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MICROSCOPIC ANALYSIS OF WOBBLING EXCITATIONSIN 156Dy AND 162YbR. G. Nazmitdinov *Departament de Físi
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a, SpainBogoliubov Laboratory of Theoreti
al Physi
s, Joint Institute for Nu
lear Resear
h141980, Dubna, Mos
ow Region, RussiaJ. KvasilInstitute of Parti
le and Nu
lear Physi
s, Charles UniversityCZ-18000, Praha 8, Cze
h Republi
Re
eived Mar
h 13, 2007In the 
ranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole ex
itations of posi-tive parity and negative signature in 156Dy and 162Yb at high spins. Spe
ial attention is paid to a 
onsistentdes
ription of wobbling ex
itations and their identi�
ation among ex
ited states. A good agreement betweenthe available experimental data and the results of 
al
ulations is obtained. We �nd that the lowest odd-spin
-vibrational states in 156Dy transform into the wobbling ex
itations after the ba
kbending asso
iated with thetransition from axially symmetri
 shape to nonaxial shape. Similar results are predi
ted for 162Yb. The analysisof ele
tromagneti
 transitions uniquely determines the sign of 
-deformation in both nu
lei after the transitionpoint.PACS: 21.10.Re, 21.60.Jz, 27.70.+q1. INTRODUCTIONDeformation is an important ingredient of nu
leardynami
s at low energies [1, 2℄. Regular rotationalbands identi�ed in spe
tros
opi
 data are most evidentand prominent manifestations of an anisotropy of thespatial nu
lear density distribution. While the axial de-formation of the nu
lear potential is well established,there is a long-lasting debate on the existen
e of a triax-ial deformation. The full understanding of this degreeof freedom in nu
lei may have impli
ations for othermesos
opi
 systems as well. In parti
ular, the impor-tan
e of nonaxiality is dis
ussed re
ently for metalli

lusters [3℄ and atomi
 
ondensates (see Ref. [4℄ andthe referen
es therein).The analysis of spe
i�
 low-lying ex
ited states nearthe yrast line 
ould shed light on the existen
e of nonax-iality. For nonaxial shapes, one expe
ts the appearan
eof low-lying vibrational states asso
iated with a 
lassi-*E-mail: rashid�theor.jinr.ru, vdfsrna9�uib.es


al wobbling motion. Su
h ex
itations (
alled wobblingex
itations) were �rst suggested by Bohr and Mottel-son in rotating even�even nu
lei [1℄, and were then an-alyzed within simpli�ed mi
ros
opi
 models [5, 6℄ (seealso Ref. [7℄ and the referen
es therein). A

ordingto the mi
ros
opi
 approa
h [8, 9℄, the wobbling ex-
itations are vibrational states of negative signaturebuilt on the positive-signature yrast (va
uum) state.Their 
hara
teristi
 feature is the 
olle
tive E2 transi-tions with �I = �1~ between these and yrast states.First experimental eviden
e of su
h states in odd Lunu
lei was reported only re
ently [10℄.The properties of the wobbling ex
itations at di�er-ent angular momenta 
an be studied within the asym-metri
 rotor model (ARM) [1℄ (also see the Appendix).The extension of this model to odd nu
lei was used re-
ently for the analysis [11℄ of experimental propertiesof the se
ond triaxial superdeformed band in 163Lu,whi
h 
arries several features asso
iated with the wob-bling ex
itations. The 
lassi
al dispersion equation for1100
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ros
opi
 analysis of wobbling ex
itations : : :the wobbling mode [1℄, with irrotational moments of in-ertia, was used to des
ribe the spe
trum. The momentsof inertia were �tted in order to reprodu
e the experi-mental data. But the intepretation of the results withirrotational moments of inertia [11℄ fa
es the problemof a 
onsistent des
ription of data. It seems that theapproa
h suggested in Ref. [11℄ may explain some ten-den
ies, but these are only a 
rude approximation tothe full physi
al pi
ture of the observed phenomenon.To explain the same data in 163Lu, a non-self-
onsistent mi
ros
opi
 analysis based on the 
rankedNilsson potential was performed in [12; 13℄. As a basi
tool, the dispersion equation for wobbling ex
itations,derived in the time-dependent Hartree�Bogoliubov ap-proa
h in Ref. [9℄, has been used. Based on the solutionof the mi
ros
opi
 equation, it was found in Ref. [13℄that the wobbling ex
itations are very sensitive to asingle-parti
le alignment. It was also 
on
luded thatthe pairing 
orrelations do not a�e
t the wobbling ex-
itations, and this should be 
onsidered a spe
i�
 fea-ture related to this mode. This seems to 
ontradi
t thefa
t that alignment redu
es the pairing 
orrelations.Furthermore, the authors admitted that the kinemati
moment of inertia Jx was not des
ribed properly (seeRef. [13℄).We re
all that wobbling ex
itations depend on allthree moments of inertia that 
hara
terize the nonax-ial shape. Therefore, a self-
onsistent des
ription formoments of inertia is a prerequisite for the mi
ros
opi
analysis of the nu
lear wobbling motion. The main aimof this paper is to analyze new data on high-spin statesin 156Dy and 162Yb [14, 15℄ within a self-
onsistent mi-
ros
opi
 approa
h [16℄. Our 
al
ulations suggest thatsome ex
ited states at high spins may represent wob-bling ex
itations.Our approa
h (CRPA) [16℄ amounts to a self-
onsistent solution of the 
ranked Nilsson potential forthe yrast line and the analysis of the low-lying ex
ita-tions near the yrast line in the random-phase approx-imation (RPA). The analysis of M1-ex
itations [17℄,shape�phase transitions, and the behavior of positive-signature ex
itations at ba
kbending [16℄ 
on�rmedthe importan
e of self-
onsisten
y for the des
riptionof moments of inertia. We provide a re�ned mi
ro-s
opi
 des
ription of the wobbling ex
itations in a time-independent uniformly rotating (UR) frame. In numer-i
al analysis, we pay attention to the self-
onsisten
ybetween the mean �eld, vibrational ex
itations, andtheir ele
tromagneti
 properties. We re
all that allnegative-signature ex
itations, in
luding the wobblingones, are 
onsidered in the UR frame. To identify thewobbling ex
itations in experimental data, a few 
ri-

teria are proposed in the literature, su
h as a large
olle
tivity and zig-zag behavior of the B(E2) tran-sition probability from a given band into the yrastone with �I = �1, when one of the transitions is al-most dominant [18℄. We present a mi
ros
opi
 pro
e-dure that gives a de�nite answer as to how to identifythe wobbling ex
itations. This pro
edure in
ludes theanalysis of inertial properties and B(E2)- and B(M1)-transitions probabilities.The paper is organized as follows. In Se
. 2, webrie�y review the main details of our approa
h (whi
his thoroughly dis
ussed in Ref. [16℄). In Se
. 3, westudy the lowest negative-signature RPA ex
itations.The main fo
us in this se
tion is on the de�nition ofthe spe
i�
 
hara
teristi
s asso
iated with the wobblingmode. The 
on
lusions are �nally drawn in Se
. 4. To
omplete the analysis, we review properties of the wob-bling mode in the ARM in the Appendix.2. THE MODEL2.1. Basi
 properties of the mean-�eldapproximationOur des
ription is based on the Hamiltonian de�nedin the UR frame asĤ
 = Ĥ�~
Ĵx = Ĥ0� X�=n;p��N��~
Ĵx+V: (1)The unperturbed HamiltonianĤ0 =Xi [hNil(i) + hadd(i)℄
onsists of the Nilsson HamiltonianhNil = p22m + 12m(!21x21 + !22x22 + !23x23)�� 2�~!00l � s� ��~!00(l2 � hl2iN ) (2)and the additional 
orre
tion term [19℄hadd = 
m!00��2 �r2sx � xr � s�++� �2r2 � ~m!00 �N + 32�� lx� : (3)The 
orre
tion term restores the lo
al Galilean invari-an
e broken in the rotating 
oordinate system and im-proves the des
ription of the inertial properties in theNilsson model (see Ref. [16℄). The 
hemi
al potentials�� (where � = n; p) are determined so as to give the
orre
t mean parti
le numbers hN� i. Hereafter, h: : : i1101
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uum (yrast)state at a given rotational frequen
y 
. The two-bodypotential in Eq. (1) in
ludes the monopole pairing, dou-bly stret
hed quadrupole�quadrupole and monopole�monopole intera
tion. Hamiltonian (1) has the inver-sion and signature symmetries. Using the generalizedBogoliubov transformation for quasiparti
les and thevariational prin
iple (see the details in Ref. [20℄), weobtain the Hartree�Bogoliubov (HB) equations for thepositive-signature quasiparti
le energies "i (protons orneutrons). The positive-signature (r = +1) state isde�ned in a

