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We consider (do + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in
do dimensions, endowed with a warp factor e?” depending on the distance I from the string center. All possible
regular solutions of the field equations are classified by the behavior of the warp factor and the extra-dimensional
circular radius r(l). Solutions with r — oc and r — const > 0 as [ — oo are interpreted in terms of thick
brane-world models. Solutions with r — 0 as [ — [, > 0, i.e., those with a second center, are interpreted
as either multi-brane systems (which is appropriate for large enough distances I. between the centers) or as
Kaluza—Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the
Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the (g, T') parameter
plane, where ¢ acts as an effective cosmological constant and I' characterizes the gravitational field strength.
The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties
for massive fields are found for models with increasing warp factors. Kaluza—Klein-type models are shown to
have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the
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standpoint of hierarchy problems.
PACS: 04.50.+h, 11.27.+d
1. INTRODUCTION

The multidimensional gravity concept, tracing back
to the pioneering papers by Kaluza and Klein [1], ini-
tially assumed that the extra dimensions remain un-
observable due to their extreme smallness. Another
class of multidimensional theories has been put for-
ward in the 1980s, based on the idea that we live on
a distinguished surface (brane) embedded in a higher-
dimensional manifold, called the bulk [2]. This idea
has recently become very popular in attempts to find
an approach to a number of fundamental physical
problems. The brane-world concept is broadly dis-
cussed in connection with the recent developments
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in supersymmetric string/M-theories [3]. The simple
Randall-Sundrum first model [4] continued numerous
attempts [5] to find the origin of the enormous hierar-
chy of energy/mass scales observed in nature, which is
a long-standing problem in particle physics. In astro-
physics and cosmology, there are attempts to explain
the dark matter and dark energy effects, to describe
black holes and possible variation of fundamental con-
stants, the CMB anisotropy, etc.

A great variety of brane-world models may be found
in the literature: branes in five or more dimensions,
single or multiple branes, flat or curved branes, flat or
curved bulk, compact or non-compact bulk (i.e., large
or infinite extra dimensions), thin or thick branes, var-
ious symmetries of both bulks and branes, different
kinds of matter forming the brane, etc.
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In our view, the most natural physical idea lead-
ing to the emergence of distinguished surfaces in the
space—time manifold is the idea of a phase transition
with spontaneous symmetry breaking (SSB), which has
already led to great success in many areas of physics
and cosmology. In other words, it is reasonable to re-
gard the brane world as a result of a phase transition
at a very early stage of the Universe evolution. The
existing macroscopic theory of phase transitions with
SSB allows considering the brane-world concept self-
consistently and avoiding the influence of model as-
sumptions to the largest degree, even without a de-
tailed knowledge of the nature of the physical vacuum.
A necessary consequence of such phase transitions is
the appearance of topological defects.

We recall that a decisive step toward cosmological
applications of the SSB concept was made in 1972 by
Kirzhnits [6]. He assumed that as in the case of solid
substances, a symmetry of a field system, existing at
sufficiently high temperatures, could be spontaneously
broken as the temperature decreases. The first quanti-
tative analysis of the cosmological consequences of SSB
was given in [7].

The properties of global topological defects are gen-
erally described with the aid of a multiplet of scalar
fields playing the role of an order parameter. If a de-
fect is to be interpreted as the origin of a brane world,
its structure is determined by the self-gravity of a scalar
field system and can be described by a set of Einstein
and scalar equations.

This approach to the brane-world concept has been
used by many authors for construction of thick branes
in five (see, e.g., [8-14]) and more (see, e.g., [15-18] and
the references therein) dimensions.

In our previous papers [13, 14, 17, 18], we have an-
alyzed the gravitational properties of candidate (thick)
brane worlds with the dp-dimensional Minkowski met-
ric and global topological defects in d; + 1 extra di-
mensions. Our general formulation covered particular
cases such as a brane (domain wall) in five-dimensional
space—time (one extra dimension), a global cosmic
string with winding number n 1 (two extra di-
mensions), and global monopoles (three or more ex-
tra dimensions). We restricted ourselves to Minkowski
branes because most of the existing problems are al-
ready clearly seen in these comparatively simple sys-
tems; on the other hand, in the majority of physical
situations, the intrinsic curvature of the brane itself
is much smaller than the curvature related to brane

formation, and therefore the main qualitative features
of Minkowski branes should survive in realistic curved
branes.
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Our treatment differed from many others (e.g., [15,
16]) in that we have considered all kinds of regular so-
lutions of the corresponding field equations, including
those with increasing warp factors, whose good trap-
ping properties we have emphasized.

We have shown, in particular, that there are seven
classes of regular solutions of the field equations de-
scribing global strings and monopoles in extra dimen-
sions; two of them exist for monopoles only, while the
other five are found for both strings and monopoles.
Some of these configurations have exponentially in-
creasing warp factors (€27 in metric (1), see below) at
large distances from the core. They are shown to trap
linear test scalar fields of any mass and momentum.
Others, ending with a flat metric, have a warp factor
tending to a constant value, determined by the shape of
the symmetry-breaking potential. They are also shown
to trap test scalar fields with masses restricted from
above by a value depending on the particular parame-
ters of the topological defect.

Although the general classification in [17, 18] covers
all possible regular configurations, the important ques-
tion of the location of different solutions in the space of
physical parameters remained open. One of the goals
of this paper is to answer this question in the particular
case of a global string in two extra dimensions and a
Mexican-hat symmetry-breaking potential. The prob-
lem then contains two essential physical parameters: ¢,
the dimensionless cosmological constant, and ', char-
acterizing the gravitational field strength. In the (e, T')
plane, the border lines separating different classes of
regular solutions (those extending to infinite circular
radii r, those with a cylindrical geometry far from the
center, and those with two regular centers), are found
numerically, and the asymptotic dependences e(I") as
I' - 0 and I' = oo are derived analytically.

Another goal is to give a more complete description
of the configurations of interest described by these solu-
tions. We describe the trapping properties of different
thick brane-world models for classical particles, scalar
fields, and gravity. We also argue that one of the classes
of regular configurations, those with two centers, can
lead to promising models with nontrivial particle mass
spectra. The point is that the warp factors of such con-
figurations can have several minima at different levels,
where test particles and fields may be gravitationally
trapped with different energies. In this case, however,
we should abandon the brane-world concept and ad-
mit that the extra dimensions are invisible due to their
smallness, i.e., interpret the solutions in the spirit of
Kaluza-Klein theories.

There is a growing number of publications devoted
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to brane worlds with two extra dimensions (see [19]
and the references therein). In many cases, the re-
sults are obtained numerically using simplified models
with specially chosen sets of parameters. In our macro-
scopic approach, based on the theory of phase transi-
tions with SSB, we try to reduce the influence of model
assumptions to a minimum and to cover the full range
of possibilities. Our main result, the full map of regular
solutions for a system with the Mexican-hat symmetry-
breaking potential V' (¢), should probably retain its ba-
sic qualitative features for other potentials with a sim-
ilar arrangement of extremum points.

