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GLOBAL STRINGS IN EXTRA DIMENSIONS:THE FULL MAP OF SOLUTIONS, MATTER TRAPPING,AND THE HIERARCHY PROBLEMK. A. Bronnikov a, B. E. Meierovi
h b*aCenter for Gravitation and Fundamental Metrology, VNIIMS119361, Mos
ow, RussiaInstitute of Gravitation and Cosmology, PFUR117198, Mos
ow, RussiabKapitza Institute for Physi
al Problems117334, Mos
ow, RussiaRe
eived August 6, 2007We 
onsider (d0+2)-dimensional 
on�gurations with global strings in two extra dimensions and a �at metri
 ind0 dimensions, endowed with a warp fa
tor e2
 depending on the distan
e l from the string 
enter. All possibleregular solutions of the �eld equations are 
lassi�ed by the behavior of the warp fa
tor and the extra-dimensional
ir
ular radius r(l). Solutions with r ! 1 and r ! 
onst > 0 as l ! 1 are interpreted in terms of thi
kbrane-world models. Solutions with r ! 0 as l ! l
 > 0, i.e., those with a se
ond 
enter, are interpretedas either multi-brane systems (whi
h is appropriate for large enough distan
es l
 between the 
enters) or asKaluza�Klein-type 
on�gurations with extra dimensions invisible due to their smallness. In the 
ase of theMexi
an-hat symmetry-breaking potential, we build the full map of regular solutions on the ("; �) parameterplane, where " a
ts as an e�e
tive 
osmologi
al 
onstant and � 
hara
terizes the gravitational �eld strength.The trapping properties of 
andidate brane worlds for test s
alar �elds are dis
ussed. Good trapping propertiesfor massive �elds are found for models with in
reasing warp fa
tors. Kaluza�Klein-type models are shown tohave nontrivial warp fa
tor behaviors, leading to matter parti
le mass spe
tra that seem promising from thestandpoint of hierar
hy problems.PACS: 04.50.+h, 11.27.+d1. INTRODUCTIONThe multidimensional gravity 
on
ept, tra
ing ba
kto the pioneering papers by Kaluza and Klein [1℄, ini-tially assumed that the extra dimensions remain un-observable due to their extreme smallness. Another
lass of multidimensional theories has been put for-ward in the 1980s, based on the idea that we live ona distinguished surfa
e (brane) embedded in a higher-dimensional manifold, 
alled the bulk [2℄. This ideahas re
ently be
ome very popular in attempts to �ndan approa
h to a number of fundamental physi
alproblems. The brane-world 
on
ept is broadly dis-
ussed in 
onne
tion with the re
ent developments*E-mail: meierovi
h�yahoo.
om

in supersymmetri
 string/M-theories [3℄. The simpleRandall�Sundrum �rst model [4℄ 
ontinued numerousattempts [5℄ to �nd the origin of the enormous hierar-
hy of energy/mass s
ales observed in nature, whi
h isa long-standing problem in parti
le physi
s. In astro-physi
s and 
osmology, there are attempts to explainthe dark matter and dark energy e�e
ts, to des
ribebla
k holes and possible variation of fundamental 
on-stants, the CMB anisotropy, et
.A great variety of brane-world models may be foundin the literature: branes in �ve or more dimensions,single or multiple branes, �at or 
urved branes, �at or
urved bulk, 
ompa
t or non-
ompa
t bulk (i.e., largeor in�nite extra dimensions), thin or thi
k branes, var-ious symmetries of both bulks and branes, di�erentkinds of matter forming the brane, et
.293
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h ÆÝÒÔ, òîì 133, âûï. 2, 2008In our view, the most natural physi
al idea lead-ing to the emergen
e of distinguished surfa
es in thespa
e�time manifold is the idea of a phase transitionwith spontaneous symmetry breaking (SSB), whi
h hasalready led to great su

ess in many areas of physi
sand 
osmology. In other words, it is reasonable to re-gard the brane world as a result of a phase transitionat a very early stage of the Universe evolution. Theexisting ma
ros
opi
 theory of phase transitions withSSB allows 
onsidering the brane-world 
on
ept self-
onsistently and avoiding the in�uen
e of model as-sumptions to the largest degree, even without a de-tailed knowledge of the nature of the physi
al va
uum.A ne
essary 
onsequen
e of su
h phase transitions isthe appearan
e of topologi
al defe
ts.We re
all that a de
isive step toward 
osmologi
alappli
ations of the SSB 
on
ept was made in 1972 byKirzhnits [6℄. He assumed that as in the 
ase of solidsubstan
es, a symmetry of a �eld system, existing atsu�
iently high temperatures, 
ould be spontaneouslybroken as the temperature de
reases. The �rst quanti-tative analysis of the 
osmologi
al 
onsequen
es of SSBwas given in [7℄.The properties of global topologi
al defe
ts are gen-erally des
ribed with the aid of a multiplet of s
alar�elds playing the role of an order parameter. If a de-fe
t is to be interpreted as the origin of a brane world,its stru
ture is determined by the self-gravity of a s
alar�eld system and 
an be des
ribed by a set of Einsteinand s
alar equations.This approa
h to the brane-world 
on
ept has beenused by many authors for 
onstru
tion of thi
k branesin �ve (see, e.g., [8�14℄) and more (see, e.g., [15�18℄ andthe referen
es therein) dimensions.In our previous papers [13, 14, 17, 18℄, we have an-alyzed the gravitational properties of 
andidate (thi
k)brane worlds with the d0-dimensional Minkowski met-ri
 and global topologi
al defe
ts in d1 + 1 extra di-mensions. Our general formulation 
overed parti
ular
ases su
h as a brane (domain wall) in �ve-dimensionalspa
e�time (one extra dimension), a global 
osmi
string with winding number n = 1 (two extra di-mensions), and global monopoles (three or more ex-tra dimensions). We restri
ted ourselves to Minkowskibranes be
ause most of the existing problems are al-ready 
learly seen in these 
omparatively simple sys-tems; on the other hand, in the majority of physi
alsituations, the intrinsi
 
urvature of the brane itselfis mu
h smaller than the 
urvature related to braneformation, and therefore the main qualitative featuresof Minkowski branes should survive in realisti
 
urvedbranes.

Our treatment di�ered from many others (e.g., [15,16℄) in that we have 
onsidered all kinds of regular so-lutions of the 
orresponding �eld equations, in
ludingthose with in
reasing warp fa
tors, whose good trap-ping properties we have emphasized.We have shown, in parti
ular, that there are seven
lasses of regular solutions of the �eld equations de-s
ribing global strings and monopoles in extra dimen-sions; two of them exist for monopoles only, while theother �ve are found for both strings and monopoles.Some of these 
on�gurations have exponentially in-
reasing warp fa
tors (e2
 in metri
 (1), see below) atlarge distan
es from the 
ore. They are shown to traplinear test s
alar �elds of any mass and momentum.Others, ending with a �at metri
, have a warp fa
tortending to a 
onstant value, determined by the shape ofthe symmetry-breaking potential. They are also shownto trap test s
alar �elds with masses restri
ted fromabove by a value depending on the parti
ular parame-ters of the topologi
al defe
t.Although the general 
lassi�
ation in [17, 18℄ 
oversall possible regular 
on�gurations, the important ques-tion of the lo
ation of di�erent solutions in the spa
e ofphysi
al parameters remained open. One of the goalsof this paper is to answer this question in the parti
ular
ase of a global string in two extra dimensions and aMexi
an-hat symmetry-breaking potential. The prob-lem then 
ontains two essential physi
al parameters: ",the dimensionless 
osmologi
al 
onstant, and �, 
har-a
terizing the gravitational �eld strength. In the ("; �)plane, the border lines separating di�erent 
lasses ofregular solutions (those extending to in�nite 
ir
ularradii r, those with a 
ylindri
al geometry far from the
enter, and those with two regular 
enters), are foundnumeri
ally, and the asymptoti
 dependen
es "(�) as�! 0 and �!1 are derived analyti
ally.Another goal is to give a more 
omplete des
riptionof the 
on�gurations of interest des
ribed by these solu-tions. We des
ribe the trapping properties of di�erentthi
k brane-world models for 
lassi
al parti
les, s
alar�elds, and gravity. We also argue that one of the 
lassesof regular 
on�gurations, those with two 
enters, 
anlead to promising models with nontrivial parti
le massspe
tra. The point is that the warp fa
tors of su
h 
on-�gurations 
an have several minima at di�erent levels,where test parti
les and �elds may be gravitationallytrapped with di�erent energies. In this 
ase, however,we should abandon the brane-world 
on
ept and ad-mit that the extra dimensions are invisible due to theirsmallness, i.e., interpret the solutions in the spirit ofKaluza�Klein theories.There is a growing number of publi
ations devoted294



