационной моды мелкого состояния возрастает до величины $\gamma_2 = 420 \text{ см}^{-1}$. Частоты $\nu_1 = 32.38$ см⁻¹ и $\nu_2 = 96.28$ см⁻¹ этих колебаний точно соответствуют рассчитанным нами в работе [4] потенциальным кривым для мелкого и глубокого состояний In при учете приведенной массы $M = 2m_1m_2/(m_1+2m_2)$ иона In (m_1) и двух ионов F $(2m_2)$, приходящихся на примитивную ячейку флюоритов. Это подтверждает заложенную в расчеты величину потенциального барьера 0.02 эВ между мелким и глубоким примесными состояниями In в CdF_2 . В работе [4] для оценки величин частот ν_1 и ν_2 мы полагали $M \approx m_1$ и получили вдвое меньшие значения.

В соответствии с ожидаемой нами динамикой конфигурационных мод [4], спектры образца CdF₂:In, медленно охлажденного в темноте до T = 5 K, хорошо описываются моделью с диэлектрическим вкладом моды глубокого состояния $\Delta \varepsilon_1 = 0.143$ и с диэлектрическим вкладом моды мелкого состояния $\Delta \varepsilon_2 = 0.005$, что соответствует практически полному опустошению мелкого состояния. После экспозиции образцов сине-зеленым светом при T = 5 К диэлектрический вклад моды глубокого состояния $\Delta \varepsilon_1 = 0$, а диэлектрический вклад моды мелкого состояния $\Delta \varepsilon_2 = 0.302$, т.е. все ионы примеси переведены в мелкое метастабильное состояние. Эти изменения диэлектрических вкладов конфигурационных мод CdF₂:In и дают основное фотоиндуцированное увеличение диэлектрической постоянной на низких частотах¹) $\Delta \varepsilon'(0) \approx 0.26$. Этот результат противоречит данным работы [7], где при гелиевых температурах в CdF₂:In быобнаружены большие фотоиндуцированные ли

изменения $\Delta \varepsilon' \approx 1.4$ и $\Delta \varepsilon'' \approx 0.08$ на частоте 1.2 см⁻¹ и эффект объяснялся микроволновым поглощением ионизированными донорными парами, которое должно простираться вплоть до частот около 200 см⁻¹. Согласно нашей модели (рис. 7, сплошные кривые), на частоте 1.2 см⁻¹ фотоиндуцированное изменение $\Delta \varepsilon'' \approx 0.01$, т.е. также меньше на порядок.

Используя найденные параметры модели $M, \omega_1,$ $\omega_2, \ \Delta \varepsilon_1 = 0.143$ (до освещения) и $\Delta \varepsilon_2 = 0.302$ (после освещения), мы определили с помощью формулы (11) соответствующие концентрации ионов In в глубоком $N_1 = 8.7 \cdot 10^{19}$ см $^{-3}$ и мелком $N_2 = 1.8 \cdot 10^{20}$ см⁻³ состояниях. При этом, следуя концепции работы [5], мы взяли для заряда иона In в глубоком состоянии q = +e, а в мелком состоянии $q = +3e \ (e -$ заряд электрона). Полученное отношение $N_2/N_1 = 2.07$ непосредственно подтверждает данные работы [5] о том, что при фотоионизации глубоких примесных центров In образуется удвоенное количество мелких центров в ходе реакции (2) и что в глубоком состоянии заряд иона In q = +e. В работе [5] это отношение измерено косвенно по скорости роста ИК-поглощения мелкого состояния после экспозиции.

Так как полная концентрация примеси In в образце $N = (2 \pm 1) \cdot 10^{20}$ см⁻³, а наши измерения дают для концентрации ионов In в мелком состоянии после засветки практически ту же величину $N_2 = 1.8 \cdot 10^{20}$ см⁻³, это означает, что в мелкое состояние переходят все примесные ионы In образца. Таким образом, все ионы In нашего образца являются «активными», способными захватить 1 электрон и образовать мелкий донорный центр или захватить 2 электрона и образовать глубокий DX-центр. Отсюда следует, что в процессе аддитивного окрашивания образца все междоузельные ионы F⁻, компенсировавшие избыточный положительный заряд трехвалентной примеси In³⁺, были заменены электронами с концентрацией $n_e \approx N$, т.е. у нашего полупроводникового образца степень компенсации $K \approx 0$. Последние выводы ставят под сомнение результаты работы [10], где на основе анализа данных нашей работы [13] (выполненной на тех же образцах CdF₂:In) проведены расчеты статистического распределения электронов по уровням примеси и получены величина $K = 0.965 \pm 0.015$ и концентрация «активных» ионов $(1-3) \cdot 10^{19}$ см⁻³. Величина $K \approx 0$ также противоречит результатам работы [7], где для К найдено $0.5 \le K \le 0.9.$