The paper is organized as follows. In Sec. 2, we out-
line the problem setting, including the geometry, field
equations, and boundary conditions providing space—
time regularity. In Sec. 3, we describe the simplest so-
lutions with a constant scalar field, needed for compar-
ison in what follows. Section 4 is central in the paper:
we give a general description and classification of possi-
ble regular solutions on the basis of our previous work
[17, 18] and present a map showing the location of dif-
ferent solutions with the Mexican-hat potential in the
parameter space of the problem. In Secs. 5 and 6, we
describe some further details of the solutions and an-
alytically derive the asymptotic behavior of the curves
drawn in the map. In Sec. 7, we discuss the trapping
properties of thick branes described by the above solu-
tions. The properties of configurations with two centers
are outlined in Sec. 8, and Sec. 9 is a conclusion.

2. PROBLEM SETTING

2.1. Geometry and regularity conditions

Our main interest here is a 6D space—time with a
cosmic string in the two extra dimensions. But we
begin with a more general geometry: we consider a
(D = do + dy + 1)-dimensional space—time with the
structure Mo x R, x S and the metric

ds® = 627(“)77de“dx" -

— (620‘(“)du2 + ew(“)dQZ) , (1)

where
Ny = diag(l,-1,...,-1)

is the dp-dimensional Minkowski metric (dy > 1), d€2 is
a linear element on the d;-dimensional unit sphere S,
and «a, 3, and v are functions of the radial coordinate
u with the definition domain R, C R to be specified
later. We also use the notation r = e, where r is the
spherical (circular for d; = 1) radius.
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The Riemann tensor RABqp is diagonal with re-
spect to pairs of indices and has the nonzero compo-
nents

BRI, = —e7209/261

Rade — (6—26 _ e—ZQBIQ)(Sade’

R, = —0ye 7" ), (2)
= =0 Pt e

Ra/,;w — —6,‘,‘656_20"y'ﬂ',

where
6’“;)(, = 6565 — 5(‘,‘6;’

and similarly for other indices. The indices u,v, ...
correspond to dp-dimensional (physical) space-time,
a,b,... to the d; angular coordinates on S?, and
A, B, ... to all D coordinates.

A necessary condition of regularity is the finiteness
of all algebraic invariants of the Riemann tensor. In our
case, it suffices to deal with the Kretschmann scalar

D

- _ pAB pC
K =R cpR™ 4p:

because it is a sum of squares of all nonzero RAB.
Hence, all components of Riemann tensor (2) are finite
in regular configurations.

In the Gaussian gauge o = 0, with «w = [ being the
proper distance along the radial direction, the regular-
ity conditions at r > 0 look very simple:

gL B (3)

The regularity conditions at the center r = 0 follow
from the finiteness of the Riemann tensor component
R . and coincide with the regular-center conditions
in the usual static, spherically symmetric metrics. In
terms of an arbitrary coordinate u, the regular-center
conditions are

"

~"" must be finite.

Y =9 +00%), 7F=1+0(")
as r— 0. (4)
The last condition insures the correct (= 27

circumference-to-radius ratio, or, equivalently, dr? =
= dl?; v, is a constant that can be set equal to zero by
rescaling the coordinates x*.

The string case d; = 1 has a specific feature: there
is only one angular coordinate, and therefore 6, = 0,
whence R®.; = 0. However, a conical singularity (i.e.,
an angular deficit, dr® < dI?, or excess, dr? > dI?) is
possible, which is a pointwise, delta-like curvature peak
over this zero level, as in the case of an ordinary cone
top. Its existence actually means that there is some
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pointlike object with respect to the two extra dimen-
sions, or a thin brane in the space—time as a whole.

In what follows we consider entirely regular config-
urations, excluding conical singularities among others.

2.2. Topological defects. Field equations

A global defect with a nonzero topological charge
can be constructed with a multiplet of dy + 1 real scalar
fields ¢*, in the same way as, e.g., in [17]. It comprises
a “hedgehog” configuration in R, x S

¢* = d(un*(z?),

where n” is a unit vector in the (d; + 1)-dimensional
Euclidean target space of the scalar fields:

k

nFfnk = 1.

The total Lagrangian of the system is taken in the

form

= o+ 50" P0a6k It — V(o).
where R is the D-dimensional scalar curvature, s
is the D-dimensional gravitational constant, and
V is a symmetry-breaking potential depending on
¢*(u) = 9"

The case where d; = 0, with only one extra dimen-
sion, is a flat domain wall. Regular thick Minkowski
branes supported by scalar fields with arbitrary poten-
tials were analyzed in [13, 14].

The case where d; = 1 is a global cosmic string
with the winding number n = 1, to be discussed
here in detail. In the case d; > 2, we have a
global monopole in the extra space-like dimensions (see,
e.g., [15-18, 20, 21]).

We write the scalar field equation and three compo-
nents of the Einstein equations for such systems in the
Gaussian gauge a = 0, u = [ (the prime denotes d/dl):

(5)

2

oV
¢" + (dov' + di8”%)¢' — dye P = 96 (6)
2 2
V' +doy? + di By = — 5=V, (7)
B" 4+ dof'y + di f* =
2 2
= (di =1 - k*¢*)e™ — %Vv (8)

(di '+ dor')? — dovy'? — d1 B
=32(¢'? = 2V) + die 2P (dy — 1 — 2¢?).

(9)

Any three of the above four equations are independent,
and the fourth is their consequence.
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2.3. Boundary conditions and fine-tuning
relations

The metric can be rewritten in the form

ds? = 2Oy, da"de” — di* — r?(1)d9?, (10)

where r = e is the spherical radius. Assuming that
there is a regular center (r = 0), we set | = 0 at the
center without loss of generality; we classify the rele-
vant configurations by the limit value of r(I) (infinite,
finite, or zero) at the largest or infinite values of [.

In the general monopole case, the regular-center
condition leads to the following boundary conditions
for Eqgs. (6)—(9) at I = 0:

¢(0) =+'(0) =r(0) =0,

System (6)—(9) does not contain v but only its deriva-
tives. For numerical integration, it is convenient to
work with Eqs. (6)—(8) solved for the second-order
derivatives and regard (9) as their first integral.

We thus have four boundary conditions (11) for the
(effectively) fourth-order set of equations. It might
seem that we must obtain a unique solution. But this
is not the case because | = 0, being a singular point
of the spherical coordinate system (not to be confused
with a space—time curvature singularity), is also a sin-
gular point of our set of equations. As a result, our set
of equations admits an additional freedom of choosing
¢'(0); or, instead, we may use the requirement of global
regularity to obtain a unique solution.

r'(0) = 1. (11)

2.3.1. Infinite extra dimensions

If the solution is defined in the interval 0 <[ < oo,
then the lacking boundary condition can be taken as
¢ — const as | — oo, or

¢'(00) = 0.

In general, when the scalar field starts from a maxi-
mum of the potential and ends at a finite value of ¢,
the five boundary conditions in (11) and (12) uniquely
determine a nontrivial solution of our field equations.
Its existence determines a certain area in the space of
parameters of the problem without a priori fine tun-
ing. An asymptotic analysis at [ — oo shows that in
this general case, 3(I) is a linearly increasing function
as | — oo, and 7'(oc0) > 0.

r'(oc) = 0 is the special case, where r tends to a fi-
nite constant as | — oo. The solution then terminates
at a slope of the potential rather than at its minimum.
The supplementary condition r'(c0) = 0 seems to re-
quire a fine-tuning relation between the free parameters

(12)
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of the problem. But we see in what follows that it is not
quite so. An analysis of solutions with ¢ = ¢g = const
shows that there is also an area in the parameter space
where condition (12) is satisfied automatically, and so-
lutions with 7/(I) — 0 as | — oc exist without any fine
tuning.

