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Within a mean-field approach and using the Glauber-type stochastic dynamics, we study the kinetics of the
spin-2 Blume-Capel model in the presence of a time-varying (sinusoidal) magnetic field. We investigate the
time dependence of the average order parameter and the behavior of the average order parameter in a period,
which is also called the dynamic order parameter, as a function of the reduced temperature. The nature (con-
tinuous and discontinuous) of a transition is characterized by the dynamic order parameter. The dynamic phase
transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and
reduced temperature plane. The phase diagrams exhibit one dynamic tricritical point; besides a disordered and
one ordered phases, there are three phase coexistence regions that are strongly dependent on the interaction

parameter.

PACS: 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk

1. INTRODUCTION

Spin-1 and spin-3/2 systems have been one of the
most actively studied models in statistical mechanics
and condensed matter physics; they have been used as
elementary models for a variety of phenomena for sev-
eral decades. Recently, sustained research effort has
been exerted in investigating equilibrium properties of
the spin-2 Ising model. An early attempt to study the
one-dimensional Ising model for S =2 (also S = 1 and
3/2) was made in [1] by generalizing the Bethe approx-
imation. The authors only calculated the energy and
the specific heat exactly. The dipolar and quadrupolar
ordering in the spin-2 doublet—triplet system was stud-
ied in the molecular field approximation in [2]. The
cluster variational method in the pair approximation
was applied to a study of the Ising ferromagnet with
S =1, 3/2, 2, and 5/2 in [3], where only the sponta-
neous magnetization was studied as a function of the
reduced temperature for S = 2. The exact solution of
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the Ising model on a honeycomb lattice for S = 3/2
and 2 was obtained in [4] via a straightforward gener-
alization of the method used in [5]. The mean-field so-
lution of the Blume-Capel (BC) model for S =1, 3/2,
2, and 3 was investigated in [6]. Bifurcation diagrams
for the set of ferromagnetic fixed points of the spin-
2 BC model on a Cayley tree of coordination number
z = 3 were presented in [7]. Two-spin cluster effective
field theory for the BC model with spins S = 1, 3/2,
and 2 was developed and the phase diagrams were pre-
sented in [8]. It was also found there that the system
exhibits a tricritical point for S > 1 and only if S is
an integer, when the ratio D/J is less than —1. The
magnetic properties of the spin-S (1, 2, and 3) Ising
system with bilinear and biquadratic exchange interac-
tions was investigated in [9] using the four-spin model
approximation for a negative value of the biquadratic
interaction. The temperature dependence of the dipole
moment of the model for S = 2 was investigated and
the ground state of the system was also discussed. On
the other hand, the transverse Ising model with arbi-
trary spins S was studied in [10] for S = 3/2 and 2
and in [11] for S = 1/2, 1, 3/2, 2, and 5/2 within the
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effective field theory. Moreover, the properties of the
spin-2 transverse Ising model have been investigated
within the framework of the effective filed theory in de-
tail [12-17]. The bimodal and trimodal random-field
spin-2 Ising systems in a transverse field were stud-
ied by combining the pair approximation with the dis-
cretized path-integral representation [18,19], and the
matrix product approach was used to construct all opti-
mum ground states of general anisotropic spin-2 chains
with nearest-neighbor interactions and common sym-
metries [20]. Recently, the complete phase diagrams of
the antiferromagnetic spin-2 Ising system were investi-
gated on the Bethe lattice using the exact recurrence
relations [21]. On the other hand, the zero-temperature
phase diagram of a one-dimensional spin-2 Heisenberg
ferromagnet was studied numerically using the density-
matrix renormalization-group method [22], and spin-2
Heisenberg antiferromagnetic chains were also investi-
gated by the Monte Carlo calculation [23]. Ground-
state phase diagrams of the quantum spin-2 Ising model
on the square lattice [24] and on the hexagonal lat-
tice [25] were also constructed.

