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One-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is
presented. The theory predicts a possibility of MRI for arbitrary 3, where 3 is the ratio of the plasma pres-
sure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is
demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary 3. The mechanism of
MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The
electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed
in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated
into the nonrotational and rotational parts. Thereby, a first step for incorporation of MRI into the general theory
of plasma instabilities is made. The rotation effects on Alfvén waves are considered.
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1. INTRODUCTION AND OVERVIEW

In 1959, Velikhov [1] demonstrated that a nondissi-
pative Couette flow (the flow of an ideally conducting
liquid between rotating cylinders) can be destabilized
by a vertical magnetic field. A particular case of the
rotation frequency profile (the Velikhov profile, see the
details below) was studied there. In 1960, the analysis
in [1] was extended to a general rotation frequency pro-
filein [2]. For along time after that, this destabilization
effect was almost not claimed. The situation changed
radically in 1991, when paper [3] was published. Tt
addressed the problem of an anomalous viscosity in ac-
cretion disks, going back to the study in [4]. (According
to the definition in [5], “accretion” refers to the accu-
mulation of matter onto a massive central body.) The
authors of [3] suggested that explaining the anomalous
viscosity in the disks should invoke an instability re-
sulting in electromagnetic turbulence. The essence of
paper [3] was the idea that the role of such an instabil-
ity is played by the instability analyzed in [1,2].

After [3], this instability was called the magnetoro-
tational instability (MRI). It was a basis for numerous
astrophysical studies forming the astrophysical trend in
the theory of MRI. The original papers of this trend are
[6-35]. The first stage of astrophysical applications of
MRI was summarized in review [5]. At present, MRI is
mentioned in more than a thousand papers; the over-
whelming majority of these papers belongs to the as-
trophysical trend. In addition to astrophysics, MRI
has been suggested to be significant for magnetic geo-
dynamics [36]. There are also relatively narrow trends
of experimental and theoretical studies of MRI in lig-
uid metals [37-44] and plasmaphysical theoretical in-
vestigations of this instability (in particular, equilibria)
[45-47].

There are many books and reviews summarizing ad-
vantages of the theory of plasma instabilities [48-59].
This theory contains rather broad information on sev-
eral types of instabilities in a rotating plasma. The best
known among them is the Rosenbluth-Simon instabil-
ity [60]. At the same time, all these books and reviews
contain no information on MRI. This shows that MRI is
not yet incorporated into the general theory of plasma
instabilities. One of the goals of the present paper is
to provide such an incorporation.

The reasonable question is: why is MRI not yet in
the general theory of plasma instabilities, although it
was discovered almost 50 years ago? The answer is
that papers [1, 2] treated it as a magnetohydrodynamic
(MHD) but not a plasmaphysical phenomenon (e.g.,
the Couette flow is not a plasmaphysical notion). In

addition, papers [1,2] as well as [3] suggested that the
considered liquid is incompressible. Meanwhile, incom-
pressible perturbations are often identified in plasma
theory as corresponding to high-S plasmas, where
is the ratio of the plasma pressure to the magnetic
field pressure. Such a plasma is suggested to be the
most interesting for astrophysics, while plasma physics
typically deals with the opposite case of low-3 plas-
mas. That MRI is actually possible for arbitrary g was
pointed out in a relatively recent paper [61].

The fact that MRI, being one of a variety of electro-
magnetic instabilities, can develop in a low-£ plasma is
of principal interest for fundamental plasma physics.
There is a broadly shared standpoint in plasma physics
that only electrostatic instabilities are important for
low values of §. This is the main reason why MRI is
not included in the general theory of plasma instabili-
ties.

But such a situation is unsatisfactory for a num-
ber of reasons. First, the plasma theory has elaborated
very powerful methods for studying instabilities and
related nonlinear processes. These techniques are not
involved in the MRI theory. Second, plasma physics is a
source of ideas for a series of applied branches of physics
including magnetic nuclear fusion and space physics.
Therefore, the absence of plasmaphysical information
on the MRI theory is detremental to these areas of re-
search. In addition, the discussed drawback deprives
the plasma theory predictions of sufficient complete-
ness.

In this paper, we collect the existing results on MRI
necessary for further developing the theory of this in-
stability and complement them by a number of new
results. We then develop the electrodynamic theory
of MRI, thereby incorporating this instability into the
general theory of plasma instabilities.

In addition to the main MRI problem in a rotating
plasma, there is a subsidiary problem to elucidate the
rotation effects on oscillation branches of nonrotating
plasma. We study this problem by considering the ro-
tational effects on Alfvén waves. In other words, our
paper not only addresses MRI processes but also pro-
vides more careful investigation of wave properties of a
rotating plasma.

