К ТЕОРИИ ВЗАИМОДЕЙСТВИЙ И ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ АТОМОВ УГЛЕРОДА В ГПУ- И ГЦК-ЖЕЛЕЗЕ

В. Г. Вакс^{*}, К. Ю. Хромов

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 11 апреля 2007 г.

Выведены общие выражения для деформационных взаимодействий атомов внедрения в ГПУ-сплаве внедрения MeX_c с учетом взаимодействий Me–X любой протяженности. Эти выражения используются для количественных оценок как деформационных, так и химических взаимодействий атомов углерода в ГПУ-сплавах железо-углерод. Результаты показывают, что взаимодействия атомов внедрения в ГПУ-сплавах заметно отличаются от аналогичных взаимодействий в кубических сплавах, являясь, в частности, более анизотропными, более протяженными и резче осциллирующими с расстоянием. Даны аналитические выражения для термодинамических вкладов атомов внедрения в неупорядоченных сплавах MeX_c с использованием как простого приближения среднего поля, так и более точных кластерных методов. Сравнение результатов этих расчетов для аустенита с моделированием методом Монте-Карло и с экспериментами показывает, что точность приближения среднего поля в сплавах MeX_c очень низка вследствие наличия сильного отталкивания соседних атомов внедрения. В то же время точность кластерных методов остается высокой при всех исследовавшихся температурах и концентрациях.

PACS: 65.40.-b, 61.66.Dk

1. ВВЕДЕНИЕ

Развитие микроскопических теорий сплавов внедрения, в частности, сплавов железо-углерод, составляющих основу промышленных сталей, является одной из важных задач физики твердых тел. С фундаментальной точки зрения, сплавы внедрения являются классическим примером сильно-коррелированных систем, которые интенсивно исследуются сейчас во многих разделах физики. Что касается прикладной стороны, развитие методов адекватного теоретического описания равновесных и неравновесных сплавов внедрения является необходимым первым этапом в микроскопических подходах к оптимизации металлургических процессов, разработка которых является весьма актуальной.

Будем обозначать рассматриваемые сплавы внедрения символом MeX_c , где Me означает атом металла, X — атом внедрения, а величина c связана с концентрацией x атомов X соотношением c = x/(1-x). В развитии обсуждаемого микроскопического подхода к теории сплавов MeX_c можно выделить следующие необходимые этапы.

А) Построение достаточно реалистической модели взаимодействий V_{ij} атомов внедрения X, расположенных в позициях внедрения (порах) \mathbf{R}_i и \mathbf{R}_j рассматриваемой кристаллической структуры атомов Me.

В) Разработка адекватных методов вычисления равновесных свойств, в частности, термодинамических потенциалов, атомов X в сплавах MeX_c для выбранной модели взаимодействий V_{ij}.

С) Разработка методов описания эволюции неравновесных сплавов MeX_c, в частности, их диффузионных фазовых превращений.

D) Применение развитых моделей и методов к исследованиям термодинамики и кинетики фазовых превращений в сплавах MeX_c.

В настоящей работе будут исследоваться задачи А и В применительно к сплавам железо-углерод с гексагональной плотноупакованной и гранецентрированной кубической (ГПУ и ГЦК) структурой по атомам железа. Эти структуры для краткости называют соответственно ε -фаза и γ -фаза, так что и

^{*}E-mail: vaks@mbslab.kiae.ru

сплавы МеХ_с на основе этих структур мы будем обозначать как ε -MeX_c и γ -MeX_c, а сплавы γ -FeC_c называют также аустенитом. Исследование данных задач вызывает большой интерес. Так, взаимодействия атомов углерода в ү-железе и их вклады в термодинамику аустенита обсуждались многими авторами (см., например, [1,2] и цитируемую литературу). В частности, в работе Блантера [2] взаимодействия углерода V_{ii} в аустените вычислялись в модели деформационных взаимодействий с короткодействующим отталкиванием, обсуждаемой ниже, а термодинамические вклады этих взаимодействий находились с помощью моделирования методом Монте-Карло. В настоящей работе модель и результаты работы [2] будут использоваться для исследования задачи В, т. е. развития достаточно точных аналитических методов расчета термодинамических свойств сплавов MeX_c в различных структурах.

Для сплавов ε -FeC_c, так же, как и для других сплавов ε -MeX_c, последовательные расчеты взаимодействий V_{ii} в литературе отсутствуют, хотя общим и модельным обсуждениям данных проблем посвящено достаточно много работ [3-5]. В то же время сведения о взаимодействиях углерода в сплавах ε -FeC_c, в частности, в метастабильной гексагональной структуре *є*-Fe₃C, могут представлять большой интерес для физики сталей. В литературе структуру ε -Fe₃C называют ε -карбидом [6], но нам будет удобнее называть ее ε -цементитом. Возможная важность исследований свойств ε-цементита для физики сталей связана с тем, что обычный цементит Fe₃C с 16 атомами в орторомбической элементарной ячейке, образующийся во многих процессах производства сталей [1], близок к ε -цементиту как по структуре, так и по ряду термодинамических свойств [6]. Кроме того, имеется ряд указаний на то, что фазовое превращение аустенита в цементит осуществляется через промежуточную фазу ε -цементита [6]. Поэтому изучение свойств сплавов ε -FeC_c может быть важным этапом в разработке микроскопических теорий высокотемпературных превращений в сталях, в частности, превращений аустенит-цементит и аустенит \rightarrow (феррит + цементит), включая перлитное превращение [1]. Подробнее эти вопросы обсуждаются в другой работе [7].

В разд. 2 мы выводим общие выражения для деформационных взаимодействий атомов внедрения, заполняющих октопоры в ГПУ-металле. Эти выражения обобщают предшествующие результаты [2–5], в частности, на случай протяженных взаимодействий атома внедрения с окружающими его атомами металла. В разд. 3 результаты разд. 2 применяются для модельных расчетов деформационных взаимодействий атомов углерода в сплавах ε -FeC_c, а также для обсуждения на этом примере общих особенностей взаимодействий атомов внедрения в ГПУ-металлах. В разд. 4 развитые ранее кластерные методы [8-10] использованы для аналитических расчетов термодинамических потенциалов атомов внедрения в неупорядоченных сплавах MeX_c, включая аустенит. В разд. 5 результаты разд. 4 применяются к вычислениям термодинамической активности углерода в аустените, с использованием упоминавшейся модели Блантера [2]. При этом сравнение с результатами моделирования методом Монте-Карло позволяет оценить точность различных аналитических методов при расчетах свойств сплавов MeX_c. Основные выводы приводятся в Заключении.

2. ДЕФОРМАЦИОННЫЕ ВЗАИМОДЕЙСТВИЯ АТОМОВ ВНЕДРЕНИЯ В ГПУ-МЕТАЛЛЕ

В этом разделе рассмотрим сначала деформационные взаимодействия в произвольном сплаве внедрения, а затем применим общие формулы к сплавам на основе ГПУ-металлов, в которых порами внедрения являются октаэдрические междоузлия (октопоры). Ранее эти вопросы обсуждались в ряде работ [3–5], но при этом использовался ряд модельных приближений, точность которых не ясна. Ниже мы даем полный вывод всех используемых соотношений.

Распределения атомов Х по порам і удобно задавать с помощью чисел заполнения n_i , равных единице, если пора і занята атомом Х, и нулю, если пора вакантна. При этом в термодинамические функции сплава входят как «фононные» вклады от колебаний всех атомов Ме и Х с частотами, много бо́льшими частот перескока атомов Х между порами, так и «конфигурационные» вклады, описывающие энергии разных распределений $\{n_i\}$, усредненные по быстрому колебательному движению. Эти конфигурационные вклады принято описывать с помощью конфигурационного гамильтониана H_{conf} , имеющего вид суммы различных произведений чисел заполнения $n_i n_j \dots n_k$, коэффициенты при которых называют эффективными взаимодействиями $V_{ij...k}$ [11]:

$$H_{conf}\{n_i\} = \sum_{i>j} V_{ij}n_in_j + \sum_{i>j>k} V_{ijk}n_in_jn_k + \dots \quad (1)$$

Взаимодействия $V_{i...j}$ в гамильтониане (1) включают «химические» вклады $V_{i...j}^c$, которые описыва-

ют изменения энергии при перестановках атомов Х по порам при фиксированных положениях \mathbf{R}_l атомов Ме в узлах «средней», кристаллической, решетки и «деформационные» вклады V_{ij}^d , связанные с локальными искажениями этой решетки, т. е. со смещениями \mathbf{u}_l атомов Ме относительно \mathbf{R}_l , индуцируемыми атомами внедрения. Модели для расчета деформационных взаимодействий, ставящие целью выразить $V_{i...i}^d$ через небольшое число экспериментально измеримых параметров, обсуждались многими авторами [2-5, 12-15]. Несмотря на ряд используемых в таких расчетах упрощений, эти модели могут давать существенную информацию о виде и масштабе деформационных взаимодействий [2,14]. Ниже мы выводим общие выражения для деформационных взаимодействий в сплавах МеХ_с с несколькими атомами Ме в элементарной ячейке, а затем применяем их к сплавам ε -МеХ_c на основе ГПУ-структуры.

Для простоты будем, как обычно [12–14], рассматривать случай разбавленных сплавов, в которых концентрация атомов X мала; возможные обобщения на концентрированные сплавы иллюстрируются в работе [15] и для дальнейшего не существенны. Тогда полную «адиабатическую» (т. е. усредненную по быстрым фононным движениям) энергию $H = H\{n_i, \mathbf{u}_l\}$ можно разложить в ряд как по локальным смещениям \mathbf{u}_l , так и по n_i :

$$H = E_0 + H_c\{n_i\} + \frac{1}{2} \sum_{l,m} u_l^{\alpha} u_m^{\beta} A_{\alpha l,\beta m} - \sum_l u_l^{\alpha} f_{l,i}^{\alpha} n_i. \quad (2)$$

Здесь E_0 — энергия чистого металла, не зависящая от n_i ; слагаемое $H_c\{n_i\}$ описывает упомянутые выше химические взаимодействия атомов X в неискаженной средней решетке; α и β — декартовы индексы, по которым подразумевается суммирование, если они повторяются; и $A_{\alpha l,\beta m}$ — матрица силовых постоянных в среднем кристалле (которую для разбавленных сплавов можно считать той же, что в чистом металле). Последний член в формуле (2), описывающий взаимодействие внедренных атомов и локальных деформаций, называют гамильтонианом Канзаки H_K , а вектор $\mathbf{f}_{l,i}$ в этом слагаемом — силой Канзаки.

