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We find theoretically that competition between ~ K;q* and ~ Qg terms in the Fourier-transformed confor-
mational energy of a single lipid chain, in combination with interchain entropic repulsion in the hydrophobic
part of the lipid (bi)layer, may cause a crossover on the bilayer pressure—area isotherm P(A) ~ (A — Ag)™“.
The crossover manifests itself in the transition from o = 5/3 to @ = 3. Our microscopic model represents
a single lipid molecule as a worm-like chain with a finite irreducible cross-section area Ag, a flexural rigidity
Ky, and a stretching modulus @ in a parabolic potential with the self-consistent curvature B(A) formed by
entropic interactions between hydrocarbon chains in the lipid layer. The crossover area A™ obeys the relation
Q//K;B(A*) ~ 2. We predict a peculiar possibility of deducing the effective elastic moduli K and @ of
an individual hydrocarbon chain from the analysis of the isotherm with such a crossover. Also calculated is
crossover-related behavior of the area compressibility modulus K4, the equilibrium area per lipid A;, and the

chain order parameter S(6).
PACS: 87.16.Dg, 87.15.Kg, 31.15.Kb
1. INTRODUCTION

Studying thermodynamics of lipid bilayers that
form biological membranes is of fundamental interest
for understanding the relation between the membrane
state and the functioning of integral membrane pro-
teins [1-3]. The latter are of vital importance for many
processes in living cells. Experimental data in lipid
membranes indicate the presence of a crossover in the
pressure—area isotherms P(A) ~ (A—Ay)~* [4,5]. For-
mally, this means that the exponent a changes substan-
tially within some finite interval along the area axis A.
A substantial amount of theoretical work has been de-
voted to the description of the thermodynamic prop-
erties of lipid layers including pressure—area isotherms,
the chain order parameter as a function of temperature,
specific heat, etc. Theoretical approaches range from
phenomenological Landau-de Gennes theory [6] to sur-
face equations of states involving clustering [7-10] and
raft formation [11]. Molecular dynamics [12] and Monte
Carlo simulations [13] have also been used. Besides, the
models were considered with a phase transition due to
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a change in the number of gauche conformations of the
hydrocarbon chains [14-20], as well as models focused
on the role of the excluded-volume interactions between
the chains [21,22]. These factors were also combined
in the form of an additive area-dependent contributions
to the surface pressure [20].

In the previous work [23], a theoretical method was
proposed for calculating the thermodynamic character-
istics of a lipid bilayer starting from a “microscopic”
model of a smectic array of semi-flexible finite-length
strings with a given flexural rigidity (see Fig. 1). The
string is an idealized model of the hydrocarbon chain.
The entropic repulsion between the neighboring chains
in a lipid membrane is modeled with an effective po-
tential. This entropic potential is then found self-
consistently, by minimizing the free energy of the bi-
layer, which is in turn calculated using path integration
over possible conformations of the strings. As a result,
the lateral pressure profile inside the lipid bilayer was
derived analytically, together with the area compress-
ibility modulus and the temperature coefficient of area
expansion of the membrane.