Несмотря на то что после засветки при T = 5 К в мелком состоянии находятся все примесные ионы

¹⁾ Фотоиндуцированное увеличение $\Delta \varepsilon'$, соответствующее параметрам модели (10), совпадает с экспериментальным. Так, например, на частоте 25 см⁻¹ модельное $\Delta \varepsilon' \approx 0.20$, а экспериментальное $\Delta \varepsilon' \approx 0.21$, на частоте 47 см⁻¹ модельное $\Delta \varepsilon' \approx 0.17$, а экспериментальное $\Delta \varepsilon' \approx 0.16$ (см. рис. 6) и т.д., причем как модельное, так и экспериментальное $\Delta \varepsilon'$ согласованно уменьшаются с ростом частоты. В эксперименте $\Delta \varepsilon'(\nu)$ определяется точнее, чем $\varepsilon'(\nu)$, поскольку сдвиги пиков пропускания измеряются точнее, чем их абсолютные положения.

Рис. 8. Спектр разности коэффициентов ИК-отражения до и после подсветки CdF₂:In при *T* = 5 K (кружки) и расчетная кривая по формулам (6) и (9) с параметрами модели (10) из табл. 1, 2

In $(N_2 = 1.8 \cdot 10^{20} \text{ см}^{-3})$, наши предыдущие измерения [13] ИК-полосы поглощения с $\lambda_{max} \approx 7$ мкм, связанной с переходами из мелкого состояния в зону проводимости, в аналогичных условиях дали после засветки для концентрации мелких центров лишь $N_2 \sim 10^{18} \text{ см}^{-3}$. Подобное огромное несоответствие концентрации мелких центров, измеренной по величине поглощения ИК-полосы вблизи $\lambda \approx 7$ мкм, и концентрации введенной в CdF₂ донорной примеси ранее наблюдалось и для других редкоземельных элементов [7, 14, 15]. Обычное объяснение этого несоответствия — самокомпенсация доноров междоузельными ионами F⁻ — в нашем случае непригодно (
 $K\approx 0).$ Мы полагаем, что такое несоответствие можно объяснить образованием примесно-фторных кластеров или образованием примесной зоны [14], так как при концентрации $N_2 = 1.8 \cdot 10^{20}$ см⁻³ среднее расстояние между ионами In $L \sim 17$ Å, в то время как боровский радиус орбиты для водородоподобного мелкого состояния $R \sim 4-16$ Å по различным оценкам [10]. Поэтому в кристалле лишь малая доля примеси содержится в виде изолированных водородоподобных доноров, дающих вклад в поглощение ИК-полосы с $\lambda_{max} \approx 7$ мкм. В пользу этих гипотез свидетельствует увеличенное на порядок после освещения затухание конфигурационной моды мелкого состояния γ_2 по сравнению с затуханием γ_1 моды глубокого состояния.

Отметим, что после сине-зеленой экспозиции увеличиваются также диэлектрические вклады и затухания мод 5 и 6 нашей модели диэлектрического

отклика, особенно моды 6. Частоты этих мод соответствуют частотам рамановских мод 256 см⁻¹ и 395 см⁻¹ полупроводникового кристалла CdF₂:In при T = 300 К [16]. Мода с частотой 256 см⁻¹ связана с полностью симметричным A_{1q} колебанием около изолированного центра $(In^{3+} + e_{hydr})$, а мода с частотой 395 см⁻¹ — с рассеянием на LO-фононах решетки CdF₂, активированным примесью [16]. В работе [16] также показано, что интенсивности этих рамановских мод резко убывают при охлаждении ниже T = 50 K, т. е. когда опустошается мелкое состояние ($\ln^{3+} + e_{hydr}$). Таким образом, увеличение вкладов мод 5 и 6 и их затухания после сине-зеленой экспозиции также связаны с заселением мелкого состояния и, согласно нашей модели (10), должны приводить к уменьшению отражения в полосе частот 270-370 см⁻¹ (рис. 5, сплошные кривые). В предварительном эксперименте с образцом CdF₂:In мы обнаружили такое уменьшение (см. рис. 8).