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :to brane worlds with two extra dimensions (see [19℄and the referen
es therein). In many 
ases, the re-sults are obtained numeri
ally using simpli�ed modelswith spe
ially 
hosen sets of parameters. In our ma
ro-s
opi
 approa
h, based on the theory of phase transi-tions with SSB, we try to redu
e the in�uen
e of modelassumptions to a minimum and to 
over the full rangeof possibilities. Our main result, the full map of regularsolutions for a system with the Mexi
an-hat symmetry-breaking potential V (�), should probably retain its ba-si
 qualitative features for other potentials with a sim-ilar arrangement of extremum points.The paper is organized as follows. In Se
. 2, we out-line the problem setting, in
luding the geometry, �eldequations, and boundary 
onditions providing spa
e�time regularity. In Se
. 3, we des
ribe the simplest so-lutions with a 
onstant s
alar �eld, needed for 
ompar-ison in what follows. Se
tion 4 is 
entral in the paper:we give a general des
ription and 
lassi�
ation of possi-ble regular solutions on the basis of our previous work[17, 18℄ and present a map showing the lo
ation of dif-ferent solutions with the Mexi
an-hat potential in theparameter spa
e of the problem. In Se
s. 5 and 6, wedes
ribe some further details of the solutions and an-alyti
ally derive the asymptoti
 behavior of the 
urvesdrawn in the map. In Se
. 7, we dis
uss the trappingproperties of thi
k branes des
ribed by the above solu-tions. The properties of 
on�gurations with two 
entersare outlined in Se
. 8, and Se
. 9 is a 
on
lusion.2. PROBLEM SETTING2.1. Geometry and regularity 
onditionsOur main interest here is a 6D spa
e�time with a
osmi
 string in the two extra dimensions. But webegin with a more general geometry: we 
onsider a(D = d0 + d1 + 1)-dimensional spa
e�time with thestru
ture M d0 � Ru � Sd1 and the metri
ds2 = e2
(u)���dx�dx� �� �e2�(u)du2 + e2�(u)d
2� ; (1)where ��� = diag(1;�1; : : : ;�1)is the d0-dimensional Minkowski metri
 (d0 > 1), d
 isa linear element on the d1-dimensional unit sphere Sd1,and �, �, and 
 are fun
tions of the radial 
oordinateu with the de�nition domain Ru � R to be spe
i�edlater. We also use the notation r � e� , where r is thespheri
al (
ir
ular for d1 = 1) radius.

The Riemann tensor RABCD is diagonal with re-spe
t to pairs of indi
es and has the nonzero 
ompo-nents R���� = �e�2�
02Æ���� ;Rab
d = (e�2� � e�2��02)Æab
d;Ru�u� = �Æ�� e�
��(e
��
0)0;Ruaub = �Æab e����(e����0)0;Ra�b� = �Æ�� Æab e�2�
0�0; (2)where Æ���� = Æ�� Æ�� � Æ��Æ��and similarly for other indi
es. The indi
es �; �; : : :
orrespond to d0-dimensional (physi
al) spa
e�time,a; b; : : : to the d1 angular 
oordinates on Sd1, andA;B; : : : to all D 
oordinates.A ne
essary 
ondition of regularity is the �nitenessof all algebrai
 invariants of the Riemann tensor. In our
ase, it su�
es to deal with the Krets
hmann s
alarK = RABCDRCDAB ;be
ause it is a sum of squares of all nonzero RABCD.Hen
e, all 
omponents of Riemann tensor (2) are �nitein regular 
on�gurations.In the Gaussian gauge � = 0, with u = l being theproper distan
e along the radial dire
tion, the regular-ity 
onditions at r > 0 look very simple:�0; �00; 
0; 
00 must be �nite. (3)The regularity 
onditions at the 
enter r = 0 followfrom the �niteness of the Riemann tensor 
omponentRab
d and 
oin
ide with the regular-
enter 
onditionsin the usual stati
, spheri
ally symmetri
 metri
s. Interms of an arbitrary 
oordinate u, the regular-
enter
onditions are
 = 

 +O(r2); e���j�0j = 1 +O(r2)as r ! 0: (4)The last 
ondition insures the 
orre
t (= 2�)
ir
umferen
e-to-radius ratio, or, equivalently, dr2 == dl2; 

 is a 
onstant that 
an be set equal to zero byres
aling the 
oordinates x�.The string 
ase d1 = 1 has a spe
i�
 feature: thereis only one angular 
oordinate, and therefore Æab
d � 0,when
e Rab
d � 0. However, a 
oni
al singularity (i.e.,an angular de�
it, dr2 < dl2, or ex
ess, dr2 > dl2) ispossible, whi
h is a pointwise, delta-like 
urvature peakover this zero level, as in the 
ase of an ordinary 
onetop. Its existen
e a
tually means that there is some295
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t with respe
t to the two extra dimen-sions, or a thin brane in the spa
e�time as a whole.In what follows we 
onsider entirely regular 
on�g-urations, ex
luding 
oni
al singularities among others.2.2. Topologi
al defe
ts. Field equationsA global defe
t with a nonzero topologi
al 
harge
an be 
onstru
ted with a multiplet of d1+1 real s
alar�elds �k , in the same way as, e.g., in [17℄. It 
omprisesa �hedgehog� 
on�guration in Ru � Sd1:�k = �(u)nk(xa);where nk is a unit ve
tor in the (d1 + 1)-dimensionalEu
lidean target spa
e of the s
alar �elds:nknk = 1:The total Lagrangian of the system is taken in theform L = R2{2 + 12gAB�A�k�B�k � V (�); (5)where R is the D-dimensional s
alar 
urvature, {2is the D-dimensional gravitational 
onstant, andV is a symmetry-breaking potential depending on�2(u) = �a�a.The 
ase where d1 = 0, with only one extra dimen-sion, is a �at domain wall. Regular thi
k Minkowskibranes supported by s
alar �elds with arbitrary poten-tials were analyzed in [13, 14℄.The 
ase where d1 = 1 is a global 
osmi
 stringwith the winding number n = 1, to be dis
ussedhere in detail. In the 
ase d1 > 2, we have aglobal monopole in the extra spa
e-like dimensions (see,e.g., [15�18; 20; 21℄).We write the s
alar �eld equation and three 
ompo-nents of the Einstein equations for su
h systems in theGaussian gauge � = 0, u = l (the prime denotes d=dl):�00 + (d0
0 + d1�02)�0 � d1e�2�� = �V�� ; (6)
00 + d0
02 + d1�0
0 = � 2{2D � 2V; (7)�00 + d0�0
0 + d1�02 == (d1 � 1� k2�2)e�2� � 2{2D � 2V; (8)(d1�0 + d0
0)2 � d0
02 � d1�02 == {2(�02 � 2V ) + d1e�2�(d1 � 1� {2�2): (9)Any three of the above four equations are independent,and the fourth is their 
onsequen
e.