While the equilibrium properties of the spin-2 Ising
model have been studied extensively, as far as we know,
the nonequilibrim aspects of the spin-2 Ising model
have not been investigated. The purpose of the present
paper is therefore to present a study, within a mean-
field approach, of the kinetics of the spin-2 BC model
in the presence of a time-dependent oscillating exter-
nal magnetic field. We use the Glauber-type stochastic
dynamics to describe time evolution of the system [26].
Specifically, we investigate the time dependence of the
average magnetization and the behavior of the dynamic
order parameter as a function of the reduced temper-
ature. In these studies, we obtain dynamical phase
transition (DPT) points and construct phase diagrams
in the reduced temperature and reduced magnetic field
amplitude plane. This type of calculation was first ap-
plied to a kinetic spin-1/2 Ising system in [27] and then
used to study kinetics of a classical mixed spin-1/2 and
spin-1 Ising system in [28], and the kinetics of spin-1
Ising system in [29] and spin-3/2 [30] Ising systems
in [30].

We also mention that the DPT has attracted much
attention in recent years, theoretically [27-34] and from
the standpoint of analytical studies [35]. Experimen-
tal evidences for the DPT have been found in magnetic
systems [36] and amorphous YBaCuO films [37]. More-
over, besides the scientific interests, the study of DPT
can inspire new methods in material manufacturing
and processing, and interesting methods in nanotech-
nology, such as the pattern formation [38], monomolec-

ular organic films [39], beam-induced transformation,
and many others [40].

The outline of this paper is as follows. In Sec. 2, the
spin-2 BC model is briefly described and the dynamic
equation of motion is derived. In Sec. 3, DPT points
are calculated and phase diagrams are presented. The
paper ends with a summary and conclusion in Sec. 4.

2. THE MODEL AND DERIVATION OF
MEAN-FIELD DYNAMIC EQUATIONS

The spin-2 BC model given by a spin-2 Ising Hamil-
tonian with a crystal-field interaction or single-ion
anisotropy is defined by the Hamiltonian

H=-J> S;S;—D> S}-H> S, (1)
(i7) i i

where S; takes the values £2, +1, and 0 at each site i
of a lattice and (ij) denotes summation over all pairs
of nearest-neighbor sites. .J is the bilinear exchange in-
teraction parameter, D is the crystal-field interaction
or single-ion anisotropy, and H is a time-dependent ex-
ternal oscillating magnetic field given by

H(t) = Hg cos(wt). (2)

The system is in contact with an isothermal heat bath
at an absolute temperature T'4.

The system evolves according to a Glauber-type
stochastic process at a rate of 1/7 transitions per unit
time. We define P(Sy,Sa,...,Sn;t) as the probability
that the system has the spins Sy, Ss,...,Sy at time
t. The time dependence of this probability function is
assumed to be governed by the master equation that
describes the interaction between spins and the heat
bath and can be written as

iP(517S27-~

dt

i SHéSlf
X P(Sl,SQ,...

+3 1D wisi— S x

i \Si#S!

. ',SN;t):

.,Si,... ,SN;t)'i'

><P(Sl,SQ.,...,SZ{,....,SN;t) y (3)
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where W;(S; — S!) is the probability per unit time that
the ith spin S changes from S; to S}, and in this sense
the Glauber model is stochastic. Because the system is
in contact with a heat bath at the absolute tempera-
ture T4, each spin can change from the value S; to the
value S} with the probability per unit time given by

_1 exp (—BAE(S; — S})) (4)

T Zexp —BAE(S; — S))’

where 8 = 1/kpT4, > is the sum over the five possible
SI

values +2, +1, 0 of Sg and

—(S! = Sy) (JZS +H) (82 - S%)D (5)

gives the change in the energy of the system when the
S; spin changes. The probabilities satisfy the detailed
balance condition

WZ(SZ%S;)_P(SLS%,S;/,SN) (6)
WZ(S; — Sz) a P(Sl,827... 752',... ,SN).
Substituting the possible values of S;, we obtain
Wi(2 = 0)=W;(1—0) =
=W;(-1=0)=W;(-2—-0) =
_ 1 1 (Ta)
7 2exp(BD) ch(Ba)+2exp(48D) ch(2pa)+1’
=Wi(-1=1)=W;(-2—1)=
_ 1 exp(fa) exp(BD) ()

