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FLEXIBLE-TO-SEMIFLEXIBLE CHAIN CROSSOVER ON THEPRESSURE�AREA ISOTHERM OF A LIPID BILAYERI. N. Krivonos, S. I. Mukhin *Mos
ow Institute for Steel and Alloys119049, Mos
ow, Russian FederationRe
eived June 11, 2007We �nd theoreti
ally that 
ompetition between � Kfq4 and � Qq2 terms in the Fourier-transformed 
onfor-mational energy of a single lipid 
hain, in 
ombination with inter
hain entropi
 repulsion in the hydrophobi
part of the lipid (bi)layer, may 
ause a 
rossover on the bilayer pressure�area isotherm P (A) � (A � A0)��.The 
rossover manifests itself in the transition from � = 5=3 to � = 3. Our mi
ros
opi
 model representsa single lipid mole
ule as a worm-like 
hain with a �nite irredu
ible 
ross-se
tion area A0, a �exural rigidityKf , and a stret
hing modulus Q in a paraboli
 potential with the self-
onsistent 
urvature B(A) formed byentropi
 intera
tions between hydro
arbon 
hains in the lipid layer. The 
rossover area A� obeys the relationQ=pKfB(A�) � 2. We predi
t a pe
uliar possibility of dedu
ing the e�e
tive elasti
 moduli Kf and Q ofan individual hydro
arbon 
hain from the analysis of the isotherm with su
h a 
rossover. Also 
al
ulated is
rossover-related behavior of the area 
ompressibility modulus KA, the equilibrium area per lipid At, and the
hain order parameter S(�).PACS: 87.16.Dg, 87.15.Kg, 31.15.Kb1. INTRODUCTIONStudying thermodynami
s of lipid bilayers thatform biologi
al membranes is of fundamental interestfor understanding the relation between the membranestate and the fun
tioning of integral membrane pro-teins [1�3℄. The latter are of vital importan
e for manypro
esses in living 
ells. Experimental data in lipidmembranes indi
ate the presen
e of a 
rossover in thepressure�area isotherms P (A) � (A�A0)�� [4; 5℄. For-mally, this means that the exponent � 
hanges substan-tially within some �nite interval along the area axis A.A substantial amount of theoreti
al work has been de-voted to the des
ription of the thermodynami
 prop-erties of lipid layers in
luding pressure�area isotherms,the 
hain order parameter as a fun
tion of temperature,spe
i�
 heat, et
. Theoreti
al approa
hes range fromphenomenologi
al Landau�de Gennes theory [6℄ to sur-fa
e equations of states involving 
lustering [7�10℄ andraft formation [11℄. Mole
ular dynami
s [12℄ and MonteCarlo simulations [13℄ have also been used. Besides, themodels were 
onsidered with a phase transition due to*E-mail: sergeimos
ow�online.ru

a 
hange in the number of gau
he 
onformations of thehydro
arbon 
hains [14�20℄, as well as models fo
usedon the role of the ex
luded-volume intera
tions betweenthe 
hains [21; 22℄. These fa
tors were also 
ombinedin the form of an additive area-dependent 
ontributionsto the surfa
e pressure [20℄.In the previous work [23℄, a theoreti
al method wasproposed for 
al
ulating the thermodynami
 
