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In the cranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole excitations of posi-
tive parity and negative signature in 5Dy and '%2Yb at high spins. Special attention is paid to a consistent
description of wobbling excitations and their identification among excited states. A good agreement between
the available experimental data and the results of calculations is obtained. We find that the lowest odd-spin
~y-vibrational states in *®Dy transform into the wobbling excitations after the backbending associated with the
transition from axially symmetric shape to nonaxial shape. Similar results are predicted for '52Yb. The analysis
of electromagnetic transitions uniquely determines the sign of y-deformation in both nuclei after the transition

point.
PACS: 21.10.Re, 21.60.Jz, 27.70.4+q

1. INTRODUCTION

Deformation is an important ingredient of nuclear
dynamics at low energies [1, 2]. Regular rotational
bands identified in spectroscopic data are most evident
and prominent manifestations of an anisotropy of the
spatial nuclear density distribution. While the axial de-
formation of the nuclear potential is well established,
there is a long-lasting debate on the existence of a triax-
ial deformation. The full understanding of this degree
of freedom in nuclei may have implications for other
mesoscopic systems as well. In particular, the impor-
tance of nonaxiality is discussed recently for metallic
clusters [3] and atomic condensates (see Ref. [4] and
the references therein).

The analysis of specific low-lying excited states near
the yrast line could shed light on the existence of nonax-
iality. For nonaxial shapes, one expects the appearance
of low-lying vibrational states associated with a classi-
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cal wobbling motion. Such excitations (called wobbling
excitations) were first suggested by Bohr and Mottel-
son in rotating even—even nuclei [1], and were then an-
alyzed within simplified microscopic models [5, 6] (see
also Ref. [7] and the references therein). According
to the microscopic approach [8, 9], the wobbling ex-
citations are vibrational states of negative signature
built on the positive-signature yrast (vacuum) state.
Their characteristic feature is the collective E2 transi-
tions with AI = +1A between these and yrast states.
First experimental evidence of such states in odd Lu
nuclei was reported only recently [10].

The properties of the wobbling excitations at differ-
ent angular momenta can be studied within the asym-
metric rotor model (ARM) [1] (also see the Appendix).
The extension of this model to odd nuclei was used re-
cently for the analysis [11] of experimental properties
of the second triaxial superdeformed band in '%3Lu,
which carries several features associated with the wob-
bling excitations. The classical dispersion equation for
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the wobbling mode [1], with irrotational moments of in-
ertia, was used to describe the spectrum. The moments
of inertia were fitted in order to reproduce the experi-
mental data. But the intepretation of the results with
irrotational moments of inertia [11] faces the problem
of a consistent description of data. It seems that the
approach suggested in Ref. [11] may explain some ten-
dencies, but these are only a crude approximation to
the full physical picture of the observed phenomenon.

To explain the same data in '%*Lu, a non-self-
consistent microscopic analysis based on the cranked
Nilsson potential was performed in [12,13]. As a basic
tool, the dispersion equation for wobbling excitations,
derived in the time-dependent Hartree—Bogoliubov ap-
proach in Ref. [9], has been used. Based on the solution
of the microscopic equation, it was found in Ref. [13]
that the wobbling excitations are very sensitive to a
single-particle alignment. It was also concluded that
the pairing correlations do not affect the wobbling ex-
citations, and this should be considered a specific fea-
ture related to this mode. This seems to contradict the
fact that alignment reduces the pairing correlations.
Furthermore, the authors admitted that the kinematic
moment of inertia 7, was not described properly (see
Ref. [13]).

We recall that wobbling excitations depend on all
three moments of inertia that characterize the nonax-
ial shape. Therefore, a self-consistent description for
moments of inertia is a prerequisite for the microscopic
analysis of the nuclear wobbling motion. The main aim
of this paper is to analyze new data on high-spin states
in %Dy and '62YDb [14, 15] within a self-consistent mi-
croscopic approach [16]. Our calculations suggest that
some excited states at high spins may represent wob-
bling excitations.