The general theory of plasma instabilities is sep-
arated into two main areas: the first can be formu-
lated as the theory of microinstabilities and the second
deals with stability problems of fusion-oriented mag-
netic confinement systems of the tokamak type. The
approaches used by these branches are different. The
approach of the theory of microinstabilities is based
on investigation of the permittivity tensor, while the
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stability analysis in confinement systems is often per-
formed by means of certain stability criteria, the sim-
plest one being the Suydam stability criterion (see [54]
for the details). The present paper is oriented towards
further development of the theory of microinstabilities.
Therefore, the notion of plasma permittivity is central
in our investigation.

In accordance with the above, papers [1-3] studied
MRI in the scope of the one-fluid MHD approach invok-
ing the approximation of an incompressible medium,
and therefore their results are valid only for high f.
In Sec. 2, we follow the same approach but take the
plasma compressibility into account. Thereby, we ob-
tain results valid for arbitrary f.

In Sec. 3, we develop the kinetic theory of MRI
relevant to collisionless plasmas. Section 4 addresses
the explanation of the MRI mechanism. Section 5 is
aimed at the development of the electrodynamic the-
ory of MRI. This involves introducing and calculating
the above permittivity tensor for the rotating plasma,
which is the essence of Sec. 5. We explain the structure
of this tensor and represent the corresponding disper-
sion relations allowing us to calculate the oscillation
frequency. Section 6 is devoted to the analysis of rota-
tion effects on Alfvén modes. Discussions are given in
Sec. 7.

2. ONE-FLUID MHD THEORY OF MRI IN
IDEAL PLASMA

2.1. Dispersion relation for MRI
2.1.1. The original one-fluid MHD equations

We consider an axisymmetric plasma cylinder
placed in the magnetic field

B, = (0,0, B) (2.1)

directed along its axis. We use the cylindrical coor-
dinates (R, ¢, z) and call ¢ the azimuthal coordinate.
For simplicity, the field By is assumed to be uniform,
dBy/dR = 0. We suppose that plasma rotates in the
azimuthal direction, such that its equilibrium velocity
Vy is given by

Vg = (07‘/070)7

where V5 = RQ and Q = Q(R) is the rotation fre-
quency dependent on the radial coordinate.
To describe the perturbed plasma dynamics, we
start from the equation of motion in the form
dv B? 1
(o)

Par st ) T in

(2.2)

(B-V)B,  (2.3)
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where d/dt d/ot + V - V, and p po + Op,
V=Vg+ 6V, p = py+ dp, and B=Bj + éB are
respectively the total mass density, velocity, pressure,
and magnetic field, with § denoting the perturbations.
Thus, we deal with the perturbed mass density dp, the
perturbed plasma pressure dp, the perturbed velocity
0V, and the perturbed magnetic field §B. The vectors
0V and dB are represented as

SV = (6Vg,0Vy,8V.), OB =(5Bg.6By,0B.).

The function dp is governed by the continuity equation
26 +poV -6V =0
We assume that the perturbations are independent

of the azimuthal coordinate ¢. The dependence of each
perturbed value §F (r, ) can then be written as

(2.4)

0F = 6F (R) exp (—iwt + ikgR + ik.2),  (2.5)

where w is the mode frequency and kr and k. are the
perpendicular and parallel projections of the wave vec-
tor. The radial dependence of the functions F' (R) is as-
sumed to be negligibly weak. Approximately, we then
have

V -0V =ikrdéVgr + ik.0V.. (2.6)
Using Eq. (2.5), we reduce Eq. (2.4) to
—iwdp +ipg (krOVR + k.6V,) = 0. (2.7)

The perturbed plasma pressure dp is found by in-
voking the adiabatic condition,

{(3)

dt
where T' is the adiabatic exponent.
Eq. (2.8) that

pﬁr (2.8)

It follows from

_ Ipo
w

op (krOVR + k,0V2). (2.9)

2.1.2. Derivation of the general dispersion
relation

As a consequence of Eq. (2.3), the perturbed veloc-
ity 6V is governed by the equation of motion with the
components

4k 2
— iwdVg + RS

(krOVR + k.0V.) —

;2
— 206V + Z;—A (krdB. — k.6Bg) =0, (2.10)
0
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sV 4 v — Ay sp, — (2.11)
tove 20" ! By ¢ ¢ = ’
(kR(SVR—l—k ov,) = (2.12)

where v4 = B /4mpg is the squared Alfvén velocity
and ¢2 = T'pp/po is the squared sound velocity. The
parameter £2 is introduced by

dQ>?
dlnR’

, 20 d(RQ) _
Ii—R iR =40° +

(2.13)

To describe behavior of the perturbed magnetic
field, we use the freezing condition

0B/ot—V x [V xB] =0. (2.14)
Then we find
— iwdBg — ik.BedVg = 0, (2.15)
CiwoBy — -2 SBR — ik.BodV, = 0. (2.16)
1w o) dn R R 1Ry Dg ¢ = U .