In [23], only the bending energy of strings and the
entropic repulsion were included in the conformational
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energy functional. In the Fourier-transformed represen-
tation, the bending energy is proportional to ~ Kzq*,
where ¢ is the wave vector along the chain axis and K
is the chain flexural rigidity modulus. The resulting
pressure—area isotherm of the lipid bilayer was derived
in the form of a power law P;(A) ~ (4 — Ag)~%, with
the constant exponent a = 5/3. The lateral pressure
of the lipid hydrocarbon chains (tails) P;(A) is here
expressed as a function of the area per lipid A in the
layer at a given temperature, with Ag being the chain
incompressible cross-section area. In the present work,
we add the stretching energy of the string to the energy
functional [24]. In the Fourier-transformed representa-
tion, this energy is proportional to ~ Qgq?, where Q
is the chain stretching modulus. Hence, our new chain
energy functional contains the sum K¢q* +Qq> + B(A),
where B(A) is the self-consistently determined curva-
ture of a parabolic effective entropic repulsive potential
felt by a single chain due to surrounding chains in the
lipid layer. The bending (flexural) energy dominates at
large wave vectors ¢, while the stretching energy domi-
nates in the small-¢g limit. The entropic repulsion term
B(A) sets an upper limit for the wave vectors ¢ that are
essential for thermodynamics. The entropic repulsion
increases as the area per lipid in the layer decreases,
i.e., the parameter B(A) becomes greater as A — Ay,
making the large ¢ important. As a result, the bend-
ing energy term ~ K;q' dominates, and we recover
the pressure—area isotherm in [23] with the exponent
a = 5/3. On the other hand, when the area per lipid
increases, the entropic repulsion becomes weaker, and
the parameter B(A) becomes smaller. Hence, the im-
portant ¢ also become smaller and the stretching energy
term ~ Qg¢> dominates. As a result, a new exponent
arises [24]: a = 3, corresponding to the stretching-
dominated conformational energy of the strings (Figs. 2
and 3). This limit value of the exponent is in agree-
ment with the result in [25], where it was derived using
a polymer entropy model (harmonic regime) for lipid
bilayer surface pressure and confirmed with bilayer elas-
ticity measurements.

We find that the crossover between the two
area-per-lipid regions with different values of the
exponent a occurs at the area per lipid A* determined
from the condition @/\/KyB(A*) ~ 2. The physical
states of the lipid layer in the two regions separated
by crossover differ by a substantial change in the value
of the chain order parameter, which characterizes
deviations of the chain from the straight line (see
Fig. 7). Also calculated are elastic moduli of the
membrane and their dependences on temperature and
on the microscopic elastic moduli of the individual

chains constituting the lipid bilayer (see Figs. 4-6).
Finally, we discuss how the fitting of experimental
isotherms of lipid bilayers to our theoretical isotherms
may help to deduce the elastic moduli Ky and @ of
individual lipid chains constituting the membrane.

The plan of the paper is as follows. In Sec. 2, we
formulate the physical model [24] of a bilayer and re-
view the path-integral method of summation over all
conformations of an idealized hydrocarbon chain [23].
In Sec. 3, we derive and analytically solve (in two dif-
ferent limits) a self-consistency equation for the curva-
ture B(A) of the effective parabolic entropic potential
in the layer. The pressure—area isotherms are then de-
rived in analytic form. In Secs. 4-6, we present the
results of calculations of the thermodynamic and elas-
tic characteristics of the whole bilayer that follow from
our microscopic model. In the Conclusions, we discuss
the correspondence of the theoretical results with avail-
able experimental data, and consider the applicability
region of the approximations that we use.

2. ENERGY FUNCTIONAL OF A LIPID
LAYER: THE STRING MODEL

A hydrocarbon chain (see Fig. 1) is modeled as a
flexible string with the flexural rigidity K and stretch-
ing modulus @; entropic repulsion from surrounding
lipid chains is modeled via a parabolic potential with
the self-consistently determined curvature B(= B(A)):

L 2 2
E:/(Kf (%) +Q<fl—5) +BR2> dz, (1)
0

where L is the chain length. We consider only small de-
viations of the chains from a straight line: |R(z)| < L.
This condition is satisfied if

®2G) _ ( ksT '
L - LZPEff '

where P is the effective tension in the bilayer and
kp is the Boltzmann constant. The returning force
—BR(z) acts against the deviation R(z) of the chain
from the vertical straight line, where the coordinate
z measures the depth inside the lipid layer with the
hydrophilic (polar) heads residing at the layer sur-
face z = 0, while hydrophobic (nonpolar) tails formed
from hydrocarbon chains constitute the body of the
slab 0 < z < L. Here, R(z) is the vector in the
xy plane characterizing the deviation from the z axis:
R%(z) = X2(2) + Y2(2).