Our approach (CRPA) [16] amounts to a self-
consistent solution of the cranked Nilsson potential for
the yrast line and the analysis of the low-lying excita-
tions near the yrast line in the random-phase approx-
imation (RPA). The analysis of Ml-excitations [17],
shape—phase transitions, and the behavior of positive-
signature excitations at backbending [16] confirmed
the importance of self-consistency for the description
of moments of inertia. We provide a refined micro-
scopic description of the wobbling excitations in a time-
independent uniformly rotating (UR) frame. In numer-
ical analysis, we pay attention to the self-consistency
between the mean field, vibrational excitations, and
their electromagnetic properties. We recall that all
negative-signature excitations, including the wobbling
ones, are considered in the UR frame. To identify the
wobbling excitations in experimental data, a few cri-

teria are proposed in the literature, such as a large
collectivity and zig-zag behavior of the B(E2) tran-
sition probability from a given band into the yrast
one with AI = +1, when one of the transitions is al-
most dominant [18]. We present a microscopic proce-
dure that gives a definite answer as to how to identify
the wobbling excitations. This procedure includes the
analysis of inertial properties and B(E2)- and B(M1)-
transitions probabilities.

The paper is organized as follows. In Sec. 2, we
briefly review the main details of our approach (which
is thoroughly discussed in Ref. [16]). In Sec. 3, we
study the lowest negative-signature RPA excitations.
The main focus in this section is on the definition of
the specific characteristics associated with the wobbling
mode. The conclusions are finally drawn in Sec. 4. To
complete the analysis, we review properties of the wob-
bling mode in the ARM in the Appendix.

2. THE MODEL

2.1. Basic properties of the mean-field
approximation

Our description is based on the Hamiltonian defined
in the UR frame as

Hq = H-hQJ, = Ho— > AN, —hQJ,+V. (1)

T=nN,p

The unperturbed Hamiltonian

]ffo = Z[thl(l) + hadd(i)]

k3

consists of the Nilsson Hamiltonian

2
P 1
hva = o + Em(wfx% + wiTs + wiTy) —

— 2khwool s — Kphwoo (12 — (1P n)  (2)

and the additional correction term [19]

hadd = Qmwook {2 (7’2890 —ar - s) +

- (v D)) o

The correction term restores the local Galilean invari-
ance broken in the rotating coordinate system and im-
proves the description of the inertial properties in the
Nilsson model (see Ref. [16]). The chemical potentials
Ar (where 7 = n,p) are determined so as to give the
correct mean particle numbers (N;). Hereafter, (...)
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denotes averaging over the mean-field vacuum (yrast)
state at a given rotational frequency 2. The two-body
potential in Eq. (1) includes the monopole pairing, dou-
bly stretched quadrupole—quadrupole and monopole—
monopole interaction. Hamiltonian (1) has the inver-
sion and signature symmetries. Using the generalized
Bogoliubov transformation for quasiparticles and the
variational principle (see the details in Ref. [20]), we
obtain the Hartree-Bogoliubov (HB) equations for the
positive-signature quasiparticle energies ¢; (protons or
neutrons). The positive-signature (r = +1) state is
defined in accordance with the Bogoliubov transforma-
tion

af =3 (Unicl + Vier),  e™eale ™ = —ial,
k

where |k) denotes a single-particle state of a Goodman
spherical basis (see Ref. [21]). By diagonalizing the
Hamiltonian at the rotational frequency {2, we obtain
quasiparticle states with a good parity 7 and signature
r. It suffices to solve the HB equations for the positive
signature, because the negative-signature eigenvalues
and eigenvectors are obtained from the positive ones as

(_Eivuiavi) — (EEVEUE) . (4)

The index “7” denotes the negative-signature (r = —1)
state (ei™J= oz;.re_"”'m = ia;.r). For a given value of the
rotational frequency ), the quasiparticle (HB) vacuum
state is defined by ;| ) = a3 ) = 0.

We solved the system of nonlinear HB equations
for 155Dy and '%2YDb on the mesh of deformation pa-
rameters  and 7 defined by means of the oscillator

frequencies in Eq. (2) as

5 2m
w? = w? [I—Qﬂ 27 & <’y— ?2>] , 5)

i=1,2,3 (orz,y,z).

The Nilsson—Strutinsky analysis of experimental data
on high spins in %Dy [15] indicates that the positive-
parity yrast sequence undergoes a transition from the
prolate towards an oblate rotation. To compare our
results with available experimental data on excited
states [15], in comparison with our previous work [16],
we extend the range of the values of v from v = 60°
(an oblate rotation around the y axis) to v = —60° (an
oblate rotation around the z axis). At each rotational
frequency and at each mesh point, we self-consistently
calculate the total mean-field energy Eyp = (ﬁg) In
the vicinity of the backbending, the solution becomes
highly unstable. To avoid unwanted singularities for

certain values of Q, we follow the phenomenological
prescription [22]

AL () =

Q> Q.

where (), is the critical rotational frequency of the first
band crossing.