Additionally using the Maxwell equation V - B =0, we
arrive at

0B, = —krdBRr/k.. (2.17)
Turning to (2.12), we obtain
oV, = i I; £0Vr, (2.18)
wlag
where
s =1-k2c/w (2.19)
Using (2.11) and (2.15), we obtain
5V = ﬁ <—% + kil;“ d‘lmR> Ve, (2.20)
where
D=1 k%% /W (2.21)

The superscript “ID” means “ideal” and the subscript

“A” denotes the Alfvén oscillation branches.
Substituting (2.18) and (2.20) in (2.10) and using

(2.15) and (2.16), we obtain the dispersion relation

a2

=0, (2.22)

Q21 Q22
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where
an =a'f, (2.23)
12 = —Q91 = —2iQ/w, (2.24)
1 d0?
D
= - = 2.2
2= TS In R (2.25)
with
k.2 2 k.2 2
L iy R L (2.26)

w w2ag

and k? = k% +k2; the subscript “M” means “magnetoa-
coustic”. We also note that dispersion relation (2.22)
can be represented as

d0?
AT

Substituting (2.21) and (2.26) in (2.27) yields

4 ID_ID

wralPalP — Wk? 4+ K20

= 0. (2.27)

(w? — K20%) [w! —w’k? (v} + c2) + K2k 0] +
2
+ (w2—k§c§)< K +k2vAdl R) 0. (2.28)

We introduce the dimensionless parameters

1 dQ?
A:—<1+mm>, (2.29)
1 Qd(RQ) K2
Ay =2 = —. (2.
' " ¥ R aR oz (2:30)
Then Eq. (2.28) is represented as
k% 2
Wb — w4k2v?4 <2A1 ]{22 + E) +
+ R0 [w2 <A1 - i—é‘A) + kgvf,A] =0. (2.31)

In the particular case where 8 — oo (cg — oo) with
B = 8mpo/BE, Eq. (2.31) becomes

wh = k0% (WA + k203 A) = (2.32)
Similarly to [3], we introduce
0% = w? - k2%, (2.33)
In terms of @, Eq. (2.32) is written as
k2 d0?
<4 Ry (29 202 =0 934
w+k2<kszdlnR HW) 0 (2.34)
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This is the same as the Balbus—Hawley dispersion re-
lation [3] for an incompressible medium. It is therefore
reasonable to call Eq. (2.34) or Eq. (2.32) the Balbus—
Hawley dispersion relation.

Dealing with an arbitrary compressibility, Kim and
Ostriker [61] have derived the dispersion relation

(w? — k2v%) [w4 —w’k? (Vi +c2) + kgcivi] =

= k%(wQ — kgvf,) [(UQA + cg) w? = kﬁcivf‘] +
dQ?
+ 140%w* + (W? — k?v%)m (w? — k2c2) . (2.35)

Tt can be seen that Eqs. (2.35) and (2.28) are identical.
Therefore, it is reasonable to call Eq. (2.35) or (2.28)
the Kim—Ostriker dispersion relation.

2.2. Analysis of MRI
2.2.1. General instability criterion

We assyme that A is a small value. Then Eq. (2.31)
reduces to

Ajw? + E203A = 0. (2.36)
We assume that
Ay > 0. (2.37)
It then follows that for
A >0, (2.38)
Eq. (2.36) describes unstable perturbations,
w? <0, (2.39)

characterized by Rew = 0 and Imw = ~, where 7 is

the growth rate, which, according to [1, 3], is given by

v = k2R A/ALL (2.40)

These unstable modes correspond to MRI. It follows

from condition (2.38) that MRI occurs if the wave vec-
tor is smaller than a critical value,

k? < k2

crit?