hara
ter-isti
s of a lipid bilayer starting from a �mi
ros
opi
�model of a sme
ti
 array of semi-�exible �nite-lengthstrings with a given �exural rigidity (see Fig. 1). Thestring is an idealized model of the hydro
arbon 
hain.The entropi
 repulsion between the neighboring 
hainsin a lipid membrane is modeled with an e�e
tive po-tential. This entropi
 potential is then found self-
onsistently, by minimizing the free energy of the bi-layer, whi
h is in turn 
al
ulated using path integrationover possible 
onformations of the strings. As a result,the lateral pressure pro�le inside the lipid bilayer wasderived analyti
ally, together with the area 
ompress-ibility modulus and the temperature 
oe�
ient of areaexpansion of the membrane.In [23℄, only the bending energy of strings and theentropi
 repulsion were in
luded in the 
onformational162
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rossover : : :energy fun
tional. In the Fourier-transformed represen-tation, the bending energy is proportional to � Kfq4,where q is the wave ve
tor along the 
hain axis and Kfis the 
hain �exural rigidity modulus. The resultingpressure�area isotherm of the lipid bilayer was derivedin the form of a power law Pt(A) � (A � A0)��, withthe 
onstant exponent � = 5=3. The lateral pressureof the lipid hydro
arbon 
hains (tails) Pt(A) is hereexpressed as a fun
tion of the area per lipid A in thelayer at a given temperature, with A0 being the 
hainin
ompressible 
ross-se
tion area. In the present work,we add the stret
hing energy of the string to the energyfun
tional [24℄. In the Fourier-transformed representa-tion, this energy is proportional to � Qq2, where Qis the 
hain stret
hing modulus. Hen
e, our new 
hainenergy fun
tional 
ontains the sumKfq4+Qq2+B(A),where B(A) is the self-
onsistently determined 
urva-ture of a paraboli
 e�e
tive entropi
 repulsive potentialfelt by a single 
hain due to surrounding 
hains in thelipid layer. The bending (�exural) energy dominates atlarge wave ve
tors q, while the stret
hing energy domi-nates in the small-q limit. The entropi
 repulsion termB(A) sets an upper limit for the wave ve
tors q that areessential for thermodynami
s. The entropi
 repulsionin
reases as the area per lipid in the layer de
reases,i.e., the parameter B(A) be
omes greater as A ! A0,making the large q important. As a result, the bend-ing energy term � Kfq4 dominates, and we re
overthe pressure�area isotherm in [23℄ with the exponent� = 5=3. On the other hand, when the area per lipidin
reases, the entropi
 repulsion be
omes weaker, andthe parameter B(A) be
omes smaller. Hen
e, the im-portant q also be
ome smaller and the stret
hing energyterm � Qq2 dominates. As a result, a new exponentarises [24℄: � = 3, 
orresponding to the stret
hing-dominated 
onformational energy of the strings (Figs. 2and 3). This limit value of the exponent is in agree-ment with the result in [25℄, where it was derived usinga polymer entropy model (harmoni
 regime) for lipidbilayer surfa
e pressure and 
on�rmed with bilayer elas-ti
ity measurements.We �nd that the 
rossover between the twoarea-per-lipid regions with di�erent values of theexponent � o

urs at the area per lipid A� determinedfrom the 
ondition Q=pKfB(A�) � 2. The physi
alstates of the lipid layer in the two regions separatedby 
rossover di�er by a substantial 
hange in the valueof the 
hain order parameter, whi
h 
hara
terizesdeviations of the 
hain from the straight line (seeFig. 7). Also 
al
ulated are elasti
 moduli of themembrane and their dependen
es on temperature andon the mi
ros
opi
 elasti
 moduli of the individual


hains 
onstituting the lipid bilayer (see Figs. 4�6).Finally, we dis
uss how the �tting of experimentalisotherms of lipid bilayers to our theoreti
al isothermsmay help to dedu
e the elasti
 moduli Kf and Q ofindividual lipid 
hains 
onstituting the membrane.The plan of the paper is as follows. In Se
. 2, weformulate the physi
al model [24℄ of a bilayer and re-view the path-integral method of summation over all
onformations of an idealized hydro
arbon 
hain [23℄.In Se
. 3, we derive and analyti
ally solve (in two dif-ferent limits) a self-
onsisten
y equation for the 
urva-ture B(A) of the e�e
tive paraboli
 entropi
 potentialin the layer. The pressure�area isotherms are then de-rived in analyti
 form. In Se
s. 4�6, we present theresults of 
al
ulations of the thermodynami
 and elas-ti
 