2.3. Boundary 
onditions and �ne-tuningrelationsThe metri
 
an be rewritten in the formds2 = e2
(l)���dx�dx� � dl2 � r2(l)d
2; (10)where r = e� is the spheri
al radius. Assuming thatthere is a regular 
enter (r = 0), we set l = 0 at the
enter without loss of generality; we 
lassify the rele-vant 
on�gurations by the limit value of r(l) (in�nite,�nite, or zero) at the largest or in�nite values of l.In the general monopole 
ase, the regular-
enter
ondition leads to the following boundary 
onditionsfor Eqs. (6)�(9) at l = 0:�(0) = 
0(0) = r(0) = 0; r0(0) = 1: (11)System (6)�(9) does not 
ontain 
 but only its deriva-tives. For numeri
al integration, it is 
onvenient towork with Eqs. (6)�(8) solved for the se
ond-orderderivatives and regard (9) as their �rst integral.We thus have four boundary 
onditions (11) for the(e�e
tively) fourth-order set of equations. It mightseem that we must obtain a unique solution. But thisis not the 
ase be
ause l = 0, being a singular pointof the spheri
al 
oordinate system (not to be 
onfusedwith a spa
e�time 
urvature singularity), is also a sin-gular point of our set of equations. As a result, our setof equations admits an additional freedom of 
hoosing�0(0); or, instead, we may use the requirement of globalregularity to obtain a unique solution.2.3.1. In�nite extra dimensionsIf the solution is de�ned in the interval 0 � l <1,then the la
king boundary 
ondition 
an be taken as�! 
onst as l!1, or�0(1) = 0: (12)In general, when the s
alar �eld starts from a maxi-mum of the potential and ends at a �nite value of �,the �ve boundary 
onditions in (11) and (12) uniquelydetermine a nontrivial solution of our �eld equations.Its existen
e determines a 
ertain area in the spa
e ofparameters of the problem without a priori �ne tun-ing. An asymptoti
 analysis at l ! 1 shows that inthis general 
ase, �(l) is a linearly in
reasing fun
tionas l !1, and r0(1) � 0.r0(1) = 0 is the spe
ial 
ase, where r tends to a �-nite 
onstant as l ! 1. The solution then terminatesat a slope of the potential rather than at its minimum.The supplementary 
ondition r0(1) = 0 seems to re-quire a �ne-tuning relation between the free parameters296



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :of the problem. But we see in what follows that it is notquite so. An analysis of solutions with � = �0 = 
onstshows that there is also an area in the parameter spa
ewhere 
ondition (12) is satis�ed automati
ally, and so-lutions with r0(l)! 0 as l!1 exist without any �netuning. 2.3.2. Two 
entersIt 
an happen that the integral 
urves of a solutionterminate at some �nite value l
 with r(l
) = 0 and�(l
) = 0, whi
h is one more 
enter. Of interest for usare 
on�gurations in whi
h this se
ond 
enter l = l
 isalso regular. Then the same four 
onditions (11) mustalso hold at l = l
. Two of them 
an be satis�ed by
hoosing the values of �0(0) and l
. The other two 
anonly be satis�ed by a proper 
hoi
e of free (input) pa-rameters of the problem, e.g., those of the potential (ifany) and the 
osmologi
al 
onstant.In the spe
ial 
ase of symmetry between the 
en-ters1), the input parameters are 
onne
ted by only one�ne-tuning relation. In this 
ase, the boundary 
ondi-tions at the se
ond 
enter are satis�ed automati
ally,and the existen
e of a regular solution is provided bythree 
onditions of smoothness at the middle (equator)point leq = l
=2:�0(leq) = 
0(leq) = r0(leq) = 0:Two of these three 
onditions determine the values ofl
 and �0(0), and the remaining one requires �ne tuningof the input parameters of the problem.The �ne tuning 
ould be avoided at the expense ofadmitting 
oni
al singularities (in the string 
ase) atthe two 
enters. For symmetri
 solutions, the threesmoothness 
onditions at the equator 
an be satis�edby 
hoosing �0(0), r0(0), and l
. In the general 
ase of1) Equations (6)�(9) are invariant under translations l! l+ l0and under re�e
tions l0 + l ! l0 � l, � ! ��. This invarian
eleads to the existen
e of regular solutions with two 
enters, whi
hare symmetri
 with respe
t to the middle point [17℄. Further-more, a solution with two regular 
enters de�ned in the interval(0; l
) 
an be symmetri
ally extended to the next interval (l
; 2l
)and further on, thus leading to a periodi
 solution for l 2 R[22℄. The metri
 remains regular everywhere, but the points of
onta
ts (0;�l
;�2l
; : : : ) are geometri
ally ambiguous: ea
h ofthem belongs to two adja
ent manifolds simultaneously. If onestill believes in the reality of su
h systems, one 
an note that thespe
trum of a low-energy parti
le in a perfe
tly periodi
 poten-tial has a 
ondu
tivity zone, allowing free propagation and thusmaking the extra dimension observable in prin
iple. However, ifthe 
ondu
tivity zone is very narrow, then even small perturba-tions should lead to lo
alization of a parti
le. This interestingnew possibility is worth a spe
ial 
onsideration.

nonsymmetri
 
enters, the four 
onditions of the se
-ond 
enter 
an be satis�ed by appropriately 
hoosing�0(0), r0(0), r0(l
), and l
.2.4. String equationsIn the string 
ase d1 = 1, to be 
onsidered here indetail, the �eld equations be
ome�00 + (d0
0 + �02)�0 � e�2�� = �V�� ; (13)
00 + d0
02 + �0
0 = �2{2d0 V; (14)�00 + d0�0
0 + �02 = �({2�2)e�2� � 2{2d0 V; (15)2d0
0�0 + d0(d0 � 1)
02 == {2(�02 � 2V )� {2�2e�2�: (16)For numeri
al examples, we use the so-
alledMexi
an-hat potentialV = 14�0�4 ""+�1� �2�2�2# : (17)The parameter " plays the role of a 
osmologi
al 
on-stant added to the 
onventional Mexi
an-hat potential(the �hat� is thus moved up or down). To pass to di-mensionless quantities, we put �0�2 = 1, and hen
elengths are measured in units of 1=p�0�, whi
h inmany 
ases has the meaning of the string 
ore radius2).The potential then takes the formV = 14�2["+ (1� f2)2℄; f := �� : (18)The remaining free parameters that 
ontrol the systembehavior are d0; "; and � := {2�2: (19)We use d0 = 4 in 
omputations. The parameter �
hara
terizes the gravitational �eld strength.To further des
ribe di�erent regular solutions of our�eld equations, we begin with the simplest solutionswhere � = �� = 
onst. They are not string solutionsbut are helpful for 
omparison.2) From the very beginning, we put 
 = ~ = 1, and there-fore all quantities are measured in appropriate powers of length[`℄. Then some relevant dimensionalities are [V ℄ = [`�D℄,[�2℄ = [�2℄ = [{�2℄ = [`2�D℄.297
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onstIf � = �� = 
onst, we are a
tually dealing with va
-uum �eld equations for metri
 (10) with the 
osmolog-i
al 
onstant � = {2V (��). S
alar �eld equation (13)then redu
es to��r2 = �V�(��); V� := dVd� : (20)This leads to two kinds of solutions: one exists in the
ase where V�(��) = 0 and �� = 0, and the other 
or-responds to V�(��) 6= 0 (i.e., � is �frozen� on a slopeof the potential), and we should put r = 
onst in this
ase.For potential (17), Eq. (20) givesf�(r�2 � 1 + f2� ) = 0; (21)and hen
e either f� = ��� = 0or f2� = 1� 1r2 :3.1. Solutions with � � 0The trivial regular solutions with the order param-eter � = 0 des
ribe 
on�gurations with a higher sym-metry, whi
h 
an be
ome spontaneously broken into astru
ture with a topologi
al defe
t.In this 
ase, the metri
 satis�es the equations
00 + 
0(d0
0 + �0) = �8�=d0;�00 + �0(d0
0 + �0) = �8�=d0;(d0 � 1)
02 + 2
0�0 = �8�=d0: (22)Eliminating �0, we obtain the equation for 

