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A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 1, 20081. INTRODUCTION AND OVERVIEWIn 1959, Velikhov [1℄ demonstrated that a nondissi-pative Couette �ow (the �ow of an ideally ondutingliquid between rotating ylinders) an be destabilizedby a vertial magneti �eld. A partiular ase of therotation frequeny pro�le (the Velikhov pro�le, see thedetails below) was studied there. In 1960, the analysisin [1℄ was extended to a general rotation frequeny pro-�le in [2℄. For a long time after that, this destabilizatione�et was almost not laimed. The situation hangedradially in 1991, when paper [3℄ was published. Itaddressed the problem of an anomalous visosity in a-retion disks, going bak to the study in [4℄. (Aordingto the de�nition in [5℄, �aretion� refers to the au-mulation of matter onto a massive entral body.) Theauthors of [3℄ suggested that explaining the anomalousvisosity in the disks should invoke an instability re-sulting in eletromagneti turbulene. The essene ofpaper [3℄ was the idea that the role of suh an instabil-ity is played by the instability analyzed in [1; 2℄.After [3℄, this instability was alled the magnetoro-tational instability (MRI). It was a basis for numerousastrophysial studies forming the astrophysial trend inthe theory of MRI. The original papers of this trend are[6�35℄. The �rst stage of astrophysial appliations ofMRI was summarized in review [5℄. At present, MRI ismentioned in more than a thousand papers; the over-whelming majority of these papers belongs to the as-trophysial trend. In addition to astrophysis, MRIhas been suggested to be signi�ant for magneti geo-dynamis [36℄. There are also relatively narrow trendsof experimental and theoretial studies of MRI in liq-uid metals [37�44℄ and plasmaphysial theoretial in-vestigations of this instability (in partiular, equilibria)[45�47℄.There are many books and reviews summarizing ad-vantages of the theory of plasma instabilities [48�59℄.This theory ontains rather broad information on sev-eral types of instabilities in a rotating plasma. The bestknown among them is the Rosenbluth�Simon instabil-ity [60℄. At the same time, all these books and reviewsontain no information on MRI. This shows that MRI isnot yet inorporated into the general theory of plasmainstabilities. One of the goals of the present paper isto provide suh an inorporation.The reasonable question is: why is MRI not yet inthe general theory of plasma instabilities, although itwas disovered almost 50 years ago? The answer isthat papers [1; 2℄ treated it as a magnetohydrodynami(MHD) but not a plasmaphysial phenomenon (e. g.,the Couette �ow is not a plasmaphysial notion). In

addition, papers [1; 2℄ as well as [3℄ suggested that theonsidered liquid is inompressible. Meanwhile, inom-pressible perturbations are often identi�ed in plasmatheory as orresponding to high-� plasmas, where �is the ratio of the plasma pressure to the magneti�eld pressure. Suh a plasma is suggested to be themost interesting for astrophysis, while plasma physistypially deals with the opposite ase of low-� plas-mas. That MRI is atually possible for arbitrary � waspointed out in a relatively reent paper [61℄.The fat that MRI, being one of a variety of eletro-magneti instabilities, an develop in a low-� plasma isof prinipal interest for fundamental plasma physis.There is a broadly shared standpoint in plasma physisthat only eletrostati instabilities are important forlow values of �. This is the main reason why MRI isnot inluded in the general theory of plasma instabili-ties.But suh a situation is unsatisfatory for a num-ber of reasons. First, the plasma theory has elaboratedvery powerful methods for studying instabilities andrelated nonlinear proesses. These tehniques are notinvolved in the MRI theory. Seond, plasma physis is asoure of ideas for a series of applied branhes of physisinluding magneti nulear fusion and spae physis.Therefore, the absene of plasmaphysial informationon the MRI theory is detremental to these areas of re-searh. In addition, the disussed drawbak deprivesthe plasma theory preditions of su�ient omplete-ness.In this paper, we ollet the existing results on MRIneessary for further developing the theory of this in-stability and omplement them by a number of newresults. We then develop the eletrodynami theoryof MRI, thereby inorporating this instability into thegeneral theory of plasma instabilities.In addition to the main MRI problem in a rotatingplasma, there is a subsidiary problem to eluidate therotation e�ets on osillation branhes of nonrotatingplasma. We study this problem by onsidering the ro-tational e�ets on Alfvén waves. In other words, ourpaper not only addresses MRI proesses but also pro-vides more areful investigation of wave properties of arotating plasma.The general theory of plasma instabilities is sep-arated into two main areas: the �rst an be formu-lated as the theory of miroinstabilities and the seonddeals with stability problems of fusion-oriented mag-neti on�nement systems of the tokamak type. Theapproahes used by these branhes are di�erent. Theapproah of the theory of miroinstabilities is basedon investigation of the permittivity tensor, while the184