hara
teristi
s of the whole bilayer that follow fromour mi
ros
opi
 model. In the Con
lusions, we dis
ussthe 
orresponden
e of the theoreti
al results with avail-able experimental data, and 
onsider the appli
abilityregion of the approximations that we use.2. ENERGY FUNCTIONAL OF A LIPIDLAYER: THE STRING MODELA hydro
arbon 
hain (see Fig. 1) is modeled as a�exible string with the �exural rigidity Kf and stret
h-ing modulus Q; entropi
 repulsion from surroundinglipid 
hains is modeled via a paraboli
 potential withthe self-
onsistently determined 
urvature B(= B(A)):E = LZ0  Kf �d2Rdz2 �2 +Q�dRdz �2 +BR2! dz; (1)where L is the 
hain length. We 
onsider only small de-viations of the 
hains from a straight line: jR(z)j � L.This 
ondition is satis�ed ifphR2(z)iL � � kBTL2Peff �1=2 � 1;where Peff is the e�e
tive tension in the bilayer andkB is the Boltzmann 
onstant. The returning for
e�BR(z) a
ts against the deviation R(z) of the 
hainfrom the verti
al straight line, where the 
oordinatez measures the depth inside the lipid layer with thehydrophili
 (polar) heads residing at the layer sur-fa
e z = 0, while hydrophobi
 (nonpolar) tails formedfrom hydro
arbon 
hains 
onstitute the body of theslab 0 < z � L. Here, R(z) is the ve
tor in thexy plane 
hara
terizing the deviation from the z axis:R2(z) = X2(z) + Y 2(z).The energy of a single string therefore 
onsists ofthree parts: bending, stret
hing and e�e
tive entropi
163 11*



I. N. Krivonos, S. I. Mukhin ÆÝÒÔ, òîì 133, âûï. 1, 2008
L L

XBX �BX
zzFig. 1. The model of a lipid membrane in the mean-�eld approximation. Left panel: sket
h of the lipid monolayer (themirror-symmetri
 part of the bilayer is not shown). Hydro
arbon tails of lipid mole
ules form the hydrophobi
 part of the lipidmonolayer. Hydrophili
 polar heads (�lled ellipses) form the hydrophobi
�hydrophili
 interfa
e. Right panel: the mean-�eld�exible-string model of a hydrophobi
 layer. The arrows indi
ate entropi
 for
es �BX a
ting on the hydro
arbon 
hain inthe self-
onsistent entropi
 potential BX2, whi
h arises due to surrounding neighborspotential energies. In equilibrium, the e�e
t of the en-tropi
 repulsion is 
ompensated by the inter
hain at-tra
tion due to van der Waals intera
tions and by thesurfa
e tension energy 
A, where 
 is the surfa
e ten-sion at the hydrophobi
�hydrophili
 interfa
e [4℄:Pt (A(T )) = Peff = 
 + Phg + PvdW ;where A(T ) is the equilibrium area per lipid at a giventemperature. The total tension in the bilayer is zero.The integral Pt = LZ0 �t(z) dzof the repulsive (
hain) part of the lateral pressurepro�le �t(z) over the bilayer hydrophobi
 region isequal to the balan
ing e�e
tive tension in the bi-layer Peff , whi
h, besides the surfa
e tension 
, in-
ludes the head group repulsion of ele
trostati
 ori-gin Phg, the pressure arising from van der Waalsintera
tions between 
hains PvdW , et
. We 
hoosePeff = 100 dyn/
m > 
 � 50 dyn/
m, be
ause at-tra
tive dispersion intera
tions between hydro
arbon
hains are in
luded in the e�e
tive surfa
e tension [26℄.In general, at room temperature, the e�e
tive sur-fa
e tension for a typi
al lipid bilayer is in the range50 � Peff � 150 dyn/
m [2; 26℄. Considering a single
hain 
onsisting ofN links of equal length a for simpli
-ity, we rewrite Fourier-transformed energy fun
tional(1) as