00 + 12(d0 + 1)
02 + 4�d0 = 0: (23)Its solutions are di�erent for positive and negative �.For � > 0, we have (requiring 
(0) = 
0(0) = 0, aregular 
enter at l = 0)exp [(d0 + 1)
℄ = 
os2(�1l); �1 =r2�d0 + 1d0 : (24)For r = e� , the last equation in (22) then givesr2 = r20 exp [�(d0 � 1)
℄ sin2(�1l); r0 = 
onst; (25)where, 
hoosing r0 = 1=�1, we 
an satisfy the regular-ity 
ondition r0(0) = 1. We thus have a 
on�guration

with a regular 
enter but with a singularity e
 ! 0 andr !1 as l! �=2�1.For potential (17), this 
ase 
orresponds to " > �1.For � < 0, 
orresponding to " < �1, we have3)e
 = 
h2=(d0+1)(�2l); �2 =r�2�d0 + 1d0 ; (26)r = r0 sh(�2l)[
h(�2l)℄(d0�1)=(d0+1) (27)instead of (24) and (25); again, 
hoosing r0 = 1=�2, we
an satisfy the regularity 
ondition r0(0) = 1.Therefore, the 
on�guration with unbroken symme-try is 
ompletely regular and extends from the regular
enter l = 0 to l = 1, where the warp fa
tor e2
 andthe radius r are in�nitely in
reasing fun
tions.3.2. Solution with � = �� = 
onst 6= 0In this 
ase, Eq. (20) leads to a 
onstant radiusr = r�, and Eq. (15) gives the relation�2�r2� = �V (��)d0 ; (28)when
e it follows thatV (��) = �={2 < 0:For 
, we use (16) to obtaind20
02 = �2�; exp(d0
) = exp��p�2� l� : (29)The 
oordinate range is l 2 R. In parti
ular, for po-tential (17), it follows from (21) and (15) thatr = 1p1� f2� = 
onst; (30)" = �2d0(1� f2� )f2� � (1� f2� )2 < 0; (31)� = {2V (��) = �12{2�2d0f2� (1� f2� )℄: (32)The 
on�gurations with � = 
onst 6= 0 and r = 
onstare regular but evidently 
annot be interpreted in termsof a brane world. They only provide the asymptoti
 be-havior of the �tube� solutions presented below.3) For d0 = 4, these formulas redu
e to those found earlierin [23℄.298



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :4. REGULAR STRING SOLUTIONS.CLASSIFICATION AND MAP IN THE (�; ")PLANEThe possible types of regular solutions of our �eldequations were 
lassi�ed in Refs. [17, 18℄. The tablebelow represents this 
lassi�
ation for the string 
ased1 = 1. Compared to [17℄, this Table does not in
ludethe solutions existing only for d1 > 1; but additionallyin
ludes the solutions (labelled A0 and B0) from Se
. 3.In what follows, we deal with potential (18). Forthis potential, Fig. 1 presents the lo
ation of di�er-ent regular string solutions in the plane of parameters(�; "). The map shows solutions with the � �eld hav-ing a 
onstant sign. Those with alternate signs of �are dis
ussed in Se
. 6. There are no regular stringsolutions at " > 0:In Fig. 1, the 
urve (1 ) is the upper boundaryof the area of 
lass-A1 solutions with r ! 1 asl ! 1. The points on this 
urve and in the wholearea �1 > " � "�(�) 
orrespond to 
lass-B2 solutions.Fine-tuned solutions with two symmetri
 regular 
en-ters (see Fig. 7 below) are lo
ated along the 
urve (2 ).The 
lass of �ne-tuned solutions with a horizon (B1) isrepresented by the 
urve (3 ).We brie�y des
ribe the 
lasses of solutions presented
A2 B2A1

32
1 B2, ε∗(Γ)

B1, εh(Γ)

0 2 4 6
Γ

−3

−2

−1

0

ε C, ε1(Γ)

Fig. 1. Lo
ation of solutions in the plane of parame-ters (�; "). Curve (1 ), "�(�) is the upper boundary ofthe area of 
lass-A1 solutions with r ! 1 as l !1.This 
urve itself and the whole area �1 > " � "�(�)
orrespond to 
lass-B2 solutions with r(1) = 
onst.Fine-tuned solutions with two symmetri
 regular 
en-ters (
lass C) are lo
ated along 
urve (2 ), "1(�). The
lass B1 of �ne-tuned solutions with a horizon is rep-resented by the 
urve (3 ), "h(�)

in the map, postponing the derivation of some impor-tant details of the 
urves to the subsequent se
tions.A: Con�gurations with in�nite rFrom the Table, we 
an note a 
lose similarity be-tween the va
uum solutions A0 (where � � 0) and A1.In fa
t, the gravitational �eld in both 
ases is mainlygoverned by the (negative) 
osmologi
al 
onstant. Inthe limit 
ase j"j � 1, " < 0, the role of the symmetry-breaking potential V (�) is negligible. Then, as followsfrom (14), 
0 is always positive, the warp fa
tor e2
 in-
reases, and gravity is attra
tive towards l = 0. Thesesolutions with r !1 at large l exist without any �netuning.As j"j de
reases, the potential V (�) be
omes moreand more important, and at " approa
hing some "�(�),the derivative r0 ! 0, su
h that 
lass-A1 solutions passover to asymptoti
ally 
ylindri
al �ne-tuned 
lass-B2solutions.The main features of 
lass-A1 solutions at large lare as follows.1) The s
alar �eld �(l) tends to a minimum of V (�).2) The quantities 
0(l) and �0(l) tend to the same�nite positive 
onstant, and hen
e e
(l) � r(l) in
reaseexponentially.An example of 
lass-A1 solution, found numeri
ally,is presented in Fig. 2.As regards the A2 
lass, this is an ex
eptional so-lution 
orresponding to the 
ondition V (0) = 0, hen
e" = �1. In this 
ase [18℄, a regular integral 
urve start-ing at l = 0 with � = 0 �nishes again with � ! 0as l ! 1. The large-l behavior of r and of the warpfa
tor e2
 in the resulting regular solutions isr � l; ed0
 � l:B: Asymptoti
ally 
ylindri
al 
on�gurationsFor these �tube� solutions, it is easy to verifythat Eqs. (29)�(31) hold at large l and, in parti
ular,f ! f� = 
onst with 0 < f2� < 1.The va
uum solution B0, with r � r�, a
tually in-terpolates between the 
ylindri
al asymptoti
s of B1(e
 ! 0, a double horizon) and B2 (e
 !1 at l !1,i.e., gravitational attra
tion towards the 
enter l = 0).Equation (31) does not 
ontain { and allows �nd-ing the range of the input parameter " for whi
h �tube�solutions are possible. The dependen
e "(f�) is shownin Fig. 3. By Eq. (31)," > "min = �1� (d0 � 1)22d0 � 1 : (33)299
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ation of regular (d0 + 2)-dimensional solutions for arbitrary V (�) by the types of asymptoti
 behavior at thelargest or in�nite l. The 
olumns labeled by r, �, and 
 show their �nal values. Attra
tion or repulsion is understoodwith respe
t to the 
enter. The symbol � denotes a minimum of V (�)Notation l range r � V (�) 
 Asymptoti
 typeA0 R+ 1 � 0 V (0) < 0 1 AdS, attra
tionA1 R+ 1 � V (�) < 0 1 AdS, attra
tionA2 R+ 1 0 0 1 power-law, attra
tionB0 R � r� � �� 6= 0 V� < 0 �1 horizon at one endB1 R+ r� �� 6= 0 V� < 0 �1 horizon, repulsionB2 R+ r� �� 6= 0 V� < 0 1 attra
ting tubeC (0; l
) 0 0 V (0) > 0 
onst se
ond 
enterFor d0 = 4, "min = �16=7 = �2:2857 : : :It also follows from (31) and Fig. 3 that in the range�1 > " > "min, there are two bran
hes of the inversefun
tion f�("). In the range 0 � " > �1, there is onlyone bran
h. Other limit values are expressed in termsof f� by Eqs. (29)�(32), and
0 ! {�pd0f2� (1� f2� ): (34)Class-B2 
on�gurations o

upy a whole area in the("; �) parameter plane, whereas B1 solutions require�ne tuning and are lo
ated on the 
urve 3 in the map(see Fig. 1).C: Con�gurations with two 
entersAs was argued above, 
lass-C solutions 
an besymmetri
 and asymmetri
 with respe
t to re�e
tionsl ! l
� l. Symmetri
 solutions require one �ne-tuningrelation, whi
h 
orresponds to parti
ular 
urves in the("; �) plane. The 
urve des
ribing solutions with a 
on-stant sign of � is presented in Fig. 1 (
urve (2 )). Othersymmetri
 
on�gurations are dis
ussed below. Asym-metri
 solutions 
an only appear at dis
rete points inthe parameter plane, and we do not mention them anymore.5. �TUBE� SOLUTIONS: LOCATION IN THEPARAMETER PLANEThe upper boundary "�(�) of 
lass-A solutions,found numeri
ally point by point for d0 = 4, is pre-sented in Fig. 4 by the 
urve (1 ) and the 
ir
les. Any