2.3.2. Two centers

It can happen that the integral curves of a solution
terminate at some finite value I, with r(l.) = 0 and
¢(l.) = 0, which is one more center. Of interest for us
are configurations in which this second center [ = [, is
also regular. Then the same four conditions (11) must
also hold at I = [.. Two of them can be satisfied by
choosing the values of ¢'(0) and l.. The other two can
only be satisfied by a proper choice of free (input) pa-
rameters of the problem, e.g., those of the potential (if
any) and the cosmological constant.

In the special case of symmetry between the cen-
ters!), the input parameters are connected by only one
fine-tuning relation. In this case, the boundary condi-
tions at the second center are satisfied automatically,
and the existence of a regular solution is provided by
three conditions of smoothness at the middle (equator)
point loq =1./2:

(bl(leq) = 'YI(leq) = Tl(leq) =0.

Two of these three conditions determine the values of
l. and ¢'(0), and the remaining one requires fine tuning
of the input parameters of the problem.

The fine tuning could be avoided at the expense of
admitting conical singularities (in the string case) at
the two centers. For symmetric solutions, the three
smoothness conditions at the equator can be satisfied
by choosing ¢'(0), r'(0), and I.. In the general case of

1) Equations (6)—(9) are invariant under translations I — I +Ig
and under reflections lg + 1 — lop — I, ¢ — —¢. This invariance
leads to the existence of regular solutions with two centers, which
are symmetric with respect to the middle point [17]. Further-
more, a solution with two regular centers defined in the interval
(0,1¢) can be symmetrically extended to the next interval (I, 2l.)
and further on, thus leading to a periodic solution for I € R
[22]. The metric remains regular everywhere, but the points of
contacts (0, +l.,+2l.,...) are geometrically ambiguous: each of
them belongs to two adjacent manifolds simultaneously. If one
still believes in the reality of such systems, one can note that the
spectrum of a low-energy particle in a perfectly periodic poten-
tial has a conductivity zone, allowing free propagation and thus
making the extra dimension observable in principle. However, if
the conductivity zone is very narrow, then even small perturba-
tions should lead to localization of a particle. This interesting
new possibility is worth a special consideration.

nonsymmetric centers, the four conditions of the sec-
ond center can be satisfied by appropriately choosing

¢'(0), 7' (0), 7'(l.), and L.

2.4. String equations

In the string case d; = 1, to be considered here in
detail, the field equations become

ov

¢" + (don' + B%)d —e P = 96 (13)
2 2
P oy 4 = =, (14)

2522
B+ dofy + 87 = ~(2¢")e ™ - 2=V, (15)

2doy' B’ + do(do — 1)7"* =
=329 —2V) — 2% . (16)

For numerical examples, we use the so-called

Mexican-hat potential
o\ 2
s+<1—%>]. (17)

The parameter ¢ plays the role of a cosmological con-

stant added to the conventional Mexican-hat potential

(the “hat” is thus moved up or down). To pass to di-

mensionless quantities, we put \gn? = 1, and hence

lengths are measured in units of 1/y/\gn, which in

many cases has the meaning of the string core radius?.
The potential then takes the form

1
V =2\ 4
4 o)

Vo= =2

The remaining free parameters that control the system
behavior are

do, ¢, and T :=:*p> (19)

We use dy = 4 in computations. The parameter I’
characterizes the gravitational field strength.

To further describe different regular solutions of our
field equations, we begin with the simplest solutions
where ¢ = ¢. = const. They are not string solutions
but are helpful for comparison.

2) From the very beginning, we put ¢ = i = 1, and there-
fore all quantities are measured in appropriate powers of length
[]. Then some relevant dimensionalities are [V] = [(=P],

(6% = n*] = [>2] = [(*~P].
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3. SOLUTIONS WITH ¢ = const

If ¢ = ¢, = const, we are actually dealing with vac-
uum field equations for metric (10) with the cosmolog-
ical constant A = 2V (¢,). Scalar field equation (13)
then reduces to

v e 4

= (20)

This leads to two kinds of solutions: one exists in the
case where Vy(¢4) = 0 and ¢, = 0, and the other cor-
responds to Vy(ds) # 0 (ie., ¢ is “frozen” on a slope
of the potential), and we should put r = const in this
case.

For potential (17), Eq. (20) gives

flr? =14 f2) =0, (21)

and hence either

or 1
fre1-

72

3.1. Solutions with ¢ =0

The trivial regular solutions with the order param-
eter ¢ = 0 describe configurations with a higher sym-
metry, which can become spontaneously broken into a
structure with a topological defect.

In this case, the metric satisfies the equations

Y+ (doy' + B') = —8A/dy,

A"+ B (doy' + B') = —8A/dy, (22)
(do — 1)7"* +29/8' = —8A /dy.
Eliminating ', we obtain the equation for
1 4A
'+ =(do + 1)7* + — = 0. (23)
2 do

Its solutions are different for positive and negative A.

For A > 0, we have (requiring v(0) = 7'(0) = 0, a
regular center at | = 0)
d 1
exp [(do + 1)7] = cos®(MD), A1 = 1/2A °d+ (24)
0

For r = €7, the last equation in (22) then gives
r? =13 exp [~ (dy — 1)y]sin*(A\11), 7o = const, (25)

where, choosing rq = 1/\;, we can satisfy the regular-
ity condition r'(0) = 1. We thus have a configuration
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with a regular center but with a singularity e” — 0 and
r—ooasl—m/2\.
For potential (17), this case corresponds to ¢ > —1.
For A < 0, corresponding to ¢ < —1, we have?)

do+1
o 3

e’ = ch?/ (DD (1), Ay =4/—2A (26)

3

~ sh(Xal)
r=To [Ch(A2l)](d071)/(d0+1)

(27)

instead of (24) and (25); again, choosing o = 1/Xs, we
can satisfy the regularity condition r'(0) = 1.

Therefore, the configuration with unbroken symme-
try is completely regular and extends from the regular
center [ = 0 to | = oo, where the warp factor e?7 and
the radius r are infinitely increasing functions.

3.2. Solution with ¢ = ¢, = const # 0

In this case, Eq. (20) leads to a constant radius
r =r,, and Eq. (15) gives the relation

& V(o)
=

=T, (28)

whence it follows that
V(ge) = A/ <0.
For ~, we use (16) to obtain
d3y'? = —2A, exp(dyy) = exp (ﬂ:\/——QAl) . (29)

The coordinate range is [ € R. In particular, for po-
tential (17), it follows from (21) and (15) that

1
= sz = const, (30)
e==2do(1 - f2)f2 -(1—-f*<0, (31
A =52V (¢y) = —%%2772d0f*2(1 - ) (32)

The configurations with ¢ = const # 0 and r = const
are regular but evidently cannot be interpreted in terms
of a brane world. They only provide the asymptotic be-
havior of the “tube” solutions presented below.

3) For dg = 4, these formulas reduce to those found earlier
in [23].
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4. REGULAR STRING SOLUTIONS.
CLASSIFICATION AND MAP IN THE (T, ¢)
PLANE

The possible types of regular solutions of our field
equations were classified in Refs. [17, 18]. The table
below represents this classification for the string case
d; = 1. Compared to [17], this Table does not include
the solutions existing only for d; > 1, but additionally
includes the solutions (labelled A0 and BO0) from Sec. 3.