7 2exp(BD) ch(fa)+2exp(45D) ch(25a)+1

= Wl(—l — 2) = Wl(—Q — 2) =
1 exp(26a) exp(43D) -
7 2exp(BD) ch(Ba)+2exp(45D) ch(2pa)+1’
Wl(]. — —].) = WZ(Q — —].) =
= WZ(O — —1) = WZ(—Q — —1) =
B 1 exp(—/fa)exp(BD) (7d)
7 2exp(BD) ch(Ba)+2exp(43D) ch(2Ba)+1’
Wi(2 = -2)=W;(1 - -2) =
= WZ(O — —2) = WZ(—l — —2) =
1 exp(~28a) exp(43D) e

T 2exp(BD) ch(Ba)+2exp(45D) ch(2pa)+1

where
a=JY S;+H.
()
We note that because W;(S; — S}) is independent of
Si, we can write W;(S; — SI) = W;(S}), and the mas-
ter equation becomes

d
—P(S1.8, .. Snit) Z(ZW )

i \S;#S!

P(S1, 8, ..., Siv..  Snit) + > Wi(S

X Z P(S1,S,...,Sh....Sn:t) | . (8)
S;#8S!

Because the sum of probabilities is normalized to one,

multiplying both sides of Eq. (8) by S; and taking the

average we obtain
\

2exp(48D)sh |28 (JZ S; -|-H) + exp(3D) sh (JZS +H)
T% (Sk) = — (Sk) + 2 O
exp(48D) ch |23 (JZsj +H) + exp(D) ch (JZS -|-H) +1/2
()
or, in terms of the mean-field approach,
Ti (S) = — (S) + 2exp(48D)sh |28 (Jz (S) + Hoy cos(wt))] + exp(BD)sh [3 (Jz (S) + Hg cos(wt))] (10)
dt exp(48D) ch 28 (Jz (S) + Hy cos(wt))] + exp(BD) ch [3 (Jz(S) + Hp cos(wt))] + 1/2°

where z is the coordination number for this model. The system evolves according to differential equation (10),

which can be written as

d
Q—m=—-m+

2exp(4d/T)sh[(2/T)(m + hcos§)] + exp(d/T)sh[(1/T)(m + hcos§)]

dé exp(4d/T) ch[(2/T)(m + hcos&)] + exp(d/T) ch[(1/T)(m + hcos&)] + 1/2°

8 ZKOT®, Bem. 6 (12)

(11)
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where m = (S), ¢ = wt, T = (B2zJ) ', d = D/zJ,
h = Hy/zJ, and Q = Tw. We fixed z = 4 and Q = 2.
A solution and a discussion of this equation are given
in the next section.

3. DYNAMIC PHASE TRANSITION POINTS
AND PHASE DIAGRAMS

In this section, we find the DPT points and present
the phase diagrams. For this, we first have to study
stationary solutions of dynamic equation (11), when
the parameters T', d, and h are varied. The station-
ary solution of Eq. (11) is a periodic function of & with
period 27, m (£ + 27) = m (§). Moreover, they can be
one of two types according to whether they have or do

not have the property

m(§+m)=-m(g). (12)

A solution that satisfies Eq. (12) is called symmet-
ric; it corresponds to a paramagnetic (P) phase. In this
solution, the magnetization m(§) oscillates around the
zero value and is delayed with respect to the external
field. Solutions of the second type, which do not satisfy
Eq. (12), are called nonsymmetric; they correspond to
a ferromagnetic (F) phase. In this case the magneti-
zation does not follow the external magnetic field any
more but instead oscillates around a nonzero value, +2
or +1. If it oscillates around +2, it corresponds to the
ferromagnetic-2 (F,) phase and if it oscillates around
+1, it corresponds to the ferromagnetic-1 (Fy) phase.
These facts are seen explicitly by solving Eq. (11) nu-
merically.