(2.41)
where

vk = —dQ?/dIn R. (2.42)

It is remarkable that Eq. (2.36) is independent of 3.
Therefore, both instability criterion (2.38) and growth
rate (2.40) near the stability boundary are valid for an
arbitrary 3.
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2.2.2. MRI in the case of the Velikhov rotation
frequency profile

It was assumed in [1] that
Q(R) =a+e/R?, (2.43)

where a and e are constants. Then (2.29) becomes

e )~

Hence, the result in [1] implies that MRI is possible
only if

2
k2v?%

e
R?

e

=5 : (2.44)

e> 0. (2.45)

The expression (2.42) for the critical wave vector of
unstable modes in this case reduces to

k2 2 (a+ =)

crit — RS—’U%
3. KINETIC THEORY OF MRI

(&

+ 23 (2.46)

3.1. Kinetic approach

Turning to the case of a collisionless plasma, we be-
gin with modifying Eq. (2.3) as [54]

dv 1 ]1
— =-V.p-— |-VB?>-(B.V)B 1
7 P-— |5V (B-V)B|, (3.1)
where
p = Ipo + dp, (3.2)

is the total pressure tensor, I is the unit tensor, and ép
is the perturbed pressure tensor.
According to [54],

V.-p=Vpl, (3.3)

where p; = pg + dpy with dp, being the perpendic-
ular (with respect to the equilibrium magnetic field)
perturbed-plasma pressure. Then Eq. (2.10) is modi-
fied as

k202 5
— iwdVr (aﬁ,D + #) +ikp Pt —
w Po
v k2
— 200V, — =2 2 5Br=0. (3.4
o~ B, 108" (3.4)

The value dp | is expressed in terms of the perturbed
distribution function §f as

2
op) = M/%(Sf dv, (3.5)
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where v, is the perpendicular particle velocity, dv is
the volume element in the velocity space, and M is the
ion mass.

According to [52], the function §f is equal to

8.
By’

Muv? w

5f: 2T w—ksz 0

(3.6)

where T is the ion equilibrium temperature, fq is the
equilibrium distribution function, and v is the parallel
particle velocity. Substituting (3.6) in (3.5), we obtain

z\/7_rwW< w >5&
kelvr \[k:lvr ) Bo’

where vr = /2T /M is the ion thermal velocity and

opL = —po (3.7)

W(z) = exp(—22) | 1+ —/exp (t?) dt (3.8)

is the plasma dispersion function [50].

As a result, we obtain dispersion relation (2.22)
characterized by the tensor a; (i,k =1,2) given by
Eqs. (2.23)—(2.25) with the substitution

okl — akin (3.9)
where
k202 .
akin =1 w;‘ (1+chim) . (3.10)

ckin — _ W< w > 3.11
WA e \er) - G0

With the known asymptotic form of the function W (z)
[50], the limit expressions for cki are as follows:

1, w > k.| vr,

k2 /W

—1
‘ksz7

(3.12)

w <L k| vr.

By means of Egs. (2.22)-(2.25) and (3.9), we obtain
that MRI in a collisionless plasma is described by the
dispersion relation

(w® = K2v3) {WZ £ +iy/mHIRTY

o)

— 4w20% = 0.

(3.13)
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2. Hydrodynamic MRI in collisionless plasma

For w > |k.|vr, in accordance with (3.10) and
(3.12), Eq. (3.13) can be written as

(wW?=k20%) (WP +E* 03 A—kRv7) —4w®Q? = 0. (3.14)
It hence follows that MRI occurs for
A> k%,@/k?

In contrast to one-fluid instability condition (2.38), the
perturbations considered are unstable only if the pa-
rameter A exceeds a threshold value.

(3.15)

3.3. Kinetic MRI in collisionless plasma

For w < |k:|vrp, it follows from Eq. (3.13) with
(3.12) taken into account that

kZviw
(w? — k20%) <w2 + k204 A +iy/mp-R-A ) -

k2| vr

—40°Q%* =0. (3.16)

For small A, this dispersion relation has a small root
given by
i k] 0y B
N ﬁ ’UTﬂ k%
We can see that the perturbations considered are un-
stable under condition (2.38). We have thus shown that

MRI can occur in a collisionless plasma for an arbitrary
S if instability condition (2.38) is satisfied.

(3.17)

4. MECHANISM OF MRI
It follows from the Ohm law
E-l-%VXB:O (4.1)
that
B-E=0. (4.2)

The equilibrium part of (4.2) shows that there is an
equilibrium electric field Egr given by

Eor = ——B[) (4.3)
In the presence of such an equilibrium electric field,
the perturbed part of (4.2) means that there is the

perturbed parallel electric field dE. in our problem,
determined by

BooE. + §BrEor = 0. (44)
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Hence, we obtain

QR

SE. = - 6Bp. (4.5)
C

Next, we take the ¢-projection of the Maxwell equa-
tion

8;—;3 = —cV x 0E (4.6)
to obtain
ck. ic O0F.
0By = - 0FERr + o R (4.7)

where §ER is the radial component of the perturbed
electric field. It follows from (4.5) that

00E, dQ 0
‘R ——dlnRéBRnLQﬁ(R(SBR).