In what follows, we deal with potential (18). For
this potential, Fig. 1 presents the location of differ-
ent regular string solutions in the plane of parameters
(T', €). The map shows solutions with the ¢ field hav-
ing a constant sign. Those with alternate signs of ¢
are discussed in Sec. 6. There are no regular string
solutions at ¢ > 0.

In Fig. 1, the curve (1) is the upper boundary
of the area of class-A1l solutions with » — oo as
I — oo. The points on this curve and in the whole
area —1 > ¢ > £,(I") correspond to class-B2 solutions.
Fine-tuned solutions with two symmetric regular cen-
ters (see Fig. 7 below) are located along the curve (2).
The class of fine-tuned solutions with a horizon (B1) is
represented by the curve (3).

We briefly describe the classes of solutions presented

r

Fig.1. Location of solutions in the plane of parame-
ters (I',¢). Curve (1), e.(T") is the upper boundary of
the area of class-Al solutions with r — oo as | — oc.
This curve itself and the whole area —1 > ¢ > £.(I)
correspond to class-B2 solutions with r(c0) = const.
Fine-tuned solutions with two symmetric regular cen-
ters (class C) are located along curve (2), &1(T"). The
class B1 of fine-tuned solutions with a horizon is rep-
resented by the curve (3), £, (T)
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in the map, postponing the derivation of some impor-
tant details of the curves to the subsequent sections.

A: Configurations with infinite r

From the Table, we can note a close similarity be-
tween the vacuum solutions A0 (where ¢ = 0) and A1l.
In fact, the gravitational field in both cases is mainly
governed by the (negative) cosmological constant. In
the limit case |e| > 1, e < 0, the role of the symmetry-
breaking potential V(¢) is negligible. Then, as follows
from (14), o' is always positive, the warp factor €7 in-
creases, and gravity is attractive towards [ = 0. These
solutions with r — oo at large [ exist without any fine
tuning.

As |e] decreases, the potential V(¢) becomes more
and more important, and at & approaching some ¢, (T'),
the derivative r’ — 0, such that class-A1 solutions pass
over to asymptotically cylindrical fine-tuned class-B2
solutions.

The main features of class-A1 solutions at large [
are as follows.

1) The scalar field ¢(1) tends to a minimum of V(¢).

2) The quantities v'(I) and '(l) tend to the same
finite positive constant, and hence e?() ~ r(1) increase
exponentially.

An example of class-A1 solution, found numerically,
is presented in Fig. 2.

As regards the A2 class, this is an exceptional so-
lution corresponding to the condition V' (0) = 0, hence
e = —1. In this case [18], a regular integral curve start-
ing at [ = 0 with ¢ = 0 finishes again with ¢ — 0
as [ — oo. The large-l behavior of r and of the warp
factor €27 in the resulting regular solutions is

ral, e® ~

B: Asymptotically cylindrical configurations

For these “tube” solutions, it is easy to verify
that Eqs. (29)—(31) hold at large I and, in particular,
f = f« = const with 0 < f2 < 1.

The vacuum solution B0, with r = r,, actually in-
terpolates between the cylindrical asymptotics of Bl
(e” — 0, a double horizon) and B2 (7 — oo at | — oo,
i.e., gravitational attraction towards the center [ = 0).

Equation (31) does not contain s and allows find-
ing the range of the input parameter ¢ for which “tube”
solutions are possible. The dependence &(f,) is shown
in Fig. 3. By Eq. (31),

do — 1)?
a>amm=—1—(2;07_i. (33)
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Classification of regular (do + 2)-dimensional solutions for arbitrary V(¢) by the types of asymptotic behavior at the
largest or infinite I. The columns labeled by r, ¢, and 7 show their final values. Attraction or repulsion is understood

with respect to the center. The symbol 1 denotes a minimum of V (¢)

Notation [ range r 10) Vi(g) vy Asymptotic type
A0 Ry 00 =0 V(0) <0 00 AdS, attraction
Al Ry 00 n V(n) <0 00 AdS, attraction
A2 R, 00 0 0 00 power-law, attraction
BO R =r. =0 #0 V. <0 +0 horizon at one end
B1 Ry T ox #0 V. <0 —00 horizon, repulsion
B2 Ry Ty Or #Z0 Ve <0 00 attracting tube
C (0, 1.) 0 0 V(0) >0 const second center

For dy = 4, point in the area ¢ < €,(['), 0 < I' < oo corresponds

Emin = —16/7 = —2.2857 . ..

It also follows from (31) and Fig. 3 that in the range
—1 > & > &min, there are two branches of the inverse
function f.(e). In the range 0 > ¢ > —1, there is only
one branch. Other limit values are expressed in terms
of fi by Eqgs. (29)-(32), and

v = s/ do f2(1 = f2). (34)

Class-B2 configurations occupy a whole area in the
(e, T') parameter plane, whereas B1 solutions require
fine tuning and are located on the curve 3 in the map
(see Fig. 1).

C: Configurations with two centers

As was argued above, class-C solutions can be
symmetric and asymmetric with respect to reflections
I = I, — 1. Symmetric solutions require one fine-tuning
relation, which corresponds to particular curves in the
(e, T') plane. The curve describing solutions with a con-
stant sign of ¢ is presented in Fig. 1 (curve (2)). Other
symmetric configurations are discussed below. Asym-
metric solutions can only appear at discrete points in
the parameter plane, and we do not mention them any
more.

5. “TUBE” SOLUTIONS: LOCATION IN THE
PARAMETER PLANE

The upper boundary e.(T') of class-A solutions,
found numerically point by point for dg = 4, is pre-
sented in Fig. 4 by the curve (1) and the circles. Any

to a class-A solution with f monotonically increasing
from zero at the center to unity. The function ¢,(T") de-
creases from zero at I' = 0 to a minimum with € = £,,,;,,
in accordance with Eq. (33) and then increases tending
to —lasT — oc.

In the range 0 > ¢ > —1, the “tube” (fine-tuned)
solutions only exist precisely on the line €,(I'), which
comprises a border between A and C classes of solu-
tions.

In the range —1 > ¢ > &,(I'), there are cylindri-
cal solutions without fine tuning. This area is located
between the zones of A and C classes of solutions.

In the limits of weak and strong gravitational fields
(small and large T, respectively), numerical analysis of
the field equations is hindered, and we have derived
the function ¢, (I") analytically. The curve (2) in Fig. 4
corresponds to I' < 1 and the curve (3) to ' > 1.