ordan
e with the Bogoliubov transforma-tion�yi =Xk (Uki
yk + V�ki
�k); ei�jx�yi e�i�jx = �i�yi ;where jki denotes a single-parti
le state of a Goodmanspheri
al basis (see Ref. [21℄). By diagonalizing theHamiltonian at the rotational frequen
y 
, we obtainquasiparti
le states with a good parity � and signaturer. It su�
es to solve the HB equations for the positivesignature, be
ause the negative-signature eigenvaluesand eigenve
tors are obtained from the positive ones as(�"i;Ui;Vi)! ("�i;V�i;U�i) : (4)The index ��i� denotes the negative-signature (r = �1)state (ei�jx�y�i e�i�jx = i�y�i ). For a given value of therotational frequen
y 
, the quasiparti
le (HB) va
uumstate is de�ned by �ij i = ��ij i = 0.We solved the system of nonlinear HB equationsfor 156Dy and 162Yb on the mesh of deformation pa-rameters � and 
 de�ned by means of the os
illatorfrequen
ies in Eq. (2) as!2i = !20 "1� 2�r 54� 
os�
 � 2�3 i�# ;i = 1; 2; 3 (or x; y; z): (5)The Nilsson�Strutinsky analysis of experimental dataon high spins in 156Dy [15℄ indi
ates that the positive-parity yrast sequen
e undergoes a transition from theprolate towards an oblate rotation. To 
ompare ourresults with available experimental data on ex
itedstates [15℄, in 
omparison with our previous work [16℄,we extend the range of the values of 
 from 
 = 60Æ(an oblate rotation around the y axis) to 
 = �60Æ (anoblate rotation around the x axis). At ea
h rotationalfrequen
y and at ea
h mesh point, we self-
onsistently
al
ulate the total mean-�eld energy EHB = hĤ
i. Inthe vi
inity of the ba
kbending, the solution be
omeshighly unstable. To avoid unwanted singularities for


ertain values of 
, we follow the phenomenologi
alpres
ription [22℄�� (
) == 8>>>><>>>>: �� (0)"1� 12 � 


�2# ; 
 < 

;12�� (0)�


 �2 ; 
 > 

; (6)where 

 is the 
riti
al rotational frequen
y of the �rstband 
rossing.It is well known that for a deformed harmoni
 os
il-lator, the quadrupole �elds in doubly stret
hed 
oordi-nates [23℄ satisfy the stability 
onditions (
f. Ref. [24℄)h ~Q�i = 0; � = 0; 1; 2: (7)The tilde indi
ates that the quadrupole �elds areexpressed in terms of doubly stret
hed 
oordinates~xi = (!i=!0)xi and 
ontain di�erent 
ombinations ofthe nonstret
hed quadrupole Q0 / (2z2 � x2 � y2),Q2 / p3(x2 � y2) and monopole M / r2 operatorsquantized along the z axis (
f. Ref. [23℄). Condition (7)holds if the nu
lear self-
onsisten
y 
ondition!21hx21i = !22hx22i = !23hx23i (8)is satis�ed in addition to the volume-preserving 
on-straint. By virtue of 
ondition (8), the doubly stret
hedresidual intera
tion does not 
ontribute to the mean-�eld results in the Hartree pro
edure. Enfor
ing thestability 
onditions (7) in the HB approximation, wesear
h for the HB minimum for Hamiltonian (1) at agiven rotational frequen
y. While the mean-�eld valuesof the quadrupole operators Q̂0 and Q̂2 are nonzero, thedoubly stret
hed quadrupole moments h ~Q0i and h ~Q2ivanish (Fig. 1) for equilibrium deformations (Fig. 2).The results of our 
al
ulations 
onform to the re-sults of the Nilsson�Strutinsky shell-
orre
tion method(
ompare our Fig. 2 with Fig. 3
 in Ref. [15℄), al-though we obtain slightly di�erent values for the equi-librium deformations. In the analysis in Ref. [15℄, thepairing 
orrelations are missing. In addition, in theNilsson�Strutinsky shell-
orre
tion method, the rigid-body moment of inertia simulates the inertial nu
learproperties, whi
h are di�erent from the mi
ros
opi
one, even in the high-spin region (see below). More-over, the use of the Nilsson�Strutinsky results destroysthe self-
onsisten
y between the mean-�eld 
al
ulationsand the RPA analysis. Therefore, to maintain self-
onsisten
y between the mean-�eld approximation and1102
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Fig. 1. The rotational behavior of the 
al
ulated monopole and quadrupole moments. The �doubly stret
hed� and standardvalues are 
onne
ted by dashed and solid lines, respe
tivelythe RPA as mu
h as possible, we use the re
ipe de-s
ribed above.The triaxiality of the mean �eld sets in at the 
riti-
al rotational frequen
y 

 that triggers the ba
kbend-ing in the 
onsidered nu
lei due to di�erent me
ha-nisms. We obtain ~

 � 0:25 MeV (10~ ! 12~) and~

 � 0:3 MeV (14~ ! 16~) for 162Yb and 156Dy,respe
tively (see Fig. 2). The 
ontribution of the ad-ditional term, Eq. (3), was 
ru
ial to a
hieve a good
orresponden
e between the 
al
ulated and experimen-tal values of the 
rossing frequen
y in ea
h nu
leus (seeRef. [16℄).In 156Dy, we obtain that the 
-vibrational ex
ita-tions (K = 2) of the positive signature tends to zero inthe rotating frame at the transition point in 
lose agree-ment with experimental data. At the transition point,there are two indistinguishable HB minima with di�er-ent shapes: axially symmetri
 and strongly nonaxial.It is interesting to note that this behavior is symmet-ri
 with respe
t to the sign of the 
-deformation, al-though the di�eren
e between the HB energy minimafor 
 = �20Æ is about 0.8 MeV. The in
rease in the ro-tational frequen
y 
hanges the axial shape to the non-axial one with a negative 
-deformation (
 � �20Æ).The transition has all the features of a �rst-order sha-

pe�phase transition. In 
ontrast to 156Dy, the axiallysymmetri
 
on�guration in 162Yb is repla
ed with thetwo-quasiparti
le 
on�guration with a small negative
-deformation. There, the ba
kbending o

urs due tothe rotational alignment of a neutron i13=2 quasiparti
lepair. The nonaxiality evolves quite smoothly, exhibit-ing the main features of a se
ond-order shape�phasetransition. The question arises as to how reliable ourdes
ription is or how self-
onsistently our mean-�eld
al
ulations are done.One of the 
on
lusive tests for the self-
onsisten
y ofmi
ros
opi
 
ranking 
al
ulations is the equivalen
e ofthe dynami
 moment of inertia J (2)HB 
al
ulated in themean-�eld approximation and the Thouless�Valatinmoment of inertia JTV 
al
ulated in the RPA. Theequivalen
e 
ertainly holds if a self-
onsistent mean-�eld minimum is found and spurious solutions are sep-arated from the physi
al ones (see the results for an ex-a
tly solvable model in Ref. [25℄). Our results (Fig. 3)demonstrate good 
onsisten
y between the mean-�eldand the CRPA 
al
ulations. We emphasize that thein
lusion of the 
orre
tion term, Eq. (3), is 
ru
ialfor a
hieving a good des
ription of the inertial nu
learproperties.1103
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Fig. 2. Equilibrium deformations in the ��
 plane as a fun
tion of the angular momentum I = hĴxi � 1=2 (in units of ~).The equilibrium deformations for 156Dy provide the lower mean-�eld energies in the region ��=3 < 
 < 0 (�lled 
ir
les) in
omparison with those obtained in Ref. [16℄ (open squares). Both bran
hes of the equilibrium deformations are obtainedby enfor
ing 
ondition (7). The maximum di�eren
e between the minimal HB energies at positive and negative equilibrium
-values does not ex
eed 1 MeV for 156Dy2.2. Negative-signature ex
itationsTo des
ribe quantum os
illations around mean-�eldsolutions, the boson-like operatorsbyk�l = �yk�y�l ; bykl = �yk�yl ; by�k�l = �y�k�y�lare used. The �rst equality introdu
es a positive-signature boson, and the other two determine negative-signature ones. These two-quasiparti
le operators aretreated in the quasi-boson approximation (QBA) as el-ementary bosons, i.e., all 
ommutators between themare approximated by their expe
tation values with theun
orrelated HB va
uum [26℄. The 
orresponding 
om-mutation relations 
an be found in Ref. [20℄. In this ap-proximation, the positive- and negative-signature bo-son spa
es are not mixed, be
ause the 
orrespondingoperators 
ommute andĤ
 = Ĥ
(r = +1) + Ĥ
(r = �1):