Now, we take into account that according to the
Maxwell equation V - B = 0 (cf. (2.17))

(4.8)

3

19
Then Eq. (4.8) becomes
E, Q
cagR = dilTR(SBR — iQRk,0B,. (4.10)

It follows from Ohm law (4.1) that the perturbed ra-
dial electric field is expressed in terms of the perturbed
velocity and perturbed magnetic field as
1
0ER = E (Bo(SV¢ + QR(SBZ) . (4.11)
Substituting (4.10) and (4.11) in (4.7) leads to (2.16).
We have thus shown that the mechanism of MRI is

explained by involving the perturbed parallel electric
field 0F..

5. INCORPORATION OF MRI INTO THE
GENERAL THEORY OF PLASMA
INSTABILITIES

5.1. Permittivity of rotating plasma
We use the identity

1 1 1
— {(B.V)B—EVBQ} = —j x B,

in - (5.1)

where B and j are the total magnetic field and the
electric-current density. We then find from (2.10) and
(2.11) that

2
. Cpo [ . K
djr = _B() < iwdVy + _QQ(SVR> , (5.2)

k2 2
§js = _% [z’wéVR (1 - wgcs

as) + 2951/4 . (5.3)

It follows from (2.15) and (2.16) that

1 . dQ)
§Vp = —kigo 5Br. (5.5)

With (5.4) and (5.5), Egs. (5.2) and (5.3) become

wep,

Sjr = sz% (—iwdBg + 2Q6BR), (5.6)
. wepo
(5]¢ = m X

k22 1 d02
jw | 1— B8 — Br+206By| . )
X {zw ( o dlnR) dBRr+2Q4 4 (5.7)

The theory of instabilities in a homogeneous
plasma [52,55-58] deals with the permittivity tensor

eix (1,k=1,2,3) related to the conductivity tensor
oir by

ik = Oip + 47ria,»k/w. (5.8)
The conductivity tensor o;; is determined by the per-
turbed electric current

(5]2 = O'ik(SEk. (5.9)

Therefore,

dji = ik — Oir) O Ey. (5.10)

w
i ¢
We next take into account that in the general case,

SE = 6E) + SE®?), (5.11)

where dE() and SE®) are the electromagnetic and
electrostatic parts of the perturbed electric field, re-
spectively. The field 6E(!) is governed by the Maxwell
equation (cf. (4.6))

0/B

5 =~V x SEM. (5.12)

Then we have
SE\)) = wéB,/ck., (5.13)
0E() = —woBR/ck.. (5.14)
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The field 6E® is defined by the perturbed electro-
static potential 0¥ via

SE?) = —Vov. (5.15)

Because we have restricted ourselves to the case
k = (kgr,0, k), it follows from (5.15) that
SE®) = (—ikrd¥®,0, —ik.00). (5.16)

With (5.11) and (5.13)—(5.15), Eq. (5.10) yields
2

w
dmick,

. wk
djr = (5116B¢ - 51253R) - EEm&‘I/, (5.17)

. w? wk
(S]qﬁ = M (621(SB¢ — €990BR) — EEQO(S\I/, (5.18)
5‘—w—2(6 6By —¢ 5B)—w—k5 6, (5.19)
Jz = 4rick, 3105¢ 3200R 47 C309%, .
where
€10 = (kren + k.13) [k, (5.20)
€20 = (kR521 + kz523) /k/ (521)
£30 = (kpes1 + k.e33) /k. (5.22)

Comparing (5.17) and (5.18) with (5.6) and (5.7) yields
(i,k=1,2)

1 —2iQw
¢ 5.23
k= 2i0 kR 1 ae? (5.23)
w w?2as w?2dlnR

As is known [52, 53], the dispersion relation in the
approximation €33 — oo is of the form

11 — 62163/(.«)2

€21

€12

=0.
E99 — c2k2/w2

(5.24)

Substituting (5.23) here, we arrive at dispersion rela-
tion (2.22).
We can see from (5.23) that
ein=eW el (i k=1,2), (5.25)
where 552) is the “nonrotational” part of the permittiv-

ity tensor, i.e., the part corresponding to the case of
. . (r) - el w . I
nonrotating plasma, while ¢;,” is its “rotational” part.