Equation (11) is solved numerically using the
Adams—Moulton predictor corrector method for a given
set of parameters and initial values. The results are
presented in Fig. 1. From Fig. 1, we can see five differ-
ent solutions: P, F,, and three coexistence solutions,
namely, F» + P, F; + P, and F, + F; + P. In Fig. 1a,
only the symmetric solution is always obtained, and
hence we have a paramagnetic (P) solution, but in
Fig. 1b, only the nonsymmetric solutions are found, and
we therefore have a ferromagnetic (Fy) solution. These
solutions do not depend on the initial values. On the
other hand, in Fig. 1¢, both the Fy and P phases always
exist in the system, and hence we have the coexistence
solution (Fo + P). In this case, the solutions depend
on the initial values, as can be seen in Fig. 1¢ explic-
itly. Figures 1d-e are similar to Fig. le¢, except that
F; and P phases exist in Fig. 1d and F,, Fy, and P
phases exist in Fig. 1le. Therefore, we have three differ-
ent, coexistence solutions, which depend on the initial
values.

To obtain the dynamic phase boundaries between
these five phases or regions in Fig. 1, we have to calcu-
late DPT points, which then allow us to present phase
diagrams of the system. DPT points are obtained by
investigating the behavior of the average magnetization
in a period as a function of the reduced temperature.

The average magnetization (M) in a period, which
is also called the dynamic magnetization, is given by

27
M=o [ m@de (13)
™
0

The behavior of M as a function of the reduced
temperature for several values of h and d is obtained
by combining the numerical Adams—Moulton predictor
corrector method with the Romberg integration. We
give a few interesting examples to illustrate the calcu-
lation of the DPT and the dynamic phase boundaries
between the five phases, seen in Fig. 2. In Fig. 2, T
and T; are a critical (or second-order) phase transition
and a first-order phase transition temperatures, respec-
tively. Figure 2a shows the behavior of M as a function
of the reduced temperature for d = 1.0 and h = 0.5. At
zero temperature, M = 2.0; M decreases to zero con-
tinuously as the reduced temperature T increases, and
therefore the system undergoes a second-order phase
transition at T¢ = 2.2292, the transition being from
the Fy phase to the P phase. Figure 2b displays the
behavior of M as a function of the reduced tempera-
ture for d = 1.0 and h = 1.375. At zero temperature,
M = 2.0; M decreases to zero discontinuously as the re-
duced temperature increases, and therefore a first-order
phase transition occurs. The first-order phase transi-
tion temperature Ty = 1.1975 is marked with a dashed
arrow in Fig. 2. Figures 2¢ and 2d illustrate the ther-
mal variations of M for d = —1.3 and h = 0.0125 for
two different initial values of M: 2.0 or 1.0 in Fig. 2¢
and zero in Fig. 2d. In Fig. 2¢, the system exhibits a
second-order phase transition from the F5 phase to the
P phase. In Fig. 2d, the system undergoes two succes-
sive phase transitions: the first is a first-order one at
T; = 0.122, the transition being from the P phase to
the Fy phase, and the second is a second-order phase
transition at Tc = 1.418 from the Fy phase to the P
phase. This means that the Fy + P coexistence region
exists for d = —1.3 and h = 0.0125 in the system. This
fact is seen in the phase diagram in Fig. 3¢ explicitly
(compare Figs. 2¢ and 2d with Fig. 3¢ for h = 0.0125).
Figures 2e—g illustrate the thermal variation of M for
d = —2.25 and h = 0.175 for three different initial val-
ues of M: 2.0 in Fig. 2e, 1.0 in Fig. 2f, and zero in
Fig. 29. Figure 2e shows that the system undergoes
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Fig.1. Time variations of the average magnetization (m).