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Contributions to the theory of magnetorotational instability : : :stability analysis in on�nement systems is often per-formed by means of ertain stability riteria, the sim-plest one being the Suydam stability riterion (see [54℄for the details). The present paper is oriented towardsfurther development of the theory of miroinstabilities.Therefore, the notion of plasma permittivity is entralin our investigation.In aordane with the above, papers [1�3℄ studiedMRI in the sope of the one-�uid MHD approah invok-ing the approximation of an inompressible medium,and therefore their results are valid only for high �.In Se. 2, we follow the same approah but take theplasma ompressibility into aount. Thereby, we ob-tain results valid for arbitrary �.In Se. 3, we develop the kineti theory of MRIrelevant to ollisionless plasmas. Setion 4 addressesthe explanation of the MRI mehanism. Setion 5 isaimed at the development of the eletrodynami the-ory of MRI. This involves introduing and alulatingthe above permittivity tensor for the rotating plasma,whih is the essene of Se. 5. We explain the strutureof this tensor and represent the orresponding disper-sion relations allowing us to alulate the osillationfrequeny. Setion 6 is devoted to the analysis of rota-tion e�ets on Alfvén modes. Disussions are given inSe. 7.2. ONE-FLUID MHD THEORY OF MRI INIDEAL PLASMA2.1. Dispersion relation for MRI2.1.1. The original one-�uid MHD equationsWe onsider an axisymmetri plasma ylinderplaed in the magneti �eldB0 = (0; 0; B0) (2.1)direted along its axis. We use the ylindrial oor-dinates (R; �; z) and all � the azimuthal oordinate.For simpliity, the �eld B0 is assumed to be uniform,dB0=dR = 0. We suppose that plasma rotates in theazimuthal diretion, suh that its equilibrium veloityV0 is given by V0 = (0; V0; 0) ; (2.2)where V0 = R
 and 
 = 
 (R) is the rotation fre-queny dependent on the radial oordinate.To desribe the perturbed plasma dynamis, westart from the equation of motion in the form�dVdt = �r�p+ B28� �+ 14� (B �r)B; (2.3)

where d=dt = �=�t + V � r, and � = �0 + Æ�,V = V0 + ÆV, p = p0 + Æp, and B = B0 + ÆB arerespetively the total mass density, veloity, pressure,and magneti �eld, with Æ denoting the perturbations.Thus, we deal with the perturbed mass density Æ�, theperturbed plasma pressure Æp, the perturbed veloityÆV, and the perturbed magneti �eld ÆB. The vetorsÆV and ÆB are represented asÆV =(ÆVR; ÆV�; ÆVz) ; ÆB =(ÆBR; ÆB�; ÆBz) :The funtion Æ� is governed by the ontinuity equation��tÆ�+ �0r � ÆV = 0: (2.4)We assume that the perturbations are independentof the azimuthal oordinate �. The dependene of eahperturbed value ÆF (r; t) an then be written asÆF = ÆF (R) exp (�i!t+ ikRR + ikzz) ; (2.5)where ! is the mode frequeny and kR and kz are theperpendiular and parallel projetions of the wave ve-tor. The radial dependene of the funtions F (R) is as-sumed to be negligibly weak. Approximately, we thenhave r � ÆV =ikRÆVR + ikzÆVz : (2.6)Using Eq. (2.5), we redue Eq. (2.4) to� i!Æ�+ i�0 (kRÆVR + kzÆVz) = 0: (2.7)The perturbed plasma pressure Æp is found by in-voking the adiabati ondition,ddt � p��� = 0; (2.8)where � is the adiabati exponent. It follows fromEq. (2.8) thatÆp = �p0! (kRÆVR + kzÆVz) : (2.9)2.1.2. Derivation of the general dispersionrelationAs a onsequene of Eq. (2.3), the perturbed velo-ity ÆV is governed by the equation of motion with theomponents� i!ÆVR + ikR2s! (kRÆVR + kzÆVz)�� 2
ÆV� + iv2AB0 (kRÆBz � kzÆBR) = 0; (2.10)185
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ÆVR � iv2AB0 kzÆB� = 0; (2.11)�i!ÆVz + ikz2s! (kRÆVR + kzÆVz) = 0; (2.12)where v2A = B20=4��0 is the squared Alfvén veloityand 2s = �p0=�0 is the squared sound veloity. Theparameter �2 is introdued by�2 = 2
R d �R2
�dR � 4
2 + d
2d lnR: (2.13)To desribe behavior of the perturbed magneti�eld, we use the freezing ondition�B=�t�r� [V �B℄ = 0: (2.14)Then we �nd � i!ÆBR � ikzB0ÆVR = 0; (2.15)� i!ÆB� � d
d lnRÆBR � ikzB0ÆV� = 0: (2.16)Additionally using the Maxwell equation r �B =0, wearrive at ÆBz = �kRÆBR=kz: (2.17)Turning to (2.12), we obtainÆVz = kzkR2s!2�S ÆVR; (2.18)where �S = 1� k2z2s=!2: (2.19)Using (2.11) and (2.15), we obtainÆV� = i!�IDA �� �22
 + k2zv2A!2 d
d lnR� ÆVR; (2.20)where �IDA = 1� k2zv2A=!2: (2.21)The supersript �ID� means �ideal� and the subsript�A� denotes the Alfvén osillation branhes.Substituting (2.18) and (2.20) in (2.10) and using(2.15) and (2.16), we obtain the dispersion relation����� �11 �12�21 �22 ����� = 0; (2.22)