The positive-signature term Ĥ
(r = +1) is analyzed inRef. [16℄.In the UR frame, the negative-signature RPAHamiltonian has the formĤ
[r = �1℄ = 12X� E�by�b� � �2 X�3=1;2 ~Q(�)2�3 ; (9)where E� = "i+"j (E�i�j = "�i+"�j) are two-quasiparti
leenergies. Hereafter, we use the following de�nitions:the index � runs over ij, �i�j and the index ��3� denotesthe proje
tion on the quantization axis z. The doublystret
hed quadrupole operators~Q(�)1 = �Q̂(�)1 �� = !x!z!20 � ;~Q(�)2 = �Q̂(�)2 �� = !x!y!20 �are de�ned by means of the quadrupole operators Q̂(r)m(m = 0; 1; 2),1104
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0:1 0:3 0:5~
;MeVFig. 3. The rotational dependen
e of the dynami
J (2)HB = �d2EHB=d
2 = dhĴxi=d
 (the solid line)and the Thouless�Valatin JTV moments of inertia (thedashed line). The experimental values J (2) = 4=�E
are denoted by �lled squares 
onne
ted by a dash-dot-ted line to guide the eye. �E
 is the di�eren
e betweentwo 
onse
utive 
-transitions and E
 is the 
-transitionenergy between two neighboring states that di�er bytwo units of the angular momentum

Q̂(r)m = i2+m+(r+3)=2p2(1 + Æm0) �� �Q̂2m + (�1)(r+3)=2Q̂2�m� ; (10)where Q̂�m = r̂�Y�m. We re
all that the residual dou-bly stret
hed intera
tion does not distort the mean-�eld deformations found self-
onsistently for Hamilto-nian (1).The RPA Hamiltonian in (9) 
ontains only theisos
alar part of the quadrupole intera
tion, be
ause wewish to establish a 
onne
tion between the mi
ros
opi
approa
h and the phenomenologi
al ARM to 
learlysee similarities and di�eren
es. Moreover, in the 
on-sidered nu
lei, the main 
ontribution of the isove
torquadrupole�quadrupole intera
tion is lo
ated in the en-ergy region around 3 MeV and is responsible for M1ex
itations [17℄. We note, however, that the isove
torpart of the quadrupole intera
tion may be importantfor the analysis of wobbling ex
itations in odd�odd nu-
lei, having a di�erent orientation of the neutron andproton single-parti
le high-j orbitals and strong M1-transitions along yrast and/or yrare states. The pairingintera
tion does not 
ontribute to the boson Hamilto-nian Ĥ
[r = �1℄ be
ause it is of the positive signature.On the other hand, the matrix elements of the oper-ators depend on the pairing intera
tion, whi
h a�e
tsthe RPA solutions.The linear boson part of the doubly stret
hed oper-ators has the form~Q(�)1 = �12X� ~f1�(by� + b�); ~f1� = �q1�; (11)~Q(�)2 = � i2X� ~f2�(by� � b�); ~f2� = �q2�; (12)where q1� and q2� are real matrix elements of the re-spe
tive operators Q̂(�)1 and Q̂(�)2 (see the propertiesof matrix elements in Ref. [21℄). We solve the RPAequations of motion[Ĥ
; P̂� ℄ = i !� X̂� ; [Ĥ
; X̂� ℄ = �i !� P̂� ;[X̂� ; P̂�0 ℄ = iÆ� �0 ; (13)where X̂� =P�X��(by�+b�) and P̂� = iP� P �� (by��b�)are the 
olle
tive 
oordinates and their 
onjugate mo-menta (hereafter, we set ~ = 1 in all equations). TheRPA eigenfun
tionj�i = Ôy� jRPAi = 1p2 � X̂� � iP̂� �jRPAi ==X� ( (�)� by� � �(�)� b�)jRPAi (14)7 ÆÝÒÔ, âûï. 5 (11) 1105



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007de�nes the amplitudes  (�)� and �(�)� by means ofthe generalized 
oordinate and momentum amplitudes.The ket ve
tor jRPAi denotes the RPA va
uum (yraststate) at the rotational frequen
y 
. The solution ofEqs. (13) determines the generalized 
oordinate andmomentum amplitudes,X�� = � ~R�1 !� ~f1�E2� � !2� + � ~R�2 E� ~f2�E2� � !2� ;P �� = � ~R�1 E� ~f1�E2� � !2� + � ~R�2 !� ~f2�E2� � !2� ; (15)with unknown 
oe�
ients~R�1 =X� ~f1�P �� � � 1p2 hÔ� ; ~Q(�)1 i ;~R�2 =X� ~f2�X�� � ip2 hÔ� ; ~Q(�)2 i (16)and eigenvalues !� . To �nd the eigenvalues !� , wetransform system of equations (15) to the form~R�1 �D11(!�)� 1��+ ~R�2D12(!�) = 0;~R�1D12(!�) + ~R�2 �D22(!�)� 1�� = 0: (17)The 
onditionF (!�) = det�D� 1�� = 0 (18)determines all negative-signature RPA solutions. Thematrix elementsDkm(!�) =X� ~fk;� ~fm;�Ckm�E2� � !2�involve the 
oe�
ients Ckm� = !� if k 6= m and E�otherwise. Although the determinant has the dimen-sion n = 2, we obtain a huge family of RPA solutionswith di�erent degrees of 
olle
tivity. Among 
olle
tivesolutions, there are solutions that 
orrespond to shape�u
tuations of the system. We note that the dire
tionof the angular momentum is �xed in the UR frame.3. THE WOBBLING MODE3.1. Janssen�Mikhailov equationWe re
all that in the RPA, the doubly stret
hedresidual intera
tion restores the rotational symmetrybroken in the mean-�eld approximation. Therefore, for

the 
ranking Hamiltonian, the 
onservation laws implythat the relations[Ĥ
; Ĵy � iĴz℄ = �
(Ĵy � iĴz) (19)hold in the RPA. This 
ondition is equivalent to the
ondition of the existen
e of a negative-signature solu-tion !� = 
 
reated by the operator [27℄�̂y = Ĵz + iĴyq2hĴxi ; �̂ = (�̂y)y; [�̂; �̂y℄ = 1: (20)The operator �̂y des
ribes a 
olle
tive rotational modein the subspa
e of Ĥ
(r = �1) arising from the symme-tries broken by the external rotational �eld (the 
rank-ing term). However, this is true only for a pure har-moni
 os
illator model [25℄. Be
ause the additionalterm hadd in Eq. (3) 
ontains a term proportional tothe l̂x operator, 
onservation laws (19) are broken forHamiltonian (1). Nevertheless, these laws 
an be sat-is�ed in the RPA if the strength 
onstant in Eq. (18)is 
hanged in order to obtain the solution !� = 
 [16℄.To verify this fa
t, we 
al
ulated the RPA se
ular equa-tion (18) for the mode !� = 
, with and without the
00:2

0:4

00:2
0:4

0:1 0:2 0:3 0:4 0:50
0:1 0:2 0:3 0:4 0:50

~
;MeV
156Dy
162Yb

~
;MeV
~!�=0;MeV
~!�=0;MeV

Fig. 4. Evolution of the negative-signature RPA solu-tion !� = 
 with (dashed line) and without (solid line)additional term (3) as a fun
tion of the rotational fre-quen
y, 
al
ulated at the equilibrium deformations (seeFig. 2). The straight dashed line parallel to the ~
-axisis the yrast line1106
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ros
opi
 analysis of wobbling ex
itations : : :additional term hadd, for the same strength 
onstant(see also Fig. 10 in Ref. [16℄). The results evidentlydemonstrate that 
onservation law (19) is satis�ed witha good a

ura
y (Fig. 4). In fa
t, due to a smallness ofthe term proportional to l̂x in the additional term, theviolation is almost negligible. Based on this fa
t, weuse 
onservation laws (19) for Hamiltonian (9), whi
hyield the equations
Jz� +E�Jy� = ��A ~f1�; (21)
Jy� +E�Jz� = ��B ~f2�: (22)The parameters A and B de�ned by�A = h[ ~Q(�)1 ; iJy℄i =X� ~f1�Jy� = �hQ2+p3Q0i; (23)�B = h[ ~Q(�)2 ;�iJz℄i =X� ~f2�Jz� = 2�hQ2i (24)are obtained with the aid of the 
ommutator [28℄[Ĵx � iĴy; Q̂�m℄ =p�(� + 1)�m(m� 1)Q̂�m�1:The above relations between the matrix elements,Eqs. (21) and (22), are a key point for the analysis ofwobbling ex
itations at a nonzero 
-deformation, i.e.,hQ2i 6= 0. Moreover, by virtue of the de�nitions of thephonon operator (Eqs. (14) and (15)) and the operator�̂ (Eq. (20)), we 
an use Eqs. (21), (22), and (30) belowto show that [�̂; Ô� ℄ = [�̂; Ôy� ℄ = 0: (25)Following the pro
edure des
ribed in Ref. [8℄, withthe aid of Eqs. (21) and (22), we obtain the equation(!2� �
2)�(!�) = 0: (26)The determinant �(!�) 
orresponds to the system ofequations !�Syr�1 � 
Jxyr�2 = 0;
Jxzr�1 � !�Szr�2 = 0 (27)for the unknownsr�1 = ~R�1�A ; r�2 = ~R�2�B : (28)This system no longer has the solution !� = 
. Weintrodu
e the notationJxy(z) = Jx �Jy(z) � !2�S=
;Sy;z = Jy;z +
S; (29)