5.1. Strong gravity: T' > 1

As follows from the numerical analysis, the scalar
field in “tube” solutions is small in this case, and the
potential can be expanded in a series:

1 dv
V(p) = Vo + =Vi'¢?, — = V)'o.
(0) o+ 570 (on8 o 0@
The problem is completely determined by the two con-
stants

Vo = V(0)

%
vy = <_> |
0 d¢2 =0

We introduce a new parameter A and a new function :

=42V, ap = xo. (35)

and
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f e
1.0 - T I 1.0 T T T T T
a 0.8 + 4
0.5 + i 0.6 i
04 + i
. . 0.2} -
0 10 20 30
l 0 1 1 1 1
. -30 —-25 -20 -15 -1.0 -05 0
€
g b
0.2 L ] Fig.3. The dependence e(f.) in (31) in the case of an
infinite cylinder
"Y/
0.1} i
Ex
) 0.1 1 1|0 100 r
0 20 '
r l
15 T T
2
c —1QL
10 + E
1
51 - 21 .
0 10 20 30 Fig.4. The upper boundary ¢.(T") of class-A1l solu-
! tions with infinite r. The points forming the curve (1)

are found numerically. The asymptotic dependences at

Fig.2. An example of class-Al solution with the pa-
rameters: I' = 0.7, ¢ = —0.9: f(I) (a); B'(1), v'(1)
(0); and r(1) (¢)

For Mexican-hat potential (17),

Vo =17(c +1)/4,

I' « 1 (Eq. (49)) (curve 2) and T > 1 (Eq. (40))
(curve 3)

V' + 4 (doy + ') = "%, +9° /do, (37)

" / / /_2i_25>_i
and B+ B'(doy' + B') =4 <d0 e S0 (38)

V=1,

and therefore '+ (doy' + B') = Y(e™ - 1), (39)

A=T(e+1) (36) and depend on only one dimensionless parameter .

The boundary conditions are
(we recall that T := s?n?). Equations (13)—(15) be-

come 7(0) =9'(0) =v(0) =0, ()], =1,
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B'(o0) = ¢'(00) = 0.
Scalar field equation (39) is homogeneous with respect
to ¥ and looks linear; however, the system as a whole is
nonlinear, and we have a nonlinear eigenvalue problem.
The parameter dy being fixed, there is only one dimen-
sionless parameter A, whose ground-state eigenvalue is
expected to be of the order of unity. In accordance
with (36) for T >> 1, the parameter ¢ is then very close
to —1, and fyin (31) is ~ [ ! < 1. It follows from (39)
that 7 = e® — 1 at large [. Nontrivial solutions exist
for discrete values of A\, one of which, corresponding to
a monotonically increasing (1), is found numerically:

A= —7433..., do=A4.

The asymptotic dependence e, (T) for T' > 1

e=—-1+\/T (40)

is presented in Fig. 4 by the curve (3).

5.2. Weak gravity: ' < 1

The case I' < 1 is more complicated. A numerical
computation shows (and it is verified analytically) that
le] is exponentially small as ' — 0. From (31), we see
that

1

~

2 g
- o«
fO 2d0 < ’

and the limit value of circular radius (30)

2dy
T R4 [—,
el

is very large compared with the “core” radius ~ 1. The
equations simplify differently in the two cases where
r K r, and r > 1. The solutions must coincide in the
intermediate region 1 < r < ry.

For I' <« 1, it is convenient to rewrite the field equa-
tions in terms of r = e”:

3

' r
7'=— <dov’ - r;) 3 [e+(1—F%], (41)
" (dO_l)dO ' Ff2 r '
TR Ret-?
- g e+ (1-f2)2]r, (42)
et (ar-S) s Losa-p )

For r < r,, we see that 7' ~ ' < 1, and the term
with 7’2 in (42) can be neglected. In the vicinity of the
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center, in the terms ~ ') we can set » = [ and omit e.
Then Eq. (42) reduces to

fi_ T

l 2dy

=T 1—=fH2%, T, 1<,

where fj is the solution of Eq. (43) with 4/ =0, r =
and the boundary conditions f(0) = 0, f(c0)
With r/(0) = 1, integration yields

L,
= 1.

1
r'=1+4T {_fglnl-l-Q/dlfofélnl -

0
l

[ - gy

0

1

2dy

The integrals rapidly converge for [ > 1, and in the
intermediate region 1 < I < r, we have

where the integrals J; and Js are found numerically:

N

2dg
1<<7"<<’I“*,

P2 =1+2T <—lnr+2J2—
(44)

<1,

Ji =/zdl(1—fg)2:1,
0

[

In the region r > 1, Eq. (42) reduces to

(45)

Jo= [ dl foftInl ~0.2.

), r<i1, 1<r  (46)

Taking into account that ' =0 at r = r,, we find

1,5 < € 2 < 2)

—r“=Clnr, —Inr 4+ —r; — —r° |,

2 4dy 4dy (47)
r«i1l, 1«

In the intermediate region 1 < r < r, we have

1, 2 1
r'? =2r <—1nﬂ—1nr——>,
2 el 2 (48)
«i1l, 1<«€r<r,.

We have taken into account that

_ [
el

T



MITD, Tom 133, BeIm. 2, 2008

Global strings in extra dimensions . ..

Comparing (44) with (48), we find the fine-tuning
relation between ¢ and I' for asymptotically cylindric
configurations in the weak-gravity limit:

1 J
e = —2dgy exp <—f—4J2—1—d—;> ~
0.33dge 1,1 (49)
~ —0. xXp | —= + —
0 p F d[) 9
e~ —1.7e"YT, dy=4, T<1.

This asymptotic dependence, ¢,(T) for T <« 1, is pre-
sented in Fig. 4 by the curve (2).

5.3. Solutions in the range —1 > & > ¢, (T)

In the range —1 > ¢ > ¢.(I), there exist class-B2
solutions (r — r. < oo as | — oo) without any fine-
tuning relation between the parameters ¢ and I'. The
asymptotic values of the scalar field (f.) and the radius
(r.) at large | are independent of I':

s do—1=/(do =1+ (e +1)(2do — 1)
f*_ 2d0—1 )

B 2y — 1

do++/(do — 12 + (e +1)(2dp — 1)

An example of such a solution is shown in Fig. 5 for
I' =2 and ¢ = —1.1. The scalar field f(l) is shown in
Fig. 5a, v'(1) and f'(l) are shown in Fig. 5b, and r(l)
is displayed in Fig. 5c.

r

5.4. Solutions with a horizon

We consider class-B1 configurations with a horizon,
with 7(1) linearly decreasing as I — oco. Their location,
found numerically, is shown in Fig. 1 by the curve (3),
¢ = g,(T), corresponding to a certain fine-tuning rela-
tion. An example of such a regular solution, with the
parameters [' = 2 and ¢ = —0.233846, is presented in
Fig. 6.

The near-horizon metric has the asymptotic form

ds?® = C2e*2hlnu,,dx“dx” —dI* —r2d0?,
h =7'(c0).

The substitution e "' = p (converting | = 0o to a finite
coordinate value, p = 0) brings metric (50) to the form

(50)

dp?

ds® = C°p’nyydat da” — e

—r2d0?,

(51)
p— 0.
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0.5

10 20

0.4

0.2

-0.2 L |
10 20
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Fig.5. An example of class-B2 solution for I' = 2 and

e=—11: £(1) (a): B'(1), 7' (1) (b), and 7(1) (c)

Therefore, p = 0 is a second-order Killing horizon in
the two-dimensional subspace parametrized by ¢ and p;
the extra-dimensional circular radius squared remains
positive. It is of the same nature as, e.g., the extreme
Reissner—Nordstrom black-hole horizon, or the anti-de
Sitter horizon in the second Randall-Sundrum brane-
world model. A peculiarity of the present horizon is
that the spatial part of the metric, which takes the form
p%(dx)? at large [, is degenerate at p = 0. The volume
of the dyg-dimensional space—time vanishes as | — oo. It
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~

Fig.6. An example of class-B1 solution with a horizon
for T' = 2 and ¢ = —0.233846: the scalar field ¢ and
the metric function 7 (a); the circular radius r (b)

remains degenerate even if we pass to Kruskal-like co-
ordinates in the (¢, p) subspace. But the D-dimensional
curvature is finite there, indicating that a transition to
negative values of p (where the old coordinate [ is no
longer applicable) is meaningful.

