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MICROSCOPIC ANALYSIS OF WOBBLING EXCITATIONSIN 156Dy AND 162YbR. G. Nazmitdinov *Departament de Físia, Universitat de les Illes BalearsE-07122, Palma de Mallora, SpainBogoliubov Laboratory of Theoretial Physis, Joint Institute for Nulear Researh141980, Dubna, Mosow Region, RussiaJ. KvasilInstitute of Partile and Nulear Physis, Charles UniversityCZ-18000, Praha 8, Czeh RepubliReeived Marh 13, 2007In the ranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole exitations of posi-tive parity and negative signature in 156Dy and 162Yb at high spins. Speial attention is paid to a onsistentdesription of wobbling exitations and their identi�ation among exited states. A good agreement betweenthe available experimental data and the results of alulations is obtained. We �nd that the lowest odd-spin-vibrational states in 156Dy transform into the wobbling exitations after the bakbending assoiated with thetransition from axially symmetri shape to nonaxial shape. Similar results are predited for 162Yb. The analysisof eletromagneti transitions uniquely determines the sign of -deformation in both nulei after the transitionpoint.PACS: 21.10.Re, 21.60.Jz, 27.70.+q1. INTRODUCTIONDeformation is an important ingredient of nuleardynamis at low energies [1, 2℄. Regular rotationalbands identi�ed in spetrosopi data are most evidentand prominent manifestations of an anisotropy of thespatial nulear density distribution. While the axial de-formation of the nulear potential is well established,there is a long-lasting debate on the existene of a triax-ial deformation. The full understanding of this degreeof freedom in nulei may have impliations for othermesosopi systems as well. In partiular, the impor-tane of nonaxiality is disussed reently for metallilusters [3℄ and atomi ondensates (see Ref. [4℄ andthe referenes therein).The analysis of spei� low-lying exited states nearthe yrast line ould shed light on the existene of nonax-iality. For nonaxial shapes, one expets the appearaneof low-lying vibrational states assoiated with a lassi-*E-mail: rashid�theor.jinr.ru, vdfsrna9�uib.es

al wobbling motion. Suh exitations (alled wobblingexitations) were �rst suggested by Bohr and Mottel-son in rotating even�even nulei [1℄, and were then an-alyzed within simpli�ed mirosopi models [5, 6℄ (seealso Ref. [7℄ and the referenes therein). Aordingto the mirosopi approah [8, 9℄, the wobbling ex-itations are vibrational states of negative signaturebuilt on the positive-signature yrast (vauum) state.Their harateristi feature is the olletive E2 transi-tions with �I = �1~ between these and yrast states.First experimental evidene of suh states in odd Lunulei was reported only reently [10℄.The properties of the wobbling exitations at di�er-ent angular momenta an be studied within the asym-metri rotor model (ARM) [1℄ (also see the Appendix).The extension of this model to odd nulei was used re-ently for the analysis [11℄ of experimental propertiesof the seond triaxial superdeformed band in 163Lu,whih arries several features assoiated with the wob-bling exitations. The lassial dispersion equation for1100



ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007 Mirosopi analysis of wobbling exitations : : :the wobbling mode [1℄, with irrotational moments of in-ertia, was used to desribe the spetrum. The momentsof inertia were �tted in order to reprodue the experi-mental data. But the intepretation of the results withirrotational moments of inertia [11℄ faes the problemof a onsistent desription of data. It seems that theapproah suggested in Ref. [11℄ may explain some ten-denies, but these are only a rude approximation tothe full physial piture of the observed phenomenon.To explain the same data in 163Lu, a non-self-onsistent mirosopi analysis based on the rankedNilsson potential was performed in [12; 13℄. As a basitool, the dispersion equation for wobbling exitations,derived in the time-dependent Hartree�Bogoliubov ap-proah in Ref. [9℄, has been used. Based on the solutionof the mirosopi equation, it was found in Ref. [13℄that the wobbling exitations are very sensitive to asingle-partile alignment. It was also onluded thatthe pairing orrelations do not a�et the wobbling ex-itations, and this should be onsidered a spei� fea-ture related to this mode. This seems to ontradit thefat that alignment redues the pairing orrelations.Furthermore, the authors admitted that the kinematimoment of inertia Jx was not desribed properly (seeRef. [13℄).We reall that wobbling exitations depend on allthree moments of inertia that haraterize the nonax-ial shape. Therefore, a self-onsistent desription formoments of inertia is a prerequisite for the mirosopianalysis of the nulear wobbling motion. The main aimof this paper is to analyze new data on high-spin statesin 156Dy and 162Yb [14, 15℄ within a self-onsistent mi-rosopi approah [16℄. Our alulations suggest thatsome exited states at high spins may represent wob-bling exitations.Our approah (CRPA) [16℄ amounts to a self-onsistent solution of the ranked Nilsson potential forthe yrast line and the analysis of the low-lying exita-tions near the yrast line in the random-phase approx-imation (RPA). The analysis of M1-exitations [17℄,shape�phase transitions, and the behavior of positive-signature exitations at bakbending [16℄ on�rmedthe importane of self-onsisteny for the desriptionof moments of inertia. We provide a re�ned miro-sopi desription of the wobbling exitations in a time-independent uniformly rotating (UR) frame. In numer-ial analysis, we pay attention to the self-onsistenybetween the mean �eld, vibrational exitations, andtheir eletromagneti properties. We reall that allnegative-signature exitations, inluding the wobblingones, are onsidered in the UR frame. To identify thewobbling exitations in experimental data, a few ri-

teria are proposed in the literature, suh as a largeolletivity and zig-zag behavior of the B(E2) tran-sition probability from a given band into the yrastone with �I = �1, when one of the transitions is al-most dominant [18℄. We present a mirosopi proe-dure that gives a de�nite answer as to how to identifythe wobbling exitations. This proedure inludes theanalysis of inertial properties and B(E2)- and B(M1)-transitions probabilities.The paper is organized as follows. In Se. 2, webrie�y review the main details of our approah (whihis thoroughly disussed in Ref. [16℄). In Se. 3, westudy the lowest negative-signature RPA exitations.The main fous in this setion is on the de�nition ofthe spei� harateristis assoiated with the wobblingmode. The onlusions are �nally drawn in Se. 4. Toomplete the analysis, we review properties of the wob-bling mode in the ARM in the Appendix.2. THE MODEL2.1. Basi properties of the mean-�eldapproximationOur desription is based on the Hamiltonian de�nedin the UR frame asĤ
 = Ĥ�~
Ĵx = Ĥ0� X�=n;p��N��~
Ĵx+V: (1)The unperturbed HamiltonianĤ0 =Xi [hNil(i) + hadd(i)℄onsists of the Nilsson HamiltonianhNil = p22m + 12m(!21x21 + !22x22 + !23x23)�� 2�~!00l � s� ��~!00(l2 � hl2iN ) (2)and the additional orretion term [19℄hadd = 
m!00��2 �r2sx � xr � s�++� �2r2 � ~m!00 �N + 32�� lx� : (3)The orretion term restores the loal Galilean invari-ane broken in the rotating oordinate system and im-proves the desription of the inertial properties in theNilsson model (see Ref. [16℄). The hemial potentials�� (where � = n; p) are determined so as to give theorret mean partile numbers hN� i. Hereafter, h: : : i1101