where Jx = hĴxi=
 is the kinemati
 moment of inertia,S =X� Jy�Jz�E2� � !2� ;and Jy;z =X� E�(Jy;z� )2E2� � !2� :From system (27), we obtain the relation between theunknowns r�1 and r�2 asr�1r�2 = 
Jxy!�Sy = !�Sz
Jxz ; (30)whi
h is helpful in our analysis below.The 
ondition �(!�) = 0 leads to the Janssen�Mikhailov equation [8℄�(!�) = !2� ��
2 [Jx�Jy�!2�S=
℄[Jx�Jz�!2�S=
℄[Jy+
S℄[Jz+
S℄ = 0; (31)whi
h determines all vibrational modes of negative sig-nature ex
luding the solution !� = 
. We stressthat the solution of this equation alone is meaning-less. While Eq. (31) is independent of the strength
onstant, the violation of 
onditions (21) and (22) viaan arbitrary variation of the 
-deformation or pairinggap destroys the link between the systems of Eqs. (17)and (27). As a result, the redundant mode 
annot beremoved from Eq. (18) and it is impossible to obtainEq. (31). Providing the wobbling solution, this equa-tion has a di�erent form than the Bohr�Mottelson 
las-si
al equation, however. Below, we present a simplederivation of the mi
ros
opi
 analog of the latter equa-tion. 3.2. Marshalek moments of inertiaRelations (30) are equivalent tor�1Syr�2Sz = 
Jxy!�Sz = !�Sy
Jxz (32)and 
an be asso
iated with the system of equations!�Sza�
Jxyb = 0;
Jxza� !�Syb = 0 (33)for the unknowns a = r�1Sy and b = r�2Sz. Using de�-nitions (29), we rearrange this system to the form!� �Jz+!�S ba� a�
�Jx�Jy�!�S ab� b = 0;
�Jx�Jz�!�S ba� a�!� �Jy + !�Sab� b = 0: (34)1107 7*



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007Using (32), we de�ne the e�e
tive moments of inertiain the UR frame asJ e�2 = Jy + !�S ab = Jy +
SJxySz ;J e�3 = Jz + !�S ba = Jz +
SJxzSy ; (35)whi
h depend on the RPA frequen
y. De�nitions (35)are the same as those obtained by Marshalek in thetime-dependent HB approa
h but in the prin
ipal-axis(PA) frame [9℄. The determinant for nonzero solutionsof system (34) yields a nonlinear equation similar tothe 
lassi
al expression for the wobbling mode [1℄,!�=w = 
s [Jx �J e�2 ℄[Jx �J e�3 ℄J e�2 J e�3 ; (36)with the mi
ros
opi
ally de�ned moments of inertia.Equation (36) was obtained by Marshalek in the PAframe from the equations for the amplitudes of theangular-frequen
y time os
illations. In the UR (time-independent) frame, we obtain this equation with mu
hless e�ort. It is evident that for the rotation around thex axis, the wobbling ex
itations with di�erent 
olle
tiv-ity 
an be found from Eq. (36) if the 
onditionJx > J e�2 ;J e�3 (or Jx < J e�2 ;J e�3 ) (37)is satis�ed. It 
an be expe
ted that for the RPA so-lutions di�erent from the wobbling mode, this 
ondi-tion should not hold. We note that Eq. (18) 
ontainsthe solutions of Eq. (36) but not vi
e versa, be
ause
onstraint (37) is valid in the latter 
ase but is not re-quired in the former. We obtain quite a remarkable
orresponden
e between the experimental and 
al
u-lated values for the kinemati
 moment of inertia forboth nu
lei (see top panels in Fig. 5). We also tra
ethe evolution of the irrotational �uid moment of iner-tia and a rigid-body moment of inertia (
f. Ref. [26℄) asfun
tions of the equilibrium deformations (see Fig. 2).The irrotational �uid moment of inertia reprodu
es nei-ther the rotational dependen
e nor the absolute valuesof the experimental one as fun
tions of the rotationalfrequen
y. The rigid-body values provide the asymp-toti
 limit of fast rotation without pairing. Evidently,the di�eren
e between the rigid-body and the 
al
u-lated kinemati
 moments of inertia in both nu
lei de-
reases as the rotational frequen
y in
reases, althoughit remains visible at high spins. At very fast rotation,~
 > 0:45 MeV, the pairing 
orrelations are redu
eddue to multiple alignments, and the di�eren
e is there-fore moderated.
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162Yb
156Dy

h̄Ω,MeVν = 1

ν = 1

0.55

0.60

0.65

0.10

0.15

0.20

0.25

h̄ων , MeV
h̄ων , MeV

0.70

Fig. 6. The rotational dependen
e of the RPA solu-tions obtained with the aid of Eq. (18) (solid line) andEq. (36) (dashed line). The RPA solutions obtainedwith the aid of Eq. (18) satisfy 
ondition (37)The Marshalek moments of inertia in Eq. (35), 
al-
ulated for the �rst RPA solution of Eq. (18), signal theappearan
e of the wobbling mode after a shape�phasetransition in 162Yb and 156Dy (see Fig. 5, bottom pan-els). As stressed above, the separation of the redundantmode is an essential point for the RPA wobbling the-ory that se
ures a reliable analysis of the RPA modes.Additionally, to ensure the self-
onsisten
y of our RPA
al
ulations, we 
ompare the solutions that may be as-so
iated with wobbling ex
itations from di�erent RPAEqs. (18) and (36). We re
all that Eq. (18) dependson the strength 
onstant � and 
ontains di�erent RPAsolutions in
luding the redundant mode, while this de-penden
e is removed from Eq. (36). Evidently, if theredundant mode were not removed from Eq. (18) byour 
hoi
e of the strength 
onstants, 
onditions (21)and (22) would be broken. As a result, the 
onsis-ten
y between Eqs. (18) and (36) would be broken aswell and these equations would provide di�erent solu-tions. A ni
e agreement between the roots of Eqs. (18)and (36) (Fig. 6) 
on�rms the viability and validity ofour approa
h. Below, we formulate spe
i�
 
riteria foridentifying 
olle
tive wobbling ex
itations among RPAsolutions of Eq. (18).3.3. Criteria for wobbling ex
itationsUsing Eqs. (34) and (35), we 
an de�ne the un-known variables r�=w1 = a=Sy, r�=w2 = b=Sz (whi
hdetermine the wobbling mode) su
h that1108
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Fig. 5. Top panels: the kinemati
 Jx = hĴxi=
 (solid line), the rigid-body J (rig)1 = 25mAR2 �1�q 54�� 
os(
 � 2�3 )�(dashed line), and the hydrodinami
al J (irr)1 = 32�mAR2�2 sin2 �
 � 2�3 � (dash-dotted line) moments of inertia are 
om-pared with the experimental values (�lled squares). Experimental values Jx = I=
 are 
onne
ted by dotted lines to guidethe eye (~
 = E
=2). Bottom panels: the rotational dependen
e of the kinemati
 moment of inertia (solid line), Marshalekmoments of inertia J e�2 (dashed line) and J e�3 (dash-dotted line) for the �rst RPA solution � = 1 obtained from Eq. (18)rw1rw2 = SzSy ab = SzSy 
(Jx �J e�2 )!wJ e�3 == SzSy !wJ e�2
(Jx �J e�3 ) =rW2W3 SzSy J e�2J e�3 : (38)Here, we used that the dispersion equation forthe wobbling mode, Eq. (36), 
an be expressed as!w = hĴxipW2W3, where
W2 =  1J e�2 � 1Jx! ; W3 =  1J e�3 � 1Jx! : (39)With the aid of Eqs. (35) and de�nition (29), it is easyto show that SzJ e�2 =SyJ e�3 � 1. Therefore,rw1rw2 =rW2W3 : (40)By means of the inverse transformation1109