In the scope of the one-fluid MHD approach considered
in Sec. 2, in accordance with (5.23), we have

) 1 0
(O)MHD __ &
A 0 1— —
was

and the rotational part of ;, (i,k = 1,2) is given by

0 —2iQ/w

A R (5.27)

w W2 dlnR

The kinetic approach leads to the same expressions

for aﬁ), agg), and agq) and the following expression for
(0)kin
€99t
2 2
(Okin _ € |4 T kRvTW w 5 0
€99 ) +Zw N Tor )| (5.28)

It can be seen that the elements 55,:) are indepen-

dent of the detailed plasma properties. In this context,
each element 55,: is an invariant. In contrast to this,

(0)
the values ¢;,
ties.

depend on the detailed plasma proper-

5.2. General dispersion relation

To obtain the general dispersion relation, we recall
the Ampere law

V x 6B = 4ndj/c. (5.29)
With (2.17), projections of (5.29) are given by
kzéB¢ = i47T(SjR/C, (5.30)
k*6Br = —idnk.djs/c, (5.31)
kR(SB¢ = —i47r5j2/c. (5.32)

In addition, the current continuity equation implies

that
kR5jR + kzéjz =0. (533)

Substituting (5.17) and (5.18) in (5.30) and (5.31), we
obtain

2k? jck.k
<511—C—;> 0By—e120Br— e 000 = 0, (5.34)
w w
2k2 . k
—612(SB¢+ (622—%) (SBR-FZI: 620(5\1’ = 0. (535)
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Next, substituting (5.17) and (5.19) in (5.33) yields

Equations (5.34)—(5.36) yield the dispersion relation

ko k
601(SB¢ — 602(SBR — ic 600(5‘1’ = 0 (536)
b 11 — 62163/(.«)2 €12 €10
where €91 E99 — c2k2/w2 €920 =0. (540)
co1 = (krer + k=e31) [k, (5.37) €01 €02 €00
Eoo = (kR512 + kz532) /k, (538)
On the other hand, the theory of oscillations of a ho-
1 mogeneous nonrotating plasma deals with the general
= — [k? krk k2e33] . (5.39 & &P 8
00 = 03 [ re1t + krk: (213 + 1) + Z633] ( ) dispersion relation of the form
|
e11 — k2 Jw? €12 e13 + Pk.kr/w?
€21 €22 — CQkQ/W2 €23 =0. (5-41)
31 + CkakR/o.)2 £32 £33 — 02]{%/0.)2
Then the question arises whether the structures of  The perturbed part of (5.43) implies that
(5.40) and (5.41) are identical or plasma rotation es- ik.op
sentially modifies the fundamental plasma properties. 0E, + QR6Bgr + ezn £ =0. (5.44)
0

To answer this question, we multiply the first row of
matrix (5.41) by k%/k*> and add it to the third row
multiplied by k. kR/k2 Similarly, we multiply the first
column of (5.41) by k%/k® and add it to the third col-
umn multiplied by k., kR/kQ. We then obtain that ma-
trices (5.40) and (5.41) are identical.

5.3. Electrodynamic theory of MRI allowing
for finite electron temperature in the scope of
MHD approach

Freezing condition (2.14) is a consequence of Ohm
law (4.1). To justify this, we act on Eq. (4.1) with the
operator Vx and use the Maxwell equation (5.12).

Evidently, Eq. (4.1) is relevant to the plasma with
cold electrons. In the case of a finite electron temper-
ature, it modifies as

Vp

1 e
E+ -V x B+ —£¢ =,
C

42
p— (5.42)

where p. is the electron pressure, e is the ion charge,
and ng is the equilibrium number density. It follows
that in the case of a homogeneous plasma, the appear-
ance of the term with the electron pressure does not
lead to modification of freezing condition (2.14). How-
ever, it contributes to the parallel Ohm law, leading
to

B Vp,
eng

B-E+ =0. (5.43)

We also note that freezing condition (2.14) contains
the electron velocity V, while V entering the parallel
plasma motion equation (2.12) is the ion velocity. In
other words, the one-fluidl MHD is based on the as-
sumption that

V= V.. (5.45)

We now allow a difference between §V;, and 0V,.,

Vi # 6V, (5.46)

Generally,

O0Viz = 0Ver + dj./eny, (5.47)

where J7j. is the perturbed parallel electric current.
The perturbed ion parallel motion equation (2.12)
is modified as

k.kgr
07, = —eng <(5Vez + o S5VR>

(5.48)

We seek the perturbed electron pressure dp. using
the electron adiabatic condition similar to (2.8) with
I'. = 1, where T', is the electron adiabatic exponent.
Then we obtain

Spe = ’% (krdVg + k20V,s) . (5.49)
Substituting (5.49) in (5.44) yields
we
ez E .
5V, k + (5.50)
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where T, is the equilibrium electron temperature. With
(5.50), Eq. (5.48) becomes

iwe’ng engkr

SE
T,

OVRr +

0j, = —
Jzx fias

iwe>ngQR

5Bg.
k2T, R

(5.51)
We now use representation (5.11), thereby introduc-

ing the perturbed electrostatic potential §¥. Then
Eq. (5.51) becomes

engkprw
kgang

weng
k. T,

0j, = — o + 0BR. (5.52)
Comparing (5.6), (5.7), and (5.52) with (5.17)-(5.19)

gives

(€10,220,€31) = 0, (5.53)
4micenokr
= 5.54
€32 Jenavsw Bo ) ( )
4dreng
€30 = ksze . (555)