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007denotes averaging over the mean-�eld vauum (yrast)state at a given rotational frequeny 
. The two-bodypotential in Eq. (1) inludes the monopole pairing, dou-bly strethed quadrupole�quadrupole and monopole�monopole interation. Hamiltonian (1) has the inver-sion and signature symmetries. Using the generalizedBogoliubov transformation for quasipartiles and thevariational priniple (see the details in Ref. [20℄), weobtain the Hartree�Bogoliubov (HB) equations for thepositive-signature quasipartile energies "i (protons orneutrons). The positive-signature (r = +1) state isde�ned in aordane with the Bogoliubov transforma-tion�yi =Xk (Ukiyk + V�ki�k); ei�jx�yi e�i�jx = �i�yi ;where jki denotes a single-partile state of a Goodmanspherial basis (see Ref. [21℄). By diagonalizing theHamiltonian at the rotational frequeny 
, we obtainquasipartile states with a good parity � and signaturer. It su�es to solve the HB equations for the positivesignature, beause the negative-signature eigenvaluesand eigenvetors are obtained from the positive ones as(�"i;Ui;Vi)! ("�i;V�i;U�i) : (4)The index ��i� denotes the negative-signature (r = �1)state (ei�jx�y�i e�i�jx = i�y�i ). For a given value of therotational frequeny 
, the quasipartile (HB) vauumstate is de�ned by �ij i = ��ij i = 0.We solved the system of nonlinear HB equationsfor 156Dy and 162Yb on the mesh of deformation pa-rameters � and  de�ned by means of the osillatorfrequenies in Eq. (2) as!2i = !20 "1� 2�r 54� os� � 2�3 i�# ;i = 1; 2; 3 (or x; y; z): (5)The Nilsson�Strutinsky analysis of experimental dataon high spins in 156Dy [15℄ indiates that the positive-parity yrast sequene undergoes a transition from theprolate towards an oblate rotation. To ompare ourresults with available experimental data on exitedstates [15℄, in omparison with our previous work [16℄,we extend the range of the values of  from  = 60Æ(an oblate rotation around the y axis) to  = �60Æ (anoblate rotation around the x axis). At eah rotationalfrequeny and at eah mesh point, we self-onsistentlyalulate the total mean-�eld energy EHB = hĤ
i. Inthe viinity of the bakbending, the solution beomeshighly unstable. To avoid unwanted singularities for

ertain values of 
, we follow the phenomenologialpresription [22℄�� (
) == 8>>>><>>>>: �� (0)"1� 12 � 

�2# ; 
 < 
;12�� (0)�

 �2 ; 
 > 
; (6)where 
 is the ritial rotational frequeny of the �rstband rossing.It is well known that for a deformed harmoni osil-lator, the quadrupole �elds in doubly strethed oordi-nates [23℄ satisfy the stability onditions (f. Ref. [24℄)h ~Q�i = 0; � = 0; 1; 2: (7)The tilde indiates that the quadrupole �elds areexpressed in terms of doubly strethed oordinates~xi = (!i=!0)xi and ontain di�erent ombinations ofthe nonstrethed quadrupole Q0 / (2z2 � x2 � y2),Q2 / p3(x2 � y2) and monopole M / r2 operatorsquantized along the z axis (f. Ref. [23℄). Condition (7)holds if the nulear self-onsisteny ondition!21hx21i = !22hx22i = !23hx23i (8)is satis�ed in addition to the volume-preserving on-straint. By virtue of ondition (8), the doubly strethedresidual interation does not ontribute to the mean-�eld results in the Hartree proedure. Enforing thestability onditions (7) in the HB approximation, wesearh for the HB minimum for Hamiltonian (1) at agiven rotational frequeny. While the mean-�eld valuesof the quadrupole operators Q̂0 and Q̂2 are nonzero, thedoubly strethed quadrupole moments h ~Q0i and h ~Q2ivanish (Fig. 1) for equilibrium deformations (Fig. 2).The results of our alulations onform to the re-sults of the Nilsson�Strutinsky shell-orretion method(ompare our Fig. 2 with Fig. 3 in Ref. [15℄), al-though we obtain slightly di�erent values for the equi-librium deformations. In the analysis in Ref. [15℄, thepairing orrelations are missing. In addition, in theNilsson�Strutinsky shell-orretion method, the rigid-body moment of inertia simulates the inertial nulearproperties, whih are di�erent from the mirosopione, even in the high-spin region (see below). More-over, the use of the Nilsson�Strutinsky results destroysthe self-onsisteny between the mean-�eld alulationsand the RPA analysis. Therefore, to maintain self-onsisteny between the mean-�eld approximation and1102
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Fig. 1. The rotational behavior of the alulated monopole and quadrupole moments. The �doubly strethed� and standardvalues are onneted by dashed and solid lines, respetivelythe RPA as muh as possible, we use the reipe de-sribed above.The triaxiality of the mean �eld sets in at the riti-al rotational frequeny 
 that triggers the bakbend-ing in the onsidered nulei due to di�erent meha-nisms. We obtain ~
 � 0:25 MeV (10~ ! 12~) and~
 � 0:3 MeV (14~ ! 16~) for 162Yb and 156Dy,respetively (see Fig. 2). The ontribution of the ad-ditional term, Eq. (3), was ruial to ahieve a goodorrespondene between the alulated and experimen-tal values of the rossing frequeny in eah nuleus (seeRef. [16℄).In 156Dy, we obtain that the -vibrational exita-tions (K = 2) of the positive signature tends to zero inthe rotating frame at the transition point in lose agree-ment with experimental data. At the transition point,there are two indistinguishable HB minima with di�er-ent shapes: axially symmetri and strongly nonaxial.It is interesting to note that this behavior is symmet-ri with respet to the sign of the -deformation, al-though the di�erene between the HB energy minimafor  = �20Æ is about 0.8 MeV. The inrease in the ro-tational frequeny hanges the axial shape to the non-axial one with a negative -deformation ( � �20Æ).The transition has all the features of a �rst-order sha-

pe�phase transition. In ontrast to 156Dy, the axiallysymmetri on�guration in 162Yb is replaed with thetwo-quasipartile on�guration with a small negative-deformation. There, the bakbending ours due tothe rotational alignment of a neutron i13=2 quasipartilepair. The nonaxiality evolves quite smoothly, exhibit-ing the main features of a seond-order shape�phasetransition. The question arises as to how reliable ourdesription is or how self-onsistently our mean-�eldalulations are done.One of the onlusive tests for the self-onsisteny ofmirosopi ranking alulations is the equivalene ofthe dynami moment of inertia J (2)HB alulated in themean-�eld approximation and the Thouless�Valatinmoment of inertia JTV alulated in the RPA. Theequivalene ertainly holds if a self-onsistent mean-�eld minimum is found and spurious solutions are sep-arated from the physial ones (see the results for an ex-atly solvable model in Ref. [25℄). Our results (Fig. 3)demonstrate good onsisteny between the mean-�eldand the CRPA alulations. We emphasize that theinlusion of the orretion term, Eq. (3), is ruialfor ahieving a good desription of the inertial nulearproperties.1103
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Fig. 2. Equilibrium deformations in the �� plane as a funtion of the angular momentum I = hĴxi � 1=2 (in units of ~).The equilibrium deformations for 156Dy provide the lower mean-�eld energies in the region ��=3 <  < 0 (�lled irles) inomparison with those obtained in Ref. [16℄ (open squares). Both branhes of the equilibrium deformations are obtainedby enforing ondition (7). The maximum di�erene between the minimal HB energies at positive and negative equilibrium-values does not exeed 1 MeV for 156Dy2.2. Negative-signature exitationsTo desribe quantum osillations around mean-�eldsolutions, the boson-like operatorsbyk�l = �yk�y�l ; bykl = �yk�yl ; by�k�l = �y�k�y�lare used. The �rst equality introdues a positive-signature boson, and the other two determine negative-signature ones. These two-quasipartile operators aretreated in the quasi-boson approximation (QBA) as el-ementary bosons, i.e., all ommutators between themare approximated by their expetation values with theunorrelated HB vauum [26℄. The orresponding om-mutation relations an be found in Ref. [20℄. In this ap-proximation, the positive- and negative-signature bo-son spaes are not mixed, beause the orrespondingoperators ommute andĤ
 = Ĥ
(r = +1) + Ĥ
(r = �1):