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007by� = p2X� X��(Ôy� � Ô�) + P �� (Ôy� + Ô�); (41)we 
an express the operators ~Q(�)1;2 (see Eqs. (11), (12),and (16)) in terms of the phonon operators:~Q(�)1 = �p2X� ~R�1(Ôy� + Ô�); (42)~Q(�)2 = �ip2X� ~R�2(Ôy� � Ô�): (43)We use that the 
omponents of the quadrupole ten-sor 
ommute, i.e., the 
onditionh ~Q(�)1 ; ~Q(�)2 i = 4i X�=all ~R�1 ~R�2 == 2 X�=all hD̂� ; ~Q(�)1 i hD̂� ; ~Q(�)2 i = 0 (44)holds. Here, we use the notation D̂�=
 � �̂ andD̂� 6=
 � Ô� for other vibrational modes. Taking de�-nitions (16) and (28) into a

ount (also see Eqs. (20),(23), and (24)), we obtain the exa
t de�nitions for theunknowns r
1;2 asso
iated with the redundant mode:r
1 = ~R�=
1�A = � 1�Ap2 h�̂; ~Q(�)1 i = � 12qhĴxi ;r
2 = ~R�=
2�B = i�Bp2 h�̂; ~Q(�)2 i = 12qhĴxi : (45)This result allows expressing the sum in Eq. (44) asX� 6=w;
 r�1r�2 + rw1 rw2 = �r
1 r
2 = 14hĴxi : (46)We suppose that the sum in the left-hand side ofEq. (46), de�ned by all physi
al solutions ex
luding thewobbling one, is zero due to a mutual 
an
ellation ofdi�erent terms. As a result, we obtain the equation forthe unknowns rw1;2. Solving this equation with the aidof Eq. (40), we obtainrw1 = 12qhĴxi �W2W3�1=4 ;rw2 = 12qhĴxi �W3W2�1=4 : (47)These expressions are similar to those of the wob-bling mode in the Bohr�Mottelson model (see the Ap-pendix, Eqs. (A.14)), although the quantities W2;3 are

determined by the Marshalek moments of inertia andhĴxi � I + 1=2 (the fa
tor 1=2 o

urs due to the RPA
ontribution of the redundant mode, see the dis
us-sion in Ref. [29℄). Similar expressions were obtained inRef. [7℄ in the PA frame (with the quantization 
ondi-tion hĴxi = I and some additional phases).To identify the wobbling mode among the solutionsof Eq. (18), it is 
onvenient to transform Eq. (44) tothe form X�=all 
� = 0; 
� = 4hĴxi ~R�1�A ~R�2�B : (48)It follows from Eqs. (45) and (47) that
�=
 = �1; 
�=w = 1: (49)Thus, if we solve only the system of the RPA equa-tions for the quadrupole operators, Eq. (18), 
ondi-tion (49) allows identifying the redundant and the wob-bling modes.3.4. Analysis of experimental dataThe experimental level sequen
es for all the 
ur-rently observed rotational bands in 162Yb and 156Dyare taken from Ref. [14℄. All rotational states are
lassi�ed by the quantum number �, whi
h is equiv-alent to our signature r. The positive-signature states(r = +1) 
orrespond to � = 0 be
ause the quantumnumber � leads to sele
tion rules for the total angu-lar momentum I = � + 2n, n = 0;�1;�2; : : : (
f.Ref. [30℄). In parti
ular, in even�even nu
lei, the yrastband 
hara
terized by the positive-signature quantumnumber r = +1 (� = 0) 
onsists of even spins only.The negative-signature states (r = �1) 
orrespond to� = 1 and are asso
iated with odd-spin states in even�even nu
lei. All 
onsidered bands are of positive parity� = +.The redundant mode and four lowest RPA solutionsof Eq. (18) as fun
tions of the rotational frequen
y areshown in Figs. 7a and 8a. We re
all that these solutionsare found at di�erent equilibrium deformations (seeFig. 2). Indeed, in both nu
lei, 
riterion (49) uniquelydetermines the redundant and the wobbling modes. InFigs. 7b and 8b, the redundant mode is manifested asa straight line, while the 
orresponding 
oe�
ient 

is always �1 (Figs. 7
 and 8
). The rotational mode is
learly separated from the vibrational modes. We notethat the solutions that are di�erent from rotational andwobbling modes 
ontribute to the sum in Eq. (46) withzero weight, as was proposed above.To 
ompare our results with the available experi-mental data on low-lying ex
ited states near the yrast1110
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Fig. 7. The results for 162Yb. a) The rotational dependen
e of the positive-signature RPA solutions with even spins(� = +; � = 0). The number denotes the RPA solution number: 1 is the �rst (� = 1) RPA solution, et
. Di�erentsymbols display the experimental data asso
iated with B1, B2; : : : bands (the band labels are taken in a

ordan
e with thede�nitions given in Ref. [14℄). b) The rotational dependen
e of the negative-signature RPA solutions with odd spins (� = +,� = 1). The redundant mode !� = 
 is denoted by �0� and is displayed by the dotted line. 
) The rotational dependen
eof the 
oe�
ients 
� � ~R�1 ~R�2 (see Eq. (48)) determined by solutions of Eq. (18)
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Fig. 8. The same as in Fig. 7 for 156Dy1111



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007line [14℄, we 
onstru
t experimental Routhians for ea
hrotational band � (� = yrast; �; 
; : : : ):R�(
) = E�(
)� ~
I�(
);
(I) = [E�(I + 1)�E�(I � 1)℄ =2;and de�ne the experimental ex
itation energy in therotating frame as ~!exp� = R�(
) � Ryr(
) [31℄. In162Yb, only one negative-signature 
-vibrational stateis known. The �rst RPA solution (� = 1) is a nega-tive-signature 
-vibrational mode (with odd spins) upto ~
 � 0:28 MeV. With an in
rease in the rotationalfrequen
y, it is transformed into the wobbling modeat ~
 � 0:32 MeV (a

ording to 
riterion (49)). Theother solutions (� = 2; 3; 4) 
ontribute to the sum inEq. (46) with zero weight. Our results for the � = 1solution may be used as a guideline for possible ex-periments on identi�
ation of the wobbling ex
itationsnear the yrast line. Although the positive-signaturestates have been dis
ussed in Ref. [16℄, for 
omplete-ness of our analysis we 
ompare RPA results for thepositive signature with an updated database in [14℄.A

ording to our analysis, the �rst RPA solution ofpositive signature may be identi�ed with �-ex
itationsat small rotation ~
 � 0:2 MeV. With an in
rease inthe rotational frequen
y, a strong mixing between 
-ex
itation (the se
ond RPA solution at low spins) and�-ex
itation o

urs. At ~
 � 0:2 MeV, the �rst RPAsolution of positive signature is determined by a singletwo-quasiparti
le neutron 
on�guration (see the dis
us-sion and Table 1 in Ref. [16℄).In 156Dy, the �rst (� = 1) positive-signature RPAsolution 
arries a large portion of quasiparti
le stateswith K = 2. Be
ause the quantum number K is reli-able at small angular momenta, we asso
iate the �rstpositive-signature RPA solution with the 
-vibrationalmode. Rotation leads to a strong mixing between the�rst and the se
ond RPA solutions. With an in
rease inthe rotational frequen
y, the �rst solutions is separatedfrom the se
ond one, while the latter strongly intera
tswith the third RPA solution. At ~
 � 0:3 MeV, thereis a 
rossing between the B1 (yrast) band and the B8(ex
ited) band, whi
h be
omes the yrast one after thetransition point. The �rst positive-signature RPA so-lution des
ribes this transition with a good a

ura
y:the RPA mode vanishes at ~
 � 0:3 MeV. We re
allthat a

ording to our analysis in [16℄, pre
isely this vi-brational mode is responsible for the ba
kbending phe-nomenon in this nu
leus.The �rst negative-signature RPA solution in 156Dy
an be asso
iated with the negative-signature 
-vibrational mode with odd spins. After the transition

from the axial to nonaxial rotation, at ~
 � 0:3 MeV,a

ording to 
riterion (49), the �rst negative-signatureRPA solution des
ribes the wobbling ex
itations. Themode preserves its features with the in
rease in the ro-tational frequen
y up to ~
 � 0:55 MeV. There is agood agreement (see Fig. 8) between this one-phononband and the experimental Routhian of band B10 (orthe (+; 1)1 band a

ording to Ref. [15℄). Based onthis, we propose to 
onsider the B10 band as the wob-bling band in the range 0:45 MeV< ~
 < 0:55 MeV(33~ � I � 39~ for this band). We note that the B10band 
ontains the states with 31~� 53~. However, our
on
lusion is reliable only for states with I = 33~� 39 ~(or up to ~
 < 0:55 MeV). At ~
 � 0:55 MeV, a 
ross-ing of the negative-parity and negative-signature (pos-itive simplex) B6 band with the yrast band B8 is ob-served. At ~
 > 0:55 MeV (or for I > 39 ~ for theB10 band), the onset of o
tupole deformation in theyrast states may be expe
ted. The o
tupole deforma-tion is beyond the s
ope of our model, based on thequadrupole deformed mean �eld, and this feature willbe dis
ussed elsewhere.The proposed 
riterion in Eq. (49) is ne
essary butnot su�
ient for 
on
luding that we have found a solu-tion related to the wobbling ex
itations. It is broughtabout by the formal equivalen
e between the 
lassi-
al (Eq. (A.3) in the Appendix) and the mi
ros
opi
(Eq. (36)) equations for the wobbling mode. Our solu-tion is determined in the UR frame, where the �u
tu-ations of the angular momentum are absent (they areresponsible for the wobbling mode in the PA frame).To identify the wobbling mode, we also have to spe
ifythe relation between ele
tromagneti
 transitions in theBohr�Mottelson model de�ned in the PA systems andour model de�ned in the UR frame.3.5. Ele
tromagneti
 transitionsTransition probabilities for the X� transitionjI�i ! jI 0�0i between two high-spin states are givenbyB(X�; I� ! I 0�0) �� (I I � �1 j I 0 I 0)2jh�0jM̂(X�;�1 = I 0 � I)j�ij2: (50)In the high-spin limit (I � �, I 0 � �), the transitionfrom a one-phonon state into the yrast-line state takesthe form [32℄B(X�; I� ! I 0yr)) �� ��hRPA�� hM̂(1)(X�;�1 = I 0�I); Ôy�i ��RPAi��2; (51)1112
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ros
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itations : : :where M̂(1)(X��1) is the linear boson part of the 
orre-sponding transition operator of type X , multipolarity�, and the proje
tion �1 onto the rotation axis x inthe UR frame. The 
ommutator in (51) 
an be easilyexpressed in terms of phonon amplitudes  (�)� and �(�)�(see Eq. (14)). With the aid of the transformation fromx- to z-axis quantization [32℄,M̂(X��1) =X�3 D��3�1 �0; �2 ; 0�M̂(X��3); (52)and de�nitions (16) and (28), and taking into a