point in the area " < "�(�), 0 < � < 1 
orrespondsto a 
lass-A solution with f monotoni
ally in
reasingfrom zero at the 
enter to unity. The fun
tion "�(�) de-
reases from zero at � = 0 to a minimum with " = "minin a

ordan
e with Eq. (33) and then in
reases tendingto �1 as �!1.In the range 0 > " > �1, the �tube� (�ne-tuned)solutions only exist pre
isely on the line "�(�), whi
h
omprises a border between A and C 
lasses of solu-tions.In the range �1 > " > "�(�), there are 
ylindri-
al solutions without �ne tuning. This area is lo
atedbetween the zones of A and C 
lasses of solutions.In the limits of weak and strong gravitational �elds(small and large �, respe
tively), numeri
al analysis ofthe �eld equations is hindered, and we have derivedthe fun
tion "�(�) analyti
ally. The 
urve (2 ) in Fig. 4
orresponds to �� 1 and the 
urve (3 ) to �� 1.5.1. Strong gravity: �� 1As follows from the numeri
al analysis, the s
alar�eld in �tube� solutions is small in this 
ase, and thepotential 
an be expanded in a series:V (�) � V0 + 12V 000 �2; dVd� � V 000 �:The problem is 
ompletely determined by the two 
on-stants V0 = V (0)and V 000 = �d2Vd�2 ��=0 :We introdu
e a new parameter � and a new fun
tion  :� = 4{2V0;  = {�: (35)300
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Fig. 2. An example of 
lass-A1 solution with the pa-rameters: � = 0:7, " = �0:9: f(l) (a); �0(l), 
0(l)(b); and r(l) (
)For Mexi
an-hat potential (17),V0 = �2("+ 1)=4;and V 000 = �1;and therefore � = �("+ 1) (36)(we re
all that � := {2�2). Equations (13)�(15) be-
ome
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εFig. 3. The dependen
e "(f�) in (31) in the 
ase of anin�nite 
ylinder
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0.1 1 10 100

ε∗

Γ21 3Fig. 4. The upper boundary "�(�) of 
lass-A1 solu-tions with in�nite r. The points forming the 
urve (1 )are found numeri
ally. The asymptoti
 dependen
es at� � 1 (Eq. (49)) (
urve 2 ) and � � 1 (Eq. (40))(
urve 3 )
00 + 
0(d0
0 + �0) = � �2d0 +  2=d0; (37)�00 + �0(d0
0 + �0) =  2� 1d0 � e�2��� �2d0 ; (38) 00 +  0(d0
0 + �0) =  (e�2� � 1); (39)and depend on only one dimensionless parameter �.The boundary 
onditions are
(0) = 
0(0) =  (0) = 0; (e�)0��l=0 = 1;301
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alar �eld equation (39) is homogeneous with respe
tto  and looks linear; however, the system as a whole isnonlinear, and we have a nonlinear eigenvalue problem.The parameter d0 being �xed, there is only one dimen-sionless parameter �, whose ground-state eigenvalue isexpe
ted to be of the order of unity. In a

ordan
ewith (36) for �� 1, the parameter " is then very 
loseto �1, and f0 in (31) is � ��1 � 1. It follows from (39)that r � e� ! 1 at large l. Nontrivial solutions existfor dis
rete values of �, one of whi
h, 
orresponding toa monotoni
ally in
reasing  (l), is found numeri
ally:� = �7:433 : : : ; d0 = 4:The asymptoti
 dependen
e "�(�) for �� 1" = �1 + �=� (40)is presented in Fig. 4 by the 
urve (3 ).5.2. Weak gravity: �� 1The 
ase � � 1 is more 
ompli
ated. A numeri
al
omputation shows (and it is veri�ed analyti
ally) thatj"j is exponentially small as � ! 0. From (31), we seethat 1� f20 � � "2d0 � 1;and the limit value of 
ir
ular radius (30),r� �s2d0j"j ;is very large 
ompared with the �
ore� radius � 1. Theequations simplify di�erently in the two 
ases wherer � r� and r � 1. The solutions must 
oin
ide in theintermediate region 1� r � r�.For �� 1, it is 
onvenient to rewrite the �eld equa-tions in terms of r = e� :
00 = �
0�d0
0 � r0r �� �2d0 �"+ (1� f2)2� ; (41)r00 = (d0 � 1)d02 
02 r � �2 f2r � �2 f 02r �� �4 �"+ (1� f2)2� r; (42)f 00 = �f 0�d0
0 � r0r �+ fr2 � f(1� f2): (43)For r � r�, we see that 
0 � � � 1, and the termwith 
02 in (42) 
an be negle
ted. In the vi
inity of the


enter, in the terms � �, we 
an set r = l and omit ".Then Eq. (42) redu
es tor00 = ��f20l � �2d0 (1� f20 )2l; �� 1; l � r�;where f0 is the solution of Eq. (43) with 
0 = 0, r = l,and the boundary 
onditions f(0) = 0, f(1) = 1.With r0(0) = 1, integration yieldsr0 = 1 + �24�f20 ln l + 2 lZ0 dl f0f 00 ln l �� 12d0 lZ0 dl(1� f20 )2l35 :The integrals rapidly 
onverge for l � 1, and in theintermediate region 1� l � r� we haver02 = 1 + 2��� ln r + 2J2 � J12d0� ;�� 1; 1� r � r�; (44)where the integrals J1 and J2 are found numeri
ally:J1 = 1Z0 l dl (1� f20 )2 = 1;J2 = 1Z0 dl f0f 00 ln l � 0:2: (45)In the region r � 1, Eq. (42) redu
es tor00 = ���1r + "2d0 r� ; �� 1; 1� r: (46)Taking into a

ount that r0 = 0 at r = r�, we �nd12r02 = ��ln r� � ln r + "4d0 r2� � "4d0 r2� ;�� 1; 1� r: (47)In the intermediate region 1� r � r� we haver02 = 2��12 ln 2d0j"j � ln r � 12� ;�� 1; 1� r � r�: (48)We have taken into a

ount thatr� =s2d0j"j :302



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :Comparing (44) with (48), we �nd the �ne-tuningrelation between " and � for asymptoti
ally 
ylindri

on�gurations in the weak-gravity limit:" = �2d0 exp�� 1� � 4J2 � 1� J1d0� �� �0:33 d0 exp�� 1� + 1d0� ; (49)" � �1:7e�1=�; d0 = 4; �� 1:This asymptoti
 dependen
e, "�(�) for � � 1, is pre-sented in Fig. 4 by the 
urve (2 ).5.3. Solutions in the range �1 > " > "�(�)In the range �1 > " > "�(�), there exist 
lass-B2solutions (r ! r� < 1 as l ! 1) without any �ne-tuning relation between the parameters " and �. Theasymptoti
 values of the s
alar �eld (f�) and the radius(r�) at large l are independent of �:f2� = d0 � 1�p(d0 � 1)2 + ("+ 1)(2d0 � 1)2d0 � 1 ;r2� = 2d0 � 1d0 +p(d0 � 1)2 + ("+ 1)(2d0 � 1) :An example of su
h a solution is shown in Fig. 5 for� = 2 and " = �1:1. The s
alar �eld f(l) is shown inFig. 5a, 
0(l) and �0(l) are shown in Fig. 5b, and r(l)is displayed in Fig. 5
.5.4. Solutions with a horizonWe 
onsider 
lass-B1 
on�gurations with a horizon,with 
(l) linearly de
reasing as l!1. Their lo
ation,found numeri
ally, is shown in Fig. 1 by the 
urve (3 )," = "h(�), 
orresponding to a 
ertain �ne-tuning rela-tion. An example of su
h a regular solution, with theparameters � = 2 and " = �0:233846, is presented inFig. 6.The near-horizon metri
 has the asymptoti
 formds2 = C2e�2hl���dx�dx� � dl2 � r2�d
2;h = 
0(1): (50)The substitution e�hl = � (
onverting l =1 to a �nite
oordinate value, � = 0) brings metri
 (50) to the formds2 = C2�2���dx�dx� � d�2k2�2 � r2�d
2;�! 0: (51)
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Fig. 5. An example of 
lass-B2 solution for � = 2 and" = �1:1: f(l) (a); �0(l), 
0(l) (b), and r(l) (
)Therefore, � = 0 is a se
ond-order Killing horizon inthe two-dimensional subspa
e parametrized by t and �;the extra-dimensional 
ir
ular radius squared remainspositive. It is of the same nature as, e.g., the extremeReissner�Nordström bla
k-hole horizon, or the anti-deSitter horizon in the se
ond Randall�Sundrum brane-world model. A pe
uliarity of the present horizon isthat the spatial part of the metri
, whi
h takes the form�2(dx)2 at large l, is degenerate at � = 0. The volumeof the d0-dimensional spa
e�time vanishes as l !1. It303
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Fig. 6. An example of 
lass-B1 solution with a horizonfor � = 2 and " = �0:233846: the s
alar �eld � andthe metri
 fun
tion 
 (a); the 
ir
ular radius r (b)remains degenerate even if we pass to Kruskal-like 
o-ordinates in the (t; �) subspa
e. But the D-dimensional
urvature is �nite there, indi
ating that a transition tonegative values of � (where the old 
oordinate l is nolonger appli
able) is meaningful.Thus solutions with strings (and/or monopoles) inextra dimensions may 
ontain se
ond-order horizons,and the degenerate nature of the spatial metri
 at thehorizon does not lead to a 
urvature singularity; more-over, the metri
 