E = L2 �=aZ��=a jRq j2(Kfq4 +Qq2 +B) dq2� == LXq jRq j2Eq ; (2)where summation over the wave ve
tor q ranges the in-terval 2�=a with the step 2�=L, Eq = Kfq4+Qq2+B,and Rq is the Fourier transform of the fun
tion R (z).Be
ause we 
onsider the membrane that is isotropi
 inthe xy plane, the x- and y-
omponents of the ve
tor�eld R(z) make equal 
ontributions to the partitionfun
tion of the string, and thereforeZ = ZxZy = Z2x == 0�Yq 1Z0 exp��LEqkBT jXqj2� jXq jdjXq j1A2 ==  Yq kBT2LEq!2 : (3)The free energy F = �kBT lnZ 
an then be expressedas�F = F (B)� F (B = 0) == 2kBTXq ln EqEq(B = 0) ; (4)where the free energy of a free single 
hain is subtra
tedfor the 
onvergen
e of the sum.164
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rossover : : :3. PRESSURE�AREA ISOTHERM OF THELIPID LAYER EXPRESSED THROUGH THECURVATURE OF THE INTER-CHAINENTROPIC POTENTIALThe self-
onsistent equation for the 
urvature Bof the paraboli
 potential modeling the inter
hain en-tropi
 repulsion in the lipid layer takes the form�F�B = 2kBTXq 1Eq = hR2iL == �pA�pA0 �2� L; (5)where A0 = V0=L is the in
ompressible area of the
hain 
ross se
tion, V0 is the in
ompressible volume ofthe lipid 
hain, and �pA�pA0 �2 is the area sweptby the string formed by the 
enters of the 
hain 
rossse
tions. Obviously, when the area per lipid A is 
loseto the in
ompressible area A0, the self-
onsistent 
ur-vature B is large, and we 
an therefore pass from sum-mation to the integration over the wave ve
tor q inEq. (5): �pA�pA0 �2 = kBT �=aZ��=a dqEq : (6)The resulting self-
onsisten
y equation for the 
urva-ture B is�pA�pA0 �2 == �p2 kBTK1=4f B3=4  1 + Q2pBKf !�1=2 : (7)This equation is solved numeri
ally, but analyti
 re-sults 
an also be obtained in the two limit 
ases: � � 1and � � 1, where � � Q=2pBKf . These two limits re-spe
tively 
orrespond to the domination of the bendingenergy and of the stret
hing energy:B(A) = 1K1=3f �4=3(kBT )4=33p4 �pA�pA0 ��8=3 ;� � 1; (8)B(A) = �2(kBT )2Q �pA�pA0 ��4 ;� � 1: (9)Relation (8) 
oin
ides with the result in Eq. (A.5)in [23℄, whi
h was obtained by a more detailed method

without using the Fourier-transformed version of en-ergy fun
tional (2) and without taking the stret
hingenergy into a

ount. As long as � = �(A), due to thedependen
e of the 
urvature B = B(A) on the area A,the 
rossover from limit expression (8) to limit expres-sion (9) may o

ur at some parti
ular area per lipidA� determined from the 
ondition �(A�) � 1. This
rossover area A� is found below (see Eq. (14)).Substituting the self-
onsistent solution B = B(A)in 
hain free energy (4), we �nd the lateral pressure�area-per-lipid isotherm for the hydrophobi
 part of thelipid (bi)layer:Pt � ���F (A)�A = �B�AXq 2kBTEq : (10)Be
ause the sum in the right hand side of Eq. (10) alsoenters self-
onsisten
y equation (5), the pressure�areaisotherm 
an be expressed in the 
losed analyti
 formPt(A) = ��1 �pA�pA0 �2 L�B(A)�A (11)with the 
urvature B(A) dire
tly involved.4. CROSSOVER ON THE LIPID LAYERISOTHERM: COMMUNICATION BETWEEN�MACRO� AND �MICRO�It is remarkable that 
rossover in the isotherm of alipid (bi)layer in prin
iple provides an intriguing possi-bility to follow the link between ma
ro- and mi
ros
opi
properties of the biomembrane. Namely, it is possibleto dedu
e the e�e
tive elasti
 moduli of the individuallipid 
hains 
onstituting the bilayer from the pressure�area isotherm of the entire ma
ros
opi
 system.To explain the dedu
tion �re
ipe� (see Eqs. (15) and(16) below), we 
onsider theoreti
al predi
tions follow-ing from the general model des
ribed in the previousse
tion. First, we su