The energy of a single string therefore consists of
three parts: bending, stretching and effective entropic
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Fig.1. The model of a lipid membrane in the mean-field approximation. Left panel: sketch of the lipid monolayer (the

mirror-symmetric part of the bilayer is not shown). Hydrocarbon tails of lipid molecules form the hydrophobic part of the lipid

monolayer. Hydrophilic polar heads (filled ellipses) form the hydrophobic—hydrophilic interface. Right panel: the mean-field

flexible-string model of a hydrophobic layer. The arrows indicate entropic forces +=BX acting on the hydrocarbon chain in
the self-consistent entropic potential BX?, which arises due to surrounding neighbors

potential energies. In equilibrium, the effect of the en-
tropic repulsion is compensated by the interchain at-
traction due to van der Waals interactions and by the
surface tension energy yA, where v is the surface ten-
sion at the hydrophobic—hydrophilic interface [4]:

Pt(A(T)):Pef:'Y'i'Phg"'PvdWa

where A(T) is the equilibrium area per lipid at a given
temperature. The total tension in the bilayer is zero.
The integral

L
Pt :/Ht(z) dz
0

of the repulsive (chain) part of the lateral pressure
profile II;(z) over the bilayer hydrophobic region is
equal to the balancing effective tension in the bi-
layer P, which, besides the surface tension 7, in-
cludes the head group repulsion of electrostatic ori-
gin Ppg, the pressure arising from van der Waals
interactions between chains P,qw, etc. We choose
Py = 100 dyn/cm > v ~ 50 dyn/cm, because at-
tractive dispersion interactions between hydrocarbon
chains are included in the effective surface tension [26].
In general, at room temperature, the effective sur-
face tension for a typical lipid bilayer is in the range
50 < Py < 150 dyn/cm [2,26]. Considering a single
chain consisting of IV links of equal length a for simplic-
ity, we rewrite Fourier-transformed energy functional
(1) as
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q

where summation over the wave vector ¢ ranges the in-
terval 27 /a with the step 27 /L, E, = K;q¢* + Qq*> + B,
and R, is the Fourier transform of the function R (z).
Because we consider the membrane that is isotropic in
the xy plane, the z- and y-components of the vector
field R(z) make equal contributions to the partition
function of the string, and therefore

7 =2,7,=272=
2
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LE .
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The free energy F = —kpgT In Z can then be expressed
as

kpT
2LE,

I

q
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q

where the free energy of a free single chain is subtracted
for the convergence of the sum.
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3. PRESSURE-AREA ISOTHERM OF THE
LIPID LAYER EXPRESSED THROUGH THE
CURVATURE OF THE INTER-CHAIN
ENTROPIC POTENTIAL

The self-consistent equation for the curvature B
of the parabolic potential modeling the interchain en-
tropic repulsion in the lipid layer takes the form

OF

6—B=2kBTZEi_
_(va-vm)

— 1 0

where Ag = Vp/L is the incompressible area of the
chain cross section, Vj is the incompressible volume of

the lipid chain, and (VA - vAg )2
by the string formed by the centers of the chain cross
sections. Obviously, when the area per lipid A is close
to the incompressible area Ag, the self-consistent cur-
vature B is large, and we can therefore pass from sum-
mation to the integration over the wave vector ¢ in

Eq. (5):

is the area swept

x/a
(VA-VA) =ksT / a (6)
—na ]

The resulting self-consistency equation for the curva-

ture B is
2
(vi-vm) -
kT o \
T B
1+ — (7
-2 [’1/433/4 ( 2./BK; ) @

This equation is solved numerically, but analytic re-
sults can also be obtained in the two limit cases: { < 1
and & > 1, where £ = /2,/BK . These two limits re-
spectively correspond to the domination of the bending
energy and of the stretching energy:

1 a3 (kgT)*/? 8/3
B(A) = — VA-\/4y
'f/3 \/_ ( ) (8)
£,
B4y = T BT (’“BT (VA-va) . o

§>>1.