an be 
ontinued in a Kruskal-like man-ner. However, the zero volume of the spatial se
tionmakes the density of any additional (test) matter in-�nite at � = 0. To regard these solutions as des
rib-ing viable 
on�gurations, one needs to take the ba
k-rea
tion of ordinary matter into a

ount. It evidentlydestroys su
h a 
on�guration.

6. SOLUTIONS WITH TWO REGULARCENTERS: LOCATION IN THEPARAMETER PLANESymmetri
 
lass-C solutions with two regular 
en-ters are lo
ated on the (";�) plane in the region0 > " > �1 to the right of the �ne-tuning 
urve (1 ),"�(�), in Fig. 4 or, whi
h is the same, to the right ofthe 
urve (1 ) in the full map, Fig. 1. The solutionsare �ne-tuned, i.e., lo
ated along 
ertain lines "N (�) inthis region, where N is the number of half-waves andN � 1 is the number of knots (zeros) of the s
alar �eldf = �=�. The point is that f , just as the radius r, iszero at both 
enters, but f 
an 
hange its sign. There-fore, there are several families of regular solutions withdi�erent numbers N of half-waves, ea
h family 
orre-sponding to a line "N (�) in the parameter plane. The
urve (2 ) in Fig. 1 depi
ts "1(�).6.1. Solutions without knots of the s
alar �eldIn solutions where f has a 
onstant sign, all threefun
tions f(l), r(l), and 
(l) rea
h their extremum val-ues at the equator l = leq . Settingf 0(leq) = r0(leq) = 
0(leq) = 0 (52)in the �rst integral in (16), we �nd a relation betweenf(leq) =: feq and r(leq) =: req :r2eq = 2f2eqj"j � (1� f2eq)2 : (53)It is 
onvenient to use (53) together with (52) as bound-ary 
onditions and perform numeri
al integration fromthe equator to one of the 
enters. Then the three 
ondi-tions f(l
) = 0, r(l
) = 0, and r0(l
) = 1 determine thevalues of feq and l
 and a �ne-tuning relation " = "1(�).An example of a 
on�guration with two regular 
en-ters is presented in Fig. 7 for � = 2; the �ne-tunedvalue of " is "1(2) = �0:3326 : : : , it belongs to the line" = "1(�).The 
urve " = "1(�) in Fig. 1 has been obtainednumeri
ally. For small and large values of �, this �ne-tuning relation 
an be derived analyti
ally.6.1.1. "1(�) for weak gravity, �� 1This derivation repeats the one for Eq. (49). Themain di�eren
e is that we now obtain the value of r(l)at the equator from (53) asreq = r(leq) =p2=j"j; j"j � 1; (54)304
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Fig. 7. An example of a 
on�guration with two sym-metri
 regular 
enters without knots of the s
alar �eld:� = 2, the �ne-tuned value "1(2) = �0:3326 : : : ; itbelongs to the line " = "1(�); r(l), f(l) (a), and
(l) (b)and use it instead of r�. Substituting (54) in (47), wehave r02 = ��ln 2j"j � 2 ln r � 1d0 � "2d0 r2� ;�� 1; 1� rinstead of (48). In the intermediate region 1� r � rm,this must 
oin
ide with (44). The resulting relation is" = �2 exp�� 1��1�J1d0 �4J2� � �0:9e�1=�;�� 1: (55)

6.1.2. "1(�) for strong gravity, �� 1Numeri
al integration shows that for � � 1, thes
alar �eld f remains small in the whole interval be-tween the 
enters, while  = {�f is of the order ofunity. Introdu
ing � in (36) as before and taking intoa

ount that f � 1, we again �nd Eqs. (37)�(39). It is
onvenient to integrate these equations from the equa-tor to the 
enter and to use boundary 
onditions in theform�0(leq) =  0(leq) = 
0(leq) = 0;  (leq) =  eq ;�(leq) = 12 ln 2 2eq2 2eq � �: (56)The three parameters  eq , l
 � leq , and � are to bedetermined from the 
onditions (l
) = 0; r(l
) = 0; r0(l
) = 1:Numeri
al integration results in � = 1:9 : : :For 
lass-C solutions, the desired �ne-tuning rela-tion in the strong-gravity limit is" = �1 + 1:9=�: (57)6.2. Odd and even s
alar �eldsIn the above solutions, the s
alar �eld f(l) withoutknots is an even fun
tion.Be
ause f(l) may 
hange its sign between the 
en-ters, there are two possibilities. If the number of knotsof f(l) is even, then f(l) is an even fun
tion, rea
hingan extremum at the equator, and f 0(leq) = 0. On theother hand, f(l) with an odd number of knots is an oddfun
tion: f(leq) = 0, and f 0(l) is then an even fun
tionhaving an extremum at l = leq .Numeri
al integration of Eqs. (13)�(15) in the 
aseof an even number of knots 
an be performed with thesame boundary 
onditions (56) as without knots. Theresults are displayed in Figs. 8�10.Figure 8 shows a few solutions for the s
alar �eldf(l) with two knots and the 
orresponding fun
tionsr(l).Figure 9 shows the fun
tion 
(l) in the whole rangeof l and in a 
lose vi
inity of the equator for visual
larity to demonstrate a minimum at the equator. Were
all that 
 enters the equations only via 
0 and 
00,and therefore, without loss of generality, we have set
(leq) = 0 in Fig. 9b. The larger is �, the deeper isthe lo
al minimum of 
 at the equator. Altogether, thegravitational potential has three minima: one at theequator and two others near the regular 
enters.5 ÆÝÒÔ, âûï. 2 305
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lFig. 8. Solutions with two symmetri
 