essively substitute Eqs. (8) and(9) in general equation (11) and (in the limit of smallenough areas per lipid, A=A0 � 1) �nd analyti
 for-mulas des
ribing the lateral pressure�area isotherms ofthe lipid layer:PtkBT = 23 ��kBT4Kf �1=3 �� V A�3=2 �pA�pA0 ��5=3 ; � � 1; (12)PtkBT = 2�kBTQ �� V A�3=2 �pA�pA0 ��3 ; � � 1; (13)165
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Fig. 2. The 
al
ulated pressure�area-per-lipidisotherms for the lateral pressure Pt in the hydropho-bi
 (tails) part of the lipid bilayer with di�erentrelative strengths of the single-
hain stret
hing andbending energies 
hara
terized by the dimensionlessparameter � = QL2=Kf . Isotherm 1 (� ! 0)
orresponds to the dominating bending energy of the
hains (see Eq. (12)); 
urve 3 (� ! 1) 
orrespondsto the dominating stret
hing energy of the 
hains(see Eq. (13)). Curve 2 (� � 102) 
orresponds toan intermediate 
ase and shows a 
rossover betweenthe two isotherms drawn in the two limits. A0 is thein
ompressible area of the hydro
arbon 
hain. Thetemperature for all the 
urves is T = 300 Kwhere V = AZm � AL is the (
onserved) volume perlipid mole
ule in the hydrophobi
 part of the lipid layer,Zm is the a
tual thi
kness of the hydrophobi
 part ofthe lipid layer, and Zm � L in the limit of small devi-ations from the straight line of the string modeling the
hain. Asymptoti
 relation (12), whi
h is valid for thebending-dominated free energy, is the same as in [23℄,but relation (13) is new and 
orresponds to dominationof the stret
hing energy. The 
rossover region betweenthese two limit 
ases is di�
ult to express analyti
ally,but the result of numeri
al 
al
ulation based on Eqs. (7)and (11) is presented in Fig. 2 together with the two
urves 
orresponding to the analyti
 results in (12) and(13).Before 
onsidering Figs. 2 and 3, we �nd the
rossover area per lipid A� using the de�nition�(A�) � Q=2qB(A�)Kf � 1and substituting asymptoti
 equations (8) and (9) forB(A�), whi
h both lead to the result

1.5 3.53.02.52.0

A/A0

3 5 2 1
4

−3.25

−2.85

−2.45

−2.05

−1.65

d ln Pt

d ln (A − A0)

Fig. 3. The same 
ases as in Fig. 2, but for the 
al-
ulated logarithmi
 derivative of the lateral pressurewith respe
t to the area per lipid. The logarithmi
derivative gives the value of the exponent ��(A) inthe limit A ! A0 in the isotherm equation of stateof the lipid bilayer: Pt � (A � A0)��(T ). Curve 2(� � 102) demonstrates a 
rossover between the expo-nents � = 5=3 (4 ) and � = 3 (5 ) that are shown withstraight dashed lines. The other two 
urves are the ex-a
t dependen
es given by Eqs. (12) and (13) des
ribingthe isotherms in the respe
tive limits of the dominantbending (1, �! 0) and stret
hing (2, � !1) energyof the hydro
arbon 
hains. The temperature for all the
urves is T = 300 KA� =  pA0 + p2�kTpKQ3=4 !2 : (14)It follows from (14) that as Q ! 0, we have A� ! 1and, hen
e, the 
rossover to the stret
hing-dominatedregion of areas per lipid is shifted away from the intervalof reasonable areasA: A � A0. Therefore, for too smallstret
hing modulus Q, the bending-dominated depen-den
e P (A) derived in (8) o

upies the whole A axisand 
rossover does not o

ur. It is 
onvenient to eval-uate the relative strength of the stret
hing and bend-ing energies of a 
hain by a dimensionless parameter� = QL2=Kf . Hen
e, the bending-dominated isothermis marked 1 in Fig. 2. In the opposite limit K ! 0,it follows from (14) that A� ! A0, i.e., the whole Aaxis is o