Thus solutions with strings (and/or monopoles) in
extra dimensions may contain second-order horizons,
and the degenerate nature of the spatial metric at the
horizon does not lead to a curvature singularity; more-
over, the metric can be continued in a Kruskal-like man-
ner. However, the zero volume of the spatial section
makes the density of any additional (test) matter in-
finite at p = 0. To regard these solutions as describ-
ing viable configurations, one needs to take the back-
reaction of ordinary matter into account. It evidently
destroys such a configuration.

6. SOLUTIONS WITH TWO REGULAR
CENTERS: LOCATION IN THE
PARAMETER PLANE

Symmetric class-C solutions with two regular cen-
ters are located on the (¢,I') plane in the region
0 > ¢ > —1 to the right of the fine-tuning curve (1),
£.(T), in Fig. 4 or, which is the same, to the right of
the curve (1) in the full map, Fig. 1. The solutions
are fine-tuned, i.e., located along certain lines ex (I") in
this region, where N is the number of half-waves and
N —1 is the number of knots (zeros) of the scalar field
f = ¢/n. The point is that f, just as the radius r, is
zero at both centers, but f can change its sign. There-
fore, there are several families of regular solutions with
different numbers N of half-waves, each family corre-
sponding to a line ey (A) in the parameter plane. The
curve (2) in Fig. 1 depicts £1(A).

6.1. Solutions without knots of the scalar field

In solutions where f has a constant sign, all three
functions f(1), (1), and y(I) reach their extremum val-
ues at the equator [ = l,. Setting

f'leq) = 7" (leg) = 7' (leg) = 0 (52)

in the first integral in (16), we find a relation between
flleq) = feq and 7(leg) =: Teq:

2 _ 2feq
T 2 o
It is convenient to use (53) together with (52) as bound-
ary conditions and perform numerical integration from
the equator to one of the centers. Then the three condi-
tions f(l.) =0, r(l.) =0, and 7'(I.) = 1 determine the
values of feq and [, and a fine-tuning relation e = 4 (T).

An example of a configuration with two regular cen-
ters is presented in Fig. 7 for T = 2; the fine-tuned
value of ¢ is £1(2) = —0.3326.. . ., it belongs to the line
e =¢gq(T).

The curve ¢ = ¢(T") in Fig. 1 has been obtained
numerically. For small and large values of T', this fine-
tuning relation can be derived analytically.

6.1.1. £1(T') for weak gravity, I < 1

This derivation repeats the one for Eq. (49). The
main difference is that we now obtain the value of r(I)
at the equator from (53) as

Teq =1 (leq) = V/2/Iel,

le] < 1, (54)
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—0.2

Fig. 7. An example of a configuration with two sym-

metric regular centers without knots of the scalar field:

' = 2, the fine-tuned value £1(2) = —0.3326...; it

belongs to the line ¢ = =(T'); r(I), f(I) (a), and
NURO)

and use it instead of r.. Substituting (54) in (47), we

have

2 1 e
2=T(ln=—-2lnr— — — —2
r n|6| nr o 2d0r s

r«i1, 1kr

instead of (48). In the intermediate region 1 < r < 7y,
this must coincide with (44). The resulting relation is

1 1-J, ) Cor
= 2exp (—m——t4Jy) A —0.9e" 1T,
p( T do ° (55)
'«i1
5 ZKOT®, B, 2

6.1.2. 1 (T') for strong gravity, I' > 1

Numerical integration shows that for T' > 1, the
scalar field f remains small in the whole interval be-
tween the centers, while v = smnf is of the order of
unity. Introducing A in (36) as before and taking into
account that f < 1, we again find Eqs. (37)-(39). It is
convenient to integrate these equations from the equa-
tor to the center and to use boundary conditions in the
form

Bi(leq) = ¥ (leq) =
B(leq):

l(leq) =0, lp(leq) = 1/’6(17

1 21/) (56)
2 sz =

The three parameters teq, I — leq, and A are to be
determined from the conditions

Numerical integration results in A = 1.9...
For class-C solutions, the desired fine-tuning rela-
tion in the strong-gravity limit is

e=—-1419/T. (57)

6.2. Odd and even scalar fields

In the above solutions, the scalar field f(I) without
knots is an even function.

Because f(I) may change its sign between the cen-
ters, there are two possibilities. If the number of knots
of f(I) is even, then f(l) is an even function, reaching
an extremum at the equator, and f'(leq) = 0. On the
other hand, f(I) with an odd number of knots is an odd
function: f(le,) =0, and f'(l) is then an even function
having an extremum at [ = l.,.

Numerical integration of Eqs. (13)—(15) in the case
of an even number of knots can be performed with the
same boundary conditions (56) as without knots. The
results are displayed in Figs. 8-10.

Figure 8 shows a few solutions for the scalar field
f(1) with two knots and the corresponding functions
r(l).

Figure 9 shows the function (/) in the whole range
of [ and in a close vicinity of the equator for visual
clarity to demonstrate a minimum at the equator. We
recall that v enters the equations only via +' and ~",
and therefore, without loss of generality, we have set
Y(leg) = 0 in Fig. 9b. The larger is I', the deeper is
the local minimum of 4 at the equator. Altogether, the
gravitational potential has three minima: one at the
equator and two others near the regular centers.
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0.8 +

0.4+

0.2 +

Fig.8. Solutions with two symmetric centers with two knots of f(I) for T = 0.5, 0.75, 1, 2, 3, 4, and 5 in the order
of decreasing amplitude; the corresponding fine-tuned values of ¢ are —0.51275, —0.62765, —0.7019, —0.8365, —0.888,
—0.9146, and —0.93115; f(I) (a), r(1) (b); the additional dashed curve corresponds to the limit T' — co

—-0.51

Fig.9. The functions ~(l) in the whole range of [ (a) and in a close vicinity of the equator (b) for solutions with the same
set of parameters as in Fig. 8

The fine-tuning relation €3 (I") for solutions with two In solutions with an odd number of knots of f(I),
knots of f(I), found numerically, is shown in Fig. 10. we have f(leq) = 0, and it follows from Eq. (16) that
Each curve in Figs. 8 and 9 corresponds to a point on

this curve. 72 = e+1
o2
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€3

-0.2+ J

—0.4+ J

—0.6 + -

—0.8 -

—-1.0 |

5
r

Fig.10. The fine-tuning relation e3(I") for solutions
with two knots of f(I) between the centers, displayed
in Figs. 8 and 9

at the equator. For numerical integration of Eqs. (13)—
(15) in this case, it is convenient to use the boundary
conditions

=
—
—
o
<
N
I

flleq) = ’7,(leq) =0,
(e+1)/2.