Relation (8) coincides with the result in Eq. (A.5)
in [23], which was obtained by a more detailed method
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without using the Fourier-transformed version of en-
ergy functional (2) and without taking the stretching
energy into account. As long as £ = £(A), due to the
dependence of the curvature B = B(A) on the area A,
the crossover from limit expression (8) to limit expres-
sion (9) may occur at some particular area per lipid
A* determined from the condition £(A*) ~ 1. This
crossover area A* is found below (see Eq. (14)).

Substituting the self-consistent solution B = B(A)
in chain free energy (4), we find the lateral pressure—
area-per-lipid isotherm for the hydrophobic part of the
lipid (bi)layer:

_ OAF(A) 0B 2kpT
=51 =aa E, (10)
Because the sum in the right hand side of Eq. (10) also

enters self-consistency equation (5), the pressure—area
isotherm can be expressed in the closed analytic form

=g ! (\/Z—\/A_0)2LaBA

with the curvature B(A) directly involved.

P (A)

(11)

4. CROSSOVER ON THE LIPID LAYER
ISOTHERM: COMMUNICATION BETWEEN
“MACRO” AND “MICRO”

It is remarkable that crossover in the isotherm of a
lipid (bi)layer in principle provides an intriguing possi-
bility to follow the link between macro- and microscopic
properties of the biomembrane. Namely, it is possible
to deduce the effective elastic moduli of the individual
lipid chains constituting the bilayer from the pressure—
area isotherm of the entire macroscopic system.

To explain the deduction “recipe” (see Eqs. (15) and
(16) below), we consider theoretical predictions follow-
ing from the general model described in the previous
section. First, we successively substitute Eqs. (8) and
(9) in general equation (11) and (in the limit of small
enough areas per lipid, A/Ag ~ 1) find analytic for-
mulas describing the lateral pressure—area isotherms of
the lipid layer:

P2 (wkpT\'?
kBT_§<4Kf> 8
~5/3
x VAT (VA= A) T, g1, (12)
Pt _ 271']{/'BT %
ksT  Q

x VA3 (\/Z— \/A_o)_3, £€>1, (13)



I. N. Krivonos, S. I. Mukhin

MITD, Tom 133, Bem. 1, 2008

B
Po

15

10

0
1.5 2.0 2.5 3.0 3.5
A/Ao
Fig. 2. The calculated pressure—area-per-lipid

isotherms for the lateral pressure P; in the hydropho-
bic (tails) part of the lipid bilayer with different
relative strengths of the single-chain stretching and
bending energies characterized by the dimensionless
parameter 0 = QL?/K;. lsotherm 1 (0 — 0)
corresponds to the dominating bending energy of the
chains (see Eq. (12)); curve 3 (0 — o0) corresponds
to the dominating stretching energy of the chains
(see Eq. (13)). Curve 2 (o 10?) corresponds to
an intermediate case and shows a crossover between
the two isotherms drawn in the two limits. Aq is the
incompressible area of the hydrocarbon chain. The
temperature for all the curves is T = 300 K

~
~

where V = AZ,, ~ AL is the (conserved) volume per
lipid molecule in the hydrophobic part of the lipid layer,
Zm is the actual thickness of the hydrophobic part of
the lipid layer, and Z,, ~ L in the limit of small devi-
ations from the straight line of the string modeling the
chain. Asymptotic relation (12), which is valid for the
bending-dominated free energy, is the same as in [23],
but relation (13) is new and corresponds to domination
of the stretching energy. The crossover region between
these two limit cases is difficult to express analytically,
but the result of numerical calculation based on Egs. (7)
and (11) is presented in Fig. 2 together with the two
curves corresponding to the analytic results in (12) and
(13).