4. ЗАКЛЮЧЕНИЕ

В эксперименте впервые найдены предсказанные нами в работе [4] конфигурационные моды глубокого и мелкого состояний бистабильных центров в кристаллах CdF2:In. Оказалось, что это заторможенные осцилляторы с частотами $\nu_1 = 32.38$ см⁻¹ и $\nu_2 = 96.28 \text{ см}^{-1}$, которые точно соответствуют рассчитанным нами в работе [4] потенциальным кривым для глубокого и мелкого состояний In при учете приведенной массы $M = 2m_1m_2/(m_1+2m_2)$ иона In (m_1) и двух ионов F $(2m_2)$, приходящихся на примитивную ячейку флюоритов. Это подтверждает величину потенциального барьера 0.02 эВ между мелким и глубоким состояниями In в CdF₂, измеренную в работе [4] по кинетике распада мелкого состояния и принятую в расчетах потенциальных кривых. Определены диэлектрические вклады указанных мод и вычислены соответствующие концентрации ионов In в глубоком N_1 и в мелком N_2 состояниях примеси. Полученное отношение $N_2/N_1 \approx 2$ подтверждает, что при фотоионизации глубоких примесных центров In образуется удвоенное количество мелких центров и что в глубоком состоянии на ионе In локализуются 2 электрона, что характерно для *DX*-центров [5].

Обнаружены фотоиндуцированные увеличения действительной ε' и мнимой ε'' частей диэлектрической постоянной, соответствующие изменениям диэлектрических вкладов конфигурационных мод при освещении.

Концентрация ионов In в мелком донорном состоянии после освещения совпадает с концентрацией введенной примеси, т.е. для наших образцов CdF₂:In степень компенсации $K \approx 0$ и все примесные ионы могут образовывать глубокие DX-центры. Концентрация мелких центров $N_2 \sim 10^{18}$ см⁻³, определяемая по величине поглощения ИК-полосы около 7 мкм, не соответствует концентрации $N_2 =$ $= 1.8 \cdot 10^{20}$ см⁻³, найденной в настоящей работе. Мы полагаем, что такое несоответствие можно объяснить образованием примесно-фторных кластеров или образованием примесной зоны [14].

Обнаружено уменьшение решеточного отражения CdF₂:In при фотоиндуцированном заселении мелкого состояния, связанное с примесными модами решетки.

В соответствии с рассчитанными нами в работе [4] потенциальными кривыми для мелкого и глубокого состояний в кристалле CdF₂:Ga, для приведенной массы $M = 2m_1m_2/(m_1 + 2m_2)$ иона Ga (m_1) и двух ионов F $(2m_2)$ частоты конфигурационных колебаний $\nu_1 = 123$ см⁻¹ и $\nu_2 = 354$ см⁻¹. Второе колебание попадает непосредственно в полосу частот решеточного отражения 200–400 см⁻¹ и в этом кристалле должно быть сильное взаимодействие конфигурационных мод с модами решетки.

Отметим, что подобные конфигурационные моды должны наблюдаться также в других полупроводниковых кристаллах с бистабильными DX-центрами.

Работа выполнена при финансовой поддержке РФФИ (грант № 05-08-50325).

ЛИТЕРАТУРА

 J. D. Kingsley and J. S. Prener, Phys. Rev. Lett. 8, 315 (1962).

- J. M. Langer, in *Lecture Notes in Physics*, ed. by F. Beleznay, G. Ferenczi, and J. Giber, Springer-Verlag, New York (1980), Vol. 122, p. 123.
- C. H. Park and D. J. Chadi, Phys. Rev. Lett. 82, 113 (1999).
- A. I. Ritus, A. V. Pronin, A. A. Volkov et al., Phys. Rev. B 65, 165209 (2002).
- A. S. Shcheulin, A. I. Ryskin, K. Swiatek, and J. M. Langer, Phys. Lett. A 222, 107 (1996).
- A. I. Ryskin, A. S. Shcheulin, B. Koziarska et al., Appl. Phys. Lett. 67, 31 (1995).
- S. A. Kazanskii, D. S. Rumyantsev, and A. I. Ryskin, Phys. Rev. B 65, 165214 (2002).
- 8. А. И. Ритус, А. А. Волков, ЖЭТФ 127, 1310 (2005).
- A. A. Volkov, Yu. G. Goncharov, G. V. Kozlov et al., Infrared Phys. 25, 369 (1985); G. V. Kozlov and A. A. Volkov, in *Topics in Applied Physics*, ed. by G. Gruner, Springer-Verlag, Berlin, Heidelberg (1998), Vol. 74, p. 51.
- **10**. С. А. Казанский, А. И. Рыскин, ФТТ **48**, 1573 (2006).
- 11. D. R. Bosomworth, Phys. Rev. 157, 709 (1967).
- 12. Л. В. Берман, А. Г. Жуков, Опт. и спектр. 19, 783 (1965).
- 13. В. В. Каспаров, А. А. Волков, А. И. Ритус, Изв. АН, сер. физ. 66, 1817 (2002).
- 14. F. Moser, D. Matz, and S. Lyu, Phys. Rev. 182, 808 (1969).
- J. M. Langer, T. Langer, G. L. Pearson et al., Phys. Stat. Sol. (b) 66, 537 (1974).
- P. Ciepielewski, I. Gregora, and V. Vorlicek, Phys. Rev. B 42, 11665 (1990).