The positive-signature term Ĥ
(r = +1) is analyzed inRef. [16℄.In the UR frame, the negative-signature RPAHamiltonian has the formĤ
[r = �1℄ = 12X� E�by�b� � �2 X�3=1;2 ~Q(�)2�3 ; (9)where E� = "i+"j (E�i�j = "�i+"�j) are two-quasipartileenergies. Hereafter, we use the following de�nitions:the index � runs over ij, �i�j and the index ��3� denotesthe projetion on the quantization axis z. The doublystrethed quadrupole operators~Q(�)1 = �Q̂(�)1 �� = !x!z!20 � ;~Q(�)2 = �Q̂(�)2 �� = !x!y!20 �are de�ned by means of the quadrupole operators Q̂(r)m(m = 0; 1; 2),1104
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Q̂(r)m = i2+m+(r+3)=2p2(1 + Æm0) �� �Q̂2m + (�1)(r+3)=2Q̂2�m� ; (10)where Q̂�m = r̂�Y�m. We reall that the residual dou-bly strethed interation does not distort the mean-�eld deformations found self-onsistently for Hamilto-nian (1).The RPA Hamiltonian in (9) ontains only theisosalar part of the quadrupole interation, beause wewish to establish a onnetion between the mirosopiapproah and the phenomenologial ARM to learlysee similarities and di�erenes. Moreover, in the on-sidered nulei, the main ontribution of the isovetorquadrupole�quadrupole interation is loated in the en-ergy region around 3 MeV and is responsible for M1exitations [17℄. We note, however, that the isovetorpart of the quadrupole interation may be importantfor the analysis of wobbling exitations in odd�odd nu-lei, having a di�erent orientation of the neutron andproton single-partile high-j orbitals and strong M1-transitions along yrast and/or yrare states. The pairinginteration does not ontribute to the boson Hamilto-nian Ĥ
[r = �1℄ beause it is of the positive signature.On the other hand, the matrix elements of the oper-ators depend on the pairing interation, whih a�etsthe RPA solutions.The linear boson part of the doubly strethed oper-ators has the form~Q(�)1 = �12X� ~f1�(by� + b�); ~f1� = �q1�; (11)~Q(�)2 = � i2X� ~f2�(by� � b�); ~f2� = �q2�; (12)where q1� and q2� are real matrix elements of the re-spetive operators Q̂(�)1 and Q̂(�)2 (see the propertiesof matrix elements in Ref. [21℄). We solve the RPAequations of motion[Ĥ
; P̂� ℄ = i !� X̂� ; [Ĥ
; X̂� ℄ = �i !� P̂� ;[X̂� ; P̂�0 ℄ = iÆ� �0 ; (13)where X̂� =P�X��(by�+b�) and P̂� = iP� P �� (by��b�)are the olletive oordinates and their onjugate mo-menta (hereafter, we set ~ = 1 in all equations). TheRPA eigenfuntionj�i = Ôy� jRPAi = 1p2 � X̂� � iP̂� �jRPAi ==X� ( (�)� by� � �(�)� b�)jRPAi (14)7 ÆÝÒÔ, âûï. 5 (11) 1105



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007de�nes the amplitudes  (�)� and �(�)� by means ofthe generalized oordinate and momentum amplitudes.The ket vetor jRPAi denotes the RPA vauum (yraststate) at the rotational frequeny 
. The solution ofEqs. (13) determines the generalized oordinate andmomentum amplitudes,X�� = � ~R�1 !� ~f1�E2� � !2� + � ~R�2 E� ~f2�E2� � !2� ;P �� = � ~R�1 E� ~f1�E2� � !2� + � ~R�2 !� ~f2�E2� � !2� ; (15)with unknown oe�ients~R�1 =X� ~f1�P �� � � 1p2 hÔ� ; ~Q(�)1 i ;~R�2 =X� ~f2�X�� � ip2 hÔ� ; ~Q(�)2 i (16)and eigenvalues !� . To �nd the eigenvalues !� , wetransform system of equations (15) to the form~R�1 �D11(!�)� 1��+ ~R�2D12(!�) = 0;~R�1D12(!�) + ~R�2 �D22(!�)� 1�� = 0: (17)The onditionF (!�) = det�D� 1�� = 0 (18)determines all negative-signature RPA solutions. Thematrix elementsDkm(!�) =X� ~fk;� ~fm;�Ckm�E2� � !2�involve the oe�ients Ckm� = !� if k 6= m and E�otherwise. Although the determinant has the dimen-sion n = 2, we obtain a huge family of RPA solutionswith di�erent degrees of olletivity. Among olletivesolutions, there are solutions that orrespond to shape�utuations of the system. We note that the diretionof the angular momentum is �xed in the UR frame.3. THE WOBBLING MODE3.1. Janssen�Mikhailov equationWe reall that in the RPA, the doubly strethedresidual interation restores the rotational symmetrybroken in the mean-�eld approximation. Therefore, for

the ranking Hamiltonian, the onservation laws implythat the relations[Ĥ
; Ĵy � iĴz℄ = �
(Ĵy � iĴz) (19)hold in the RPA. This ondition is equivalent to theondition of the existene of a negative-signature solu-tion !� = 
 reated by the operator [27℄�̂y = Ĵz + iĴyq2hĴxi ; �̂ = (�̂y)y; [�̂; �̂y℄ = 1: (20)The operator �̂y desribes a olletive rotational modein the subspae of Ĥ
(r = �1) arising from the symme-tries broken by the external rotational �eld (the rank-ing term). However, this is true only for a pure har-moni osillator model [25℄. Beause the additionalterm hadd in Eq. (3) ontains a term proportional tothe l̂x operator, onservation laws (19) are broken forHamiltonian (1). Nevertheless, these laws an be sat-is�ed in the RPA if the strength onstant in Eq. (18)is hanged in order to obtain the solution !� = 
 [16℄.To verify this fat, we alulated the RPA seular equa-tion (18) for the mode !� = 
, with and without the
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Fig. 4. Evolution of the negative-signature RPA solu-tion !� = 
 with (dashed line) and without (solid line)additional term (3) as a funtion of the rotational fre-queny, alulated at the equilibrium deformations (seeFig. 2). The straight dashed line parallel to the ~
-axisis the yrast line1106



ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007 Mirosopi analysis of wobbling exitations : : :additional term hadd, for the same strength onstant(see also Fig. 10 in Ref. [16℄). The results evidentlydemonstrate that onservation law (19) is satis�ed witha good auray (Fig. 4). In fat, due to a smallness ofthe term proportional to l̂x in the additional term, theviolation is almost negligible. Based on this fat, weuse onservation laws (19) for Hamiltonian (9), whihyield the equations
Jz� +E�Jy� = ��A ~f1�; (21)
Jy� +E�Jz� = ��B ~f2�: (22)The parameters A and B de�ned by�A = h[ ~Q(�)1 ; iJy℄i =X� ~f1�Jy� = �hQ2+p3Q0i; (23)�B = h[ ~Q(�)2 ;�iJz℄i =X� ~f2�Jz� = 2�hQ2i (24)are obtained with the aid of the ommutator [28℄[Ĵx � iĴy; Q̂�m℄ =p�(� + 1)�m(m� 1)Q̂�m�1:The above relations between the matrix elements,Eqs. (21) and (22), are a key point for the analysis ofwobbling exitations at a nonzero -deformation, i.e.,hQ2i 6= 0. Moreover, by virtue of the de�nitions of thephonon operator (Eqs. (14) and (15)) and the operator�̂ (Eq. (20)), we an use Eqs. (21), (22), and (30) belowto show that [�̂; Ô� ℄ = [�̂; Ôy� ℄ = 0: (25)Following the proedure desribed in Ref. [8℄, withthe aid of Eqs. (21) and (22), we obtain the equation(!2� �
2)�(!�) = 0: (26)The determinant �(!�) orresponds to the system ofequations !�Syr�1 � 
Jxyr�2 = 0;
Jxzr�1 � !�Szr�2 = 0 (27)for the unknownsr�1 = ~R�1�A ; r�2 = ~R�2�B : (28)This system no longer has the solution !� = 
. Weintrodue the notationJxy(z) = Jx �Jy(z) � !2�S=
;Sy;z = Jy;z +
S; (29)