ountthat the relationh�jM̂ (E)2�3=0;2j�i = hM̂ (E)2�3=0;2iholds in the �rst RPA order, we obtainB(E2; I� ! I � 1yr) = ���DhM̂ (E)2�1=�1; Ôy�iE���2 == ���� ip2� h ~O(�)(E)2 ; Ôy�i� 1p2� h ~O(�)(E)1 ; Ôy�i����2 ; (53)where M̂ (E) = (eZ=A)M̂ . By Eqs. (16) and (47), theabove expression yields the de�nition of the quadrupoletransitions from the one-phonon wobbling state to theyrast states,B(E2; Iw ! I � 1yr) == 14hĴxi ������W2W3�1=4 A(E) ��W3W2�1=4B(E)�����2; (54)whi
h is similar to Eq. (A.13) in the Appendix. Thus,we provide a 
omplete mi
ros
opi
 de�nition of thewobbling ex
itations in a

ordan
e with the 
riteriasuggested by Bohr and Mottelson for the rigid rotor [1℄.We note a 
lear di�eren
e between the mi
ros
opi
 andthe rigid rotor models: the mi
ros
opi
 moments ofinertia, Eqs. (35), should be 
al
ulated for the RPAsolutions of Eq. (18) that must satisfy 
ondition (49).For intraband transitions, we have (see Eq. (43)in [16℄)B(E2; I� ! I � 2�) = ���h�jM̂(E2; �1 = 2)j�i���2 == 18 ���p3hQ̂(E)0 i � hQ̂(E)2 i���2 : (55)For illustrative purposes, to give a rough idea onthe major trend of quadrupole transitions, we use therelations from the pairing-plus-quadrupole model (
f.Ref. [30℄):m!20� 
os 
 = �hQ0i; m!20� sin 
 = ��hQ2i:

From these relations and the de�nition of thequadrupole isos
alar strength,� = 4�m!205hr2i � 4�m!203AR2 ; R � 1:2A1=3 fm;we obtainB(E2; Inw = 1! I � 1 yr) = � �2hĴxi �� " W2W3!1=4sin��3 � 
�� W3W2!1=4 sin 
#2; (56)where � = (9=16�2)e2Z2R4. For W2;3 > 0, Eq. (56)yields sele
tion rules for the quadrupole transitionsfrom the one-phonon wobbling band to the yrast one:�60Æ < 
 < 0:B(E2; Inw ! I � 1 yr) >> B(E2; Inw ! I + 1 yr); (57a)0 < 
 < 60Æ:B(E2; Inw ! I + 1 yr) >> B(E2; Inw ! I � 1 yr): (57b)For the intraband transitions, we obtainB(E2; Inw ! I � 2nw) = 12��2 
os2 ��6 � 
� : (58)It follows from Eq. (58) that for the transitions alongthe yrast line (nw = 0), the onset of the positive (neg-ative) values of the 
-deformation leads to an in
rease(de
rease) in the transition probability along the yrastline. Experimental values of B(E2; I� ! I 0 yr) are de-du
ed from the half life of the yrast states [14℄ usingthe standard, long-wave-limit expressions [26℄B(E2; i! f) = P (i! f)1:223 � 109E5
 ; e2 � fm4:Here, the transition energy E
 is in megaele
-tronvolts and the absolute transition probabilityP (i ! f) = ln 2=T (i ! f) is related to the half lifeT (i ! f) (in se
onds). In 
omparing our resultswith experimental data, we take the Clebs
h�Gordan
oe�
ient into a

ount (see Eq. (50)) up to I � 10~.For I > 10~, the asymptoti
 value for the Clebs
h�Gordan 
oe�
ient, whi
h is 1, is used. We note thatin the vi
inity of the ba
kbending, the mean-�elddes
ription be
omes less reliable (
f. Ref. [33℄). Whilethe 
ranking approa
h should be 
omplemented witha proje
tion te
hnique in the ba
kbending region due1113



R. G. Nazmitdinov, J. Kvasil ÆÝÒÔ, òîì 132, âûï. 5 (11), 2007

0:1 0:2 0:3 0:4 0:5
0:1 0:2 0:3 0:4 0:5

~
;MeV024168
081624 156Dy

162YbB(E2;Iyr!I
�2yr);103 e2 �
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I = 2 I = 10I = 18I = 16I = 12Fig. 9. Redu
ed transition probabilities B(E2; I yr !! I � 2 yr) along the yrast line. Experimental data(�lled squares) are 
onne
ted with a thin line to guidethe eye. The results of 
al
ulations based on Eqs. (58)and (55) are 
onne
ted by dashed and solid lines, re-spe
tivelyto large �u
tuations of the angular momentum (
f.Ref. [26℄), its validity be
omes mu
h better at highspins. Evidently, the larger the rotational frequen
y,the better the predi
tive quality of the CRPA be
auseit is based on the 
ranking approa
h aimed for thehigh-spin physi
s [30℄.Experimental data for the quadrupole transitionsalong the yrast line are 
ompared with the results of
al
ulations (a) by means of Eq. (55) and (b) by meansof Eq. (58) (Fig. 9). In 
al
ulations (a), we use themean-�eld values for the quadrupole operators. Cal-
ulations (a) evidently manifest the ba
kbending ef-fe
t obtained for the moments of inertia (see Fig. 5)at ~

 � 0:25 MeV and ~

 = 0:3 MeV for 162Yb and156Dy, respe
tively. Thus, the use of the self-
onsistentexpe
tation values hQ̂(E)m i is 
ru
ial in order to repro-du
e the experimental behavior of the yrast band de
ay.Cal
ulations (b) (Eq. (58)) reprodu
e the experimen-tal data with less a

ura
y, while providing the majortrend of the transitions with the sign of 
-deformation.The agreement between the 
al
ulated and experimen-tal values of intraband B(E2) transitions along theyrast line is espe
ially good after the transition point.At small rotational frequen
y, in both nu
lei, transi-tions probabilities from the �rst positive- and negative-signature RPA solutions are mu
h weaker in 
ompar-ison with the quadrupole transitions along the yrastline (see Fig. 9 and top panels in Figs. 10 and 11).At ~
 � 0:05 MeV, the transition strengths for the�rst positive (r = +1) and negative (r = �1) RPA

solutions are approximately 330 e2 � fm4 for 162Yband 500 e2 � fm4 for 156Dy with small di�eren
es be-tween di�erent transitions due to Clebs
h�Gordan 
oef-�
ients. We obtain a good 
orresponden
e between theshape evolution and sele
tion rules (57) for both nu
lei(see top panels in Figs. 10 and 11 and Fig. 2). Tran-sition probabilities (53) are 
al
ulated using the  (�)�and �(�)� phonon amplitudes expressed in terms of the
oordinate and momentum amplitudes (see Eqs. (14),(15), (16), and (28)). We 
ompare these results forthe �rst negative-signature RPA solution (whi
h is as-so
iated with a wobbling mode) with the results ob-tained by means of the Marshalek moments of inertia(see Eqs. (35), (39), and (54)). Evidently, if the �spu-rious� solution (the redundant mode) is not removedfrom Eq. (18), it 
ontributes to the variables (28).These variables 
annot obey 
ondition (30) in this 
ase.As a result, orthogonality 
ondition (25) is broken andEqs. (53) and (54) for the transitions should produ
e
ompletely di�erent results. A good agreement be-tween both 
al
ulations (see the right top panels inFigs. 10 and 11) is the most valuable proof of the valid-ity of our approa
h. The observed negligible di�eren
esare due to the approximate ful�llment of 
onservationlaws (19), 
aused by the presen
e of additional term (3)(see Fig. 4).A

ording to our analysis, a transition from theaxially deformed to nonaxial shapes with the nega-tive 
-deformation in 162Yb o