To use dispersion relation (5.40), it is necessary to
know the values eq1, €92, and oo defined by Eqs. (5.37)—
(5.39). Using (5.23) and (5.53)—(5.55), we obtain

kr

02
go1r = E ?-, (5-56)
ikR 02 WRBi
=——— 120 .
€02 % UQALL) ( + s s (5 57)
1 ¢ 1
o2 = ﬁ E <kR + ps> (558)

where p? = T,/Mw%; is the squared ion Larmor
radius calculated for the electron temperature and
wp; = eBy/Mec is the ion cyclotron frequency.

5.4. Heuristic kinetic electrodynamic theory of
MRI allowing for finite electron temperature
and effects of the finite ion Larmor radius

The idea that the permittivity tensor ¢, in the ro-
tating plasma can be represented as a sum of nonro-
tational 552) and rotational 55,:) parts (see Eq. (5.25))
allows suggesting a heuristic electrodynamic theory of
MRI allowing for finite electron temperature. It is then

convenient to use the general dlspersmn relation in form
(5.41) because the values Ezk (i,k=1,2,3) are well-
known. In such a problem statement, the effects of a
finite ion Larmor radius can simultaneously be taken
into account.

From [49], we have

2
Eg? =3 ( - _ksz> ; (5.59)
VA
0 _ __(0) _ 3, Wiy , 5.60)
€19 €51 2' % w RPis (5.
2
(0 _ ¢ \/_ kRUT
€ — |1- —k P i X
22 U2A RPi w k]

x BW (#ﬂ . (5.61)

where p? = T;/Mw%, is the squared ion Larmor radius.
The remaining components of the permittivity tensor
are

(0)

€13 = Sg[i) =0, (5.62)

2
0 _ _0 _ ¢ kr_wni W( ~
5 = —¢ =
23 27 02 k. k| v kx| vri

) . (5.63)

o _ 1

1
1
e { VT

W <|k;vnﬂ » (564)

where d? = T, /4me®ng (a = e, i) is the squared Debye
length. In deriving (5.63) and (5.64), we have assumed
w K |k:|vpe, where vpe = /2T, /M, is the electron
thermal velocity and M, is the electron mass.

6. ROTATION EFFECTS ON ALFVEN WAVES

6.1. Dispersion relation

Alfvén waves in a rotating plasma can be studied
by using the following particular case of dispersion re-
lation (5.41):

e11—ck? Jw? €12 Alyky Jw?
21 g20—C2k2 Jw? 0 =0,
ko, |w? 0 e33—Ck2 [w?
(6.1)
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where (cf. (5.25)-(5.27)),

1 —2iQ/w

€11 €12 :i

€21 €22 UQA @ _i dQ? ’
w w? dln R

and the value ¢33 is taken from the wave theory of a
homogeneous plasma [52] as

(6.2)

£33 = C\l/kzdzv

w w
w .
7T|]€Z‘UT6 <|szTe>

Equation (6.1) yields

2 _ 12,2
w —ksz<

(6.3)

where

c| = 1+ (6.4)

T
k2v% + K2 c|

K202 + d02/d] k22
o YAV /IR p5>:0. (6.5)

6.2. Rotational Alfvén waves

We consider the approximation of an infinite paral-
lel conductivity

k2p2/c) = 0. (6.6)

Equation (6.5) then becomes

2,2 2
W= +],:Z2172:§v?4 ( * k?lvi ddlfR> - (6D
For a weak plasma rotation,

dQ*/dIn R < k2v?, (6.8)

it follows from Eq. (6.7) that
w? = k2% (1 — 407 /k20%). (6.9)

The oscillation branches described by (6.9) can be
called the rotational Alfvén waves.

6.3. Kinetic Alfvén waves in a rotating plasma

Let
B> M./M. (6.10)
Then we can use the approximation
¢ = 1. (6.11)
In this case, Eq. (6.5) is transformed to
w? = k2% <k§vik;);j(f{:ilnl% + kipi) . (6.12)

13 ZKBT®, Brim. 1

In the case of a weak plasma rotation with condition
(6.8) satisfied, Eq. (6.12) reduces to (cf. (6.9))

w? = k207 (1 —4Q%/k20% + k2p2) . (6.13)
With the term involving Q2 neglected, this dispersion
relation describes the kinetic Alfvén waves [62]. It can
be seen that the rotational dispersion exceeds the Lar-
mor dispersion for

k2 <Q/cd,. (6.14)
Instead of the positive dispersion, we then have Alfvén
waves with the negative dispersion.