where �11 = �IDA ; (2.23)�12 = ��21 = �2i
=!; (2.24)�22 = �IDM � 1!2 d
2d lnR; (2.25)with �IDM = 1� k2v2A!2 � k2R2s!2�S (2.26)and k2 = k2R+k2z ; the subsript �M � means �magnetoa-ousti�. We also note that dispersion relation (2.22)an be represented as!4�IDA �IDM � !2�2 + k2zv2A d
2d lnR = 0: (2.27)Substituting (2.21) and (2.26) in (2.27) yields�!2 � k2zv2A� �!4 � !2k2 �v2A + 2s�+ k2zk22sv2A�++ �!2 � k2z2s���!2�2 + k2zv2A d
2d lnR� = 0: (2.28)We introdue the dimensionless parameters� = ��1 + 1k2v2A d
2d lnR� ; (2.29)�1 = 2"1 + 1k2v2A 
R d �R2
�dR # � 2 + �2k2v2A : (2.30)Then Eq. (2.28) is represented as!6 � !4k2v2A�2�1 � k2Rk2 + 2sv2A�++ k2zk22sv2A �!2��1 � v2A2s ��+ k2zv2A�� = 0: (2.31)In the partiular ase where � ! 1 �2s !1� with� = 8�p0=B20 , Eq. (2.31) beomes!4 � k2zv2A �!2�1 + k2zv2A�� = 0: (2.32)Similarly to [3℄, we introdue~!2 � !2 � k2zv2A: (2.33)In terms of ~!, Eq. (2.32) is written as~!4 + k2zk2 �k2zv2A d
2d lnR � �2~!2� = 0: (2.34)186



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Contributions to the theory of magnetorotational instability : : :This is the same as the Balbus�Hawley dispersion re-lation [3℄ for an inompressible medium. It is thereforereasonable to all Eq. (2.34) or Eq. (2.32) the Balbus�Hawley dispersion relation.Dealing with an arbitrary ompressibility, Kim andOstriker [61℄ have derived the dispersion relation�!2 � k2zv2A� �!4 � !2k2z �v2A + 2s�+ k4z2sv2A� == k2R(!2 � k2zv2A) ��v2A + 2s�!2 � k2z2sv2A�++ �4
2!2 + (!2 � k2zv2A) d
2d lnR� �!2 � k2z2s� : (2.35)It an be seen that Eqs. (2.35) and (2.28) are idential.Therefore, it is reasonable to all Eq. (2.35) or (2.28)the Kim�Ostriker dispersion relation.2.2. Analysis of MRI2.2.1. General instability riterionWe assyme that � is a small value. Then Eq. (2.31)redues to �1!2 + k2zv2A� = 0: (2.36)We assume that �1 > 0: (2.37)It then follows that for � > 0; (2.38)Eq. (2.36) desribes unstable perturbations,!2 < 0; (2.39)haraterized by Re! = 0 and Im! = , where  isthe growth rate, whih, aording to [1; 3℄, is given by2 = k2zv2A�=�1: (2.40)These unstable modes orrespond to MRI. It followsfrom ondition (2.38) that MRI ours if the wave ve-tor is smaller than a ritial value,k2 < k2rit; (2.41)where v2Ak2rit = �d
2=d lnR: (2.42)It is remarkable that Eq. (2.36) is independent of �.Therefore, both instability riterion (2.38) and growthrate (2.40) near the stability boundary are valid for anarbitrary �.

2.2.2. MRI in the ase of the Velikhov rotationfrequeny pro�leIt was assumed in [1℄ that
 (R) = a+ e=R2; (2.43)where a and e are onstants. Then (2.29) beomes� = 2k2v2A � eR3 �a+ eR2�� 12k2v2A� : (2.44)Hene, the result in [1℄ implies that MRI is possibleonly if e > 0: (2.45)The expression (2.42) for the ritial wave vetor ofunstable modes in this ase redues tok2rit = 2eR3v2A �a+ eR2� : (2.46)3. KINETIC THEORY OF MRI3.1. Kineti approahTurning to the ase of a ollisionless plasma, we be-gin with modifying Eq. (2.3) as [54℄�dVdt = �r � p� 14� �12rB2 � (B�r)B� ; (3.1)where p = Ip0 + Æp; (3.2)is the total pressure tensor, I is the unit tensor, and Æpis the perturbed pressure tensor.Aording to [54℄,r � p =rp?; (3.3)where p? = p0 + Æp? with Æp? being the perpendi-ular (with respet to the equilibrium magneti �eld)perturbed-plasma pressure. Then Eq. (2.10) is modi-�ed as� i!ÆVR��IDA + k2zv2A!2 �+ ikR Æp?�0 �� 2
ÆV� � iv2AB0 k2kz ÆBR = 0: (3.4)The value Æp? is expressed in terms of the perturbeddistribution funtion Æf asÆp? = M Z v2?2 Æf dv; (3.5)187