and T = 1.5. b) Exhibiting a ferromagnetic-2 (F3) phase,

a) Exhibiting a paramagnetic phase (P), d = 1.0, h = 1.425,
d=—-15,h=0.4, and T = 0.25. ¢) Exhibiting a coexistence

region (F2 + P), d = —1.5, h = 0.86, and T' = 0.625. d) Exhibiting a coexistence region (F; + P), d = —2.25, h = 0.325,
and T = 0.0375. ¢) Exhibiting a coexistence region (F2 + F1 + P), d = —2.25, h = 0.2325, and T = 0.0275

two successive first-order phase transitions; the first is
from the Fs phase to the F; phase at T; = 0.0617
and the second is from the F; phase to the P phase
at Ty = 0.1575. In Fig. 2f, the system undergoes a
first-order phase transition from the F; phase to the
P phase at Ty = 0.1575. Figure 2g illustrates that
the system does not undergo any phase transitions,
but the P phase always exists for these values. There-
fore, the Fy + Fy + P coexistence region occurs below
Ty = 0.1575, and the F; + P region exists between
Ty = 0.0617 and Ty = 0.1575, and the P phase occurs
above Ty = 0.1575. This fact is also seen in the phase
diagram in Fig. 3e explicitly (compare Figs. 2e—¢g with
Fig. 3e for h = 0.175).

We can now obtain phase diagrams of the system.
The calculated phase diagrams in the (T, h) plane are
presented in Fig. 3. The solid and dashed lines respec-
tively represent the second- and first-order phase tran-
sition lines and the dynamic tricritical point is denoted
by a solid circle. As seen in Fig. 3, we have obtained
seven different phase-diagram topologies.

(i) For d > —0.265, Fig. 3a displays the phase di-
agram in the (7, h) plane for d = 1.0. In this phase
diagram, the solutions are paramagnetic (P) for the
higher reduced temperatures 7' and reduced external

magnetic field amplitudes h, and ferromagnetic-2 (F5)
for low values of T"and h. The dynamic phase boundary
between these regions, F5 — P, is a second-order phase
transition line. For low reduced temperatures, there is
a range of values of h where the P and F» phases coex-
ist, called the coexistence region, Fy + P. The F5 + P
region is separated from the Fy and P phases by a
first-order phase transition line. The system also ex-
hibits only one dynamic tricritical point where both
first-order phase transition lines merge, which signals a
change from a first-order to a second-order phase tran-
sitions. Finally, we mention that similar phase dia-
grams have also been obtained in the kinetic spin-1/2
Ising [27], spin-1 Ising [29] and spin-3/2 Ising [30] sys-
tems.

(ii) For —0.265 > d > —1.043, we have presented
the phase diagram at d = —1.0 in Fig. 3b. This phase
diagram is similar to the one in Fig. 3a, but differs from
it in that at low values of T" and h, one more Fy + P
coexistence region exists. The dynamic phase bound-
ary between this F» + P region and the F5 phase is a
first-order line. A similar phase diagram has also been
obtained for the spin-1 Ising systems [29], except that
the ferromagnetic phase is Fy instead of F.

(iii) For —1.043 > d > —1.426, the phase diagram
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Fig.2. The reduced temperature dependence of the dynamic magnetization M. T and T; are respectively the second-order
phase transition and the first-order phase transition temperatures. a) A second-order phase transition from the Fa phase
to the P phase for d = 1.0 and h = 0.50; 2.2292 is found for T. b) A first-order phase transition from the F» phase to
the P phase for d = 1.0 and h = 1.375; 1.1975 is found for T;. c) A second-order phase transition from the F» phase
to the P phase for d = —1.3 and h = 0.0125; 1.418 is found for Tc. d) Two successive phase transitions, a first-order
phase transition from the P phase to the F> phase and a second-order phase transition from the F> phase to the P phase
for d = —1.3 and h = 0.0125; 0.122 and 1.4042 are found for T} and T¢, respectively. e) Two successive first-order phase
transitions, the first from the F» phase to the F; phase and the second from the F; phase to the P phase for d = —2.25
and h = 0.175; 0.0617 and 0.1575 are found for T} and T}, respectively. f) The same as in Fig. 2b, but with the first-order

phase transition from the F; phase to the P phase, for d = —2.25 and h = 0.175; 0.1575 is found for T}.

g) The system

does not undergo any phase transition, d = —2.25 and h = 0.175

is shown for d = —1.3 in Fig. 3¢. It is similar to case
(ii), with the following differences. 1) One more Fy +
P phase occurs for low values of T" and high values of
h and the dynamic boundary between this coexistence
phase and the Fs phase is also a first-order line. 2) The
F2 + P phase, which exists for very high values of h, be-
comes the F; + P phase. A similar phase diagram has
also been found for the spin-3/2 Ising systems, except
that the ferromagnetic phase is Fy instead of F3 5.