В рассматриваемых кристаллах с неодноатомной элементарной ячейкой координаты атомов и пор имеют вид суммы координаты ячейки **R** и соответствующего базисного вектора *р*:

$$\mathbf{R}_l = \mathbf{R} + \rho_l, \quad \mathbf{R}_i = \mathbf{R} + \rho_i,$$

где индекс «l» или «i» указывает тип позиции атома Ме или поры в ячейке. Тогда сумму двух последних слагаемых в формуле (2), которую мы будем называть деформационным гамильтонианом H_d , можно записать в следующем явном виде:

$$H_{d} = \frac{1}{2} \sum_{\mathbf{R},l,\mathbf{R}',m} u_{\mathbf{R}l}^{\alpha} A_{lm}^{\alpha\beta} (\mathbf{R} - \mathbf{R}') u_{\mathbf{R}'m}^{\beta} - \sum_{\mathbf{R}',l,\mathbf{R},i} (u_{\mathbf{R}l}^{\alpha} - u_{\mathbf{R}'i}^{\alpha}) f^{\alpha} (\mathbf{R}'_{l} - \mathbf{R}_{i}) n(\mathbf{R}_{i}). \quad (3)$$

Здесь $\mathbf{u}_{\mathbf{R}l} = \mathbf{u}(\mathbf{R}_l)$ или $\mathbf{u}_{\mathbf{R}'i} = \mathbf{u}(\mathbf{R}'_i)$ означает смещение атома Ме или X относительно его средней позиции $\mathbf{R}_l = \mathbf{R} + \rho_l$ или $\mathbf{R}'_i = \mathbf{R}' + \rho_i$, и при написании последнего слагаемого учтено, что вследствие трансляционной инвариантности взаимодействий энергия деформации решетки может зависеть только от разности смещений атомов Ме и X. Силы Канзаки $\mathbf{f}(\mathbf{R}'_l - \mathbf{R}_i)$ будем, как обычно, предполагать центральными [12–15], т. е. считать, что функция $\mathbf{f}(\mathbf{r})$ имеет вид

$$\mathbf{f}(\mathbf{r}) = \sum_{n} \mathbf{r}_{n} f_{n} \delta_{\mathbf{r}, \mathbf{r}_{n}}.$$
 (4)

Здесь *n* — номер координационной сферы для координаты $\mathbf{r} = \mathbf{r}_n$ атома металла относительно поры i; параметр $f_n = f(|\mathbf{r}_n|)$ определяет величину сил Канзаки для
 n-й сферы, и $\delta_{\mathbf{r},\mathbf{a}}$ — символ Кронекера, равный единице при $\mathbf{r} = \mathbf{a}$ и нулю при $\mathbf{r} \neq \mathbf{a}$. Смещение $\mathbf{u}_{\mathbf{R}i}$ атома X в поре *i*, входящее в гамильтониан (3), можно определять, например, как среднее смещение всех ближайших к этой поре атомов Ме. Но если эти атомы Ме расположены зеркально симметрично относительно каждой поры (как это имеет место для октопор в ГПУ- или ГЦК-решетке), то после суммирования по координатам этих атомов \mathbf{R}' и l последнее слагаемое (3), содержащее $\mathbf{u}_{\mathbf{R}'i}$, обращается в нуль. Для простоты ниже рассматривается только этот случай. Тогда гамильтониан Канзаки можно записать как

$$H_K = -\sum_{\mathbf{R},i,\mathbf{R}',l} n(\mathbf{R}_i) \mathbf{u}(\mathbf{R}'_l) \mathbf{f}_{li}(\mathbf{R}' - \mathbf{R} + \rho_l - \rho_i).$$
(5)

Согласно соотношению (4), функцию $\mathbf{f}_{li}(\mathbf{r})$ в формуле (5) можно выразить через относительные координаты атома Ме в подрешетке l относительно поры i, т. е. разности координат $\Delta_{n,s}^{li} = (\mathbf{R}_l - \mathbf{R}'_i)_{n,s}$, где индекс «n» нумерует разные координационные сферы поры i, а «s» указывает разные эквивалентные векторы в данной координационной сфере:

$$\mathbf{f}_{li}(\mathbf{r}) = \sum_{n=1} f_n \sum_{s} \Delta_{n,s}^{li} \delta_{\mathbf{r},\Delta_{n,s}^{li}}.$$
 (6)

Перейдем теперь в формулах (3) и (5) к компонентам Фурье в среднем кристалле. Тогда деформационный гамильтониан (3) примет вид

$$H_{d} = \frac{1}{2N_{c}} \sum_{\mathbf{k},l,m} u_{-\mathbf{k}}^{\alpha l} D_{\mathbf{k}}^{\alpha l,\beta m} u_{\mathbf{k}}^{\beta m} - \frac{1}{N_{c}} \sum_{\mathbf{k},l,i} u_{-\mathbf{k}}^{\alpha l} f_{\mathbf{k}}^{li,\alpha} n_{\mathbf{k}i}.$$
 (7)

Здесь N_c — полное число элементарных ячеек, сумма по **k** идет по зоне Бриллюэна, и используются обозначения

$$n_{\mathbf{k}i} = \sum_{\mathbf{R}} n_{\mathbf{R}i} \exp\left[-i\mathbf{k}(\mathbf{R}+\rho_i)\right],$$

$$n_{\mathbf{R}i} = \frac{1}{N_c} \sum_{\mathbf{k}} n_{\mathbf{k}i} \exp\left[i\mathbf{k}(\mathbf{R}+\rho_i)\right],$$

$$u_{\mathbf{k}}^{\alpha l} = \sum_{\mathbf{R}} u_{\mathbf{R}l}^{\alpha} \exp\left[-i\mathbf{k}(\mathbf{R}+\rho_l)\right],$$

$$f_{\mathbf{k}}^{li,\alpha} = \sum_{\mathbf{R}} f_{li}^{\alpha}(\mathbf{R}+\rho_{li}) \exp\left[-i\mathbf{k}(\mathbf{R}+\rho_{li})\right],$$

$$(8)$$

$$p_{\mathbf{k}}^{\alpha l,\beta m} = \sum_{\mathbf{R}} A_{\mathbf{k}}^{\alpha \beta}(\mathbf{R}+\rho_{li}) \exp\left[-i\mathbf{k}(\mathbf{R}+\rho_{li})\right],$$

 $D_{\mathbf{k}}^{\alpha l,\beta m} = \sum_{\mathbf{R}} A_{lm}^{\alpha\beta} (\mathbf{R} + \rho_{lm}) \exp\left[-i\mathbf{k}(\mathbf{R} + \rho_{lm})\right],$ где $\rho_{li} = \rho_l - \rho_i, \ \rho_{lm} = \rho_l - \rho_m, \ \mathbf{u} \ \mathbf{D}_{\mathbf{k}} -$ динамическая матрица среднего кристалла. С учетом равенства (6) функцию $f_{li,\alpha}^{li,\alpha}$ во втором слагаемом (7) мож-

ская матрица среднего кристалла. С учетом равенства (6), функцию $f_{\mathbf{k}}^{li,\alpha}$ во втором слагаемом (7) можно записать в виде суммы вкладов взаимодействий поры *i* с атомами Ме в различных координационных сферах *n* этой поры:

$$f_{\mathbf{k}}^{li,\alpha} = \sum_{n=1} f_n \sum_{s} \Delta_{n,s}^{li,\alpha} \exp\left(-i\mathbf{k}\Delta_{n,s}^{li}\right).$$
(9)

Равновесные значения локальных смещений $u_{\mathbf{k}}^{\alpha l}$ при данном заполнении пор $\{n_i\}$ находятся в результате минимизации гамильтониана (7) по $u_{\mathbf{k}}^{\alpha l}$. Подставляя полученные $u_{\mathbf{k}}^{\alpha l}$ в выражение (7) для H_d и выражая в этом гамильтониане фурье-компоненты $n_{\mathbf{k}i}$ через исходные операторы $n(\mathbf{R}_i)$ по соотношениям (8), можно привести деформационный гамильтониан H_d к обычному виду [13]:

$$H_d = \frac{1}{2} \sum_{\mathbf{R},i,\mathbf{R}',j} n(\mathbf{R}_i) V_{ij}^d (\mathbf{R}_i - \mathbf{R}'_j) n(\mathbf{R}'_j).$$
(10)

Здесь векторы $\mathbf{R}_i = \mathbf{R} + \rho_i \mathbf{u} \mathbf{R}'_j = \mathbf{R}' + \rho_j$ указывают положения пор внедрения, а деформационные взаимодействия $V_{ij}^d(\mathbf{R}_i - \mathbf{R}'_j) = V_{ij}^d(\mathbf{R}_{ij})$ выражаются через динамическую матрицу $\mathbf{D}_{\mathbf{k}}$ и фурье-компоненты сил Канзаки (9) таким образом:

$$V_{ij}^{d}(\mathbf{R}_{ij}) = \\ = -\frac{1}{N_c} \sum_{\mathbf{k},l,m} f_{-\mathbf{k}}^{li,\alpha} G_{\mathbf{k}}^{\alpha l,\beta m} f_{\mathbf{k}}^{mj,\beta} \exp(i\mathbf{k}\mathbf{R}_{ij}), \quad (11)$$

где $\mathbf{G}_{\mathbf{k}} = (\mathbf{D}_{\mathbf{k}})^{-1}$ — матрица, обратная динамической матрице.

Отметим, что, согласно общей формуле (11), в рассматриваемых кристаллах с несколькими типами пор *i* в элементарной ячейке взаимодействия $V_{ij}^{d}(\mathbf{R}_{ij})$ зависят не только от относительного положения этих пор \mathbf{R}_{ij} , но также и от типов пор *i* и *j*, т. е. могут различаться даже при одинаковых \mathbf{R}_{ij} вследствие различий в расположении окружающих атомов металла. Это иллюстрируется результатами, представленными в табл. 1.

Чтобы получить явные выражения сил Канзаки $\mathbf{f}_{\mathbf{k}}^{l,i}$ в ГПУ-сплавах, обсудим положения октопор и атомов Ме в ГПУ-решетке. Обозначим период вдоль гексагональной оси z как **с**₀, а периоды в базовой плоскости (x, y) как \mathbf{b}_1 , \mathbf{b}_2 , $\mathbf{b}_3 = -(\mathbf{b}_1 + \mathbf{b}_2)$. В качестве \mathbf{b}_s можно взять, например, $\mathbf{b}_1 = (a, 0, 0);$ $\mathbf{b}_2 = (-a/2, a\sqrt{3}/2, 0), \mathbf{b}_3 = (-a/2, -a\sqrt{3}/2, 0),$ где a — длина векторов **b**_s. Будем обозначать «продольную» компоненту векторов решетки вдоль оси z символом **H**, а их «поперечную» компоненту в плоскости (x, y) — символом **r**, плотноупакованные плоскости атомов Ме со значениями векторов $\mathbf{H} = n\mathbf{c}_0$ и $\mathbf{H} = (n\mathbf{c}_0 + \mathbf{h})$ (где $\mathbf{h} = \mathbf{c}_0/2$ — расстояние между соседними плотноупакованными плоскостями) обозначим, соответственно, символами А и В, а плоскости пор с $\mathbf{H} = (n\mathbf{c}_0 + \mathbf{h}/2)$ и $\mathbf{H} = (n\mathbf{c}_0 + 3\mathbf{h}/2) -$ символами a и b. Тогда поперечные компоненты r для атомов и пор в этих плоскостях можно записать как

$$\mathbf{r}_A = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2, \quad \mathbf{r}_B = \mathbf{r}_A + \mathbf{d}_s,$$

$$\mathbf{r}_a = \mathbf{r}_A - \mathbf{d}_s, \quad \mathbf{r}_b = \mathbf{r}_A - \mathbf{d}_s,$$
(12)

где s равно 1, 2 или 3, а векторы \mathbf{d}_s выражаются через \mathbf{b}_s таким образом:

Из формул (12) видно, что поры образуют простую гексагональную решетку с периодами \mathbf{h} , \mathbf{b}_1 , \mathbf{b}_2 и \mathbf{b}_3 . Таким образом, элементарная ячейка ГПУ-металла содержит два атома в неэквивалентных позициях l = A и l = B и две поры с позициями i = a и i = b, где индекс l или i указывает плоскость (x, y), в которой лежит этот атом или пора.