B(leq) = Beq-, (58)

Then the three conditions f(l.) = 0, r(l.) = 0, and
r'(le) = 1 determine the values of S, and l. — l¢q as
well as the fine-tuning relation (¢ = e2(T') in the case of
one knot). As an example, in Fig. 11, we present a nu-
merical solution with one knot for I' = 2, corresponding
to e = —0.71. Figure 11a shows r(1) and f(l); (1) is
depicted on Fig. 11b. The function v(l) is symmetric
with respect to the equator and has two minima close
to the centers.

We note that if we include configurations with an-
gular deficits and excesses at the centers into consid-
eration, then the existence of solutions with two cen-
ters is not restricted to particular lines in the (g,T)
plane. There is then a whole area of such solutions,
bounded by

e = min(E*(F)-, _1)

from below and by the line ¢ = ¢,(T") from above.
Among the nonsymmetric solutions of this kind with
several knots of the scalar field, we can find those with
multiple local maxima and minima of y(l). Their possi-
ble connection with matter trapping and the hierarchy
problem is discussed below.
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Fig.11. Example of a solution with two symmet-

ric regular centers and an odd scalar field with one
knot; T' = 2, the corresponding fine-tuned value

e2(T) = —0.71; (1), £(1) (a), and (1) (b)

7. MATTER IN THE BACKGROUND OF
GLOBAL STRING CONFIGURATIONS

In this section, we discuss the problem of trapping
of classical point-like particles and test scalar fields by
the gravitational field of the global string configurations
described above.

7.1. Classical particles

The motion of classical particles in the bulk can
be equivalently described in terms of geodesics or the
Hamilton-Jacobi equation. We here use the second ap-
proach.

The Hamilton—Jacobi equation for a point-like test
particle of (primary) mass mg in space—time with met-
ric (10) is

5*
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The metric is homogeneous with respect to all coordi-
nates except [, and the action can be written as

S =Et—px+S(l)+ M6, (59)

where F is the particle energy, p is the particle momen-
tum along the coordinates 2, i = 1,dy — 1, 6 is the an-
gular coordinate in the extra dimensions (we note that
d0? = d#?* for d; = 1) and M is its conjugate angu-
lar momentum. The remaining unknown function S;(1)
satisfies the equation

2

M
2,—2v(l) _ ——__ _
Vp ’ P

1

ds,
o0
dl

mg,

where
p? = E? —p?.

Zeros of the square root determine the turning points
of classical motion.

We consider a particle with M = 0, i.e., moving
in the bulk along the coordinate [ (strictly to or from
a brane if the brane is located at fixed [). Classical
motion is allowed where the square root is real. The
turning points /; are determined by the equation

pe27() mé = 0.

If there is a minimum of v(I) at some [ = lg, a
classical particle with

p? = m2e21 ()
cannot move along the [ direction and is trapped pre-
cisely at the minimum of ~. Particles with slightly
larger p? can move between two turning points in the
vicinity of ly. If it is a global minimum of v, particles
with any

P2 > m2e2 (o)

are trapped.

It can also be verified that particles with the same
value of p? but M # 0 (moving in the 6 direction) have
a still narrower range of motion along [.

In particular, near the equator of a configuration
with two centers and three half-waves of ¢ (see Fig. 9),
the turning points of finite classical motion exist for
Y(leg) < v < Ym, where 7, is the maximum of y(I).
Setting

2 _ 2 2(leg)
Mg, = mge” e,
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we see that a classical particle is trapped near the equa-
tor if its energy is restricted by

mgq <p’< mgq exp{2[ym — (leg)]}-

It moves along the Minkowski coordinates as a free par-
ticle of mass me,.

7.2. Scalar fields

We consider a test scalar field y with the Lagrangian
L, such that

2L, = 0\ dax — max*x (60)
in the background of our string configurations with
metric (10). Here, the asterisk as a superscript denotes
complex conjugation and mg is the initial field mass.
The y field satisfies the Klein—Gordon equation

94 (Vag*Papx) + gmax =0, (61)

where

g = |det(gan)| = exp(2dpy + 25).

Taking the symmetry of the problem into account, we
can take a single mode of y, assuming

V(@) = X (De e e, (62)

where p, = (E,p) is the (dy = 4)-momentum along
the brane and n is an integer. Then X (1) satisfies the
equation

X,I+(d0’}/,+,8l)Xl+

+ (p2e 2 —n2e W — m})X =0, (63)

where
P’ =pup' =E* —p°
is the effective mass squared, observed on the brane.
As a trapping criterion for a mode X, it is reason-

able to require the finiteness of the x-field energy FE,
per unit area of the brane,

Ey, = /Ttt[x]\/gdedl = 27r/Ttt[x]\/§dl < oo, (64)

where

1
Ttt[X] =3 X

X [6_27(E2 + )+ X"+ (n%e 7 + mg)XQ] (65)

is the temporal component of the y-field stress—energy
tensor. We notice that the validity of Eq. (64) automat-
ically guarantees finiteness of the norm [ VIx*x dldo
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of the y field considered as a quantum-mechanical wave
function.

The finiteness of E, in the background of different
regular configurations with infinite extra dimensions
described above depends on the behavior of solutions
of Eq. (63) at small and large .

We begin with considering the y-field behavior near
a regular center | = 0, which is common to all classes of
regular configurations. At small I, we have e® =7 ~ [
and 7 — 0. Hence, Eq. (63) takes the approximate
form

IX"4+X'"+1(p* =m3)X =0, n=0, (66)

IX"4+X'—(n?/DX =0, n#0.

Equation (66) is solved by zeroth-order cylindrical func-
tions if p? # m3 and in elementary functions if p> = m?;
Eq. (67) is an Euler equation. At small [, the solutions
behave as

(67)

X~C;+Csylnl,
X~ C3l"+ 0yl ",

n =20,
n # 0,

with integration constants C;. To make the integral
in (64) converge as [ — 0, we must choose Cy = 0 and
Cy = 0, i.e., only one of the two linearly independent
solutions in each case.

We now consider the asymptotic form of solutions
of Eq. (63) as | — oo for different background configu-
rations.

Al: at large l, v ~ 8 ~ hl, h = const > 0. In
Eq. (63), the terms with p? and m? are negligible, and
the solution has the asymptotic form

(68)

X~ Cpe 4 C oL,

205 = (D — 1)h+ /(D — 1)2h2 + 4m3, (%)

where C'y are integration constants and D = dy + 2
is the total space—time dimension. It is easy to ver-
ify that criterion (64) holds for solution with Cy # 0,
C_ = 0. Hence, scalar fields with any nonzero mass
can be trapped on such branes.

A2: at large I, %7 ~ e® ~ . Again, the terms
with p? and m? are negligible, and Eq. (63) transforms
to

X" 4+2X"/l-miX =0,
whose solution is
Creml + C_e=mol
] )
and evidently the solution with C'y = 0 satisfies crite-
rion (64).

X ~

(70)
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B1: at large [, r = ® = r,, v ~ —hl, h > 0, and
the approximate form of Eq. (63) is

X" —dohX' 4 p*e*MX = 0. (71)

For p # 0, it is solved in cylindrical functions, the gen-
eral solution being

X = 6d0hl/2Zd0/2 <%|ehl> ~
~ eldo—1)hi/2 sin(%ehl + ‘I>>7 (72)

where ® is a constant phase. It is easy to verify that
E, diverges as [ e di. Therefore, massive modes with
any p? > 0 are not trapped by B1 configurations.