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 1, 2008where v? is the perpendiular partile veloity, dv isthe volume element in the veloity spae, and M is theion mass.Aording to [52℄, the funtion Æf is equal toÆf = Mv2?2T !! � kzvk f0 ÆBzB0 ; (3.6)where T is the ion equilibrium temperature, f0 is theequilibrium distribution funtion, and vk is the parallelpartile veloity. Substituting (3.6) in (3.5), we obtainÆp? = �p0 ip�!jkz j vT W � !jkz j vT � ÆBzB0 ; (3.7)where vT =p2T=M is the ion thermal veloity andW (x) = exp(�x2)0�1 + 2ip� xZ0 exp(t2) dt1A (3.8)is the plasma dispersion funtion [50℄.As a result, we obtain dispersion relation (2.22)haraterized by the tensor �ik (i; k = 1; 2) given byEqs. (2.23)�(2.25) with the substitution�IDM ! �kinM ; (3.9)where �kinM = 1� k2v2A!2 �1 + kinM � ; (3.10)kinM = �ip�k2Rk2 � !jkzj vT W � !jkzj vT � : (3.11)With the known asymptoti form of the funtion W (x)[50℄, the limit expressions for kinM are as follows:kinM = � k2Rk2 8>><>>: 1; ! � jkzj vT ;� i p�!jkzj vT ; ! � jkzj vT : (3.12)By means of Eqs. (2.22)�(2.25) and (3.9), we obtainthat MRI in a ollisionless plasma is desribed by thedispersion relation�!2 � k2zv2A� �!2 + k2v2A�+ ip�� k2RvT!jkzj �� W � !jkz j vT ���� 4!2
2 = 0: (3.13)

3.2. Hydrodynami MRI in ollisionless plasmaFor ! � jkzj vT , in aordane with (3.10) and(3.12), Eq. (3.13) an be written as�!2�k2zv2A� �!2+k2v2A��k2Rv2T ��4!2
2 = 0: (3.14)It hene follows that MRI ours for� > k2R�=k2: (3.15)In ontrast to one-�uid instability ondition (2.38), theperturbations onsidered are unstable only if the pa-rameter � exeeds a threshold value.3.3. Kineti MRI in ollisionless plasmaFor ! � jkz j vT , it follows from Eq. (3.13) with(3.12) taken into aount that�!2 � k2zv2A��!2 + k2v2A�+ ip�� k2Rv2A!jkz j vT ��� 4!2
2 = 0: (3.16)For small �, this dispersion relation has a small rootgiven by ! = ip� jkz j v2AvT� k2k2R�: (3.17)We an see that the perturbations onsidered are un-stable under ondition (2.38). We have thus shown thatMRI an our in a ollisionless plasma for an arbitrary� if instability ondition (2.38) is satis�ed.4. MECHANISM OF MRIIt follows from the Ohm lawE+ 1V �B = 0 (4.1)that B �E = 0: (4.2)The equilibrium part of (4.2) shows that there is anequilibrium eletri �eld E0R given byE0R = �
R B0: (4.3)In the presene of suh an equilibrium eletri �eld,the perturbed part of (4.2) means that there is theperturbed parallel eletri �eld ÆEz in our problem,determined by B0ÆEz + ÆBRE0R = 0: (4.4)188



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Contributions to the theory of magnetorotational instability : : :Hene, we obtain ÆEz = 
R ÆBR: (4.5)Next, we take the �-projetion of the Maxwell equa-tion �ÆB�t = �r� ÆE (4.6)to obtain ÆB� = kz! ÆER + i! �ÆEz�R ; (4.7)where ÆER is the radial omponent of the perturbedeletri �eld. It follows from (4.5) that�ÆEz�R = d
d lnRÆBR +
 ��R (RÆBR) : (4.8)Now, we take into aount that aording to theMaxwell equation r � ÆB = 0 (f. (2.17)),1R ��R (RÆBR) = �ikzÆBz: (4.9)Then Eq. (4.8) beomes�ÆEz�R = d
d lnRÆBR � i
RkzÆBz: (4.10)It follows from Ohm law (4.1) that the perturbed ra-dial eletri �eld is expressed in terms of the perturbedveloity and perturbed magneti �eld asÆER = 1 (B0ÆV� +
RÆBz) : (4.11)Substituting (4.10) and (4.11) in (4.7) leads to (2.16).We have thus shown that the mehanism of MRI isexplained by involving the perturbed parallel eletri�eld ÆEz.5. INCORPORATION OF MRI INTO THEGENERAL THEORY OF PLASMAINSTABILITIES5.1. Permittivity of rotating plasmaWe use the identity14� �(B�r)B�12rB2� = 1 j�B; (5.1)where B and j are the total magneti �eld and theeletri-urrent density. We then �nd from (2.10) and(2.11) thatÆjR = ��0B0 �� i!ÆV� + �22
ÆVR� ; (5.2)