upied by the stret
hing-dominated region,and the 
orresponding stret
hing-dominated isothermderived in (9) is marked 3 in Fig. 2.Isotherm 2 in Fig. 2 exhibits the 
rossover fromthe bending-dominated region at small areas per lipid,A � A�, to the stret
hing-dominated interval at greaterareas, A � A�. As follows from Eq. (14), the bending-166
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hain 
rossover : : :dominated region A0 � A � A� shrinks when the tem-perature T de
reases.It turns out that more informative than isothermsthemselves are the plots of their logarithmi
 derivativespresented in Fig. 3, d lnPt=d ln(A � A0) � ��(A) vs.A=A0. This be
omes obvious after writing isothermequations (12) and (13) in the limit A! A0:Pt � 4�1=3(kBT )4=3LA1=303K1=3f (A�A0)�5=3;� = 5=3; � � 1; (15)Pt � 16�(kBT )2LA0Q (A�A0)�3;� = 3; � � 1: (16)Hen
e, by �tting the experimental isotherm of a lipidbilayer with the hyperbolas in Eq. (15) or Eq. (16), itis possible, in prin
iple, to determine whi
h 
ase, � � 1or � � 1, 
orresponds to the state of the lipid bilayer.Subsequently, the relevant e�e
tive �mi
ros
opi
� elas-ti
 moduli Kf and Q of an individual lipid 
hain 
an bededu
ed using Eqs. (15) and (16), whi
h 
ontain theseparameters as prefa
tors.5. CHAIN ORDER PARAMETER ANDMACROSCOPIC ELASTIC MODULI OF ALIPID BILAYER FROM THE STRINGMODELTo make numeri
al estimates based on our modelof a lipid (bi)layer, Eq. (1), we use the following pa-rameters: 
hain length L = 15Å, 
hain in
ompressiblearea A0 = 20Å2, and T0 = 300 K as the referen
e tem-perature. The 
hain �exural rigidity is de�ned as [27℄Kf = EI , where E � 0:6 GPa is the 
hain Young mod-ulus [28℄ and I = A20=4� is the (geometri
) moment ofinertia. The �exural rigidity 
an also be evaluated fromthe polymer theory [29℄ asKf = kBT lp, where lp � L=3is the 
hain persisten
e length [28℄. Both estimates ap-proximately give Kf � kBTL=3 at the 
hosen L andT = T0. The value of the stret
hing modulus Q 
anbe estimated using energy fun
tional (1) and assumingthat both 
ontributions due to bending and stret
hingenergies are of the same order; this yields Q � 10�6�10�5 dyn.Di�erentiation of Pt(A) gives the area 
ompressibil-ity modulus Ka = �AdPt(A; T )=dA as a fun
tion ofthe area per 
hain and temperature. Analyti
 expres-sions for this modulus are then derived from Eqs. (12)and (13):