urs at ~
 � 0:25 MeV(see Fig. 2 and the dis
ussion in Ref. [16℄). At~
 � 0:28 MeV, the ex
ited band of the negative sig-nature, 
reated by the �rst RPA solution, 
hanges thede
ay properties. The negative values of 
-deformationprodu
e the dominan
e of the interband quadrupoletransitions from the one-phonon state to the yrast oneswith a lower spin (�I = 1, the 
ase in Eq. (57a)).Similar results are obtained in 156Dy for thelowest negative-signature ex
ited band 
reated bythe �rst RPA solution. At low angular momenta(~
 � 0:3 MeV), this band populates the yrast stateswith I 0 = I � 1 with approximately equal probabilities(I is the angular momentum of the ex
ited state). At~
 � 0:3 MeV, a shape�phase transition o

urs, whi
hleads to the triaxial shapes with the negative 
-defor-mation. In turn, the ex
ited band 
reated by the �rstRPA solution de
ays stronger on the yrast states withangular momenta I 0 = I � 1 (�I = 1, the 
ase inEq. (57a)), starting from ~
 � 0:32 MeV.It follows from the above analysis of the ele
tri
quadrupole transitions that there is no need to knowthe de�nition of the wobbling phonon operator in the1114
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Fig. 10. The ele
tri
 B(E2)- (top) and the magneti
 B(M1)- (bottom) redu
ed probabilities of transition from the one-phonon bands to the yrast band. The positive- (negative) signature phonon band is des
ribed by the �rst r = +1 (r = �1)RPA solution. We observe a strong dominan
e of the B(E2)- and B(M1)-transitions from the wobbling states (r = �1)with spin I to the yrast states with spin I 0 = I � 1, starting from the rotational frequen
y ~
 > 0:28 MeV. The transitions
al
ulated using the  (�=1)� and �(�=1)� phonon amplitudes are 
onne
ted by thi
k lines. In the right panels, the resultsobtained using Eqs. (54) and (65) (with the aid of the variables W2;3, Eq. (39)) are 
onne
ted by thin lines, starting from therotational frequen
y ~
 � 0:3 MeV. This point is asso
iated in our analysis with the appearan
e of wobbling ex
itationsUR frame. Indeed, in this frame, the dire
tion of theangular momentum is �xed and �u
tuations of the an-gular momentum are absent. But there is a vibrationalmode related to shape �u
tuations that 
arries oneunit of angular momentum. In the PA frame, a

ord-ing to the analysis of Bohr and Mottelson, the systemshape is �xed, while the angular momentum �u
tuatesaround the rotation axis that 
oin
ides with one of theprin
ipal axes of the inertia tensor. Evidently, the re-sult for the transition probabilities in the laboratoryframe must be independent of the 
hoi
e of the refer-en
e frame.To prove the equivalen
e of both results for the ele
-

tri
 quadrupole transitions, we use the Bohr�Mottelsonde�nition of the wobbling phonon operator, Eq. (A.5),Q̂yw = iq2hĴxi �� "(Î2)PA W2W3!1=4+(iÎ3)PA W3W2!1=4#: (59)Here, the quantities W2;3 are determined by the Mar-shalek moments of inertia, Eqs. (39). In the PA frame,we must use transformation (A.12) in order to 
al
u-late the transition probability and 
ommutation rela-1115
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Fig. 11. Similar to Fig. 10. A strong dominan
e of the B(E2)- and B(M1)-transitions from the wobbling states (r = �1)with spin I to the yrast states with spin I 0 = I � 1 starting from the rotational frequen
y ~
 � 0:3 MeV 
an be observedtions (A.2). This transformation and de�nition (59)yield the expressionB(E2; Iw ! I � 1 yr) = ���DhM̂ (E)2�1=�1; ÔywiE���2 == 14hĴxi ������W2W3�1=4 A(E) ��W3W2�1=4B(E)�����2; (60)whi
h is indeed the same as Eq. (54), obtained in theUR frame. We use this fa
t below to understand majorfeatures of the magneti
 transitions from the wobblingband.In the CRPA approa
h, the magneti
 transitions arede�ned asB(M1; I� ! I � 1 yr) � ���DhM̂ (M)1�1=�1; Ôy�iE���2 : (61)With the aid of the transformation from the x-axis tothe z-axis quantization in Eq. (52), we obtain

B(M1; I� ! I � 1 yr) �� 12 ���i hM̂ (M)1�3=1; Ôy�i� hM̂ (M)1�3=0; Ôy�i���2 : (62)The linear bosoni
 term of the magneti
 operator hasthe form (see also Ref. [21℄)M̂ (M)1�3=0;1 = �Np3�12g(eff)s Ŝ01�3 + g(eff)l L̂01�3� == i�3+22 X� �(�3)� �by� + (�1)�3b�� ; (63)where �N is the nu
leon magneton, g(eff)s and g(eff)l arethe spin and orbital e�e
tive gyromagneti
 ratios, re-spe
tively, and the quasiparti
le matrix elements �(�3)�are real. Taking the de�nition of the phonon opera-tor in Eq. (14) into a

ount, we express the magneti
1116
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ros
opi
 analysis of wobbling ex
itations : : :transition with the aid of generalized 
oordinate andmomentum amplitudes (15) asB(M1; I� ! I � 1 yr) �� �����X� �(1)� X�� �X� �(0)� P �� �����2 : (64)Our results evidently demonstrate the dominan
eof B(M1; I nW ! I � 1 yr) (see the right bottom pan-els in Figs. 10 and 11) for both nu
lei. To understandthis result, we de�ne the magneti
 transitions using theMarshalek moments of inertia. With the aid of de�-nition (59), transformation (A.12), and 
ommutationrelations[Î1 � iÎ2; M̂�m℄ =p�(�+ 1)�m(m� 1) M̂�m�1for the PA frame [34℄, we obtain from Eq. (61) thatB(M1; I � ! I � 1 yr) � ����hM̂ (M)1�3=1[r = +1℄i����2 �� 14hĴxi �pW3 �pW2 �2pW2W3 : (65)Although the expression for the magneti
 transitionsin Eq. (65) is similar to the one of the Bohr�Mottelsonmodel, we stress that the moments of inertia are de-�ned self-
onsistently within the CRPA approa
h. Wenote that the dipole magneti
 moment hM̂ (M)1�3=1[+℄i in-
reases quite drasti
ally if a nu
leus undergoes ba
k-bending (see the dis
ussion about the M1 strength inRef. [17℄). Keeping in mind that W2;3 > 0 for the wob-bling states, we haveB(M1; InW ! I � 1 yr) >> B(M1; I nW ! I + 1 yr): (66)Therefore, the tenden
y observed in the mi
ros
opi

al
ulations with the aid of the phonon amplitudes isunderstood in terms of rules (66). Independently of thesign of the 
-deformation of rotating nonaxial nu
lei,these rules determine the dominan
e of �I = 1~ mag-neti
 transitions from the wobbling to the yrast states.4. SUMMARYWe presented a transparent, self-
onsistent deriva-tion of the basi
 equations for the wobbling ex
itationsin the UR (time-independent) frame, whi
h determinethe energy spe
trum and ele
tromagneti
 properties ofthese states in even�even nu
lei. We obtained the same

expressions (35) for the e�e
tive moments of inertiaas those obtained by Marshalek in the time-dependentHartree�Bogoliubov approa
h in the PA frame [9℄. Weestablished a one-to-one 
orresponden
e between themain 
hara
teristi
s of the wobbling ex
itations in theBohr�Mottelson model and those derived within theCRPA approa
h. We note, however, that the CRPAbreaks down at the transition point when �p or �nvanishes [32℄. We have avoided this problem by meansof the phenomenologi
al pres
ription for the rotationaldependen
e of the pairing gap. A good agreement be-tween the dynami
 moment of inertia 
al
ulated in themean-�eld approximation and the Thouless�Valatinmoment of inertia 
al
ulated in the RPA supports the
onsisten
y of our mean-�eld 
al
ulations (see Fig. 3).In 
ontrast to the standard RPA 
al
ulations, wherethe residual strength 
onstants are �xed for all valuesof 
 (see, e.g., [7, 12, 13℄), we determined the strength
onstants for ea
h value of 
 by the requirement ofthe validity of 
onservation laws. This allows over
om-ing the instability of RPA 
al
ulations at the transitionregion, for the ex
itations at least. In prin
iple, pro-je
tion methods may be used in the transition regionin order to 
al
ulate transition matrix elements. Al-though the amplitudes �(�)� (see Eq. (14)) are larger forthe RPA modes in the transition region than in otherregions, the relation j�(�)� j < j (�)� j is still valid. TheCRPA also be
omes quite e�e
tive at high spins, afterthe transition point, when the pairing 
orrelations stillpersist.It follows from our analysis that an ex
ited band 
anbe regarded as the wobbling one if the magneti
 tran-sitions from this band into the yrast one satisfy 
on-dition (66). We note that these rules are independentof the 
-deformation sign. In 
ontrast, the 
olle
tiveele
tri
 quadrupole transitions from this band to theyrast one must satisfy staggering rules (57) dependingon the 
-deformation sign. We predi
t that the low-est ex
ited negative-signature and positive-parity bandin 162Yb (whi
h is a natural prolongation of the oddangular momentum part of the 
-band) transforms tothe wobbling band at ~
 > 0:3 MeV. We found thatstrong E2 transitions from this band populate the yraststates, with the bran
hing ratioB(E2; Iw ! I � 1 yr)=B(E2; Iw ! I + 1 yr) > 1:Su
h behavior is brought about by the onset of nonaxialnu
lear shapes with the negative sign of 
-deformationafter the ba
kbending. A