Before considering Figs. 2 and 3, we find the
crossover area per lipid A* using the definition

§(A")=Q/2y/B(A*)Ky ~ 1

and substituting asymptotic equations (8) and (9) for
B(A*), which both lead to the result
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Fig.3. The same cases as in Fig. 2, but for the cal-
culated logarithmic derivative of the lateral pressure
with respect to the area per lipid. The logarithmic
derivative gives the value of the exponent —a(A) in
the limit A — Ag in the isotherm equation of state
of the lipid bilayer: P ~ (A — Ag)~*™). Curve 2
(0 =~ 10%) demonstrates a crossover between the expo-
nents « = 5/3 (4) and o = 3 (5) that are shown with
straight dashed lines. The other two curves are the ex-
act dependences given by Eqgs. (12) and (13) describing
the isotherms in the respective limits of the dominant
bending (1, 0 — 0) and stretching (2, 0 — oo) energy
of the hydrocarbon chains. The temperature for all the
curves is T'= 300 K
>2

It follows from (14) that as @ — 0, we have A* — oo
and, hence, the crossover to the stretching-dominated
region of areas per lipid is shifted away from the interval
of reasonable areas A: A > Aq. Therefore, for too small
stretching modulus @, the bending-dominated depen-
dence P(A) derived in (8) occupies the whole A axis
and crossover does not occur. It is convenient to eval-
uate the relative strength of the stretching and bend-
ing energies of a chain by a dimensionless parameter
o0 = QL?/Ky. Hence, the bending-dominated isotherm
is marked 1 in Fig. 2. In the opposite limit K — 0,
it follows from (14) that A* — Ay, i.e., the whole A
axis is occupied by the stretching-dominated region,
and the corresponding stretching-dominated isotherm
derived in (9) is marked 3 in Fig. 2.

Isotherm 2 in Fig. 2 exhibits the crossover from
the bending-dominated region at small areas per lipid,
A < A*, to the stretching-dominated interval at greater
areas, A > A*. As follows from Eq. (14), the bending-

V2rkTVEK

o (1)

A*:<\/A_0+
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dominated region 4g < A < A* shrinks when the tem-
perature T' decreases.

It turns out that more informative than isotherms
themselves are the plots of their logarithmic derivatives
presented in Fig. 3, dIn P;/dIn(A — Ap) ~ —a(A) vs.

~

A/Ap. This becomes obvious after writing isotherm
equations (12) and (13) in the limit A — Ag:
1/3 4/37 41/3
o~ 4m' 3 (kpT)/P LA, (4 g3,
3K}/ (15)
a=5/3, &K1,
2
P 167 (kgT)*LAg (A 40)",
Q (16)
a=3, ¢(>1

Hence, by fitting the experimental isotherm of a lipid
bilayer with the hyperbolas in Eq. (15) or Eq. (16), it
is possible, in principle, to determine which case, £ < 1
or £ > 1, corresponds to the state of the lipid bilayer.
Subsequently, the relevant effective “microscopic” elas-
tic moduli Ky and @ of an individual lipid chain can be
deduced using Egs. (15) and (16), which contain these
parameters as prefactors.

5. CHAIN ORDER PARAMETER AND
MACROSCOPIC ELASTIC MODULI OF A
LIPID BILAYER FROM THE STRING
MODEL

To make numerical estimates based on our model
of a lipid (bi)layer, Eq. (1), we use the following pa-
rameters: chain length L = 15 A, chain incompressible
area Ag = 20 A2., and Ty = 300 K as the reference tem-
perature. The chain flexural rigidity is defined as [27]
Ky = EI, where ' ~ 0.6 GPa is the chain Young mod-
ulus [28] and I = A3 /47 is the (geometric) moment of
inertia. The flexural rigidity can also be evaluated from
the polymer theory [29] as Ky = kgTl,, wherel, ~ L/3
is the chain persistence length [28]. Both estimates ap-
proximately give Ky ~ kgTL/3 at the chosen L and
T = Ty. The value of the stretching modulus @ can
be estimated using energy functional (1) and assuming
that both contributions due to bending and stretching
energies are of the same order; this yields Q ~ 1075—
10~ dyn.

Differentiation of P;(A) gives the area compressibil-
ity modulus K, = —AdP,(A,T)/dA as a function of
the area per chain and temperature. Analytic expres-
sions for this modulus are then derived from Eqs. (12)
and (13):

167
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WkBT

1/3
4K >

<A V2 (VA-VA)
‘1(x/Z—\/A_0)8/3>7 <1, (17)

K, = VkT (

5/3

3aV (kT)?