Ka = V kT ��kBT4Kf �1=3 ���A�3=2 �pA�pA0 ��5=3++ 59A�1 �pA�pA0 ��8=3� ; � � 1; (17)Ka = 3�V (kT )2Q �A�3=2 �pA�pA0 ��3++ A�1 �pA�pA0 ��4� ; � � 1: (18)Equation (17) is valid in the area interval with domi-nant bending energy, while Eq. (18) applies to the areainterval with dominant stret
hing energy. When areasper lipid are su�
iently 
lose to A0, expressions (17)and (18) 
an be further simpli�ed by retaining only themost diverging terms. In this way, we 
on
lude thatunder a de
rease in the area per lipid A (shrinking ofthe bilayer), the dependen
e of the area 
ompressibil-ity modulus on the area per lipid Ka(A) must 
hangefrom Ka � (A�A0)�4 in the stret
hing-dominated re-gion to Ka � (A � A0)�8=3 in the bending-dominatedregion. The absolute value of the modulus Ka 
al
u-lated using (18) with other parameters T = 300 K,L = 15Å, A0 = 20Å2, Peff = 100 dyn/
m, andQ � 10�6 dyn is Ka � 420 erg/
m2. This theo-reti
al value agrees quite well with the known dataKa � 300 erg/
m2 [26℄. The 
al
ulated temperaturedependen
e of the equilibrium area At for a �xed valueof � = QL2=Kf � 102 is shown in Fig. 4. From thisdata, we also �nd the temperature 
oe�
ient of areaexpansion KT = dAt=AtdT � 0:9 � 10�3 K�1, in goodagreement with the data in [26; 30℄: KT � 10�3 K�1.It is also interesting to �nd how the area 
ompress-ibility modulus depends on the relative strength of thestret
hing energy with respe
t to the bending energyof the lipid 
hain, whi
h is re�e
ted by the dimension-less parameter � = QL2=Kf introdu
ed above. Ourtheoreti
al results presented in Fig. 5 demonstrate anin
rease in the area 
ompressibility modulus Ka of thelipid bilayer as a fun
tion of �. However, an in
rease inKa by approximately three times ne
essitates the 
or-responding in
rease in the parameter � by three ordersof magnitude. Simultaneously, under su
h an in
reasein �, the equilibrium area per lipid At in the layer de-
reases approximately by a fa
tor of 2, as follows fromour results presented in Fig. 6. The 
urves in Figs. 5and 6 together may be interpreted as lateral �harden-ing� of the lipid layer due to shrinking of the averagenearest-neighbor inter
hain distan
es when stret
hing167
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0:8 0:9 1:0 1:1 1:2T=T01:81:92:02:1At=A0

Fig. 4. The 
al
ulated temperature dependen
e of theequilibrium area per lipid At in the lipid bilayer for the�xed value � � 102 
hara
terizing the ratio of the
hain stret
hing and bending energies. Other param-eters are: T0 = 300 K, L = 15Å, A0 = 20Å2, andPeff = 100 dyn/
m
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Fig. 5. The 
al
ulated area 
ompressibility modulusKaof the lipid bilayer as a fun
tion of the dimensionlessparameter � = QL2=Kf . The other parameters areas in Fig. 4. The greater values of � 
orrespond tothe relative strength of the stret
hing energy of a hy-dro
arbon 
hain in
reasing with respe
t to its bendingenergyenergy is added. This is understandable if we realizethat the stret
hing energy makes wiggling of the lipidtails energeti
ally unfavorable. This, in turn, �pushes�the lipid layer 
loser to a gel-like state with a higherarea density of lipids. This semi-intuitive explanationis further supported by our 
al
ulations of the 
hain
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Fig. 6. The 
al
ulated equilibrium area per lipid Atin the lipid bilayer as a fun
tion of the dimensionlessparameter � = QL2=Kf 
hara
terizing the relativestrength of the stret
hing and bending energies of theindividual hydro
arbon 
hains in the lipid bilayer. Thegreater values of � 
orrespond to the relative strengthof the stret
hing energy of a hydro
arbon 
hain in
reas-ing with respe
t to its bending energy. The other pa-rameters are as in Fig. 4order parameterS(�) = 12 �3h
os2 �i � 1� ;where the lo
al tangent angle �(z) is averaged alongthe length of the 
hain 0 � z � L and the thermody-nami
 average over di�erent 
hain 
onformations is alsoperformed. In 
al
ulations, we use the approximate re-lation valid for small deviations of the 
hain from theverti
al straight line (parallel to the z axis in Fig. 1):1� h
os2 �i � htg2 �i / h(X 0(z))2i == 12� �=aZ��=a q2TEq dq: (19)Be
ause the order parameter is in the range0 � S(�) � 1, the approximate relation in Eq. (19)is valid as long as deviations of the 
hains from thestraight line are small:� � phX2(z)iL � 1:Thus, besides being an important 
hara
teristi
 of theprevailing 
onformations of the 
hains in the lipid bi-layer, the order parameter provides a 
onsisten
y 
he
k.The results of 
al
ulations are presented in Fig. 7. It168
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rossover : : :
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Fig. 7. The 
al
ulated 
hain order parameterS(�) = 1=2 �3h
os2 �i � 1� as a fun
tion of the areaper lipid in a lipid (bi)layer. A0 is the in
ompress-ible area of the hydro
arbon 
hain. The lo
al tangentangle �(z) is averaged over the length of the 
hain0 � z � L and over di�erent 
hain 
onformations.Curve 1 (SK(�), � ! 0) 
orresponds to the dominantbending energy of the 
hains; 
urve 2 (SQ(�), � !1)
orresponds to the dominant stret
hing energy of the
hains; 
urve 3 (SP(�), � � 102) 
orresponds to anintermediate 
ase and shows a 
rossover between the
urves drawn in the two limits mentioned above. Theother parameters are as in Fig. 4is easier to understand the origin of the di�erent limit
urves in Fig. 7 when Eq. (19) is rewritten using thede�nition given after Eq. (3):Eq = Kfq4 +Qq2 +B: (20)Then, in the limit as � ! 0, when bending energydominates, the term proportional to q2 in Eq vanishes.Simultaneously, due to the bending energy 
ontribu-tion (� Kfq4), the integral in Eq. (19) 
onverges atsmall wave ve
tors q � (B(A)=Kf )1=4, leading to a de-
rease in the order parameter with in
reasing the areaper lipid: S(�) � 1� 
onst (B(A))�1=4 ;where B(A) � (A�A0)�8=3 in a