Как обсуждается ниже, для реалистического описания взаимодействий атомов углерода в ГПУ-железе необходим учет сил Канзаки по крайней мере в трех координационных сферах, когда в сумму по n в формуле (9) входят члены с n от 1 до 3. При этом для каждой пары подрешеток (l, i)

\mathbf{R}_n	h	\mathbf{b}_1	$(\mathbf{b}_1 + \mathbf{h})$	$2\mathbf{h}$	$(\mathbf{b}_1-\mathbf{b}_2)$	$(\mathbf{b}_1 + 2\mathbf{h})$	$(\mathbf{b}_1 - \mathbf{b}_2 + \mathbf{h})$	$2\mathbf{b}_1$	$(2\mathbf{b}_1 + \mathbf{h})$
$(R_n/a)_{an}$	ν	1	$(1+\nu^2)^{1/2}$	2ν	$(3)^{1/2}$	$(1+4\nu^2)^{1/2}$	$(3 + \nu^2)^{1/2}$	2	$(4 + \nu^2)^{1/2}$
$(h_n/a)_{num}$	0.8	1	1.28	1.6	1.73	1.89	1.91	2	2.15_{+}
V_n^d	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9
z_n	2	6	12	2	6	12	12	6	12
$\xi = 0$	-5847	-1678	1772	-797	-566	-364	-314	347	241
$\xi = 0.08$	-7800	-2490	270	-327	-564	259	-290	66	35
$\xi = 0.12$	-8406	-2891	-304	-216	-597	428	-314	-47	-46
$\xi = 0.16$	-8858	-3276	-794	-152	-640	530	-351	-145	-116
$\xi = 0.2$	-9199	-3640	-1218	-121	-689	596	-395	-231	-177
\mathbf{R}_n	$(\mathbf{b}_1$	$- b_2 +$	2 h) 3 h	$(2\mathbf{b}$	$_{1} + 2\mathbf{h})$	$(\mathbf{b}_1+3\mathbf{h})$	$(2\mathbf{b}_1 - \mathbf{b}_2)$	$(2\mathbf{b}_1$	$(-\mathbf{b}_2 + \mathbf{h})$
$(R_n/a)_{an}$	$(3+4\nu^2)^{1/2}$		$^{/2}$ $3 u$	$2(1+\nu^2)^{1/2}$		$(1+9\nu^2)^{1/2}$	$7^{1/2}$	$(7 + \nu^2)^{1/2}$	
$(R_n/a)_{num}$	$(R_n/a)_{num}$ 2.36		2.4	2.56		2.6 2.65		2.76	

Таблица 1.	Деформационные взаимодействия атомов углерода в ГПУ-железе V^d_n (в К) для модели, описанной
	в тексте, при различных значениях параметра $\xi=f_3/f_1$

\mathbf{R}_n	$(b_1 - b_1)$	$_{2} + 2n$)	3h	$(2b_1 + 2h)$	$({\bf b}_1 + 3{f n})$	$(2b_1 - b_2)$	$(2\mathbf{b}_1 - \mathbf{b}_2 + \mathbf{h})$
$(R_n/a)_{an}$	$(3+4\nu^2)^{1/2}$		3ν	$2(1+\nu^2)^{1/2}$	$(1+9\nu^2)^{1/2}$	$7^{1/2}$	$(7 + \nu^2)^{1/2}$
$(R_n/a)_{num}$	2.36		2.4	2.56	2.6	2.65	2.76
V_n^d	V^{aa}_{10}	V_{10}^{bb}	V_{11}	V_{12}	V_{13}	V_{14}	V_{15}
z_n	6	6	2	12	12	12	24
$\xi = 0$	-200	486	233	-196	-35	-65	-11
$\xi = 0.08$	-204	262	296	-106	121	-88	-49
$\xi = 0.12$	-189	170	455	-94	231	-103	-69
$\xi = 0.16$	-168	88	653	-94	347	-120	-88
$\xi = 0.2$	-144	16	872	-102	465	-137	-107

\mathbf{R}_n	$(\mathbf{b}_1-\mathbf{b}_2+3\mathbf{h})$	$3\mathbf{b}_1$	$(2\mathbf{b}_1 -$	$-\mathbf{b}_2 + 2\mathbf{h}$	$(3\mathbf{b}_1 + \mathbf{h})$	$4\mathbf{h}$	$(3\mathbf{b}_1+2\mathbf{h})$	$(2\mathbf{b}_1 - 2\mathbf{b}_2)$
$(R_n/a)_{an}$	$(3+9\nu^2)^{1/2}$	3	(7 +	$(4\nu^2)^{1/2}$	$(9 + \nu^2)^{1/2}$	4ν	$(9+4\nu^2)^{1/2}$	$(12)^{1/2}$
$(R_n/a)_{num}$	2.96	3		3.09	3.10	3.20	3.40	3.46
V_n^d	V_{16}	V_{17}	V_{18}^{aa}	V_{18}^{bb}	V_{19}	V_{20}	V_{21}	V_{22}
z_n	12	6	12	12	12	2	12	6
$\xi = 0$	-94	140	-50	107	37	-85	-49	-10
$\xi = 0.08$	1	40	-56	35	-5	172	-39	-27
$\xi = 0.12$	26	4	-62	5	-23	292	-41	-36
$\xi = 0.16$	44	-25	-68	-21	-40	406	-46	-45
$\xi = 0.2$	55	-50	-76	-45	-56	511	-52	-53

в формулу (9) входят только три вектора $\Delta_{n,s}^{li}$ с номером s, равным 1, 2 или 3:

$$\begin{aligned} \Delta_{1,s}^{Aa} &= -\frac{1}{2}\mathbf{h} + \mathbf{d}_{s}, \\ \Delta_{2,s}^{Aa} &= -\frac{1}{2}\mathbf{h} - 2\mathbf{d}_{s}, \quad \Delta_{3,s}^{Aa} &= \frac{3}{2}\mathbf{h} + \mathbf{d}_{s}, \\ \Delta_{1,s}^{Ab} &= \frac{1}{2}\mathbf{h} + \mathbf{d}_{s}, \quad \Delta_{2,s}^{Ab} &= \frac{1}{2}\mathbf{h} - 2\mathbf{d}_{s}, \\ \Delta_{3,s}^{Ab} &= -\frac{3}{2}\mathbf{h} + \mathbf{d}_{s}, \\ \Delta_{n,s}^{Ba} &= -\Delta_{n,s}^{Aa}, \quad \Delta_{n,s}^{Bb} &= -\Delta_{n,s}^{Ab}, \end{aligned}$$
(14)

где векторы \mathbf{d}_s — те же, что в формулах (13).

Заметим, что приведенные радиусы $l'_n = |\Delta_{n,s}^{li}|/a$ для второй и третьей координационных сфер довольно близки, заметно отличаясь при этом от l_1' и от $l_4' \approx l_5'$. Так, при идеальном значении $c_0/a = (8/3)^{1/2} = 1.63$ значения l'_n при n, равном 1, 2, 3, 4 и 5, равны соответственно 0.707, 1.22, 1.35, 1.58 и 1.68. Поэтому приближение, в котором константа f_2 в выражении (9) учитывается, а f_3 отбрасывается (использовавшееся в предшествующих работах [3-5]), вообще говоря, не оправдано. Более того, приводимые ниже и в работе [7] оценки показывают, что в сплавах ε -FeC $_c$ значения f_2 , по-видимому, заметно меньше, чем f_3 : $f_2 \approx f_3/3$, хотя отношение f_3/f_1 и достаточно мало: $f_3/f_1 \approx 0.16$. В то же время отбрасывание в формуле (9) членов с бо́льшими $n \ge 4$ может быть оправданным, поскольку, во-первых, приведенные расстояния $l'_{n\geq 4}$ уже заметно превышают $l_2' \approx l_3'$, и, во-вторых, в результирующих взаимодействиях V_{ij}^d в формуле (11) учет констант f_n с $n \geq 4$ приводит в основном только к замене констант f_2 и f_3 на некоторые эффективные выражения f_2 и f_3 , являющиеся суммами f_2 и f_3 с высшими $f_{n>4}$. Поэтому при используемых ниже и в работе [7] оценках взаимодействий V_{ij}^d из экспериментальных данных явный учет констант $f_{n>4}$ не кажется необходимым.

Значения параметров Канзаки f_n в формуле (9) можно связать с однородными деформациями $\overline{u}_{\alpha\beta}$ сплава MeX_c относительно чистого металла Me. Для этого заметим, что значение $\overline{u}_{\alpha\beta}$ пропорционально фурье-компоненте $u_{\mathbf{k}}^{\alpha\beta}$ от деформации $u_{\alpha\beta} = (\partial \overline{u}_{\alpha}/\partial x_{\beta} + \partial \overline{u}_{\beta}/\partial x_{\alpha})/2$ при $\mathbf{k} \to 0$ и, согласно определению (8), фурье-компоненты $\mathbf{u}_{\mathbf{k}}^l$ связаны с $\overline{u}_{\alpha\beta}$ соотношениями

$$u_{\mathbf{k}}^{\alpha\beta}|_{\mathbf{k}\to0} = \frac{1}{2}i(k_{\beta}\overline{u}_{\mathbf{k}}^{\alpha} + k_{\alpha}\overline{u}_{\mathbf{k}}^{\beta})|_{\mathbf{k}\to0} = N_{c}\overline{u}_{\alpha\beta}, \quad (15)$$

где вектор $\overline{\mathbf{u}}_{\mathbf{k}} = \mathbf{u}_{\mathbf{k}}^{l}$ описывает среднее («акустическое») смещение элементарной ячейки, в котором смещения всех атомов *l* в этой ячейке одинаковы.