Æj� = ��0B0 �i!ÆVR�1� k2R2s!2�S�+ 2
ÆV�� : (5.3)It follows from (2.15) and (2.16) thatÆV� = � 1kzB0 �!ÆB� � i d
d lnRÆBR� ; (5.4)ÆVR = � !kzB0 ÆBR: (5.5)With (5.4) and (5.5), Eqs. (5.2) and (5.3) beomeÆjR = !�0kzB20 (�i!ÆB� + 2
ÆBR) ; (5.6)Æj� = !�0kzB20 �� �i!�1� k2R2s!2�S� 1!2 d
2d lnR� ÆBR+2
ÆB�� : (5.7)The theory of instabilities in a homogeneousplasma [52; 55�58℄ deals with the permittivity tensor"ik (i; k = 1; 2; 3) related to the ondutivity tensor�ik by "ik = Æik + 4�i�ik=!: (5.8)The ondutivity tensor �ik is determined by the per-turbed eletri urrentÆji = �ikÆEk: (5.9)Therefore, Æji = !4�i ("ik � Æik) ÆEk : (5.10)We next take into aount that in the general ase,ÆE = ÆE(1) + ÆE(2); (5.11)where ÆE(1) and ÆE(2) are the eletromagneti andeletrostati parts of the perturbed eletri �eld, re-spetively. The �eld ÆE(1) is governed by the Maxwellequation (f. (4.6))�ÆB�t = � r� ÆE(1): (5.12)Then we have ÆE(1)R = !ÆB�=kz; (5.13)ÆE(1)� = �!ÆBR=kz: (5.14)189



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 1, 2008The �eld ÆE(2) is de�ned by the perturbed eletro-stati potential Æ	 viaÆE(2) = �rÆ	: (5.15)Beause we have restrited ourselves to the asek = (kR; 0; kz), it follows from (5.15) thatÆE(2) = (�ikRÆ	; 0;�ikzÆ	) : (5.16)With (5.11) and (5.13)�(5.15), Eq. (5.10) yieldsÆjR = !24�ikz ("11ÆB� � "12ÆBR)� !k4� "10Æ	; (5.17)Æj� = !24�ikz ("21ÆB� � "22ÆBR)� !k4� "20Æ	; (5.18)Æjz = !24�ikz ("31ÆB� � "32ÆBR)� !k4� "30Æ	; (5.19)where "10 = (kR"11 + kz"13) =k; (5.20)"20 = (kR"21 + kz"23) =k; (5.21)"30 = (kR"31 + kz"33) =k: (5.22)Comparing (5.17) and (5.18) with (5.6) and (5.7) yields(i; k = 1; 2)"ik = 2v2A 0BB� 1 �2i
=!2i
! 1� k2R2s!2�S � 1!2 d
2d lnR 1CCA : (5.23)As is known [52; 53℄, the dispersion relation in theapproximation "33 !1 is of the form����� "11 � 2k2z=!2 "12"21 "22 � 2k2=!2 ����� = 0: (5.24)Substituting (5.23) here, we arrive at dispersion rela-tion (2.22).We an see from (5.23) that"ik = "(0)ik + "(r)ik (i; k = 1; 2) ; (5.25)where "(0)ik is the �nonrotational� part of the permittiv-ity tensor, i.e., the part orresponding to the ase ofnonrotating plasma, while "(r)ik is its �rotational� part.

In the sope of the one-�uid MHD approah onsideredin Se. 2, in aordane with (5.23), we have"(0)MHDik = 2v2A 0BB� 1 00 1� k2R2s!2�S 1CCA (5.26)and the rotational part of "ik (i; k = 1; 2) is given by"(r)ik = 2v2A 0B� 0 �2i
=!2i
! � 1!2 d
2d lnR 1CA : (5.27)The kineti approah leads to the same expressionsfor "(0)11 , "(0)12 , and "(0)21 and the following expression for"(0)kin22 :"(0)kin22 = 2v2A �1 + ip�! k2RvTjkzj W � !jkz j vT �� : (5.28)It an be seen that the elements "(r)ik are indepen-dent of the detailed plasma properties. In this ontext,eah element "(r)ik is an invariant. In ontrast to this,the values "(0)ik depend on the detailed plasma proper-ties. 5.2. General dispersion relationTo obtain the general dispersion relation, we reallthe Ampere law r� ÆB = 4�Æj=: (5.29)With (2.17), projetions of (5.29) are given bykzÆB� = i4�ÆjR=; (5.30)k2ÆBR = �i4�kzÆj�=; (5.31)kRÆB� = �i4�Æjz=: (5.32)In addition, the urrent ontinuity equation impliesthat kRÆjR + kzÆjz = 0: (5.33)Substituting (5.17) and (5.18) in (5.30) and (5.31), weobtain�"11�2k2z!2 � ÆB��"12ÆBR� ikzk! "10Æ	 = 0; (5.34)�"12ÆB�+�"22�2k2!2 � ÆBR+ ikkz "20Æ	 = 0: (5.35)190