B2: at large [, r — r, and v ~ hl, h > 0. The
situation is almost the same as in case A1l; the solution
of Eq. (63) has asymptotic form (69) with the replace-
ments

D—1wdy, m2r~ mi+n?/ri.
Again, only the solution with C_ = 0 provides conver-
gence of F, .

Thus, the configurations of classes A1, A2, and B2
can trap massive scalar modes; at both large and small
[, only one of the two linearly independent solutions of
Eq. (63) is selected, and therefore we have a boundary-
value problem with a discrete spectrum of p? for any
given values of mg, n and the background parameters.

7.3. The Schrédinger equation

It is helpful to reformulate the boundary-value
problem for scalar field modes in terms of the
Schrédinger equation. For this, we make the following
substitutions in (63):

dl = e"dx,

where
f(x) = exp((do — 1)y + B).

The new variable z is actually an analogue of the well-
known “tortoise coordinate” in the analysis of spheri-
cally symmetric metrics, such that the metric takes the
form

ds® = e* (nudatda” — daz®) — e db”. (74)
Then Eq. (63) transforms to the Schrodinger form

Yooz + [p2 = Veff (z)]ly =0 (75)
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with the effective potential

fz
4f2

Jfaa

2f

where the subscript # denotes d/dxz. We recall that the
eigenvalue p? is the effective mass squared, observed in
Minkowski space.
Near the center
x &~ 1 — 0), we have

Verr = (mg + 7126_23)62v + (76)

(without loss of generality,

2
n 1
Verr ~ x—2+m(2)+—

1 (77)

z=0

For n # 0, it is therefore a potential well, whereas
Vegr — const for n = 0.
At large [ for different backgrounds, we have:

Al: 2 w2, <oo, xp—xz~e M h>0,

h2
Very (@) = e {mﬁ + Z(dﬁ + Qdo)] ; (78)
A2: 1 ~ [(do—=1)/do _ 0,
Vigp () = m2e®? ~ 1240 ~ g2/(do= 1), (79)
Bl: 2 ~ e =00, h >0,
Copt[ o M R
Vigp () & €7 | + 5+ (& = D) ~ 55 (30)
B2: 2z~ 2, <00,z —x~e M h>0,
n? 2
Vegy () " [mﬁ +og Z(d% - 1)]. (81)

We see that in cases A1, A2, and B2, the potential
increases to infinity at large [, which leads to discrete
spectra of p?. For B1 configurations (with a horizon at
| = 00), in the standard quantum mechanics, we would
expect a continuous spectrum of states; in our case,
with the appropriate boundary conditions, as we saw
above, there are no admissible states with p? > 0.

7.4. Massless modes in configurations with
infinite extra dimensions

For a possible massless mode,

2

P 2

= mg =n" =0,
Eq. (63) is easily solved as
X'=Crem 7P qp,

X =0 /€7d0776 + Cs, 0172 = const,
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and X is found by quadrature.

One of the solutions is X = const. It is easy to
verify that with this solution, which is well-behaved at
a regular center, the energy E, in Eq. (64) diverges at
large [ in the backgrounds A1, A2, and B2, but con-
verges in the background B1.

For the other solution with C; # 0, on the con-
trary, E, converges at large [ in the backgrounds A1,
A2, and B2 and diverges in B1. This solution, however,
is singular at the center and leads to a divergence in E,,
there.

Thus, B1 configurations with horizons, being unable
to trap massive scalar fields, are the only ones that can
trap a massless scalar.

8. CONFIGURATIONS WITH TWO CENTERS
AND THE HIERARCHY PROBLEM

In configurations with two symmetric regular cen-
ters and two knots of the scalar field, there are three
minima of the “gravitational potential” v (see Fig. 9).
The minimum at the equator is higher than the other
two located near the centers. A similar (and even
more complicated) structure may be expected for con-
figurations with a larger number of scalar-field knots.
The minima of v are able to trap classical particles.
As regards quantum particles (at least spinless), ef-
fective potential (76) not necessarily has a minimum
precisely where v has a minimum, and an additional
detailed study is necessary. Nevertheless, semiclassi-
cally at least, quantum and classical particles must be
trapped in close positions, and the main difference be-
tween them is that quantum particles can tunnel from
a higher minimum of Vs to a lower one.

We now suppose that a particle described by a cer-
tain mode of the y field (for simplicity, with n = 0) is
trapped at some position I;. Mode equation (63) can
then be rewritten as

(VaX') +/gXe " = JgmiX.

We integrate this equation over the extra dimension
from one center to the other. We have

/(\/§X’)'dl =0

(83)

because
Vg = ret

is zero at both centers. For a particle trapped at some
fixed position [ = [;, we obtain
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Global strings in extra dimensions . ..

/\/gx di
2 2

’ = my =my—F
/\/ge*‘“X di

p (L)

~ mae??

(84)

To interpret this result, we note that the entire pic-
ture looks quite different depending on the size of the
extra dimensions, characterized by the distance [. be-
tween the centers. This size, in turn, varies with the
value of ' = s2?: it is close to unity (i.e., the length
unit, which is also arbitrary) for large I' and tends to
infinity as I' — 0. For (comparatively) weak gravity
of the string, I' — 0, when [, is very large, all minima
of v(I) form individual branes located in the bulk far
from one another. In this case, an observer located on
one of the branes sees only particles corresponding to
modes trapped on this brane; tunneling from one brane
to another is then seen as the appearance or disappear-
ance of observable particles. The entire picture may be
used for treating the interaction hierarchy problem in
the spirit of Randall-Sundrum first model [4].

In the opposite case I' — oo (if the unit length
(Aon) /2 is also sufficiently small), I, can be a length
invisible for modern instruments, e.g., I, < 107'7 cm
We then arrive at a picture close to the original Kaluza—
Klein concept; particles with the same primary mass
mg, being trapped at different minima of the effective
potential, are seen as particles with different masses,
and the tunneling process from a higher minimum to a
lower one is observed as a decay of a particle of a larger
mass to that of a smaller mass, with energy release in
some form. This may be a natural explanation of the
existing families of particles with different masses but
similar other properties. A more detailed study of this
possibility is desirable but is beyond the scope of the
present paper.

9. CONCLUSION

Our phenomenological approach based on the
macroscopic theory of phase transitions with sponta-
neous symmetry breaking allows studying the general
physical properties of topological defects in the frame-
work of the brane-world concept. In particular, in this
paper, we have studied the gravitational properties of
global strings located in extra dimensions. We have
given a general description and classification of possi-
ble regular solutions and presented a map showing the
location of different solutions in the space of physical
parameters.

Among the variety of regular solutions, there are
ones having brane features, including solutions with

311

multiple branes, as well as those of potential interest
from the standpoint of the hierarchy problem.

In connection with branes, we have analyzed the
possibilities of trapping of classical particles and scalar
fields. We have shown that contrary to the domain-
wall case, in the case of an extra-dimensional global
string, matter can be trapped by gravity even without
coupling to the scalar field that forms the string itself.

Among the configurations with two centers, the
structures having several minima of v(I) may be inter-
esting in connection with the hierarchy problem. If the
distance between the centers is small, we work within
the Kaluza—Klein concept, and the same particle, being
trapped at different minima, looks to an observer as a
family of similar particles with different rest masses.

We appreciate partial financial support from the
RFBR (projects NeNe(05-02-17478 and 07-02-13614-ofi-
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