Будем называть вклад в гамильтониан H_d однородных деформаций $\overline{u}_{\alpha\beta}$ (т. е. слагаемых (7), соответствующих $\mathbf{k} \rightarrow 0$) упругой энергией E_{el} . При малых \mathbf{k} динамическая матрица $\mathbf{D}_{\mathbf{k}}$ в (7) билинейна по **k** и вклад в E_{el} первого члена в (7) соответствует стандартному выражению для упругой энергии через упругие модули $c_{\alpha\beta\gamma\delta}$, даваемому первым членом в приводимой ниже формуле (18). Вклад в E_{el} второго слагаемого (7), обозначаемый ниже как H^0_K , можно найти, разлагая функцию $\mathbf{f}^{l,i}_{\mathbf{k}}$ в выражении (9) до линейных по k членов. Учтем также, что при $\mathbf{k} \to 0$ фурье-компоненты $n_{\mathbf{k}i}$, согласно определению (8), переходят в выражения $N_c c_i$, где $c_i \equiv \langle n_i \rangle$ — среднее заполнение пор типа *i*, которое для рассматриваемого неупорядоченного сплава MeX_c не зависит от i и равно среднему заполнению пор c. Тогда выражение для H^0_K можно записать как

$$H_K^0 = c \sum_{\alpha\beta} t_{\alpha\beta} \frac{1}{2} (k_\beta \overline{u}_{-\mathbf{k}}^\alpha + k_\alpha \overline{u}_{-\mathbf{k}}^\beta) |_{\mathbf{k} \to 0}, \qquad (16)$$

где тензор $t_{\alpha\beta}$ — билинейная комбинация компонент векторов $\Delta_{n,s}^{li}$, указанных в формулах (14):

$$t_{\alpha\beta} = \sum_{l,i} \sum_{n,s} \Delta_{n,s}^{li,\alpha} \Delta_{n,s}^{li,\beta} f_n, \qquad (17)$$

и учтено, что вследствие симметрии тензора $t_{\alpha\beta}$ по индексам α и β , выражение $k_{\beta}u_{-\mathbf{k}}^{\alpha l}$ тоже можно симметризовать по этим индексам. Тогда, с учетом соотношений (15) и сделанных выше замечаний упругую энергию E_{el} можно записать как

$$E_{el} = N_c \Big(\frac{1}{2} \Omega_c c_{\alpha\beta\gamma\delta} \overline{u}_{\alpha\beta} \overline{u}_{\gamma\delta} - \overline{u}_{\alpha\beta} t_{\alpha\beta} c \Big), \qquad (18)$$

где $\Omega_c = c_0 a^2 \sqrt{3}/2$ — объем элементарной ячейки ГПУ-кристалла.

Подставляя для векторов $\Delta_{n,s}^{li}$ выражения (14) и учитывая определения векторов **d**_s (13), находим, что после суммирования по *s* в (17) тензор $t_{\alpha\beta}$ в (18) принимает вид

$$t_{\alpha\beta} = t_0 \delta_{\alpha\beta} + t_1 \delta_{\alpha\beta}^{zz}.$$
 (19)

Здесь $\delta_{\alpha\beta}$ — символ Кронекера; символ $\delta_{\alpha\beta}^{zz}$ равен единице при $\alpha = \beta = z$ и нулю при других α и β ; а коэффициенты t_0 и t_1 выражаются через амплитуды сил Канзаки f_n в формуле (9) таким образом:

$$t_0 = 2a^2(f_1 + 4f_2 + f_3),$$

$$t_1 = 2a^2 \left[3\gamma f_1 - 6f_2(1 - \gamma) + 2f_3(1 + 3\gamma/2)\right],$$
(20)

где параметр $\gamma = (c_0^2/8a^2 - 1/3)$ характеризует степень отклонения гексагонального отношения c_0/a от его «идеального» значения $(8/3)^{1/2}$.

Равновесные значения $\overline{u}_{\alpha\beta}$ в формуле (18) в отсутствие внешних напряжений определяются из условий минимума энергии E_{el} . При этом в рассматриваемых ГПУ-сплавах отличны от нуля только компоненты $\overline{u}_{xx} = \overline{u}_{yy}$ и \overline{u}_{zz} , которые удобно выразить через объемную деформацию $u = \overline{u}_{xx} + \overline{u}_{yy} + \overline{u}_{zz}$ и сдвиговую $s = \overline{u}_{zz} - (\overline{u}_{xx} + \overline{u}_{yy})/2$. Минимизируя выражение (18) по *и* и *s*, находим, что обе эти деформации линейны по среднему заполнению пор с, и их производные du/dc и ds/dc, определяющие концентрационную зависимость объема Ω и гексагонального отношения $\rho = (c_0/a)$ в сплаве ε -МеХ_c, даются такими выражениями:

$$\frac{du}{dc} = \frac{1}{\Omega} \frac{d\Omega}{dc} = \frac{(t_u + t_s 3\tilde{c}/4c_s)}{B\Omega_c (1 - 3\tilde{c}^2/4Bc_s)},$$

$$\frac{ds}{dc} = \frac{1}{\rho} \frac{d\rho}{dc} = \frac{(t_s + t_s \tilde{c}/B)}{c_s \Omega_c (1 - 3\tilde{c}^2/4Bc_s)}.$$
(21)

Здесь модуль сжатия B, модуль сдвига c_s и «смешанный» модуль с выражаются через упругие модули c_{ik} в обозначениях Фогта (см., например, [16]) таким образом:

$$B = \frac{1}{9} \left(2c_{11} + c_{33} + 2c_{12} + 4c_{13} \right),$$

$$c_s = \frac{1}{6} \left(c_{11} + 2c_{33} + c_{12} - 4c_{13} \right),$$

$$\tilde{c} = \frac{2}{9} \left(c_{11} - c_{33} + c_{13} - c_{12} \right).$$
(22)

Константы же t_u и t_s суть линейные комбинации параметров t₀ и t₁ из формул (20):

,

$$t_{u} = \left(t_{0} + \frac{t_{1}}{3}\right) = 2a^{2} \left[f_{1}(1+\gamma) + 2f_{2}(1+\gamma) + f_{3}\left(\frac{5}{3}+\gamma\right)\right],$$

$$t_{s} = \frac{2}{3}t_{1} = 2a^{2} \left[2\gamma f_{1} - 4f_{2}(1-\gamma) + f_{3}\left(\frac{4}{3}+2\gamma\right)\right].$$
(23)

При количественных оценках производных du/dcи ds/dc по соотношениям (21)–(23) можно учесть, что в известных переходных ГПУ-металлах обычно выполнены соотношения $\tilde{c} \ll B \sim c_s$: так, в кобальте $\tilde{c} \sim 0.01 B, c_s \sim 0.7 B$ [16]. Значения γ также весьма малы: например, в кобальте $\gamma \approx -0.005$, а в ε -цементите Fe₃C значение $\gamma \approx -0.02$ [6]. Поэтому практически вместо уравнений (21) и (23) можно использовать упрощенные соотношения:

$$\frac{du}{dc} \approx \frac{t_u}{B\Omega_c}, \quad \frac{ds}{dc} \approx \frac{t_s}{c_s\Omega_c}, \tag{24}$$

$$t_u \approx 2a^2 \left(f_1 + 2f_2 + \frac{5}{3}f_3 \right),$$

$$t_s \approx 2a^2 \left(2\gamma f_1 - 4f_2 + \frac{4}{3}f_3 \right),$$
 (25)

где в выражении для t_s в формуле (25) пропорциональное γ первое слагаемое сохранено, чтобы описывать также и возможные случаи $|f_2, f_3| \lesssim |\gamma f_1| \ll |f_1|.$

Для полноты отметим еще, что если применить описанный подход к ГЦК-сплаву (где имеется только одна подрешетка, так что индексы подрешеток *l*, *i* в формулах (11) и (9) нужно опустить) и использовать модель короткодействующих сил Канзаки, т. е. считать, что в сумме по n в формуле (9) присутствуют только члены с n = 1, то амплитуда f_1 дается выражением (см., например, [2])

$$f_1 = \frac{1}{2} B a_0 \frac{du}{dc},\tag{26}$$

где a_0 — постоянная ГЦК-решетки. И если в обсуждавшихся выше уравнениях для ГПУ-сплава (24), (25), (28) силы Канзаки тоже считать короткодействующими: $f_2 = f_3 = 0$, то выражения (24) или (28) для f₁ в ГПУ-сплаве при «идеальном» значении $c_0/a = (8/3)^{1/2}$ совпадают с выражением (26) для f1 в ГЦК-сплаве с тем же межатомным расстоянием $a = a_0 / \sqrt{2}$.

В заключение этого раздела заметим, что при рассмотрении полных взаимодействий атомов внедрения V_{ij} к обсуждавшимся здесь деформационным вкладам V_{ij}^d нужно добавлять упоминавшиеся «химические» вклады V_{ij}^c. Это обсуждается в разд. 3. Отметим также, что при выводе формул (9)–(21) для взаимодействий V_{ii}^d в сплавах MeX_c использовалось предположение о малости концентрации атомов X, хотя на деле эти взаимодействия важны в основном для концентрированных сплавов. Обобщения формул (9)-(21) для случая концентрированных сплавов могут быть сделаны методами, описанными в работе [15]. Однако имеющийся опыт расчетов деформационных взаимодействий [2, 11, 14, 15] показывает, что использование модели разбавленных сплавов обычно разумно и для концентрированных сплавов, поскольку большая часть возникающих при этом погрешностей «исправляется» вследствие использования в соотношениях типа (21) экспериментальных значений du/dc и ds/dc.

3. МОДЕЛЬНЫЕ РАСЧЕТЫ ДЕФОРМАЦИОННЫХ ВЗАИМОДЕЙСТВИЙ АТОМОВ УГЛЕРОДА В ГПУ-ЖЕЛЕЗЕ

Для расчета деформационных взаимодействий по формулам (11) нужны расчетные или экспериментальные данные о параметрах Канзаки f_n в формуле (9) и о динамической матрице $\mathbf{D}_{\mathbf{k}}$ в ГПУ-железе или ε -цементите. Поскольку пока такие данные отсутствуют, будем оценивать эти величины, используя те данные, которые имеются, а также соображения аналогий и физического правдоподобия.