where Jx = hĴxi=
 is the kinemati moment of inertia,S =X� Jy�Jz�E2� � !2� ;and Jy;z =X� E�(Jy;z� )2E2� � !2� :From system (27), we obtain the relation between theunknowns r�1 and r�2 asr�1r�2 = 
Jxy!�Sy = !�Sz
Jxz ; (30)whih is helpful in our analysis below.The ondition �(!�) = 0 leads to the Janssen�Mikhailov equation [8℄�(!�) = !2� ��
2 [Jx�Jy�!2�S=
℄[Jx�Jz�!2�S=
℄[Jy+
S℄[Jz+
S℄ = 0; (31)whih determines all vibrational modes of negative sig-nature exluding the solution !� = 
. We stressthat the solution of this equation alone is meaning-less. While Eq. (31) is independent of the strengthonstant, the violation of onditions (21) and (22) viaan arbitrary variation of the -deformation or pairinggap destroys the link between the systems of Eqs. (17)and (27). As a result, the redundant mode annot beremoved from Eq. (18) and it is impossible to obtainEq. (31). Providing the wobbling solution, this equa-tion has a di�erent form than the Bohr�Mottelson las-sial equation, however. Below, we present a simplederivation of the mirosopi analog of the latter equa-tion. 3.2. Marshalek moments of inertiaRelations (30) are equivalent tor�1Syr�2Sz = 
Jxy!�Sz = !�Sy
Jxz (32)and an be assoiated with the system of equations!�Sza�
Jxyb = 0;
Jxza� !�Syb = 0 (33)for the unknowns a = r�1Sy and b = r�2Sz. Using de�-nitions (29), we rearrange this system to the form!� �Jz+!�S ba� a�
�Jx�Jy�!�S ab� b = 0;
�Jx�Jz�!�S ba� a�!� �Jy + !�Sab� b = 0: (34)1107 7*



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007Using (32), we de�ne the e�etive moments of inertiain the UR frame asJ e�2 = Jy + !�S ab = Jy +
SJxySz ;J e�3 = Jz + !�S ba = Jz +
SJxzSy ; (35)whih depend on the RPA frequeny. De�nitions (35)are the same as those obtained by Marshalek in thetime-dependent HB approah but in the prinipal-axis(PA) frame [9℄. The determinant for nonzero solutionsof system (34) yields a nonlinear equation similar tothe lassial expression for the wobbling mode [1℄,!�=w = 
s [Jx �J e�2 ℄[Jx �J e�3 ℄J e�2 J e�3 ; (36)with the mirosopially de�ned moments of inertia.Equation (36) was obtained by Marshalek in the PAframe from the equations for the amplitudes of theangular-frequeny time osillations. In the UR (time-independent) frame, we obtain this equation with muhless e�ort. It is evident that for the rotation around thex axis, the wobbling exitations with di�erent olletiv-ity an be found from Eq. (36) if the onditionJx > J e�2 ;J e�3 (or Jx < J e�2 ;J e�3 ) (37)is satis�ed. It an be expeted that for the RPA so-lutions di�erent from the wobbling mode, this ondi-tion should not hold. We note that Eq. (18) ontainsthe solutions of Eq. (36) but not vie versa, beauseonstraint (37) is valid in the latter ase but is not re-quired in the former. We obtain quite a remarkableorrespondene between the experimental and alu-lated values for the kinemati moment of inertia forboth nulei (see top panels in Fig. 5). We also traethe evolution of the irrotational �uid moment of iner-tia and a rigid-body moment of inertia (f. Ref. [26℄) asfuntions of the equilibrium deformations (see Fig. 2).The irrotational �uid moment of inertia reprodues nei-ther the rotational dependene nor the absolute valuesof the experimental one as funtions of the rotationalfrequeny. The rigid-body values provide the asymp-toti limit of fast rotation without pairing. Evidently,the di�erene between the rigid-body and the alu-lated kinemati moments of inertia in both nulei de-reases as the rotational frequeny inreases, althoughit remains visible at high spins. At very fast rotation,~
 > 0:45 MeV, the pairing orrelations are redueddue to multiple alignments, and the di�erene is there-fore moderated.
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Fig. 6. The rotational dependene of the RPA solu-tions obtained with the aid of Eq. (18) (solid line) andEq. (36) (dashed line). The RPA solutions obtainedwith the aid of Eq. (18) satisfy ondition (37)The Marshalek moments of inertia in Eq. (35), al-ulated for the �rst RPA solution of Eq. (18), signal theappearane of the wobbling mode after a shape�phasetransition in 162Yb and 156Dy (see Fig. 5, bottom pan-els). As stressed above, the separation of the redundantmode is an essential point for the RPA wobbling the-ory that seures a reliable analysis of the RPA modes.Additionally, to ensure the self-onsisteny of our RPAalulations, we ompare the solutions that may be as-soiated with wobbling exitations from di�erent RPAEqs. (18) and (36). We reall that Eq. (18) dependson the strength onstant � and ontains di�erent RPAsolutions inluding the redundant mode, while this de-pendene is removed from Eq. (36). Evidently, if theredundant mode were not removed from Eq. (18) byour hoie of the strength onstants, onditions (21)and (22) would be broken. As a result, the onsis-teny between Eqs. (18) and (36) would be broken aswell and these equations would provide di�erent solu-tions. A nie agreement between the roots of Eqs. (18)and (36) (Fig. 6) on�rms the viability and validity ofour approah. Below, we formulate spei� riteria foridentifying olletive wobbling exitations among RPAsolutions of Eq. (18).3.3. Criteria for wobbling exitationsUsing Eqs. (34) and (35), we an de�ne the un-known variables r�=w1 = a=Sy, r�=w2 = b=Sz (whihdetermine the wobbling mode) suh that1108
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Fig. 5. Top panels: the kinemati Jx = hĴxi=
 (solid line), the rigid-body J (rig)1 = 25mAR2 �1�q 54�� os( � 2�3 )�(dashed line), and the hydrodinamial J (irr)1 = 32�mAR2�2 sin2 � � 2�3 � (dash-dotted line) moments of inertia are om-pared with the experimental values (�lled squares). Experimental values Jx = I=
 are onneted by dotted lines to guidethe eye (~
 = E=2). Bottom panels: the rotational dependene of the kinemati moment of inertia (solid line), Marshalekmoments of inertia J e�2 (dashed line) and J e�3 (dash-dotted line) for the �rst RPA solution � = 1 obtained from Eq. (18)rw1rw2 = SzSy ab = SzSy 
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(Jx �J e�3 ) =rW2W3 SzSy J e�2J e�3 : (38)Here, we used that the dispersion equation forthe wobbling mode, Eq. (36), an be expressed as!w = hĴxipW2W3, where
W2 =  1J e�2 � 1Jx! ; W3 =  1J e�3 � 1Jx! : (39)With the aid of Eqs. (35) and de�nition (29), it is easyto show that SzJ e�2 =SyJ e�3 � 1. Therefore,rw1rw2 =rW2W3 : (40)By means of the inverse transformation1109