enters with two knots of f(l) for � = 0:5, 0:75, 1, 2, 3, 4, and 5 in the orderof de
reasing amplitude; the 
orresponding �ne-tuned values of " are �0:51275, �0:62765, �0:7019, �0:8365, �0:888,�0:9146, and �0:93115; f(l) (a), r(l) (b); the additional dashed 
urve 
orresponds to the limit �!1
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lFig. 9. The fun
tions 
(l) in the whole range of l (a) and in a 
lose vi
inity of the equator (b) for solutions with the sameset of parameters as in Fig. 8The �ne-tuning relation "3(�) for solutions with twoknots of f(l), found numeri
ally, is shown in Fig. 10.Ea
h 
urve in Figs. 8 and 9 
orresponds to a point onthis 
urve. In solutions with an odd number of knots of f(l),we have f(leq) = 0, and it follows from Eq. (16) thatf 02 = "+ 12306
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Fig. 10. The �ne-tuning relation "3(�) for solutionswith two knots of f(l) between the 
enters, displayedin Figs. 8 and 9at the equator. For numeri
al integration of Eqs. (13)�(15) in this 
ase, it is 
onvenient to use the boundary
onditions�0(leq) = f(leq) = 
0(leq) = 0; �(leq) = �eq ;f 0(leq) =p("+ 1)=2: (58)Then the three 
onditions f(l
) = 0, r(l
) = 0, andr0(l
) = 1 determine the values of �eq and l
 � leq aswell as the �ne-tuning relation (" = "2(�) in the 
ase ofone knot). As an example, in Fig. 11, we present a nu-meri
al solution with one knot for � = 2, 
orrespondingto " = �0:71. Figure 11a shows r(l) and f(l); 
(l) isdepi
ted on Fig. 11b. The fun
tion 
(l) is symmetri
with respe
t to the equator and has two minima 
loseto the 
enters.We note that if we in
lude 
on�gurations with an-gular de�
its and ex
esses at the 
enters into 
onsid-eration, then the existen
e of solutions with two 
en-ters is not restri
ted to parti
ular lines in the (";�)plane. There is then a whole area of su
h solutions,bounded by " = min("�(�);�1)from below and by the line " = "h(�) from above.Among the nonsymmetri
 solutions of this kind withseveral knots of the s
alar �eld, we 
an �nd those withmultiple lo
al maxima and minima of 
(l). Their possi-ble 
onne
tion with matter trapping and the hierar
hyproblem is dis
ussed below.
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Fig. 11. Example of a solution with two symmet-ri
 regular 
enters and an odd s
alar �eld with oneknot; � = 2, the 
orresponding �ne-tuned value"2(�) = �0:71; r(l), f(l) (a), and 
(l) (b)7. MATTER IN THE BACKGROUND OFGLOBAL STRING CONFIGURATIONSIn this se
tion, we dis
uss the problem of trappingof 
lassi
al point-like parti
les and test s
alar �elds bythe gravitational �eld of the global string 
on�gurationsdes
ribed above.7.1. Classi
al parti
lesThe motion of 
lassi
al parti
les in the bulk 
anbe equivalently des
ribed in terms of geodesi
s or theHamilton�Ja
obi equation. We here use the se
ond ap-proa
h.The Hamilton�Ja
obi equation for a point-like testparti
le of (primary) mass m0 in spa
e�time with met-ri
 (10) is307 5*
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(l)���S�t �2 ���S�x�2����S�l �2 �� 1r2(l) ��S�� �2 �m20 = 0:The metri
 is homogeneous with respe
t to all 
oordi-nates ex
ept l, and the a
tion 
an be written asS = Et� px+ Sl(l) +M�; (59)where E is the parti
le energy, p is the parti
le momen-tum along the 
oordinates xi, i = 1; d0 � 1, � is the an-gular 
oordinate in the extra dimensions (we note thatd
2 = d�2 for d1 = 1) and M is its 
onjugate angu-lar momentum. The remaining unknown fun
tion Sl(l)satis�es the equationdSldl = �sp2e�2
(l) � M2r2(l) �m20;where p2 = E2 � p2:Zeros of the square root determine the turning pointsof 
lassi
al motion.We 
onsider a parti
le with M = 0, i.e., movingin the bulk along the 
oordinate l (stri
tly to or froma brane if the brane is lo
ated at �xed l). Classi
almotion is allowed where the square root is real. Theturning points lt are determined by the equationp2e�2
(lt) �m20 = 0:If there is a minimum of 
(l) at some l = l0, a
lassi
al parti
le withp2 = m20e2
(l0)
annot move along the l dire
tion and is trapped pre-
isely at the minimum of 
. Parti
les with slightlylarger p2 
an move between two turning points in thevi
inity of l0. If it is a global minimum of 
, parti
leswith any p2 � m20e2
(l0)are trapped.It 
an also be veri�ed that parti
les with the samevalue of p2 butM 6= 0 (moving in the � dire
tion) havea still narrower range of motion along l.In parti
ular, near the equator of a 
on�gurationwith two 
enters and three half-waves of � (see Fig. 9),the turning points of �nite 
lassi
al motion exist for
(leq) < 
 < 
m, where 
m is the maximum of 
(l).Setting m2eq = m20e2
(leq);

we see that a 
lassi
al parti
le is trapped near the equa-tor if its energy is restri
ted bym2eq < p2 < m2eq expf2[
m � 
(leq)℄g:It moves along the Minkowski 
oordinates as a free par-ti
le of mass meq .7.2. S
alar �eldsWe 
onsider a test s
alar �eld � with the LagrangianL� su
h that 2L� = �A���A��m20��� (60)in the ba
kground of our string 
on�gurations withmetri
 (10). Here, the asterisk as a supers
ript denotes
omplex 
onjugation and m0 is the initial �eld mass.The � �eld satis�es the Klein�Gordon equation�A �pggAB�B��+pgm20� = 0; (61)where g = j det(gAB)j = exp(2d0
 + 2�):Taking the symmetry of the problem into a

ount, we
an take a single mode of �, assuming�(xA) = X(l)e�ip�x� ein�; (62)where p� = (E;p) is the (d0 = 4)-momentum alongthe brane and n is an integer. Then X(l) satis�es theequationX 00 + (d0
0 + �0)X 0 ++ (p2e�2
 � n2e�2� �m2�)X = 0; (63)where p2 = p�p� = E2 � p2is the e�e
tive mass squared, observed on the brane.As a trapping 
riterion for a mode X , it is reason-able to require the �niteness of the �-�eld energy E�per unit area of the brane,E� = Z T tt [�℄pg d� dl = 2� Z T tt [�℄pg dl <1; (64)whereT tt [�℄ = 12 �� �e�2
(E2 + p2) +X 02 + (n2e�2� +m20)X2� (65)is the temporal 
omponent of the �-�eld stress�energytensor. We noti
e that the validity of Eq. (64) automat-i
ally guarantees �niteness of the norm R pg���dl d�308
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onsidered as a quantum-me
hani
al wavefun
tion.The �niteness of E� in the ba
kground of di�erentregular 
on�gurations with in�nite extra dimensionsdes
ribed above depends on the behavior of solutionsof Eq. (63) at small and large l.We begin with 
onsidering the �-�eld behavior neara regular 
enter l = 0, whi
h is 
ommon to all 
lasses ofregular 
on�gurations. At small l, we have e� � r � land 
 ! 0. Hen
e, Eq. (63) takes the approximateform lX 00 +X 0 + l(p2 �m20)X = 0; n = 0; (66)lX 00 +X 0 � (n2=l)X = 0; n 6= 0: (67)Equation (66) is solved by zeroth-order 
ylindri
al fun
-tions if p2 6= m20 and in elementary fun
tions if p2 = m2;Eq. (67) is an Euler equation. At small l, the solutionsbehave as X � C1 + C2 ln l; n = 0;X � C3ln + C4l�n; n 6= 0; (68)with integration 
onstants Ci. To make the integralin (64) 
onverge as l ! 0, we must 
hoose C2 = 0 andC4 = 0, i.e., only one of the two linearly independentsolutions in ea
h 
ase.We now 
onsider the asymptoti
 form of solutionsof Eq. (63) as l!1 for di�erent ba
kground 
on�gu-rations.A1: at large l, 
 � � � hl, h = 
onst > 0. InEq. (63), the terms with p2 and m2 are negligible, andthe solution has the asymptoti
 formX � C+e�a+l + C�e�a�l;2a� = (D � 1)h�q(D � 1)2h2 + 4m20; (69)where C� are integration 
onstants and D = d0 + 2is the total spa
e�time dimension. It is easy to ver-ify that 
riterion (64) holds for solution with C+ 6= 0,C� = 0. Hen
e, s
alar �elds with any nonzero mass
an be trapped on su
h branes.A2: at large l, ed0
 � e� � l. Again, the termswith p2 and m2 are negligible, and Eq. (63) transformsto X 00 + 2X 0=l�m20X = 0;whose solution isX � C+em0l + C�e�m0ll ; (70)and evidently the solution with C+ = 0 satis�es 
rite-rion (64).