(iv) For —1.426 > d > —1.957, the phase diagram
is presented for d = —1.5 in Fig. 3d. The phase dia-
gram is similar to the one in Fig. 3b, with the following
differences. 1) For very low values of T" and h, the F,
+ Fi + P coexistence region occurs. 2) The Fy + P
phase, which exists for very high values of h, becomes
the F; + P phase. The dynamic phase boundary be-
tween the Fo + Fy + P phase and F; + P phase is also
a first-order phase transition line.
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Fig. 3. Phase diagrams of the spin-2 BC model in the (T, h) plane. The Paramagnetic (P), Ferromagnetic-2 (F2), and three

different coexistence (F2 + P, F1 + P, F2 + F1 + P) regions are found. Dashed and solid lines respectively represent the

first- and second-order phase transitions, and the dynamic tricritical point is indicated with solid circles. d = 1.0 (a), —1.0
(0), —=1.3 (¢), —1.5 (d), —2.25 (€), —2.5 (f), and —2.75 (g)

(v) For —1.957 > d > —2.364, the phase diagram is
shown in Fig. 3e for d = —2.25. This phase diagram is
similar to Fig. 3d, except for the following differences.
1) The second-order phase transition line disappears;
hence, the system does not exhibit a dynamic tricriti-
cal point. 2) The F5 phase also disappears.

(vi) For —2.364 > d > —2.587, the phase diagram
is constructed for d = —2.50 in Fig. 3f. It is similar
to Fig. 3e but differs from it in that the F; + P coex-
istence region, which appears for very low values of T'
and high values of h, now disappears.

(vii) For —2.587 > d, the phase diagram is simi-

lar to the one in Fig. 3f but differs from it in that for
very low values of T and h, the Fy + F; + P region
disappears, as illustrated in Fig. 3g¢.

4. SUMMARY AND CONCLUSION

Within a mean-field approach, we have presented
a study of the stationary states of the kinetic spin-2
BC model and its kinetics described by the Glauber-
type stochastic dynamics in the presence of a time-
dependent oscillating external magnetic field. We have
studied the time dependence of the average magnetiza-
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tion and the behavior of the average magnetization in a
period. The DPT points are found by investigating the
behavior of the dynamic magnetization as a function of
the reduced temperature.

We also mention that a phase diagram similar to
the one in Fig. 3a has been obtained for kinetic spin-
1/2 Ising model [27], the kinetic spin-1 Ising model [29],
and kinetic spin-3/2 Ising model [30], but a phase dia-
gram similar to Fig. 3b has been found only in kinetic
spin-1 Ising systems [29]. The five phase diagrams in
Fig. 3¢, d, e, f, and ¢g are a new type of phase dia-
grams, which have been only obtained in the kinetic
spin-2 BC model in the presence of a time-dependent
oscillating magnetic field by using the Glauber-type
stochastic dynamics. The phase diagrams exhibit one
dynamic tricritical point, the P and Fy phases, and the
Fy + P, F; + P, and Fy + F; + P coexistence phase
regions, which strongly depend on the interaction pa-
rameter.

Finally, it is worthwhile to mention that there is
a strong possibility that at least some of the first-
order transitions and multicritical points seen in the
mean-field results are artefacts of the approximation.
This is because for the field amplitude less than the
coercive field (at the temperature less than the static
ferro—para (or order—disorder) transition temperature),
the response magnetization varies periodically but
asymmetrically even in the zero-frequency limit; the
system may remain locked to one well of the free
energy and cannot go to another well, in the absence of
noise or fluctuations [31-34]. However, this mean-field
dynamic study suggests that the spin-2 BC model
has an interesting dynamic behavior and gives rich
dynamic phase diagrams. Hence, we hope that our
detailed investigation may stimulate further works
to study the DPT in the kinetic spin-2 model theo-
retically by using more accurate techniques such as
dynamic Monte Carlo simulations or renormalization
group calculations.
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