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007by� = p2X� X��(Ôy� � Ô�) + P �� (Ôy� + Ô�); (41)we an express the operators ~Q(�)1;2 (see Eqs. (11), (12),and (16)) in terms of the phonon operators:~Q(�)1 = �p2X� ~R�1(Ôy� + Ô�); (42)~Q(�)2 = �ip2X� ~R�2(Ôy� � Ô�): (43)We use that the omponents of the quadrupole ten-sor ommute, i.e., the onditionh ~Q(�)1 ; ~Q(�)2 i = 4i X�=all ~R�1 ~R�2 == 2 X�=all hD̂� ; ~Q(�)1 i hD̂� ; ~Q(�)2 i = 0 (44)holds. Here, we use the notation D̂�=
 � �̂ andD̂� 6=
 � Ô� for other vibrational modes. Taking de�-nitions (16) and (28) into aount (also see Eqs. (20),(23), and (24)), we obtain the exat de�nitions for theunknowns r
1;2 assoiated with the redundant mode:r
1 = ~R�=
1�A = � 1�Ap2 h�̂; ~Q(�)1 i = � 12qhĴxi ;r
2 = ~R�=
2�B = i�Bp2 h�̂; ~Q(�)2 i = 12qhĴxi : (45)This result allows expressing the sum in Eq. (44) asX� 6=w;
 r�1r�2 + rw1 rw2 = �r
1 r
2 = 14hĴxi : (46)We suppose that the sum in the left-hand side ofEq. (46), de�ned by all physial solutions exluding thewobbling one, is zero due to a mutual anellation ofdi�erent terms. As a result, we obtain the equation forthe unknowns rw1;2. Solving this equation with the aidof Eq. (40), we obtainrw1 = 12qhĴxi �W2W3�1=4 ;rw2 = 12qhĴxi �W3W2�1=4 : (47)These expressions are similar to those of the wob-bling mode in the Bohr�Mottelson model (see the Ap-pendix, Eqs. (A.14)), although the quantities W2;3 are

determined by the Marshalek moments of inertia andhĴxi � I + 1=2 (the fator 1=2 ours due to the RPAontribution of the redundant mode, see the disus-sion in Ref. [29℄). Similar expressions were obtained inRef. [7℄ in the PA frame (with the quantization ondi-tion hĴxi = I and some additional phases).To identify the wobbling mode among the solutionsof Eq. (18), it is onvenient to transform Eq. (44) tothe form X�=all � = 0; � = 4hĴxi ~R�1�A ~R�2�B : (48)It follows from Eqs. (45) and (47) that�=
 = �1; �=w = 1: (49)Thus, if we solve only the system of the RPA equa-tions for the quadrupole operators, Eq. (18), ondi-tion (49) allows identifying the redundant and the wob-bling modes.3.4. Analysis of experimental dataThe experimental level sequenes for all the ur-rently observed rotational bands in 162Yb and 156Dyare taken from Ref. [14℄. All rotational states arelassi�ed by the quantum number �, whih is equiv-alent to our signature r. The positive-signature states(r = +1) orrespond to � = 0 beause the quantumnumber � leads to seletion rules for the total angu-lar momentum I = � + 2n, n = 0;�1;�2; : : : (f.Ref. [30℄). In partiular, in even�even nulei, the yrastband haraterized by the positive-signature quantumnumber r = +1 (� = 0) onsists of even spins only.The negative-signature states (r = �1) orrespond to� = 1 and are assoiated with odd-spin states in even�even nulei. All onsidered bands are of positive parity� = +.The redundant mode and four lowest RPA solutionsof Eq. (18) as funtions of the rotational frequeny areshown in Figs. 7a and 8a. We reall that these solutionsare found at di�erent equilibrium deformations (seeFig. 2). Indeed, in both nulei, riterion (49) uniquelydetermines the redundant and the wobbling modes. InFigs. 7b and 8b, the redundant mode is manifested asa straight line, while the orresponding oe�ient 
is always �1 (Figs. 7 and 8). The rotational mode islearly separated from the vibrational modes. We notethat the solutions that are di�erent from rotational andwobbling modes ontribute to the sum in Eq. (46) withzero weight, as was proposed above.To ompare our results with the available experi-mental data on low-lying exited states near the yrast1110
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Fig. 8. The same as in Fig. 7 for 156Dy1111



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007line [14℄, we onstrut experimental Routhians for eahrotational band � (� = yrast; �; ; : : : ):R�(
) = E�(
)� ~
I�(
);
(I) = [E�(I + 1)�E�(I � 1)℄ =2;and de�ne the experimental exitation energy in therotating frame as ~!exp� = R�(
) � Ryr(
) [31℄. In162Yb, only one negative-signature -vibrational stateis known. The �rst RPA solution (� = 1) is a nega-tive-signature -vibrational mode (with odd spins) upto ~
 � 0:28 MeV. With an inrease in the rotationalfrequeny, it is transformed into the wobbling modeat ~
 � 0:32 MeV (aording to riterion (49)). Theother solutions (� = 2; 3; 4) ontribute to the sum inEq. (46) with zero weight. Our results for the � = 1solution may be used as a guideline for possible ex-periments on identi�ation of the wobbling exitationsnear the yrast line. Although the positive-signaturestates have been disussed in Ref. [16℄, for omplete-ness of our analysis we ompare RPA results for thepositive signature with an updated database in [14℄.Aording to our analysis, the �rst RPA solution ofpositive signature may be identi�ed with �-exitationsat small rotation ~
 � 0:2 MeV. With an inrease inthe rotational frequeny, a strong mixing between -exitation (the seond RPA solution at low spins) and�-exitation ours. At ~
 � 0:2 MeV, the �rst RPAsolution of positive signature is determined by a singletwo-quasipartile neutron on�guration (see the disus-sion and Table 1 in Ref. [16℄).In 156Dy, the �rst (� = 1) positive-signature RPAsolution arries a large portion of quasipartile stateswith K = 2. Beause the quantum number K is reli-able at small angular momenta, we assoiate the �rstpositive-signature RPA solution with the -vibrationalmode. Rotation leads to a strong mixing between the�rst and the seond RPA solutions. With an inrease inthe rotational frequeny, the �rst solutions is separatedfrom the seond one, while the latter strongly interatswith the third RPA solution. At ~
 � 0:3 MeV, thereis a rossing between the B1 (yrast) band and the B8(exited) band, whih beomes the yrast one after thetransition point. The �rst positive-signature RPA so-lution desribes this transition with a good auray:the RPA mode vanishes at ~
 � 0:3 MeV. We reallthat aording to our analysis in [16℄, preisely this vi-brational mode is responsible for the bakbending phe-nomenon in this nuleus.The �rst negative-signature RPA solution in 156Dyan be assoiated with the negative-signature -vibrational mode with odd spins. After the transition

from the axial to nonaxial rotation, at ~
 � 0:3 MeV,aording to riterion (49), the �rst negative-signatureRPA solution desribes the wobbling exitations. Themode preserves its features with the inrease in the ro-tational frequeny up to ~
 � 0:55 MeV. There is agood agreement (see Fig. 8) between this one-phononband and the experimental Routhian of band B10 (orthe (+; 1)1 band aording to Ref. [15℄). Based onthis, we propose to onsider the B10 band as the wob-bling band in the range 0:45 MeV< ~
 < 0:55 MeV(33~ � I � 39~ for this band). We note that the B10band ontains the states with 31~� 53~. However, ouronlusion is reliable only for states with I = 33~� 39 ~(or up to ~
 < 0:55 MeV). At ~
 � 0:55 MeV, a ross-ing of the negative-parity and negative-signature (pos-itive simplex) B6 band with the yrast band B8 is ob-served. At ~
 > 0:55 MeV (or for I > 39 ~ for theB10 band), the onset of otupole deformation in theyrast states may be expeted. The otupole deforma-tion is beyond the sope of our model, based on thequadrupole deformed mean �eld, and this feature willbe disussed elsewhere.The proposed riterion in Eq. (49) is neessary butnot su�ient for onluding that we have found a solu-tion related to the wobbling exitations. It is broughtabout by the formal equivalene between the lassi-al (Eq. (A.3) in the Appendix) and the mirosopi(Eq. (36)) equations for the wobbling mode. Our solu-tion is determined in the UR frame, where the �utu-ations of the angular momentum are absent (they areresponsible for the wobbling mode in the PA frame).To identify the wobbling mode, we also have to speifythe relation between eletromagneti transitions in theBohr�Mottelson model de�ned in the PA systems andour model de�ned in the UR frame.3.5. Eletromagneti transitionsTransition probabilities for the X� transitionjI�i ! jI 0�0i between two high-spin states are givenbyB(X�; I� ! I 0�0) �� (I I � �1 j I 0 I 0)2jh�0jM̂(X�;�1 = I 0 � I)j�ij2: (50)In the high-spin limit (I � �, I 0 � �), the transitionfrom a one-phonon state into the yrast-line state takesthe form [32℄B(X�; I� ! I 0yr)) �� ��hRPA�� hM̂(1)(X�;�1 = I 0�I); Ôy�i ��RPAi��2; (51)1112



ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007 Mirosopi analysis of wobbling exitations : : :where M̂(1)(X��1) is the linear boson part of the orre-sponding transition operator of type X , multipolarity�, and the projetion �1 onto the rotation axis x inthe UR frame. The ommutator in (51) an be easilyexpressed in terms of phonon amplitudes  (�)� and �(�)�(see Eq. (14)). With the aid of the transformation fromx- to z-axis quantization [32℄,M̂(X��1) =X�3 D��3�1 �0; �2 ; 0�M̂(X��3); (52)and de�nitions (16) and (28), and taking into aountthat the relationh�jM̂ (E)2�3=0;2j�i = hM̂ (E)2�3=0;2iholds in the �rst RPA order, we obtainB(E2; I� ! I � 1yr) = ���DhM̂ (E)2�1=�1; Ôy�iE���2 == ���� ip2� h ~O(�)(E)2 ; Ôy�i� 1p2� h ~O(�)(E)1 ; Ôy�i����2 ; (53)where M̂ (E) = (eZ=A)M̂ . By Eqs. (16) and (47), theabove expression yields the de�nition of the quadrupoletransitions from the one-phonon wobbling state to theyrast states,B(E2; Iw ! I � 1yr) == 14hĴxi ������W2W3�1=4 A(E) ��W3W2�1=4B(E)�����2; (54)whih is similar to Eq. (A.13) in the Appendix. Thus,we provide a omplete mirosopi de�nition of thewobbling exitations in aordane with the riteriasuggested by Bohr and Mottelson for the rigid rotor [1℄.We note a lear di�erene between the mirosopi andthe rigid rotor models: the mirosopi moments ofinertia, Eqs. (35), should be alulated for the RPAsolutions of Eq. (18) that must satisfy ondition (49).For intraband transitions, we have (see Eq. (43)in [16℄)B(E2; I� ! I � 2�) = ���h�jM̂(E2; �1 = 2)j�i���2 == 18 ���p3hQ̂(E)0 i � hQ̂(E)2 i���2 : (55)For illustrative purposes, to give a rough idea onthe major trend of quadrupole transitions, we use therelations from the pairing-plus-quadrupole model (f.Ref. [30℄):m!20� os  = �hQ0i; m!20� sin  = ��hQ2i:

From these relations and the de�nition of thequadrupole isosalar strength,� = 4�m!205hr2i � 4�m!203AR2 ; R � 1:2A1=3 fm;we obtainB(E2; Inw = 1! I � 1 yr) = � �2hĴxi �� " W2W3!1=4sin��3 � �� W3W2!1=4 sin #2; (56)where � = (9=16�2)e2Z2R4. For W2;3 > 0, Eq. (56)yields seletion rules for the quadrupole transitionsfrom the one-phonon wobbling band to the yrast one:�60Æ <  < 0:B(E2; Inw ! I � 1 yr) >> B(E2; Inw ! I + 1 yr); (57a)0 <  < 60Æ:B(E2; Inw ! I + 1 yr) >> B(E2; Inw ! I � 1 yr): (57b)For the intraband transitions, we obtainB(E2; Inw ! I � 2nw) = 12��2 os2 ��6 � � : (58)It follows from Eq. (58) that for the transitions alongthe yrast line (nw = 0), the onset of the positive (neg-ative) values of the -deformation leads to an inrease(derease) in the transition probability along the yrastline. Experimental values of B(E2; I� ! I 0 yr) are de-dued from the half life of the yrast states [14℄ usingthe standard, long-wave-limit expressions [26℄B(E2; i! f) = P (i! f)1:223 � 109E5 ; e2 � fm4:Here, the transition energy E is in megaele-tronvolts and the absolute transition probabilityP (i ! f) = ln 2=T (i ! f) is related to the half lifeT (i ! f) (in seonds). In omparing our resultswith experimental data, we take the Clebsh�Gordanoe�ient into aount (see Eq. (50)) up to I � 10~.For I > 10~, the asymptoti value for the Clebsh�Gordan oe�ient, whih is 1, is used. We note thatin the viinity of the bakbending, the mean-�elddesription beomes less reliable (f. Ref. [33℄). Whilethe ranking approah should be omplemented witha projetion tehnique in the bakbending region due1113
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 � 0:25 MeV and ~
 = 0:3 MeV for 162Yb and156Dy, respetively. Thus, the use of the self-onsistentexpetation values hQ̂(E)m i is ruial in order to repro-due the experimental behavior of the yrast band deay.Calulations (b) (Eq. (58)) reprodue the experimen-tal data with less auray, while providing the majortrend of the transitions with the sign of -deformation.The agreement between the alulated and experimen-tal values of intraband B(E2) transitions along theyrast line is espeially good after the transition point.At small rotational frequeny, in both nulei, transi-tions probabilities from the �rst positive- and negative-signature RPA solutions are muh weaker in ompar-ison with the quadrupole transitions along the yrastline (see Fig. 9 and top panels in Figs. 10 and 11).At ~
 � 0:05 MeV, the transition strengths for the�rst positive (r = +1) and negative (r = �1) RPA

solutions are approximately 330 e2 � fm4 for 162Yband 500 e2 � fm4 for 156Dy with small di�erenes be-tween di�erent transitions due to Clebsh�Gordan oef-�ients. We obtain a good orrespondene between theshape evolution and seletion rules (57) for both nulei(see top panels in Figs. 10 and 11 and Fig. 2). Tran-sition probabilities (53) are alulated using the  (�)�and �(�)� phonon amplitudes expressed in terms of theoordinate and momentum amplitudes (see Eqs. (14),(15), (16), and (28)). We ompare these results forthe �rst negative-signature RPA solution (whih is as-soiated with a wobbling mode) with the results ob-tained by means of the Marshalek moments of inertia(see Eqs. (35), (39), and (54)). Evidently, if the �spu-rious� solution (the redundant mode) is not removedfrom Eq. (18), it ontributes to the variables (28).These variables annot obey ondition (30) in this ase.As a result, orthogonality ondition (25) is broken andEqs. (53) and (54) for the transitions should produeompletely di�erent results. A good agreement be-tween both alulations (see the right top panels inFigs. 10 and 11) is the most valuable proof of the valid-ity of our approah. The observed negligible di�erenesare due to the approximate ful�llment of onservationlaws (19), aused by the presene of additional term (3)(see Fig. 4).Aording to our analysis, a transition from theaxially deformed to nonaxial shapes with the nega-tive -deformation in 162Yb ours at ~
 � 0:25 MeV(see Fig. 2 and the disussion in Ref. [16℄). At~
 � 0:28 MeV, the exited band of the negative sig-nature, reated by the �rst RPA solution, hanges thedeay properties. The negative values of -deformationprodue the dominane of the interband quadrupoletransitions from the one-phonon state to the yrast oneswith a lower spin (�I = 1, the ase in Eq. (57a)).Similar results are obtained in 156Dy for thelowest negative-signature exited band reated bythe �rst RPA solution. At low angular momenta(~
 � 0:3 MeV), this band populates the yrast stateswith I 0 = I � 1 with approximately equal probabilities(I is the angular momentum of the exited state). At~
 � 0:3 MeV, a shape�phase transition ours, whihleads to the triaxial shapes with the negative -defor-mation. In turn, the exited band reated by the �rstRPA solution deays stronger on the yrast states withangular momenta I 0 = I � 1 (�I = 1, the ase inEq. (57a)), starting from ~
 � 0:32 MeV.It follows from the above analysis of the eletriquadrupole transitions that there is no need to knowthe de�nition of the wobbling phonon operator in the1114
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Fig. 10. The eletri B(E2)- (top) and the magneti B(M1)- (bottom) redued probabilities of transition from the one-phonon bands to the yrast band. The positive- (negative) signature phonon band is desribed by the �rst r = +1 (r = �1)RPA solution. We observe a strong dominane of the B(E2)- and B(M1)-transitions from the wobbling states (r = �1)with spin I to the yrast states with spin I 0 = I � 1, starting from the rotational frequeny ~
 > 0:28 MeV. The transitionsalulated using the  (�=1)� and �(�=1)� phonon amplitudes are onneted by thik lines. In the right panels, the resultsobtained using Eqs. (54) and (65) (with the aid of the variables W2;3, Eq. (39)) are onneted by thin lines, starting from therotational frequeny ~
 � 0:3 MeV. This point is assoiated in our analysis with the appearane of wobbling exitationsUR frame. Indeed, in this frame, the diretion of theangular momentum is �xed and �utuations of the an-gular momentum are absent. But there is a vibrationalmode related to shape �utuations that arries oneunit of angular momentum. In the PA frame, aord-ing to the analysis of Bohr and Mottelson, the systemshape is �xed, while the angular momentum �utuatesaround the rotation axis that oinides with one of theprinipal axes of the inertia tensor. Evidently, the re-sult for the transition probabilities in the laboratoryframe must be independent of the hoie of the refer-ene frame.To prove the equivalene of both results for the ele-