При численных оценках параметров Канзаки f_n для углерода в ГПУ-железе (ε -Fe) можно воспользоваться имеющимися данными о значениях гексагонального отношения $\rho = c_0/a$ и атомного объема Ω_c в ε -цементите и в чистом ε -Fe [6, 17]. При этом значения производных ds/dc и du/dc в формулах (21) можно оценить, если предположить, что все изменение гексагонального отношения ρ и объема Ω_c с концентрацией углерода x = c/(1 + c) между чистым ГПУ-железом (где c = 0) и ε -цементитом (где c = 1/3) описывается линейными по c соотношениями (21):

$$\frac{\rho_{\varepsilon}^{cmt} - \rho_{\varepsilon}^{\mathrm{Fe}}}{\rho_{\varepsilon}^{\mathrm{Fe}}} \approx \frac{1}{3} \frac{ds}{dc}, \quad \frac{\Omega_{\varepsilon}^{cmt} - \Omega_{\varepsilon}^{\mathrm{Fe}}}{\Omega_{\varepsilon}^{\mathrm{Fe}}} \approx \frac{1}{3} \frac{du}{dc}.$$
 (27)

Подставляя в эту оценку экспериментальные значения гексагонального отношения для ГПУ-железа и ε -цементита: $\rho_{\varepsilon}^{\text{Fe}} \approx 1.6$ [17]; $\rho_{\varepsilon}^{cmt} \approx 1.59$ [6], находим, что величина ds/dc в ГПУ-сплавах Fe-C, по-видимому, весьма мала: $ds/dc \approx -0.03$, так что ее отличие от нуля лежит в пределах точности цитированных экспериментов. Аналогично, используя для атомных объемов $\Omega_a = \Omega_c/2$ экспериментальные значения $(\Omega_a)_{\varepsilon}^{\mathrm{Fe}} \approx 75.4$ ат. ед. [17] и $(\Omega_a)_{\varepsilon}^{cmt}\approx 94.3$ ат.
ед. [6], получаем $(du/dc)_{\varepsilon}\approx 0.75.$ Это значение коэффициента концентрационного расширения несколько превышает аналогичное значение для ГЦК-структуры: $(du/dc)_{\gamma} \approx 0.63$ [2], но расхождение, очевидно, лежит в пределах точности используемых оценок. Тогда уравнения (24) и (25) дают для оценки параметров f_n в ГПУ-сплавах Fe-C следующие приближенные соотношения:

$$f_2 \approx f_3/3, \quad f_1 + \frac{7}{3}f_3 \approx \frac{1}{a^2} B\Omega_a \left(\frac{du}{dc}\right)_{\varepsilon}.$$
 (28)

Если предположить еще, что модули сжатия *B* в ГПУ- и ГЦК-структурах железа близки (что также согласуется с имеющимися экспериментальными данными [17–19]), то в используемой модели соотношения (28) оставляют свободным только один параметр $\xi = f_3/f_1$, который естественно считать заметно меньшим единицы. Для иллюстрации общих особенностей деформационных взаимодействий ниже приводятся результаты расчетов при различных значениях параметра ξ . Значение же ξ для углерода в ГПУ-железе будет оцениваться ниже с привлечением данных анализа фазовых равновесий аустенит-цементит из работы [7]. Атомный объем Ω_a и модуль сжатия B в ГПУ-железе будем считать теми же, что в аналогичном расчете [2] для ГЦК-железа при T = 1428 К: $\Omega_a = 83.14$ ат. ед.; $B_{\rm Fe} = 1.33$ Мбар.

Для построения в нашем модельном расчете динамической матрицы ГПУ-железа $\mathbf{D}^{\varepsilon\text{-}\mathrm{Fe}}_{\mathbf{k}}$ будем использовать экспериментальные данные о фононных спектрах $\omega(\mathbf{k})$ и об упругих модулях ГПУ-кобальта [16, 20], поскольку для *ε*-Fe аналогичные данные, по-видимому, отсутствуют. Такая модель может быть достаточной для выяснения вида и масштаба деформационных взаимодействий углерода в ГПУ-железе по следующим соображениям. Во-первых, кобальт является соседом железа в таблице Менделеева и сходен с ним по ряду механических и магнитных свойств. Во-вторых, имеющийся опыт расчетов деформационных взаимодействий $V_d(\mathbf{R})$ в ГЦК- и ОЦК-металлах [2, 10, 14] показывает, что, хотя координатная зависимость $V_d(\mathbf{R})$ и бывает сложной и осциллирующей, она определяется в основном геометрическими факторами, параметрами Канзаки и общим масштабом фононных частот и упругих модулей. В то же время изменения формы фононных спектров от металла к металлу не слишком сильно влияют на вид этой зависимости. Результаты настоящей работы показывают, что это справедливо, видимо, и для деформационных взаимодействий в обсуждаемых ГПУ-сплавах MeX_c, что иллюстрируется ниже рис. 3. В то же время общий масштаб функции $V_d({f R})$ сильно зависит также от ряда других, не слишком точно оцениваемых факторов: коэффициента концентрационного расширения $(du/dc)_{\varepsilon}$ в соотношении (28); температурной зависимости всех структурных, упругих и фононных параметров, которая при интересующих нас высоких ($T \gtrsim 1000$ K) может быть значительной [18, 19], и т. д. Поэтому общий масштаб функции $V_d(\mathbf{R})$ надежнее оценивать из термодинамических данных, как это и делается ниже. Таким образом, все названные геометрические и масштабные факторы в нашем расчете учитываются, так что получаемые при этом значения взаимодействий $V_d(\mathbf{R})$ могут быть

достаточно реалистичными.

Метод построения динамической матрицы $\mathbf{D}_{\mathbf{k}}$ для ГПУ-кристалла на основе данных о фононных частотах $\omega(\mathbf{k})$ в точках симметрии зоны Бриллюэна и об упругих модулях описан в работе [21]. Там же приводится аналитическое выражение $\mathbf{D}_{\mathbf{k}}^{\text{Со}}$ этой матрицы для кобальта, найденное в модели межатомных взаимодействий в металле вплоть до шестой координационной сферы и хорошо описывающее экспериментальные данные [20] о фононных частотах $\omega(\mathbf{k})$ в кобальте.

В соответствии со сказанным выше, динамическую матрицу ГПУ-железа $\mathbf{D}_{\mathbf{k}}^{\varepsilon\text{-Fe}}$ мы моделируем, умножая матрицу $\mathbf{D}_{\mathbf{k}}^{\text{Co}}$, найденную в работе [21], на отношение модулей сжатия железа и кобальта, т.е. полагаем

$$\mathbf{D}_{\mathbf{k}}^{\varepsilon\text{-Fe}} = \mathbf{D}_{\mathbf{k}}^{\mathrm{Co}} B_{\mathrm{Fe}} / B_{\mathrm{Co}}.$$
 (29)

Здесь $B_{\rm Fe}$ — указанное выше высокотемпературное значение модуля сжатия железа, а $B_{\rm Co}$ — экспериментальное значение модуля сжатия кобальта при комнатной температуре, при которой в работе [20] измерялись частоты $\omega(\mathbf{k})$, использованные в работе [21] при построении $\mathbf{D}_{\mathbf{k}}^{\rm Co}$. Соотношение (29) осуществляет обсуждавшееся выше «масштабирование» фононного спектра к используемому нами значению модуля сжатия железа.

Таким образом, в обсуждаемых ниже расчетах деформационных взаимодействий углерода в железе по формуле (11) динамическая матрица моделируется выражением (29). Аналогично, в иллюстративных расчетах, результаты которых показаны ниже на рис. 3 светлыми символами, динамическая матрица моделируется приводимым ниже выражением (31), соответствующим замене в правой части формулы (29) отношения $\mathbf{D}_{\mathbf{k}}^{Co}/B_{Co}$ на аналогичное отношение для титана, $\mathbf{D}_{\mathbf{k}}^{Ti}/B_{Ti}$.

В табл. 1 приводятся результаты расчетов деформационных взаимодействий углерода в ГПУ-железе по соотношениям (11)–(29). В этой таблице в строке \mathbf{R}_n указывается один из эквивалентных векторов решетки пор для *n*-й координационной сферы, а векторы \mathbf{b}_s и \mathbf{h} — те же, что в формулах (12)–(14) и табл. 1. Величины $(R_n/a)_{an}$ и $(R_n/a)_{num}$ означают соответственно аналитическое и численное значения отношения ($|\mathbf{R}_n|/a$), где $a = |\mathbf{b}_s|$ есть расстояние между ближайшими соседями в базовой плоскости ГПУ-кристалла. Буквой « ν » обозначено отношение $h/a = c_0/2a$, численное значение которого, в соответствии с данными работы [17] для ε -Fe, выбрано равным $\nu = 0.8$; V_n — величина деформационного взаимодействия в *n*-й координационной сфере, а z_n — соответствующее координационное число, т. е. число пор на расстоянии R_n от данной поры, величина взаимодействия с которыми равна V_n . Строки с различными $\xi = f_3/f_1$ указывают значения V_n , вычисленные при этом ξ . Рисунок 1 иллюстрирует изменение взаимодействий V_n с расстоянием между порами R_n .

Бо́льшая часть взаимодействий V_n , указанных в табл. 1, зависит только от относительного смещения атомов внедрения \mathbf{R}_n , но не от того, в какой подрешетке полного ГПУ-кристалла, *а* или *b*, они находятся. Поэтому индексы подрешеток у этих взаимодействий не указаны. Однако для n = 10 и n = 18, т. е. в 10-й и 18-й координационных сферах решетки пор, происходит «расщепление» взаимодействий: при одном и том же векторе относительного смещения \mathbf{R}_n атомы внедрения в подрешетке *a* и в подрешетке *b* взаимодействуют по-разному. Если записывать вектор \mathbf{R}_n для этих *n* в виде суммы продольных и поперечных компонент:

где

$${f r}_{10} = \pm ({f b}_s - {f b}_{s+1}),$$

 ${f r}_{18} = \pm (2{f b}_s - {f b}_{s+1}), \quad {f H}_n = \pm 2{f h},$

 $\mathbf{R}_n = \mathbf{r}_n + \mathbf{H}_n,$

то взаимодействия $V^{aa}(\mathbf{R}_n)$ и $V^{bb}(\mathbf{R}_n)$ выражаются через значения V_n^{aa} и V_n^{bb} в табл. 1 таким образом:

$$V^{aa} [\pm (\mathbf{r}_n + 2\mathbf{h})] = V^{bb} [\pm (\mathbf{r}_n - 2\mathbf{h})] = V_n^{aa},$$

$$V^{bb} [\pm (\mathbf{r}_n + 2\mathbf{h})] = V^{aa} [\pm (\mathbf{r}_n - 2\mathbf{h})] = V_n^{bb}.$$
(30)

Это различие во взаимодействиях $V^{aa}(\mathbf{R}_n)$ и $V^{bb}(\mathbf{R}_n)$ при одном и том же \mathbf{R}_n связано с тем, что атомы металла, окружающие два данных атома внедрения, в первом и втором случаях расположены по-разному. Таким образом, данное различие связано с различием кристаллической симметрии простой гексагональной решетки пор и более сложной ГПУ-решетки металла, в частности, с отсутствием в ГПУ-решетке симметрии относительно отражений. Эти «расщепления» взаимодействий не отмечались в предшествующих, упрощенных рассмотрениях данных проблем [3–5].

Заметим теперь, что для взаимодействий на малых межатомных расстояниях $R \leq a$, описываемых константами V_1 и V_2 , наши расчеты, как и другие расчеты деформационных взаимодействий [2,5,10], дают сильное притяжение: $V_1, V_2 \leq -(9-3) \cdot 10^3$ К. В то же время эксперименты указывают на наличие здесь сильного отталкивания, «блокирования» внедренным атомом соседних позиций внедрения [1,2,10]. Это расхождение расчетов с опытом

связано с тем, что выше рассчитывались только деформационные вклады (11) в полные взаимодействия $V_{i...i}$ гамильтониана (1), а химические взаимодействия $V_{i...i}^c$ не рассматривались. При малых межатомных расстояниях R, когда электронные оболочки атомов внедрения начинают перекрываться, химические взаимодействия должны приводить к сильному отталкиванию и их вклад в полные $V_{i...i}$ становится определяющим [2, 10]. В то же время, если гибридизация электронов атома внедрения и металла невелика (что, согласно имеющимся расчетам [22], можно предполагать для углерода в железе), то с ростом расстояния R химические взаимодействия V^c должны быстро падать. Тогда для всех неближайших соседей определяющим может быть только деформационное взаимодействие. В связи с этим в ряде работ [2, 5] использовались модели, в которых короткодействующее отталкивание описывалось с помощью одной-двух феноменологических констант, а остальные взаимодействия считались чисто деформационными. При этом в аустените такая модель, как обсуждается ниже, хорошо описывает наблюдаемые термодинамические свойства.