6.4. Inertial Alfvén waves in a rotating plasma

We now take

B < Mc/M. (6.15)
Then Eq. (6.4) is transformed to
¢ = —kIvg, /2w, (6.16)
Substituting Eq. (6.16) in Eq. (6.5) yields
L2 k2v% k2v% +dQ2/d1nR7 (6.17)
1+ k2 /w2, k2v% + K2
where w?, = 4mnge® /M, is the squared electron plasma

frequency. With the rotation neglected, this dispersion
relation describes the inertial Alfvén waves [63].

For weak rotation, 2% < k2v?%, and weak electron

inertia, ¢’k} < w2, Eq. (6.17) yields (cf. Eqs. (6.9)
and (6.13))

492 2k2

kaA wpe

It follows that rotation leads to dispersion of the same
sign as the electron inertia, i.e., they are both neg-
The rotational dispersion exceeds the inertial
dispersion for

ative.

k2 < Qupe/cva. (6.19)

The sign of the dispersion then remains unchanged.
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7. DISCUSSION

We have collected and analyzed the results of the
one-fluid MHD theory of MRI in an ideal plasma. We
have shown that this instability can occur for an ar-
bitrary 3. In general, such a theory has the goal to
predict regularities of MRI in a collisionless plasma.
To verify these predictions, it is necessary to develop
the kinetic theory of MRI. The simplest version of this
theory has been formulated in the present paper (see
also [64-66]). Then we have shown that the one-fluid
and kinetic instability criteria are identical and are
given by Eq. (2.38). At the same time, the one-fluid
and kinetic growth rates of MRI turn out to be differ-
ent, cf. (2.40) and (3.17). Roughly speaking,

,ykin/,yMHD ~ 671/2‘ (71)
This means that for § > 1, the kinetic growth rate is
small compared with the MHD one, while for g < 1
the situation is the opposite. This difference is due to
the imaginary term in kinetic dispersion relation (3.13).
Physically, this term describes the gyrorelaxation effect
discovered in [67] and [68]. In the case of a collision-
dominated plasma, this effect is described in terms of
the parallel viscosity [53, 69].

We have discussed the mechanism of MRI and have
explained that it is intrinsically related to the ap-
pearance of the parallel perturbed electric field (see
Eqs. (4.5) and (4.10)).

To incorporate the notion of MRI into the general
theory of plasma instabilities, we have developed the
electrodynamic theory generalizing the known disper-
sion relation for a homogeneous plasma by including
the rotation effects. Such a generalized dispersion re-
lation is given by Eq. (5.40). In the approximation
of an infinite parallel conductivity, it reduces to Eq.
(5.24). According to the electrodynamic theory pre-
sented, plasma rotation leads to two modifications of
the permittivity tensor entering the dispersion relation.
The first is the appearance of the Velikhov effect in the
element 95 and the second is the appearance of the
nondiagonal components €15 and €91, see Eq. (5.27).

We have noted that the rotation effects are addi-
tive, implying that the permittivity tensor can be rep-
resented as a sum of nonrotational and rotational parts
(see Eq. (5.25)). It is remarkable that the rotational
part of the permittivity tensor has a universal struc-
ture independent of the detailed plasma properties (see
Eq. (5.27)).

We have taken the effect of a finite electron temper-
ature on MRI into account. In this regard, it is reason-
able to note that the one-fluid MHD approach devel-
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oped in [3,61] is valid only for cold electrons. There-
fore, one of the goals for future studies on MRI is a
generalization of the Balbus—Hawley and Kim—Ostriker
dispersion relations (see Subsecs. 2.1.3 and 2.1.4) to the
case of a finite electron temperature.

Using that the rotational part of the permittiv-
ity tensor is invariant, we have developed a heuristic
kinetic electrodynamic theory of MRI with both the
finite electron temperature effects and the effects of a
finite ion Larmor radius taken into account. In the
scope of the present paper, we restricted ourselves to
using this theory for studying the rotation effects on
Alfvén modes. As a result, we have shown that in addi-
tion to the kinetic and inertial Alfvén waves, one more
mode, the rotational Alfvén waves, can be realized in
a rotating plasma. At the same time, according to
our analysis, the rotation effects can essentially modify
both kinetic and inertial Alfvén waves, transforming
them into rotational Alfvén waves for not too small
rotation frequencies. The kinetic and inertial Alfvén
waves have been studied in Refs. [63, 70-72] as a possi-
ble reason of zonal flow generation. It is evident from
our analysis that the same role can be played by the
rotational Alfvén waves.
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