tri quadrupole transitions, we use the Bohr�Mottelsonde�nition of the wobbling phonon operator, Eq. (A.5),Q̂yw = iq2hĴxi �� "(Î2)PA W2W3!1=4+(iÎ3)PA W3W2!1=4#: (59)Here, the quantities W2;3 are determined by the Mar-shalek moments of inertia, Eqs. (39). In the PA frame,we must use transformation (A.12) in order to alu-late the transition probability and ommutation rela-1115
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Fig. 11. Similar to Fig. 10. A strong dominane of the B(E2)- and B(M1)-transitions from the wobbling states (r = �1)with spin I to the yrast states with spin I 0 = I � 1 starting from the rotational frequeny ~
 � 0:3 MeV an be observedtions (A.2). This transformation and de�nition (59)yield the expressionB(E2; Iw ! I � 1 yr) = ���DhM̂ (E)2�1=�1; ÔywiE���2 == 14hĴxi ������W2W3�1=4 A(E) ��W3W2�1=4B(E)�����2; (60)whih is indeed the same as Eq. (54), obtained in theUR frame. We use this fat below to understand majorfeatures of the magneti transitions from the wobblingband.In the CRPA approah, the magneti transitions arede�ned asB(M1; I� ! I � 1 yr) � ���DhM̂ (M)1�1=�1; Ôy�iE���2 : (61)With the aid of the transformation from the x-axis tothe z-axis quantization in Eq. (52), we obtain

B(M1; I� ! I � 1 yr) �� 12 ���i hM̂ (M)1�3=1; Ôy�i� hM̂ (M)1�3=0; Ôy�i���2 : (62)The linear bosoni term of the magneti operator hasthe form (see also Ref. [21℄)M̂ (M)1�3=0;1 = �Np3�12g(eff)s Ŝ01�3 + g(eff)l L̂01�3� == i�3+22 X� �(�3)� �by� + (�1)�3b�� ; (63)where �N is the nuleon magneton, g(eff)s and g(eff)l arethe spin and orbital e�etive gyromagneti ratios, re-spetively, and the quasipartile matrix elements �(�3)�are real. Taking the de�nition of the phonon opera-tor in Eq. (14) into aount, we express the magneti1116



ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007 Mirosopi analysis of wobbling exitations : : :transition with the aid of generalized oordinate andmomentum amplitudes (15) asB(M1; I� ! I � 1 yr) �� �����X� �(1)� X�� �X� �(0)� P �� �����2 : (64)Our results evidently demonstrate the dominaneof B(M1; I nW ! I � 1 yr) (see the right bottom pan-els in Figs. 10 and 11) for both nulei. To understandthis result, we de�ne the magneti transitions using theMarshalek moments of inertia. With the aid of de�-nition (59), transformation (A.12), and ommutationrelations[Î1 � iÎ2; M̂�m℄ =p�(�+ 1)�m(m� 1) M̂�m�1for the PA frame [34℄, we obtain from Eq. (61) thatB(M1; I � ! I � 1 yr) � ����hM̂ (M)1�3=1[r = +1℄i����2 �� 14hĴxi �pW3 �pW2 �2pW2W3 : (65)Although the expression for the magneti transitionsin Eq. (65) is similar to the one of the Bohr�Mottelsonmodel, we stress that the moments of inertia are de-�ned self-onsistently within the CRPA approah. Wenote that the dipole magneti moment hM̂ (M)1�3=1[+℄i in-reases quite drastially if a nuleus undergoes bak-bending (see the disussion about the M1 strength inRef. [17℄). Keeping in mind that W2;3 > 0 for the wob-bling states, we haveB(M1; InW ! I � 1 yr) >> B(M1; I nW ! I + 1 yr): (66)Therefore, the tendeny observed in the mirosopialulations with the aid of the phonon amplitudes isunderstood in terms of rules (66). Independently of thesign of the -deformation of rotating nonaxial nulei,these rules determine the dominane of �I = 1~ mag-neti transitions from the wobbling to the yrast states.4. SUMMARYWe presented a transparent, self-onsistent deriva-tion of the basi equations for the wobbling exitationsin the UR (time-independent) frame, whih determinethe energy spetrum and eletromagneti properties ofthese states in even�even nulei. We obtained the same

expressions (35) for the e�etive moments of inertiaas those obtained by Marshalek in the time-dependentHartree�Bogoliubov approah in the PA frame [9℄. Weestablished a one-to-one orrespondene between themain harateristis of the wobbling exitations in theBohr�Mottelson model and those derived within theCRPA approah. We note, however, that the CRPAbreaks down at the transition point when �p or �nvanishes [32℄. We have avoided this problem by meansof the phenomenologial presription for the rotationaldependene of the pairing gap. A good agreement be-tween the dynami moment of inertia alulated in themean-�eld approximation and the Thouless�Valatinmoment of inertia alulated in the RPA supports theonsisteny of our mean-�eld alulations (see Fig. 3).In ontrast to the standard RPA alulations, wherethe residual strength onstants are �xed for all valuesof 
 (see, e.g., [7, 12, 13℄), we determined the strengthonstants for eah value of 
 by the requirement ofthe validity of onservation laws. This allows overom-ing the instability of RPA alulations at the transitionregion, for the exitations at least. In priniple, pro-jetion methods may be used in the transition regionin order to alulate transition matrix elements. Al-though the amplitudes �(�)� (see Eq. (14)) are larger forthe RPA modes in the transition region than in otherregions, the relation j�(�)� j < j (�)� j is still valid. TheCRPA also beomes quite e�etive at high spins, afterthe transition point, when the pairing orrelations stillpersist.It follows from our analysis that an exited band anbe regarded as the wobbling one if the magneti tran-sitions from this band into the yrast one satisfy on-dition (66). We note that these rules are independentof the -deformation sign. In ontrast, the olletiveeletri quadrupole transitions from this band to theyrast one must satisfy staggering rules (57) dependingon the -deformation sign. We predit that the low-est exited negative-signature and positive-parity bandin 162Yb (whih is a natural prolongation of the oddangular momentum part of the -band) transforms tothe wobbling band at ~
 > 0:3 MeV. We found thatstrong E2 transitions from this band populate the yraststates, with the branhing ratioB(E2; Iw ! I � 1 yr)=B(E2; Iw ! I + 1 yr) > 1:Suh behavior is brought about by the onset of nonaxialnulear shapes with the negative sign of -deformationafter the bakbending. Aording to our de�nitionof -deformation, with an inrease in the rotationalfrequeny, the system is driving to a nonolletiveoblate rotation (around the x axis). This trend is1117