Для рассматриваемых сплавов ε -FeC_c аналогичная модель, в которой отталкивание первых и вторых соседей описывается феноменологическими константами V₁ и V₂, а остальные взаимодействия V_{n>3} считаются чисто деформационными, предложена в работе [7]. Значения констант V_1 и V_2 , так же, как и введенного выше параметра $\xi = f_3/f_1$, оцениваются в работе [7] из подгонки кривых фазового равновесия между аустенитом и ε -цементитом, рассчитанных в данной модели, к экспериментальной фазовой диаграмме аустенит-цементит. При этом получаются следующие оценки введенных параметров: $V_1 \approx 1400$ К, $V_2 \approx 2900$ К и $\xi \approx 0.157$. Будем использовать эти оценки и в настоящей работе, в частности, на рис. 2, где сплошной линией показана зависимость полных взаимодействий атомов углерода V_n от расстояния между ними R_n в ГПУ-железе для модели, предложенной в работе [7]. Отметим также, что значения V_n в табл. 1 включают ряд неточно оцениваемых факторов, отмеченных выше: значение du/dc, модельное предположение (29) о динамической матрице и т. п. В то же время в работе [7] показано, что при используемой подгонке к фазовой диаграмме аустенит-цементит варьирование значения du/dc заметно меняет только оценку параметра ξ , но не значения V_n , а относительно малая чувствительность V_n к виду динамической матрицы иллюстрируется рис. 3.

Результаты, представленные в табл. 1 и на

Рис.1. Изменение деформационных взаимодействий $V_n^d = V^d(\mathbf{R}_n)$ с межатомным расстоянием R_n для модели, описанной в тексте, при различных значениях параметра $\xi = f_3/f_1$. Значению $\xi = 0$ соответствуют темные треугольники, $\xi = 0.08$ светлые треугольники, $\xi = 0.12$ — темные кружки и $\xi = 0.20$ — светлые кружки. Символы соединены линиями для ясности рисунка

рис. 1-3, иллюстрируют ряд качественных различий между взаимодействиями атомов внедрения в ГПУ и в кубических металлах: в ГПУ-металлах эти взаимодействия являются более сильными, более анизотропными и более протяженными. Это видно, в частности, из сравнения взаимодействий атомов углерода в ГПУ- и ГЦК-железе, показанных на рис. 2, или из сравнения зависимостей $V(\mathbf{R}_n)$ в табл. 1 и аналогичных зависимостей для взаимодействий атомов водорода в ОЦК-ниобии, приведенных в табл. 2 работы [10]. При этом осцилляции в координатной зависимости $V(\mathbf{R}_n)$ в ГПУ-металлах являются более сильными, чем в кубических металлах, как по амплитуде, так и по протяженности. Качественно эти различия в деформационных взаимодействиях могут быть связаны с тем, что симметрия гексагональной решетки пор в ГПУ-металле существенно

Рис.2. Полные взаимодействия атомов углерода $V_n(R_n)$ в различных структурах железа. Темные кружки — ГПУ-железо [7]; светлые треугольники — ГЦК-железо [2]

ниже, чем у кубических решеток пор в кубических кристаллах, что и приводит к росту эффектов кристаллической анизотропии.

Отметим также, что указанные особенности деформационных взаимодействий в сплавах ε -MeX_c проявляются только при выполнении расчетов по полной формуле (11), без использования упрощающих приближений типа замены точной динамической матрицы ее аппроксимацией через упругие модули, модели короткодействующих сил Канзаки и т.п., применявшихся другими авторами [3–5]. Зависимости $V(\mathbf{R}_n)$, полученные в этих упрощенных расчетах, не проявляют указанных особенностей, являются довольно гладкими, монотонными и кажутся даже более плавными, чем в количественных расчетах для кубических металлов [2, 10]. Это указывает на ненадежность использования упомянутых упрощений для реалистических оценок взаимодействий атомов внедрения в ГПУ-металлах.

Обсудим теперь влияние на взаимодействия V_n сил Канзаки между неближайшими соседями (для краткости называемых ниже протяженными силами Канзаки), которые в нашей модели описываются ненулевыми значениями параметра $\xi = f_3/f_1$. Из табл. 1 и рис. 1 следует, что значения V_n меняются с ξ очень резко, особенно для взаимодействий V_n с n от 3 до 14, которые вносят основной вклад в термодинамику [7]. Так, например, для то-

Рис.3. Сравнение зависимостей $V_n^d(R_n)$, вычисленных, как описано в тексте, с использованием для $\mathbf{D}_{\mathbf{k}}^{s-\mathrm{Fe}}$ соотношения (29), содержащего динамическую матрицу и модуль сжатия кобальта (темные символы), с аналогичным расчетом, использующим соотношение (31) с динамической матрицей и модулем сжатия титана (светлые символы). Верхний рисунок соответствуют значению $\xi = f_3/f_1 = 0$, нижний — значению $\xi = 0.157$

го чтобы наблюдаемая упорядоченная по углероду структура в ГПУ-фазе, є-цементит, была термодинамически выгоднее других структур (не наблюдаемых на опыте), константа V₃ должна описывать притяжение, т.е. быть отрицательной [7]. В то же время в отсутствие протяженных сил Канзаки, т. е. при $\xi = 0$, эта константа описывала бы сильное отталкивание: $V_3(\xi = 0) \approx 1800$ К и ε -цементит не мог бы существовать. Это указывает на важность учета протяженных сил Канзаки для адекватного описания взаимодействий атомов внедрения в сплавах ε -МеХ_c. Таблица 1 и рис. 1 показывают также, что при изменении ξ вблизи физически интересного значения $\xi \approx 0.16$ «существенные» взаимодействия *V*₃-*V*₁₄ резко меняются уже в весьма узких интервалах $\Delta \xi$. Это облегчает задачу реалистических оценок значений параметра ξ из расчетов кривых фазового равновесия аустенит-цементит в работе [7], поскольку результаты расчетов оказываются весьма чувствительными к выбору значения ξ .

Рисунок 3 иллюстрирует зависимость деформационных взаимодействий атомов X в сплаве ε -MeX_c от вида фононного спектра металла Me при использовании в расчетах «масштабированной» динамической матрицы вида (29). Темные символы на рис. 3 соответствуют обсуждавшимся выше значениям V_n , вычисленным с использованием для $\mathbf{D}_{\mathbf{k}}^{\varepsilon-\text{Fe}}$ соотношения (29), а открытые символы соответствуют аналогичному расчету с заменой в правой части соотношения (29) параметров кобальта на параметры титана:

$$\mathbf{D}_{\mathbf{k}}^{\varepsilon\text{-}\mathrm{Fe}}(\mathrm{Co}\to\mathrm{Ti}) = \mathbf{D}_{\mathbf{k}}^{\mathrm{Ti}}B_{\mathrm{Fe}}/B_{\mathrm{Ti}}, \qquad (31)$$

где $\mathbf{D}_{\mathbf{k}}^{\mathrm{Ti}}$ — динамическая матрица, построенная в работе [7] на основе экспериментов [20], а экспериментальное значение B_{Ti} взято из работы [16].

Заметим, что фононные спектры, использованные при построении динамических матриц **D**_k^{Co} и $\mathbf{D}_{\mathbf{k}}^{\mathrm{Ti}}$ в уравнениях (29) и (31), для титана и кобальта различаются весьма заметно, например, в окрестностях точек К, М и Г зоны Бриллюэна [20, 21]. Тем не менее, наши расчеты показывают, что как характер координатной зависимости $V^{d}(\mathbf{R}_{n}) = V_{n}^{d}$, так и сами значения V_n^d , для двух использованных моделей динамической матрицы ГПУ-железа, $\mathbf{D}_{\mathbf{k}}^{\varepsilon\text{-Fe}}$ и $\mathbf{D}_{\mathbf{k}}^{\varepsilon\text{-Fe}}(\text{Co} \rightarrow \text{Ti})$, остаются сходными при всех рассмотренных значениях параметра $\xi = f_3/f_1$, хотя сами зависимости V_n^d как от относительного смещения \mathbf{R}_n , так и от параметра ξ являются сложными и резкими. Это иллюстрируется результатами, представленными на рис. 3 для $\xi = 0$ и $\xi = 0.157$. Такое сходство значений V_n^d подтверждает приведенные выше соображения, что деформационные взаимодействия V_n^d определяются прежде всего геометрическими факторами и значениями параметров Канзаки так же, как и общим масштабом упругих модулей или фононных спектров. В то же время чувствительность V_n^d к детальному изменению фононных частот $\omega(\mathbf{k})$ в зоне Бриллюэна является, видимо, не слишком сильной.

4. РАСЧЕТЫ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ НЕУПОРЯДОЧЕННЫХ ГЦК-СПЛАВОВ ВНЕДРЕНИЯ В РАЗЛИЧНЫХ СТАТИСТИЧЕСКИХ ПРИБЛИЖЕНИЯХ

При заданном конфигурационном гамильтониане, т.е. взаимодействиях $V_{i...i}$ в формуле (1),

конфигурационные вклады в термодинамику могут быть найдены с использованием моделирования Монте-Карло, и современные методы позволяют выполнять такие вычисления с любой практически нужной точностью. Однако методы Монте-Карло просты и хорошо разработаны только для однородных и равновесных систем, в то время как в приложениях основной интерес имеют неоднородные и неравновесные сплавы. При исследованиях же неравновесных систем стандартные методы Монте-Карло встречают трудности и число таких исследований пока невелико. Это стимулирует развитие приближенных аналитических статистических подходов, которые могут легко обобщаться также и на случаи неравновесных систем. Ниже мы обсудим три таких подхода, которые описаны в статьях [8,9]: приближение среднего поля (mean-field approximation, MFA), приближение парных кластеров (pair-cluster approximation, PCA) и тетраэдрический метод кластерных полей (tetrahedron cluster-field approximation, TCA). Эти методы соответствуют разной степени учета корреляций в расположении атомов в сплаве. В простейшем методе, MFA, корреляции не учитываются совсем; в РСА должным образом учитываются парные, но пренебрегается многочастичными корреляциями, а в ТСА, кроме парных, учитываются также и все трех- и четырехчастичные корреляции внутри тетраэдра ближайших соседей. При этом условием применимости MFA является малость всех межатомных взаимодействий V_{ij} сравнительно с температурой $T: \beta V_{ij} \ll 1$, где $\beta = 1/T$. Если же это условие не выполнено, то MFA становится неприменимым и нужно применять более точные методы, такие как РСА или ТСА. Для сплавов внедрения, как отмечено выше, характерно наличие сильного отталкивания ближайших соседей со значениями констант взаимодействий $\beta V_{ij} \gtrsim 1$. Поэтому MFA здесь, как правило, неприменимо, а точность методов РСА или ТСА для каждой системы сплавов должна, вообще говоря, исследоваться отдельно [10].