K, =
Q

<A 2 (VA VAg) 4
‘1(\/2—\/A_0)4>, £ 1. (18)

Equation (17) is valid in the area interval with domi-
nant bending energy, while Eq. (18) applies to the area
interval with dominant stretching energy. When areas
per lipid are sufficiently close to Ag, expressions (17)
and (18) can be further simplified by retaining only the
most diverging terms. In this way, we conclude that
under a decrease in the area per lipid A (shrinking of
the bilayer), the dependence of the area compressibil-
ity modulus on the area per lipid K,(A) must change
from K, ~ (A — Ag) % in the stretching-dominated re-
gion to K, ~ (A — Ag)~8/3 in the bending-dominated
region. The absolute value of the modulus K, calcu-
lated using (18) with other parameters 7' = 300 K,
L = 15A, Ay = 20A2% Py = 100 dyn/cm, and
Q ~ 107 dyn is K, ~ 420 erg/cm®. This theo-
retical value agrees quite well with the known data
K, =~ 300 erg/cm? [26]. The calculated temperature
dependence of the equilibrium area A; for a fixed value
of 0 = QL?/Ky ~ 107 is shown in Fig. 4. From this
data, we also find the temperature coefficient of area
expansion K7 = dA;/AdT ~ 0.9-1073 K~!, in good
agreement with the data in [26,30]: Kr ~ 1073 K1
It is also interesting to find how the area compress-
ibility modulus depends on the relative strength of the
stretching energy with respect to the bending energy
of the lipid chain, which is reflected by the dimension-
less parameter 0 = QL?/K; introduced above. Our
theoretical results presented in Fig. 5 demonstrate an
increase in the area compressibility modulus K, of the
lipid bilayer as a function of 0. However, an increase in
K, by approximately three times necessitates the cor-
responding increase in the parameter o by three orders
of magnitude. Simultaneously, under such an increase
in o, the equilibrium area per lipid A; in the layer de-
creases approximately by a factor of 2, as follows from
our results presented in Fig. 6. The curves in Figs. 5
and 6 together may be interpreted as lateral “harden-
ing” of the lipid layer due to shrinking of the average
nearest-neighbor interchain distances when stretching
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Fig.4. The calculated temperature dependence of the

equilibrium area per lipid A; in the lipid bilayer for the

fixed value o ~ 10% characterizing the ratio of the

chain stretching and bending energies. Other param-

eters are: Tp = 300 K, L = 15A, 4y = 20A?, and
P =100 dyn/cm

K., erg/cm2
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Fig.5. The calculated area compressibility modulus K,

of the lipid bilayer as a function of the dimensionless

parameter ¢ = QL?/K;. The other parameters are

as in Fig. 4. The greater values of o correspond to

the relative strength of the stretching energy of a hy-

drocarbon chain increasing with respect to its bending
energy

energy is added. This is understandable if we realize
that the stretching energy makes wiggling of the lipid
tails energetically unfavorable. This, in turn, “pushes”
the lipid layer closer to a gel-like state with a higher
area density of lipids. This semi-intuitive explanation
is further supported by our calculations of the chain
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Fig.6. The calculated equilibrium area per lipid A;
in the lipid bilayer as a function of the dimensionless
parameter o = QLQ/Kf characterizing the relative
strength of the stretching and bending energies of the
individual hydrocarbon chains in the lipid bilayer. The
greater values of o correspond to the relative strength
of the stretching energy of a hydrocarbon chain increas-
ing with respect to its bending energy. The other pa-
rameters are as in Fig. 4

order parameter

S(6) (3(cos® ) — 1),

DO | =

where the local tangent angle 6(z) is averaged along
the length of the chain 0 < z < L and the thermody-
namic average over different chain conformations is also
performed. In calculations, we use the approximate re-
lation valid for small deviations of the chain from the
vertical straight line (parallel to the z axis in Fig. 1):

1 — (cos” ) = (tg” ) o ((X'(2))?)