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007on�rmed by a good agreement between the resultsfor the quadrupole transitions along the yrast lineand available experimental data (see Fig. 9). A sim-ilar transition also ours in 156Dy after the bak-bending, at ~
 > 0:3 MeV. In this nuleus, wefound that the lowest negative-signature and positive-parity band represents a natural prolongation of the-band with odd spins, observed at small angular mo-menta up to ~
 � 0:3 MeV. At rotational frequenies~
 > 0:3 MeV, this band transforms to the wobblingband. A good agreement between our results and ex-perimental Routhians allows onluding that the ex-perimental states assoiated with the (+; 1)1 band inRef. [15℄ are wobbling exitations at the rotational fre-queny values 0:45MeV< ~
 < 0:55MeV. These statessatisfy all the requirements that are spei� for thewobbling exitations of nonaxially deformed rotatingnulei, with the negative -deformation.It turns out that strongly deformed triaxial shapesprodue relatively high-lying vibrational states, asso-iated with a wobbling mode (the ase of 156Dy). Inontrast, a soft shape�phase transition from the axiallydeformed to nonaxial shapes provides the low-lyingwobbling exitations (the ase of 162Yb). Furtherdetailed studies are required to shed light on theinterplay between di�erent shape�phase transitionsand their manifestations by means of vibrationalstates at high spins. Evidently, it is quite desirableto obtain new experimental data on eletromagnetideay properties of these states in order to reah a �nalonlusion about our predition and, onsequently, onthe validity of the CRPA analysis.This work is a part of the researh plan MSM0021620859 supported by the Ministry of Eduationof the Czeh Republi and by the projet 202/06/0363of Czeh Grant Ageny. It is also partly supportedby Grant No. FIS2005-02796 (MEC, Spain). One ofthe authors (R. G. N.) gratefully aknowledges supportfrom the Ramón y Cajal program (Spain).APPENDIXAsymmetri rotor modelIn this appendix, we review the basi features ofthe wobbling exitations in the rotor model [1℄ in orderto ompare it with the mirosopi model disussed inSe. 3. In addition to well-known results, we providea novel analysis of magneti properties of the wobblingstates.In the high-spin limit I � 1, the rotor Hamiltonianhas the form (see Ref. [1℄)

Ĥ = Ĥ0 + ~22J1 (Î)2PA + Ĥwobb; (A.1)[Îi; Îj ℄PA = �i"ijk(Îk)PA; (A.2)where (Îi)2PA and Ji are the angular momentum andprinipal moment of inertia omponents in the rotating,prinipal-axis (PA) oordinate system. It is assumedthat the yrast band is generated by rotation aroundthe x axis I � I1 = K. Small osillations of the an-gular momentum reate wobbling exitations desribedby the termĤwobbl = ~!w �Q̂ywobbQ̂wobb + 12� ;~!w = ~2IpW2W3; (A.3)where W2 = 1J2 � 1J1 ; W3 = 1J3 � 1J1 : (A.4)The wobbling (exited) state at spin I is reated by thewobbling phononÔywobb = xBy�yB , By = xÔywobb+yÔwobb (A.5)with By = ip2I (Î2 + iÎ3)PA; B = (By)y; (A.6)x = pW3 +pW22 (W2W3)�1=4; (A.7)y = pW2 �pW32 (W2W3)�1=4; (A.8)and the normalization ondition x2 � y2 = 1. It fol-lows from Eq. (A.3) that the diagonalization of Ĥwobbrequires W2 > 0, W3 > 0, and J1 > J2 > J3.At I � I1 � 0, the eigenfuntion of Hamilto-nian (A.1) is given by the Wigner D-funtion times theintrinsi eigenfuntion de�ned by the wobbling quan-tum number jnwi = (Qywobb)nw j0i. The variablenw = hIKjByBjIKi � I � I1 = I �K (A.9)is de�ned with respet to the state jIK = (I1)PAi �� jnwi suh thatByjIKi = pnw + 1jIK � 1i = pnw + 1jnw + 1i;j0i = jIK = Ii:1118



ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007 Mirosopi analysis of wobbling exitations : : :The transition probability for the operator of the typeX and multipolarity �,B(X�; I�K� ! I 0�0K 0�) == 12I + 1 jhI 0K 0��0jjM̂(X�)jjIK��ij2; (A.10)is de�ned by the redued matrix elementhI 0K 0n0wjjM̂(X�)jjIKnwi = p2I + 1�� �X�1=��hn0wj(IK��1jI 0K 0)M̂(X��1 = I 0 � I)jnwi:(A.11)We note that the eigenmodes of the Hamiltonian Ĥ0 donot hange the projetionK onto the �rst PA axis. Butif the wobbling mode is exited with jn0w�nwj 6= 0, theprojetion K hanges and the orresponding Clebsh�Gordan oe�ients in Eq. (A.11) an be expressed interms of the By and B operators (see Se. 4.5 inRef. [1℄).Using this proedure for the Clebsh�Gordan oef-�ients, a relation between multipole operators in thePA frame with the x- and z-quantization axis, and de-�nition (10),M̂(X��1) =X�3 D��1�3 �0; �2 ; 0�M̂(X��3); (A.12)we obtain the interband E2 transitions between theone-phonon wobbling band (nw = 1) and the yrastband (nw = 0) asB(E2; Inw ! I � 1 yr) == j%1A(E) � %2B(E)j2; (A.13)where the variables A(E) and B(E) are de�ned byEqs. (23) and (24), Q̂(E)m � eZAQ̂m, and%1 = 1p2I �W2W3�1=4 ; %2 = 1p2I �W3W2�1=4 : (A.14)For intraband transitions, we haveB(E2; Inw ! I � 2nw) == 18 ���p3hQ̂(E)0 i � hQ̂(E)2 i���2 ; (A.15)where we use thathM̂(E2; �1 = �1)i = 0;hM̂(E2; �1 = 2)i = hM̂(E2; �1 = �2)i

and neglet terms of the order of or higher than 1=I .A similar proedure an be used to derive M1transitions from one-phonon wobbling band into theyrast band. Ignoring the terms of the order of I�1 inEq. (A.11) in the high-spin limit (I � K � 1), we havethe following approximative values for the Clebsh�Gordan oe�ients in terms of the matrix elements ofthe operators B and By (or Q̂wobb and Q̂ywobb):(I K 1 0 j I K)! 1;(I K 1 0 j I � 1K)!! � 1pI *n� 1 ����� ByB �����n+ ;(I K 1 � 1 j I K � 1)!! � 1pI *n� 1 ����� BBy �����n+ ;(I K 1 � 1 j I � 1K � 1)! 1: (A.16)
Beause hM̂(M1 �1 = �1)i = 0, we obtainhI 0K 0n0wjjM̂(M1 �1 = 0)jjIKnwi == p2I + 1hn0wj"ÆI0;IhM̂(M1; �1 = 0)i++ ÆI0;I+1 1pI hM̂(M1; �1 = 0)i(xQ̂ywobb + yQ̂wobb)�� ÆI0;I�1 1pI hM̂(M1; �1 = 0)i(xQ̂wobb + yQ̂ywobb)#�� jnwi; (A.17)whereM̂(M1; �1) = �N p3�� AXi=1 �12g(i;eff)s [� 
 Yl=0℄1�1 + g(i;eff)l [l 
 Yl=0℄1�1�is the magneti dipole operator. With the aid ofEqs. (A.7), (A.8), and (A.12) and the de�nition of op-erators given in Ref. [21℄, we obtain the expressionB(M1; I nw ! I � 1 yr) = ����hM̂ (M)1�3=1[r = +1℄i����2 �� 14I �pW3 �pW2 �2pW2W3 (A.18)forM1 transitions from the one-phonon wobbling band(nw = 1) into the yrast band (nw = 0). The magnetimoment hM̂ (M)1�3=1[+℄i an be alulated in any miro-sopi model.1119
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