В этом разделе приведем выражения для конфигурационных вкладов в термодинамику неупорядоченных ГЦК-сплавов внедрения в приближениях МFA, PCA и TCA, а в следующем разделе оценим точность каждого из этих приближений для аустенита. Для краткости, индекс «conf» у конфигурационных термодинамических потенциалов в этом разделе будем опускать.

Для рассматриваемого неупорядоченного сплава внедрения MeX_c среднее заполнение $\langle n_i \rangle = c_i$ для всех пор одинаково и равно *с*. Поэтому выражения для термодинамического потенциала большого канонического распределения на одну пору Ω , свободной энергии на одну пору f и химического потенциала внедренных атомов $\mu = \partial f/\partial c$ можно получить из приведенных в работах [8,9] формул для произвольных распределений c_i , полагая в этих формулах $c_i = c$. Следуя обозначениям работы [9], запишем Ω , f и производную $f_c = \partial f/\partial c$ как сумму вклада энтропии смешения идеального раствора и вклада взаимодействий, обозначая эти вклады соответственно индексами (id) и (int):

$$\Omega = \Omega^{id} + \Omega^{int}, \quad f = f^{id} + f^{int},$$

$$f_c = f_c^{id} + f_c^{int}.$$
 (32)

Вклады энтропии идеального раствора в неупорядоченном сплаве даются выражениями

$$\Omega^{id} = T \ln c', \quad f^{id} = T (c \ln c + c' \ln c'), f^{id}_{c} = T \ln(c/c'),$$
(33)

где c' = (1 - c). Вид вкладов взаимодействий Ω^{int} , f^{int} и f_c^{int} зависит от используемого приближения и для упрощения обозначений в этих вкладах будем опускать индекс «*int*», указывая только приближение, например $\Omega_{\rm MFA}^{int} \equiv \Omega^{\rm MFA}$ и т. п. Тогда в простейшем приближении MFA имеем для неупорядоченного сплава

$$\Omega^{\rm MFA} = -\frac{V_0 c^2}{2}, \quad f^{\rm MFA} = \frac{V_0 c^2}{2}, \qquad (34)$$
$$f_c^{\rm MFA} = V_0 c,$$

где константа V_0 выражается через взаимодействия V_n и координационные числа z_n в *n*-й координационный сфере как $V_0 = \sum_n z_n V_n$.

В приближении РСА конфигурационные вклады в термодинамику неупорядоченного сплава имеют вид [8,9]

$$\Omega^{\text{PCA}} = \frac{1}{2} \sum_{n=1}^{\infty} z_n \Omega_n, \quad f^{\text{PCA}} = \frac{1}{2} \sum_{n=1}^{\infty} z_n \varphi_n,$$

$$f_c^{\text{PCA}} = \sum_{n=1}^{\infty} z_n \lambda_n,$$
(35)

где величины Ω_n, φ_n и λ_n даются такими выражениями:

$$\Omega_{n} = -T \ln(1 - g_{n}c^{2}), \quad \lambda_{n} = T \ln(1 - g_{n}c),$$

$$\varphi_{n} = \Omega_{n} + 2c\lambda_{n},$$

$$g_{n} = 2f_{n}/(R_{n} + 1 + 2cf_{n}), \quad (36)$$

$$R_{n} = (1 + 4cc'f_{n})^{1/2},$$

$$f_{n} = \exp(-\beta V_{n}) - 1.$$

Наконец, в приближении TCA вклады взаимодействий ближайших соседей V₁ вычисляются в приближении тетраэдрического кластера (4-кластера) из четырех пор — ближайших соседей в ГЦК- или ОЦК-решетке, как описано в работах [8,9], а вклады взаимодействий неближайших соседей описываются в приближении PCA, как в формулах (35). Так, для ГЦК-решетки вместо соотношений (35) имеем в TCA

$$\Omega^{\text{TCA}} = \Omega_t + \frac{1}{2} \sum_{n=2} z_n \Omega_n,$$

$$f^{\text{TCA}} = f_t + \frac{1}{2} \sum_{n=2} z_n \varphi_n,$$

$$f_c^{\text{TCA}} = \lambda_t + \sum_{n=2} z_n \lambda_n.$$

(37)

Здесь Ω_n , φ_n и λ_n — те же, что в формулах (36), а вклады взаимодействий ближайших соседей Ω_t , f_t и λ_t выражаются через статистическую сумму 4-кластера Z_t и «активность» поры в этом кластере y таким образом:

$$\Omega_t = -T \ln[Z_t(c')^4], \quad \lambda_t = 4T \ln \frac{yc'}{c}, \qquad (38)$$
$$f_t = \Omega_t + c\lambda_t,$$

$$Z_t = 1 + 4y + 6\zeta y^2 + 4\zeta^3 y^3 + \zeta^6 y^4, \qquad (39)$$

где $\zeta = \exp(-\beta V_1)$, а активность поры y = y(c,T) находится из уравнения

$$c = \frac{y}{Z_t} (1 + 3\zeta y + 3\zeta^3 y^2 + \zeta^6 y^3).$$
(40)

5. РАСЧЕТЫ АКТИВНОСТИ УГЛЕРОДА В АУСТЕНИТЕ РАЗЛИЧНЫМИ СТАТИСТИЧЕСКИМИ МЕТОДАМИ

Заметим теперь, что выражения, обсуждавшиеся в разд. 4, описывают только конфигурационные вклады в термодинамические потенциалы $\Omega = \Omega_{conf}, f = f^{conf}, \mu = \mu_{conf}$, но не включают концентрационно-независящие «решеточные» вклады, которые описывают, в частности, изменение химического потенциала атома внедрения при его переходе из чистого вещества X в твердый раствор MeX_c. Измеряемые же на опыте величины включают эти решеточные вклады. Так, измеряемая активность углерода в аустените относительно графита, определяемая равенством $a_{\rm C} = \exp(\beta \Delta \mu)$ (где $\Delta \mu$ разность химических потенциалов углерода в аустените и в графите [1]), связана с конфигурационным химическим потенциалом $\mu_{conf} = f_c^{conf}$ в формулах (32)–(35) соотношением

$$a_{\rm C} = \exp(\beta \Delta G_{\rm C}^{\gamma}) \exp(\beta \mu_{conf}), \qquad (41)$$

где $\Delta G_{\rm C}^{\gamma} = \Delta G_{\rm C}^{\gamma}(T)$ имеет смысл решеточной, т. е. неконфигурационной части изменения свободной энергии при переходе атома углерода из графита в γ -железо. Это изменение равно сумме вкладов, связанных с изменением при таком переходе энергии E и энтропии S:

$$\Delta G_{\rm C}^{\gamma} = \Delta E_{\rm C}^{\gamma^- gr} - T \Delta S_{\rm C}^{\gamma^- gr}, \qquad (42)$$

где $\Delta E_{\rm C}^{\gamma^-gr} = E_{\rm C}^{\gamma} - E_{\rm C}^{gr}$ есть изменение энергии при переходе атома углерода из графита в γ -железо, $\Delta S_{\rm C}^{\gamma^-gr} = S_{\rm C}^{\gamma} - S_{\rm C}^{gr}$ — возникающее при этом изменение энтропии, а индексы « γ » и «gr» соответствуют γ -железу и графиту. Если пренебрегать ангармоническими эффектами как в γ -железе, так и в графите, то при рассматриваемых температурах T, много бо́льших дебаевской, величина $\Delta E_{\rm C}^{\gamma^-gr}$ не зависит от T и равна разности между энергиями неподвижного атома углерода в октопоре γ -железа и в графите, а разность энтропий $\Delta S_{\rm C}^{\gamma^-gr}$ равна разности утроенных средних логарифмов частот колебаний атома углерода в двух этих состояниях [23]:

$$\Delta S_{\rm C}^{\gamma^{-gr}} = 3\ln\left(\bar{\omega}_{\rm C}^{gr}/\bar{\omega}_{\rm C}^{\gamma}\right),\tag{43}$$

где $\bar{\omega}_{\rm C}^{\gamma}$ — «среднее геометрическое» значение частоты колебаний, определенное соотношением

$$\ln \overline{\omega}_{\rm C}^{\gamma,gr} = \langle \ln \omega \rangle_{\rm C}^{\gamma,gr} = \int d\omega \, g_{\rm C}^{\gamma,gr}(\omega) \ln \omega.$$
(44)

Здесь $g_{\rm C}^{\gamma}(\omega)$ или $g_{\rm C}^{gr}(\omega)$ — плотность колебательных состояний атома углерода в γ -железе или в графите, нормированная на единицу, причем функция $g_{\rm C}^{\gamma}$ определяется как разность полных плотностей колебательных состояний в кристалле γ -железа с атомом углерода и в таком же кристалле без углерода.

Значения $\Delta G_{\rm C}^{\gamma}$ в уравнениях (41) и (42) можно оценить из экспериментальных данных об активности $a_{\rm C}$ при малых концентрациях c с помощью равенства

$$\Delta G_{\rm C}^{\gamma} = T \ln(a_{\rm C}/c) \Big|_{c \to 0},\tag{45}$$

которое следует из определения (41) и общего соотношения термодинамики слабых растворов: $\mu|_{c\to 0} \to T \ln c$, иллюстрируемого равенствами (32) и (33). Результаты таких оценок для аустенита, выполненных Блантером [2], представлены на рис. 4. Видно, что для изучавшихся температур T от 1000

Рис. 4. Экспериментальные значения решеточного вклада $\Delta G(T)$ для углерода в аустените, оцененные в работе [2] по соотношениям (45). Прямая соответствует линейной интерполяции этих данных уравнением (46)

до 1500 К экспериментальные данные о зависимости $\Delta G_{\rm C}^{\gamma}(T)$ (несмотря на их очевидный разброс) достаточно хорошо описываются линейным по Tвыражением

$$\Delta G_{\rm C}^{\gamma} \approx 5217 \text{ K} - 1.88T, \tag{46}$$

показанным на рис. 4 прямой линией. Это можно считать подтверждением использованного предположения об относительной малости здесь ангармонических эффектов и связанных с ними нелинейных по T вкладов в термодинамические потенциалы. Сравнение соотношений (42) и (46) позволяет также оценить значения энергии и энтропии перехода атома углерода из графита в γ -железо: $\Delta E_{\rm C}^{\gamma^-gr} \approx 5200$ K, $\Delta S_{\rm C}^{\gamma^-gr} \approx 1.88$.