ording to our de�nitionof 
-deformation, with an in
rease in the rotationalfrequen
y, the system is driving to a non
olle
tiveoblate rotation (around the x axis). This trend is1117
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on�rmed by a good agreement between the resultsfor the quadrupole transitions along the yrast lineand available experimental data (see Fig. 9). A sim-ilar transition also o

urs in 156Dy after the ba
k-bending, at ~
 > 0:3 MeV. In this nu
leus, wefound that the lowest negative-signature and positive-parity band represents a natural prolongation of the
-band with odd spins, observed at small angular mo-menta up to ~
 � 0:3 MeV. At rotational frequen
ies~
 > 0:3 MeV, this band transforms to the wobblingband. A good agreement between our results and ex-perimental Routhians allows 
on
luding that the ex-perimental states asso
iated with the (+; 1)1 band inRef. [15℄ are wobbling ex
itations at the rotational fre-quen
y values 0:45MeV< ~
 < 0:55MeV. These statessatisfy all the requirements that are spe
i�
 for thewobbling ex
itations of nonaxially deformed rotatingnu
lei, with the negative 
-deformation.It turns out that strongly deformed triaxial shapesprodu
e relatively high-lying vibrational states, asso-
iated with a wobbling mode (the 
ase of 156Dy). In
ontrast, a soft shape�phase transition from the axiallydeformed to nonaxial shapes provides the low-lyingwobbling ex
itations (the 
ase of 162Yb). Furtherdetailed studies are required to shed light on theinterplay between di�erent shape�phase transitionsand their manifestations by means of vibrationalstates at high spins. Evidently, it is quite desirableto obtain new experimental data on ele
tromagneti
de
ay properties of these states in order to rea
h a �nal
on
lusion about our predi
tion and, 
onsequently, onthe validity of the CRPA analysis.This work is a part of the resear
h plan MSM0021620859 supported by the Ministry of Edu
ationof the Cze
h Republi
 and by the proje
t 202/06/0363of Cze
h Grant Agen
y. It is also partly supportedby Grant No. FIS2005-02796 (MEC, Spain). One ofthe authors (R. G. N.) gratefully a
knowledges supportfrom the Ramón y Cajal program (Spain).APPENDIXAsymmetri
 rotor modelIn this appendix, we review the basi
 features ofthe wobbling ex
itations in the rotor model [1℄ in orderto 
ompare it with the mi
ros
opi
 model dis
ussed inSe
. 3. In addition to well-known results, we providea novel analysis of magneti
 properties of the wobblingstates.In the high-spin limit I � 1, the rotor Hamiltonianhas the form (see Ref. [1℄)

Ĥ = Ĥ0 + ~22J1 (Î)2PA + Ĥwobb; (A.1)[Îi; Îj ℄PA = �i"ijk(Îk)PA; (A.2)where (Îi)2PA and Ji are the angular momentum andprin
ipal moment of inertia 
omponents in the rotating,prin
ipal-axis (PA) 
oordinate system. It is assumedthat the yrast band is generated by rotation aroundthe x axis I � I1 = K. Small os
illations of the an-gular momentum 
reate wobbling ex
itations des
ribedby the termĤwobbl = ~!w �Q̂ywobbQ̂wobb + 12� ;~!w = ~2IpW2W3; (A.3)where W2 = 1J2 � 1J1 ; W3 = 1J3 � 1J1 : (A.4)The wobbling (ex
ited) state at spin I is 
reated by thewobbling phononÔywobb = xBy�yB , By = xÔywobb+yÔwobb (A.5)with By = ip2I (Î2 + iÎ3)PA; B = (By)y; (A.6)x = pW3 +pW22 (W2W3)�1=4; (A.7)y = pW2 �pW32 (W2W3)�1=4; (A.8)and the normalization 
ondition x2 � y2 = 1. It fol-lows from Eq. (A.3) that the diagonalization of Ĥwobbrequires W2 > 0, W3 > 0, and J1 > J2 > J3.At I � I1 � 0, the eigenfun
tion of Hamilto-nian (A.1) is given by the Wigner D-fun
tion times theintrinsi
 eigenfun
tion de�ned by the wobbling quan-tum number jnwi = (Qywobb)nw j0i. The variablenw = hIKjByBjIKi � I � I1 = I �K (A.9)is de�ned with respe
t to the state jIK = (I1)PAi �� jnwi su
h thatByjIKi = pnw + 1jIK � 1i = pnw + 1jnw + 1i;j0i = jIK = Ii:1118
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ros
opi
 analysis of wobbling ex
itations : : :The transition probability for the operator of the typeX and multipolarity �,B(X�; I�K� ! I 0�0K 0�) == 12I + 1 jhI 0K 0��0jjM̂(X�)jjIK��ij2; (A.10)is de�ned by the redu
ed matrix elementhI 0K 0n0wjjM̂(X�)jjIKnwi = p2I + 1�� �X�1=��hn0wj(IK��1jI 0K 0)M̂(X��1 = I 0 � I)jnwi:(A.11)We note that the eigenmodes of the Hamiltonian Ĥ0 donot 
hange the proje
tionK onto the �rst PA axis. Butif the wobbling mode is ex
ited with jn0w�nwj 6= 0, theproje
tion K 
hanges and the 
orresponding Clebs
h�Gordan 
oe�
ients in Eq. (A.11) 
an be expressed interms of the By and B operators (see Se
. 4.5
 inRef. [1℄).Using this pro
edure for the Clebs
h�Gordan 
oef-�
ients, a relation between multipole operators in thePA frame with the x- and z-quantization axis, and de-�nition (10),M̂(X��1) =X�3 D��1�3 �0; �2 ; 0�M̂(X��3); (A.12)we obtain the interband E2 transitions between theone-phonon wobbling band (nw = 1) and the yrastband (nw = 0) asB(E2; Inw ! I � 1 yr) == j%1A(E) � %2B(E)j2; (A.13)where the variables A(E) and B(E) are de�ned byEqs. (23) and (24), Q̂(E)m � eZAQ̂m, and%1 = 1p2I �W2W3�1=4 ; %2 = 1p2I �W3W2�1=4 : (A.14)For intraband transitions, we haveB(E2; Inw ! I � 2nw) == 18 ���p3hQ̂(E)0 i � hQ̂(E)2 i���2 ; (A.15)where we use thathM̂(E2; �1 = �1)i = 0;hM̂(E2; �1 = 2)i = hM̂(E2; �1 = �2)i

and negle
t terms of the order of or higher than 1=I .A similar pro
edure 
an be used to derive M1transitions from one-phonon wobbling band into theyrast band. Ignoring the terms of the order of I�1 inEq. (A.11) in the high-spin limit (I � K � 1), we havethe following approximative values for the Clebs
h�Gordan 
oe�
ients in terms of the matrix elements ofthe operators B and By (or Q̂wobb and Q̂ywobb):(I K 1 0 j I K)! 1;(I K 1 0 j I � 1K)!! � 1pI *n� 1 ����� ByB �����n+ ;(I K 1 � 1 j I K � 1)!! � 1pI *n� 1 ����� BBy �����n+ ;(I K 1 � 1 j I � 1K � 1)! 1: (A.16)
Be
ause hM̂(M1 �1 = �1)i = 0, we obtainhI 0K 0n0wjjM̂(M1 �1 = 0)jjIKnwi == p2I + 1hn0wj"ÆI0;IhM̂(M1; �1 = 0)i++ ÆI0;I+1 1pI hM̂(M1; �1 = 0)i(xQ̂ywobb + yQ̂wobb)�� ÆI0;I�1 1pI hM̂(M1; �1 = 0)i(xQ̂wobb + yQ̂ywobb)#�� jnwi; (A.17)whereM̂(M1; �1) = �N p3�� AXi=1 �12g(i;eff)s [� 
 Yl=0℄1�1 + g(i;eff)l [l 
 Yl=0℄1�1�is the magneti
 dipole operator. With the aid ofEqs. (A.7), (A.8), and (A.12) and the de�nition of op-erators given in Ref. [21℄, we obtain the expressionB(M1; I nw ! I � 1 yr) = ����hM̂ (M)1�3=1[r = +1℄i����2 �� 14I �pW3 �pW2 �2pW2W3 (A.18)forM1 transitions from the one-phonon wobbling band(nw = 1) into the yrast band (nw = 0). The magneti
moment hM̂ (M)1�3=1[+℄i 
an be 
al
ulated in any mi
ro-s
opi
 model.1119
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