. w/a 2
q
= — —dg. (19
5 / E, % (19)
—m/a
Because the order parameter is in the range

0 < S(f) < 1, the approximate relation in Eq. (19)
is valid as long as deviations of the chains from the
straight line are small:

(X2(2))
L

0 ~ < 1.

Thus, besides being an important characteristic of the
prevailing conformations of the chains in the lipid bi-
layer, the order parameter provides a consistency check.
The results of calculations are presented in Fig. 7. It
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Fig.7. The calculated chain order parameter

S(8) = 1/2(3(cos® @) — 1) as a function of the area
per lipid in a lipid (bi)layer. Ag is the incompress-
ible area of the hydrocarbon chain. The local tangent
angle 6(z) is averaged over the length of the chain
0 < z < L and over different chain conformations.
Curve 1 (Sk(#), o — 0) corresponds to the dominant
bending energy of the chains; curve 2 (Sg (), 0 — o)
corresponds to the dominant stretching energy of the
chains; curve 3 (Sx2(8), o =~ 10°) corresponds to an
intermediate case and shows a crossover between the
curves drawn in the two limits mentioned above. The
other parameters are as in Fig. 4

is easier to understand the origin of the different limit
curves in Fig. 7 when Eq. (19) is rewritten using the
definition given after Eq. (3):

E,=Ki¢* +Q¢* + B. (20)

Then, in the limit as ¢ — 0, when bending energy
dominates, the term proportional to ¢ in E, vanishes.
Simultaneously, due to the bending energy contribu-
tion (~ Kyg*), the integral in Eq. (19) converges at
small wave vectors ¢ < (B(A)/K;)'/*, leading to a de-
crease in the order parameter with increasing the area
per lipid:

S(6) ~ 1 — const (B(A)) 1/,

where B(A) ~ (A—Ap)~8/% in accordance with Eq. (8).
In the opposite limit ¢ — oo, when stretching energy
dominates, we obtain the following expression for the
integral in Eq. (19):

w/a
ey L ¢*dq
(X =5 [ g2
—7/a
T B Q Nr
= e} (1—\/;N—arctg (@T)) . (21)

Hence, in the limit /B(A)/QL/N7m > 1, ie,
as A — Ap, we find ((X")?) — 0, and there-
fore S(@)pooo — 1. In the opposite limit
/B(A)JQL/Nm <« 1, i.e., when A sufficiently exceeds
Ao, ((X")?) ~ NT/LQ, and hence the order parameter
is practically area-independent, S(6), 00 & const < 1,
as seen in Fig. 7, where S(6),—0c = Sg becomes flat
as A/Ap increases. In the intermediate case (see curve
3), the order parameter as a function of the area per
lipid interpolates qualitatively between the two limit
dependences just described.

Finally, we observe that as follows from Fig. 7, our
approximation of small deviations of the chain from a
straight line is valid with the chosen numerical values
of the basic parameters of the lipids up to areas per
lipid A/Aq < 3, because the deviation of the order pa-
rameter S(f) from 1 in all the considered regimes turns
out to be small: 1 —5(0) <0.3.

6. CONCLUSIONS

We derived analytic expressions for the pressure—
area isotherms of a lipid bilayer using the string
model of hydrocarbon chains that includes flexural
and stretching moduli of a single chain and the self-
consistent entropic repulsion acting between the chains
in the lipid bilayer. A crossover on the pressure—area
isotherm is predicted to arise due to the competition
between bending and stretching contributions to
the total conformational energy of the individual
chains. A theoretical method of the data analysis
is proposed that in principle permits deducing the
microscopic effective elastic moduli of the individual
lipid molecules by studying pressure-area isotherms
of the macroscopic lipid (bi)layer. The applicability
criteria and checks of the theory using comparison
with known experimental and numerical simulation
data for lipid bilayers are presented. A generalization
of the proposed model to the description of spatially
inhomogeneous thermodynamic states of lipid bilayers
is in progress.

The authors are grateful to M. Deserno for his use-
ful comments on the preprint of this work.
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