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Contributions to the theory of magnetorotational instability : : :Next, substituting (5.17) and (5.19) in (5.33) yields"01ÆB� � "02ÆBR � ikzk! "00Æ	 = 0; (5.36)where "01 = (kR"11 + kz"31) =k; (5.37)"02 = (kR"12 + kz"32) =k; (5.38)"00 = 1k2 �k2R"11 + kRkz ("13 + "31) + k2z"33� : (5.39)
Equations (5.34)�(5.36) yield the dispersion relation������� "11 � 2k2z=!2 "12 "10"21 "22 � 2k2=!2 "20"01 "02 "00 ������� = 0: (5.40)On the other hand, the theory of osillations of a ho-mogeneous nonrotating plasma deals with the generaldispersion relation of the form������� "11 � 2k2z=!2 "12 "13 + 2kzkR=!2"21 "22 � 2k2=!2 "23"31 + 2kzkR=!2 "32 "33 � 2k2R=!2 ������� = 0: (5.41)Then the question arises whether the strutures of(5.40) and (5.41) are idential or plasma rotation es-sentially modi�es the fundamental plasma properties.To answer this question, we multiply the �rst row ofmatrix (5.41) by k2R=k2 and add it to the third rowmultiplied by kzkR=k2. Similarly, we multiply the �rstolumn of (5.41) by k2R=k2 and add it to the third ol-umn multiplied by kzkR=k2. We then obtain that ma-tries (5.40) and (5.41) are idential.5.3. Eletrodynami theory of MRI allowingfor �nite eletron temperature in the sope ofMHD approahFreezing ondition (2.14) is a onsequene of Ohmlaw (4.1). To justify this, we at on Eq. (4.1) with theoperator r� and use the Maxwell equation (5.12).Evidently, Eq. (4.1) is relevant to the plasma withold eletrons. In the ase of a �nite eletron temper-ature, it modi�es asE+ 1V �B+ rpeen0 = 0; (5.42)where pe is the eletron pressure, e is the ion harge,and n0 is the equilibrium number density. It followsthat in the ase of a homogeneous plasma, the appear-ane of the term with the eletron pressure does notlead to modi�ation of freezing ondition (2.14). How-ever, it ontributes to the parallel Ohm law, leadingto B �E+ B �rpeen0 = 0: (5.43)

The perturbed part of (5.43) implies thatÆEz +
RÆBR + ikzÆpeen0 = 0: (5.44)We also note that freezing ondition (2.14) ontainsthe eletron veloity V, while V entering the parallelplasma motion equation (2.12) is the ion veloity. Inother words, the one-�uid MHD is based on the as-sumption that Vi = Ve: (5.45)We now allow a di�erene between ÆViz and ÆVez ,ÆViz 6= ÆVez : (5.46)Generally, ÆViz = ÆVez + Æjz=en0; (5.47)where Æjz is the perturbed parallel eletri urrent.The perturbed ion parallel motion equation (2.12)is modi�ed asÆjz = �en0�ÆVez + kzkR2s!2�S ÆVR� : (5.48)We seek the perturbed eletron pressure Æpe usingthe eletron adiabati ondition similar to (2.8) with�e = 1, where �e is the eletron adiabati exponent.Then we obtainÆpe = p0e! (kRÆVR + kzÆVez) : (5.49)Substituting (5.49) in (5.44) yieldsÆVez = �kRkz ÆVR + i!ek2zTe ÆEz; (5.50)191
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Rk2zTe ÆBR: (5.51)We now use representation (5.11), thereby introdu-ing the perturbed eletrostati potential Æ	. ThenEq. (5.51) beomesÆjz = �!e2n0kzTe Æ	+ en0kR!k2z�SB0 ÆBR: (5.52)Comparing (5.6), (5.7), and (5.52) with (5.17)�(5.19)gives ("10; "20; "31) = 0; (5.53)"32 = �4�ien0kRkz�S!B0 ; (5.54)"30 = 4�e2n0kkzTe : (5.55)To use dispersion relation (5.40), it is neessary toknow the values "01, "02, and "00 de�ned by Eqs. (5.37)�(5.39). Using (5.23) and (5.53)�(5.55), we obtain"01 = 2v2A kRk ; (5.56)"02 = � ikRk 2v2A! �2
 + !Bi�S � ; (5.57)"02 = 1k2 2v2A �k2R + 1�2s� ; (5.58)where �2s = Te=M!2Bi is the squared ion Larmorradius alulated for the eletron temperature and!Bi = eB0=M is the ion ylotron frequeny.5.4. Heuristi kineti eletrodynami theory ofMRI allowing for �nite eletron temperatureand e�ets of the �nite ion Larmor radiusThe idea that the permittivity tensor "ik in the ro-tating plasma an be represented as a sum of nonro-tational "(0)ik and rotational "(r)ik parts (see Eq. (5.25))allows suggesting a heuristi eletrodynami theory ofMRI allowing for �nite eletron temperature. It is then