ordan
e with Eq. (8).In the opposite limit � ! 1, when stret
hing energydominates, we obtain the following expression for theintegral in Eq. (19):

h(X 0(z))2i = 12� �=aZ��=a q2dqQq2 +B(A) == TaQ  1�sBQ LN� ar
tg rQB N�L !! : (21)Hen
e, in the limit pB(A)=QL=N� � 1, i.e.,as A ! A0, we �nd h(X 0)2i ! 0, and there-fore S(�)�!1 ! 1. In the opposite limitpB(A)=QL=N� � 1, i.e., when A su�
iently ex
eedsA0, h(X 0)2i � NT=LQ, and hen
e the order parameteris pra
ti
ally area-independent, S(�)�!1 � 
onst < 1,as seen in Fig. 7, where S(�)�!1 � SQ be
omes �atas A=A0 in
reases. In the intermediate 
ase (see 
urve3 ), the order parameter as a fun
tion of the area perlipid interpolates qualitatively between the two limitdependen
es just des
ribed.Finally, we observe that as follows from Fig. 7, ourapproximation of small deviations of the 
hain from astraight line is valid with the 
hosen numeri
al valuesof the basi
 parameters of the lipids up to areas perlipid A=A0 � 3, be
ause the deviation of the order pa-rameter S(�) from 1 in all the 
onsidered regimes turnsout to be small: 1� S(�) � 0:3.6. CONCLUSIONSWe derived analyti
 expressions for the pressure�area isotherms of a lipid bilayer using the stringmodel of hydro
arbon 
hains that in
ludes �exuraland stret
hing moduli of a single 
hain and the self-
onsistent entropi
 repulsion a
ting between the 
hainsin the lipid bilayer. A 
rossover on the pressure�areaisotherm is predi
ted to arise due to the 
ompetitionbetween bending and stret
hing 
ontributions tothe total 
onformational energy of the individual
hains. A theoreti
al method of the data analysisis proposed that in prin
iple permits dedu
ing themi
ros
opi
 e�e
tive elasti
 moduli of the individuallipid mole
ules by studying pressure�area isothermsof the ma
ros
opi
 lipid (bi)layer. The appli
ability
riteria and 
he
ks of the theory using 
omparisonwith known experimental and numeri
al simulationdata for lipid bilayers are presented. A generalizationof the proposed model to the des
ription of spatiallyinhomogeneous thermodynami
 states of lipid bilayersis in progress.The authors are grateful to M. Deserno for his use-ful 
omments on the preprint of this work.169
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