Соотношения (41) и (45) с экспериментальными значениями $a_{\rm C}(c,T)$ можно использовать для оценок взаимодействий V_n между атомами углерода в аустените [1]. Наиболее полно это было сделано Блантером в работе [2], где для констант взаимодействий V_n во всех координационных сферах n, кроме первой, использовалась модель чисто деформационных взаимодействий с короткодействующими силами Канзаки. Константа же взаимодействия ближайших соседей V_1 (для оценок которой деформационная модель, как отмечалось, неприменима) считалась свободным параметром, который при каждой температуре T_i определялся из подгонки вычисленной с этими V_n концентрационной зависимости $a_{\rm C}^{calc}(c,T_i)$ к экспериментальной зависимости $a_{\mathrm{C}}(c, T_i)$. Значения же a_{C}^{calc} при данных V_n находились методом Монте-Карло. Использованные при этом значения деформационных взаимодействий $V_{n>2}$ и среднее значение $V_1 = \langle V_1(T_i) \rangle$, полученное в результате подгонки при различных температурах Т_i, указаны в табл. 2. В этой таблице, аналогичной табл. 1, а — расстояние между ближайшими соседями, $a_0 = a\sqrt{2}$ — постоянная ГЦК-решетки, z_n — координационное число. Полученный в работе [2] разброс значений $V_1(T_i)$, т. е. масштаб флуктуаций $\delta = [V_1(T_i) - V_1]/V_1$, был не слишком велик: $\delta \approx 0.1$ –0.2. С учетом разброса использованных экспериментальных данных это позволяет считать, что предложенная модель (в которой V_n предполагаются не зависящими от T) не противоречит экспериментам.

Как отмечено выше, результаты моделирования методом Монте-Карло (при его должной вычислительной точности) могут рассматриваться как точные. Поэтому сравнение результатов такого моделирования в работе [2] с результатами аналитических расчетов, описанных в разд. 4, для одной и той же модели взаимодействий V_n , указанной в табл. 2, позволяет оценить точность приближенных аналитических методов при описании термодинамики аустенита.

Результаты такого сравнения для активности углерода $a_{\rm C}(c,T)$ приводятся на рис. 5. Видно, во-первых, что используемая простая модель взаимодействий [2] хорошо описывает экспериментальные данные при всех изученных с и Т. Во-вторых, видно, что результаты кластерных методов РСА и ТСА практически совпадают с результатами моделирования методом Монте-Карло: максимальные расхождения, заметные только при максимальных $c \approx 0.1$, имеют порядок процента. Точность же простого метода MFA, т. е. приближения среднего поля (используемого многими авторами [3, 4, 13]), напротив, очень низка при всех физически интересных с и Т. Как обсуждалось в работе [10] и выше, неприемлемо низкая точность приближения среднего поля является типичной для сплавов MeX_c вследствие наличия здесь сильного отталкивания между близко расположенными атомами внедрения. В то же время методы РСА и ТСА, как видно на рис. 5, описывают влияние этого отталкивания с высокой точностью. Поэтому можно думать, что результаты расчетов свойств сплавов внедрения кластерными методами обычно достаточно точны не только качественно, но и количественно.

Рис.5. Зависимость активности углерода $a_{\rm C}$ в аустените от концентрации углерода $x_{\rm C} = c/(1+c)$ для различных температур T. Кривые (слева направо) соответствуют температурам T = 1073, 1173, 1273, 1373, 1423, 1573 К. Точки — экспериментальные данные, приведенные в работе [2]. Линии — расчеты с константами взаимодействий V_n из табл. 2 при использовании следующих методов: штриховые линии — метод Монте-Карло [2]; сплошная линия — ТСА; штрихпунктир — РСА; пунктир — MFA

6. ЗАКЛЮЧЕНИЕ

Перечислим основные результаты настоящей работы. Она является частью проекта, ставящего целью развитие микроскопической теории высокотемпературных фазовых превращений, происходящих в сплавах железо-углерод. При этом обычный, орторомбический цементит Fe₃C моделируется его метастабильным аналогом, гексагональным карбидом ε -Fe₃C (ε -цементитом), близким к обычному цементиту как по структуре, так и по термодинамическим свойствам [6]. Поэтому для развития в рамках обсуждаемого подхода теории превращений аустенит-цементит нужно, во-первых, построить адекватные физические модели взаимодействий атомов углерода в ε -цементите и в аустените и, во-вторых, разработать достаточно простые и точные методы расчета статистических свойств этих сплавов.

Для решения первой из названных проблем в разд. 2 развита общая теория деформационных взаимодействий в ГПУ-сплавах внедрения MeX_c (ε -MeX_c). При этом использование в расчетах только ковариантных выражений позволяет не только

9 ЖЭТФ, вып.1

$2\mathbf{R}_n/a_0$	110	200	211	220	310	222	321	400	330	411	420
R_n/a	1	1.41	1.73	2	2.24	2.45	2.65	2.83	3	3	3.16
$V(\mathbf{R}_n)$	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9	V_{10}	V_{11}
z_n	12	6	24	12	24	8	48	6	12	24	24
V_n	1334	1961	-487	46	46	267	-23	-139	58	-12	-23

Таблица 2. Полные взаимодействия атомов углерода V_n (в К) в ГЦК-железе в модели Блантера [2]

упростить описание сравнительно с предшествующими работами [3-5], но и включить в рассмотрение взаимодействия Ме-Х (силы Канзаки) любой протяженности. В разд. 3 общие формулы разд. 2 применяются к расчетам деформационных взаимодействий атомов углерода (С-С-взаимодействий) в сплавах ε -FeC_c, с использованием метода построения динамической матрицы ГПУ-металла $\mathbf{D}^{\varepsilon}_{\mathbf{k}}$ на основе данных о фононах в точках симметрии зоны Бриллюэна и об упругих модулях, развитого в работе [21]. При этом, поскольку для ε -Fe экспериментальные данные, необходимые для такого построения, отсутствуют, модельная динамическая матрица $\mathbf{D}_{\mathbf{k}}^{\varepsilon\text{-Fe}}$ строится с использованием аналогичных данных для кобальта — структурного и магнитного аналога ε -Fe, а также предположения, что фононные спектры и упругие модули этих двух ГПУ-металлов пропорциональны друг другу. Для более количественных оценок С-С-взаимодействий в сплавах ε -FeC_c используются также результаты другой работы [7], где такие оценки получены из сравнения с опытом кривых фазового равновесия аустенит-цементит, вычисленных на основе развиваемой модели.

Найденные в результате выполненных расчетов взаимодействия $V_{\rm CC}({f R})$ в ГПУ-железе существенно отличаются от аналогичных взаимодействий в кубических металлах, являясь более анизотропными, более дальнодействующими и резче осциллирующими при изменении вектора относительного смещения R. Установлено, что для реалистического описания C-C-взаимодействий в сплавах є-FeC_c нужно учитывать силы Канзаки не менее, чем до третьей координационной сферы, в то время как обычно используемая модель короткодействующих сил Канзаки здесь дает качественно неверное описание. Найдено также, что несмотря на наличие сложных и резких зависимостей деформационных взаимодействий $V_{\rm XX}({f R})$ от величины и протяженности сил Канзаки, а также от масштаба фононных частот и упругих модулей металла Ме, эти взаимодействия в сплавах ε -MeX_c оказываются не слишком чувствительными к деталям изменения фононных частот металла Ме в зоне Бриллюэна. Поэтому использованное в работе моделирование динамической матрицы ГПУ-железа динамической матрицей кобальта представляется оправданным.

В разд. 4 и 5 рассматривается проблема развития адекватных аналитических методов расчета статистических свойств сплавов МеХ. Используется как простое приближение среднего поля (MFA), так и развитые ранее [8,9] кластерные методы, в которых в отличие от MFA учитываются корреляции в расположении атомов внедрения в сплаве. Все эти аналитические методы применяются к расчетам термодинамической активности атомов углерода $a_{\rm C}$ в неупорядоченных ГЦК-сплавах FeC_c для модели Блантера [2], дающей весьма точное описание экспериментальных данных о зависимостях $a_{\rm C}(c,T)$ в аустените. Сравнение результатов выполненных расчетов с моделированием методом Монте-Карло показывает, что точность простого метода MFA (используемого многими авторами [3, 4, 13]) является неприемлемо низкой при всех физически интересных с и Т. В то же время результаты кластерных методов практически совпадают с результатами моделирования методом Монте-Карло при всех исследовавшихся температурах и концентрациях. Таким образом, предложенные кластерные методы сочетают простоту вычислений с высокой практической точностью и кажутся перспективными для изучения свойств как равновесных, так и неравновесных сплавов внедрения.

Авторы глубоко благодарны М. С. Блантеру за многочисленные обсуждения и помощь в работе, а также исследовательско-технологическому центру «Аусферр», г. Магнитогорск за инициирование и поддержку этой работы. Работа выполнена при поддержке РФФИ (грант № 06-02-16557).

ЛИТЕРАТУРА

- Б. М. Могутнов, И. А. Томилин, Л. А. Шварц, Термодинамика железо-углеродистых сплавов, Металлургия, Москва (1972), гл. IV.
- 2. M. S. Blanter, J. Alloys Comp. 291, 167 (1999).
- В. Н. Бугаев, В. А. Татаренко, Взаимодействие и распределение атомов в сплавах внедрения на основе плотноупакованных металлов, Наукова Думка, Киев (1989), гл. 3.
- В. А. Татаренко, К. Л. Цинман, Металлофиз. новейшие технол. 19, вып. 11, 9 (1997); 20, вып. 3, 25 (1998).
- M. S. Blanter and E. B. Granovsky, J. Alloys Comp. 335, 1 (2002); M. S. Blanter. I. S. Golovin, E. B. Granovsky, and H. R. Sinning, J. Alloys Comp. 345, 1 (2002).
- Х. Дж. Гольдшмидт, Сплавы внедрения, Мир, Москва (1971), гл. 4.
- 7. В. Г. Вакс, К. Ю. Хромов, ЖЭТФ 133, вып. 2 (2008).
- 8. V. G. Vaks, Phys. Rep. 391, 157 (2004).
- K. Yu. Khromov, I. R. Pankratov, and V. G. Vaks, Phys. Rev. B 72, 094207 (2005).
- 10. В. Г. Вакс, Н. Е. Зейн, В. И. Зиненко, В. Г. Орлов, ЖЭТФ 87, 2030 (1984).
- 11. D. de Fontaine, Sol. St. Phys. 47, 33 (1994).

- 12. М. А. Кривоглаз, Е. А. Тихонова, Укр. физ. ж. 5, 174 (1960).
- 13. А. Г. Хачатурян, Теория фазовых превращений и структура твердых растворов, Наука, Москва (1974).
- 14. S. V. Beiden and V. G. Vaks, Phys. Lett. A 163, 209 (1992).
- K. D. Belashchenko, I. R. Pankratov, G. D. Samolyuk, and V. G. Vaks, J. Phys.: Cond. Matt. 14, 565 (2002).
- 16. F. Ducastelle, J. de Phys. 31, 1055 (1970).
- G. Steinle-Neumann, R. E. Cohen and L. Stixrude, J. Phys.: Cond. Matt. 16, 1109 (2004).
- 18. J. Zaretsky and C. Stassis, Phys. Rev. B 35, 4500 (1987).
- 19. J. Neuhaus, W. Petry and A. Krimmel, Physica B 234–236, 897 (1997).
- 20. N. Wakabayashi, R. H. Scherm and H. G. Smith, Phys. Rev. B 25, 5122 (1982).
- **21**. В. Г. Вакс, К. Ю. Хромов, ЖЭТФ **133**, вып. 3 (2008).
- 22. А. Л. Ивановский, Н. И. Медведева, И. Р. Шеин, М. В. Рыжков, в сб. Фазовые и структурные превращения в сталях, вып. 3, Магнитогорск (2003), с. 48.
- Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, Москва (1995), § 65.