B1: at large l, r � e� ! r�, 
 � �hl, h > 0, andthe approximate form of Eq. (63) isX 00 � d0hX 0 + p2e2hlX = 0: (71)For p 6= 0, it is solved in 
ylindri
al fun
tions, the gen-eral solution beingX = ed0hl=2Zd0=2� jpjh ehl� �� e(d0�1)hl=2 sin� jpjh ehl +��; (72)where � is a 
onstant phase. It is easy to verify thatE� diverges as R ehl dl. Therefore, massive modes withany p2 > 0 are not trapped by B1 
on�gurations.B2: at large l, r ! r� and 
 � hl, h > 0. Thesituation is almost the same as in 
ase A1; the solutionof Eq. (63) has asymptoti
 form (69) with the repla
e-ments D � 1 7! d0; m20 7! m20 + n2=r2�:Again, only the solution with C� = 0 provides 
onver-gen
e of E�.Thus, the 
on�gurations of 
lasses A1, A2, and B2
an trap massive s
alar modes; at both large and smalll, only one of the two linearly independent solutions ofEq. (63) is sele
ted, and therefore we have a boundary-value problem with a dis
rete spe
trum of p2 for anygiven values of m0, n and the ba
kground parameters.7.3. The S
hrödinger equationIt is helpful to reformulate the boundary-valueproblem for s
alar �eld modes in terms of theS
hrödinger equation. For this, we make the followingsubstitutions in (63):dl = e
dx; X(l) = y(x)pf(x) ; (73)where f(x) = exp((d0 � 1)
 + �):The new variable x is a
tually an analogue of the well-known �tortoise 
oordinate� in the analysis of spheri-
ally symmetri
 metri
s, su
h that the metri
 takes theform ds2 = e2
����dx�dx� � dx2�� e2� d�2: (74)Then Eq. (63) transforms to the S
hrödinger formyxx + [p2 � Veff (x)℄y = 0 (75)309
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h ÆÝÒÔ, òîì 133, âûï. 2, 2008with the e�e
tive potentialVeff = �m20 + n2e�2��e2
 + fxx2f � f2x4f2 ; (76)where the subs
ript x denotes d=dx. We re
all that theeigenvalue p2 is the e�e
tive mass squared, observed inMinkowski spa
e.Near the 
enter (without loss of generality,x � l ! 0), we haveVeff � n2x2+m20+14�1+2(d0�1)
xx+�xx�x=0: (77)For n 6= 0, it is therefore a potential well, whereasVeff ! 
onst for n = 0.At large l for di�erent ba
kgrounds, we have:A1: x! x+ <1; x+ � x � e�hl; h > 0,Veff (x) � e2hl�m20 + h24 (d20 + 2d0)�; (78)A2: x � l(d0�1)=d0 !1,Veff (x) � m20e2
 � l2=d0 � x2=(d0�1); (79)B1: x � ehl !1, h > 0,Veff (x) � e�2hl�m20 + n2r2� + h24 (d20 � 1)� � 1x2 ; (80)B2: x! x� <1, x� � x � e�hl, h > 0,Veff (x) � e2hl�m20 + n2r2� + h24 (d20 � 1)�: (81)We see that in 
ases A1, A2, and B2, the potentialin
reases to in�nity at large l, whi
h leads to dis
retespe
tra of p2. For B1 
on�gurations (with a horizon atl =1), in the standard quantum me
hani
s, we wouldexpe
t a 
ontinuous spe
trum of states; in our 
ase,with the appropriate boundary 
onditions, as we sawabove, there are no admissible states with p2 > 0.7.4. Massless modes in 
on�gurations within�nite extra dimensionsFor a possible massless mode,p2 = m20 = n2 = 0;Eq. (63) is easily solved asX 0 = C1e�d0
�� dl;X = C1 Z e�d0
�� + C2; C1;2 = 
onst; (82)

and X is found by quadrature.One of the solutions is X = 
onst. It is easy toverify that with this solution, whi
h is well-behaved ata regular 
enter, the energy E� in Eq. (64) diverges atlarge l in the ba
kgrounds A1, A2, and B2, but 
on-verges in the ba
kground B1.For the other solution with C1 6= 0, on the 
on-trary, E� 
onverges at large l in the ba
kgrounds A1,A2, and B2 and diverges in B1. This solution, however,is singular at the 
enter and leads to a divergen
e in E�there.Thus, B1 
on�gurations with horizons, being unableto trap massive s
alar �elds, are the only ones that 
antrap a massless s
alar.8. CONFIGURATIONS WITH TWO CENTERSAND THE HIERARCHY PROBLEMIn 
on�gurations with two symmetri
 regular 
en-ters and two knots of the s
alar �eld, there are threeminima of the �gravitational potential� 
 (see Fig. 9).The minimum at the equator is higher than the othertwo lo
ated near the 
enters. A similar (and evenmore 
ompli
ated) stru
ture may be expe
ted for 
on-�gurations with a larger number of s
alar-�eld knots.The minima of 
 are able to trap 
lassi
al parti
les.As regards quantum parti
les (at least spinless), ef-fe
tive potential (76) not ne
essarily has a minimumpre
isely where 
 has a minimum, and an additionaldetailed study is ne
essary. Nevertheless, semi
lassi-
ally at least, quantum and 
lassi
al parti
les must betrapped in 
lose positions, and the main di�eren
e be-tween them is that quantum parti
les 
an tunnel froma higher minimum of Veff to a lower one.We now suppose that a parti
le des
ribed by a 
er-tain mode of the � �eld (for simpli
ity, with n = 0) istrapped at some position li. Mode equation (63) 
anthen be rewritten as(pgX 0)0 +pgXe�2
p2 = pgm20X: (83)We integrate this equation over the extra dimensionfrom one 
enter to the other. We haveZ (pgX 0)0 dl = 0be
ause pg = red0
is zero at both 
enters. For a parti
le trapped at some�xed position l = li, we obtain310



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :p2 = m2i = m20 Z pgX dlZ pge�2
X dl � m20e2
(li): (84)To interpret this result, we note that the entire pi
-ture looks quite di�erent depending on the size of theextra dimensions, 
hara
terized by the distan
e l
 be-tween the 
enters. This size, in turn, varies with thevalue of � = {2�2: it is 
lose to unity (i.e., the lengthunit, whi
h is also arbitrary) for large � and tends toin�nity as � ! 0. For (
omparatively) weak gravityof the string, � ! 0, when l
 is very large, all minimaof 
(l) form individual branes lo
ated in the bulk farfrom one another. In this 
ase, an observer lo
ated onone of the branes sees only parti
les 
orresponding tomodes trapped on this brane; tunneling from one braneto another is then seen as the appearan
e or disappear-an
e of observable parti
les. The entire pi
ture may beused for treating the intera
tion hierar
hy problem inthe spirit of Randall�Sundrum �rst model [4℄.In the opposite 
ase � ! 1 (if the unit length(�0�)�1=2 is also su�
iently small), l
 
an be a lengthinvisible for modern instruments, e.g., l
 � 10�17 
m.We then arrive at a pi
ture 
lose to the original Kaluza�Klein 
on
ept; parti
les with the same primary massm0, being trapped at di�erent minima of the e�e
tivepotential, are seen as parti
les with di�erent masses,and the tunneling pro
ess from a higher minimum to alower one is observed as a de
ay of a parti
le of a largermass to that of a smaller mass, with energy release insome form. This may be a natural explanation of theexisting families of parti
les with di�erent masses butsimilar other properties. A more detailed study of thispossibility is desirable but is beyond the s
ope of thepresent paper. 9. CONCLUSIONOur phenomenologi
al approa
h based on thema
ros
opi
 theory of phase transitions with sponta-neous symmetry breaking allows studying the generalphysi
al properties of topologi
al defe
ts in the frame-work of the brane-world 
on
ept. In parti
ular, in thispaper, we have studied the gravitational properties ofglobal strings lo
ated in extra dimensions. We havegiven a general des
ription and 
lassi�
ation of possi-ble regular solutions and presented a map showing thelo
ation of di�erent solutions in the spa
e of physi
alparameters.Among the variety of regular solutions, there areones having brane features, in
luding solutions with

multiple branes, as well as those of potential interestfrom the standpoint of the hierar
hy problem.In 
onne
tion with branes, we have analyzed thepossibilities of trapping of 
lassi
al parti
les and s
alar�elds. We have shown that 
ontrary to the domain-wall 
ase, in the 
ase of an extra-dimensional globalstring, matter 
an be trapped by gravity even without
oupling to the s
alar �eld that forms the string itself.Among the 
on�gurations with two 
enters, thestru
tures having several minima of 
(l) may be inter-esting in 
onne
tion with the hierar
hy problem. If thedistan
e between the 
enters is small, we work withinthe Kaluza�Klein 
on
ept, and the same parti
le, beingtrapped at di�erent minima, looks to an observer as afamily of similar parti
les with di�erent rest masses.We appre
iate partial �nan
ial support from theRFBR (proje
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