onvenient to use the general dispersion relation in form(5.41) beause the values "(0)ik (i; k = 1; 2; 3) are well-known. In suh a problem statement, the e�ets of a�nite ion Larmor radius an simultaneously be takeninto aount.From [49℄, we have"(0)11 = 2v2A �1� 34k2R�2i� ; (5.59)"(0)12 = �"(0)21 = �32 i 2v2A !Bi! k2R�2i ; (5.60)"(0)22 = 2v2A �1� 34k2R�2i + ip�! k2RvTjkzj �� �W � !jkz j vT �� ; (5.61)where �2i = Ti=M!2Bi is the squared ion Larmor radius.The remaining omponents of the permittivity tensorare "(0)13 = "(0)31 = 0; (5.62)"(0)23 = �"(0)32 = 2v2A kRkz !Bijkz j vTiW � !jkzj vTi� ; (5.63)"(0)33 = 1k2zd2e + 1k2zd2i �1 + ip� !jkzj vTi �� W � !jkzj vTi�� ; (5.64)where d2� = T�=4�e2n0 (� = e; i) is the squared Debyelength. In deriving (5.63) and (5.64), we have assumed! � jkzj vTe, where vTe = p2Te=Me is the eletronthermal veloity and Me is the eletron mass.6. ROTATION EFFECTS ON ALFVÉN WAVES6.1. Dispersion relationAlfvén waves in a rotating plasma an be studiedby using the following partiular ase of dispersion re-lation (5.41):������� "11�2k2z=!2 "12 2kzkx=!2"21 "22�2k2x=!2 02kzkx=!2 0 "33�2k2x=!2 ������� = 0;(6.1)192
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=!2i
! � 1!2 d
2d lnR 1CCA ; (6.2)and the value "33 is taken from the wave theory of ahomogeneous plasma [52℄ as"33 = k=k2zd2e; (6.3)where k = 1 + ip� !jkz j vTeW � !jkz j vTe� : (6.4)Equation (6.1) yields!2 � k2zv2A�k2xv2A + d
2=d lnRk2xv2A + �2 + k2x�2sk � = 0: (6.5)6.2. Rotational Alfvén wavesWe onsider the approximation of an in�nite paral-lel ondutivity k2x�2s=k = 0: (6.6)Equation (6.5) then beomes!2 = k2zv2A1 + �2=k2xv2A �1 + 1k2xv2A d
2d lnR� : (6.7)For a weak plasma rotation,d
2=d lnR� k2xv2A; (6.8)it follows from Eq. (6.7) that!2 = k2zv2A(1� 4
2=k2xv2A): (6.9)The osillation branhes desribed by (6.9) an bealled the rotational Alfvén waves.6.3. Kineti Alfvén waves in a rotating plasmaLet � > Me=M: (6.10)Then we an use the approximationk ! 1: (6.11)In this ase, Eq. (6.5) is transformed to!2 = k2zv2A�k2xv2A + d
2=d lnRk2xv2A + �2 + k2x�2s� : (6.12)

In the ase of a weak plasma rotation with ondition(6.8) satis�ed, Eq. (6.12) redues to (f. (6.9))!2 = k2zv2A �1� 4
2=k2xv2A + k2x�2s� : (6.13)With the term involving 
2 negleted, this dispersionrelation desribes the kineti Alfvén waves [62℄. It anbe seen that the rotational dispersion exeeds the Lar-mor dispersion for k2x . 
=de: (6.14)Instead of the positive dispersion, we then have Alfvénwaves with the negative dispersion.6.4. Inertial Alfvén waves in a rotating plasmaWe now take � < Me=M: (6.15)Then Eq. (6.4) is transformed tok = �k2zv2Te=2!2: (6.16)Substituting Eq. (6.16) in Eq. (6.5) yields!2 = k2zv2A1 + 2k2x=!2pe k2xv2A + d
2=d lnRk2xv2A + �2 ; (6.17)where !2pe = 4�n0e2=Me is the squared eletron plasmafrequeny. With the rotation negleted, this dispersionrelation desribes the inertial Alfvén waves [63℄.For weak rotation, 
2 � k2xv2A, and weak eletroninertia, 2k2x � !2pe, Eq. (6.17) yields (f. Eqs. (6.9)and (6.13))!2 = k2zv2A�1� 4
2k2xv2A � 2k2x!2pe � : (6.18)It follows that rotation leads to dispersion of the samesign as the eletron inertia, i. e., they are both neg-ative. The rotational dispersion exeeds the inertialdispersion for k2x < 
!pe=vA: (6.19)The sign of the dispersion then remains unhanged.13 ÆÝÒÔ, âûï. 1 193



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 1, 20087. DISCUSSIONWe have olleted and analyzed the results of theone-�uid MHD theory of MRI in an ideal plasma. Wehave shown that this instability an our for an ar-bitrary �. In general, suh a theory has the goal topredit regularities of MRI in a ollisionless plasma.To verify these preditions, it is neessary to developthe kineti theory of MRI. The simplest version of thistheory has been formulated in the present paper (seealso [64�66℄). Then we have shown that the one-�uidand kineti instability riteria are idential and aregiven by Eq. (2.38). At the same time, the one-�uidand kineti growth rates of MRI turn out to be di�er-ent, f. (2.40) and (3.17). Roughly speaking,kin=MHD � ��1=2: (7.1)This means that for � > 1, the kineti growth rate issmall ompared with the MHD one, while for � < 1the situation is the opposite. This di�erene is due tothe imaginary term in kineti dispersion relation (3.13).Physially, this term desribes the gyrorelaxation e�etdisovered in [67℄ and [68℄. In the ase of a ollision-dominated plasma, this e�et is desribed in terms ofthe parallel visosity [53; 69℄.We have disussed the mehanism of MRI and haveexplained that it is intrinsially related to the ap-pearane of the parallel perturbed eletri �eld (seeEqs. (4.5) and (4.10)).To inorporate the notion of MRI into the generaltheory of plasma instabilities, we have developed theeletrodynami theory generalizing the known disper-sion relation for a homogeneous plasma by inludingthe rotation e�ets. Suh a generalized dispersion re-lation is given by Eq. (5.40). In the approximationof an in�nite parallel ondutivity, it redues to Eq.(5.24). Aording to the eletrodynami theory pre-sented, plasma rotation leads to two modi�ations ofthe permittivity tensor entering the dispersion relation.The �rst is the appearane of the Velikhov e�et in theelement "22 and the seond is the appearane of thenondiagonal omponents "12 and "21, see Eq. (5.27).We have noted that the rotation e�ets are addi-tive, implying that the permittivity tensor an be rep-resented as a sum of nonrotational and rotational parts(see Eq. (5.25)). It is remarkable that the rotationalpart of the permittivity tensor has a universal stru-ture independent of the detailed plasma properties (seeEq. (5.27)).We have taken the e�et of a �nite eletron temper-ature on MRI into aount. In this regard, it is reason-able to note that the one-�uid MHD approah devel-

oped in [3; 61℄ is valid only for old eletrons. There-fore, one of the goals for future studies on MRI is ageneralization of the Balbus�Hawley and Kim�Ostrikerdispersion relations (see Subses. 2.1.3 and 2.1.4) to thease of a �nite eletron temperature.Using that the rotational part of the permittiv-ity tensor is invariant, we have developed a heuristikineti eletrodynami theory of MRI with both the�nite eletron temperature e�ets and the e�ets of a�nite ion Larmor radius taken into aount. In thesope of the present paper, we restrited ourselves tousing this theory for studying the rotation e�ets onAlfvén modes. As a result, we have shown that in addi-tion to the kineti and inertial Alfvén waves, one moremode, the rotational Alfvén waves, an be realized ina rotating plasma. At the same time, aording toour analysis, the rotation e�ets an essentially modifyboth kineti and inertial Alfvén waves, transformingthem into rotational Alfvén waves for not too smallrotation frequenies. The kineti and inertial Alfvénwaves have been studied in Refs. [63; 70�72℄ as a possi-ble reason of zonal �ow generation. It is evident fromour analysis that the same role an be played by therotational Alfvén waves.We are grateful to G. D. Chagelishvili, A. I. Smolya-kov, K. N. Stepanov, and L. M. Zelenyi for useful om-ments. This work was supported by the RFBR (grantsNos. 06-02-16767, 06-02-16859), the International Si-ene and Tehnology Center (grant No.G-1217), theSiene and Tehnology Center of Ukraine (grantNo 3473), the Researh Foundation of the State of S~aoPaulo, the National Counil of Sienti� and Tehno-logial Development, the Ministry of Siene and Teh-nology, Brazil, and the �Solar Ativity� Program of thePresidium of the Russian Aademy of Sienes, and theAustralia Researh Counil.REFERENCES1. E. P. Velikhov, Zh. Eksp. Teor. Fiz. 36, 1398 (1959).2. S. Chandrasekhar, Pro. Nat. Aad. Si. USA 46, 253(1960).3. S. A. Balbus and J. F. Hawley, Astrophys. J. 376 , 214(1991).4. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys.24, 337 (1973).5. S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1(1998).194
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