It is well known that for a deformed harmonic oscil-
lator, the quadrupole fields in doubly stretched coordi-
nates [23] satisfy the stability conditions (cf. Ref. [24])

(Qu)=0, pn=0,1,2. (7)

The tilde indicates that the quadrupole fields are
expressed in terms of doubly stretched coordinates
Z; = (wi/wo) z; and contain different combinations of
the nonstretched quadrupole Qp o< (222 — 22 — y?),
Q> o V3(x> — y?) and monopole M  r? operators
quantized along the z axis (cf. Ref. [23]). Condition (7)
holds if the nuclear self-consistency condition

wi(a}) = wj(23) = wi(a3) (8)

is satisfied in addition to the volume-preserving con-
straint. By virtue of condition (8), the doubly stretched
residual interaction does not contribute to the mean-
field results in the Hartree procedure. Enforcing the
stability conditions (7) in the HB approximation, we
search for the HB minimum for Hamiltonian (1) at a
given rotational frequency. While the mean-field values
of the quadrupole operators QO and Qg are nonzero, the
doubly stretched quadrupole moments (Qq) and (Q»)
vanish (Fig. 1) for equilibrium deformations (Fig. 2).
The results of our calculations conform to the re-
sults of the Nilsson—Strutinsky shell-correction method
(compare our Fig. 2 with Fig. 3¢ in Ref. [15]), al-
though we obtain slightly different values for the equi-
librium deformations. In the analysis in Ref. [15], the
pairing correlations are missing. In addition, in the
Nilsson—Strutinsky shell-correction method, the rigid-
body moment of inertia simulates the inertial nuclear
properties, which are different from the microscopic
one, even in the high-spin region (see below). More-
over, the use of the Nilsson—Strutinsky results destroys
the self-consistency between the mean-field calculations
and the RPA analysis. Therefore, to maintain self-
consistency between the mean-field approximation and
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Fig.1. The rotational behavior of the calculated monopole and quadrupole moments. The “doubly stretched” and standard
values are connected by dashed and solid lines, respectively

the RPA as much as possible, we use the recipe de-
scribed above.

The triaxiality of the mean field sets in at the criti-
cal rotational frequency 2. that triggers the backbend-
ing in the considered nuclei due to different mecha-
nisms. We obtain 7Q. ~ 0.25 MeV (10 — 12A) and
W ~ 0.3 MeV (14h — 16h) for 52Yb and 56Dy,
respectively (see Fig. 2). The contribution of the ad-
ditional term, Eq. (3), was crucial to achieve a good
correspondence between the calculated and experimen-
tal values of the crossing frequency in each nucleus (see
Ref. [16]).

In '"°Dy, we obtain that the 7-vibrational excita-
tions (K = 2) of the positive signature tends to zero in
the rotating frame at the transition point in close agree-
ment with experimental data. At the transition point,
there are two indistinguishable HB minima with differ-
ent shapes: axially symmetric and strongly nonaxial.
It is interesting to note that this behavior is symmet-
ric with respect to the sign of the v-deformation, al-
though the difference between the HB energy minima
for v = £20° is about 0.8 MeV. The increase in the ro-
tational frequency changes the axial shape to the non-
axial one with a negative y-deformation (y ~ —20°).
The transition has all the features of a first-order sha-

pe-phase transition. In contrast to **Dy, the axially
symmetric configuration in '%2YDb is replaced with the
two-quasiparticle configuration with a small negative
~v-deformation. There, the backbending occurs due to
the rotational alignment of a neutron i3/, quasiparticle
pair. The nonaxiality evolves quite smoothly, exhibit-
ing the main features of a second-order shape—phase
transition. The question arises as to how reliable our
description is or how self-consistently our mean-field
calculations are done.

One of the conclusive tests for the self-consistency of
microscopic cranking calculations is the equivalence of
the dynamic moment of inertia 7 1({22; calculated in the
mean-field approximation and the Thouless—Valatin
moment of inertia J7y calculated in the RPA. The
equivalence certainly holds if a self-consistent mean-
field minimum is found and spurious solutions are sep-
arated from the physical ones (see the results for an ex-
actly solvable model in Ref. [25]). Our results (Fig. 3)
demonstrate good consistency between the mean-field
and the CRPA calculations. We emphasize that the
inclusion of the correction term, Eq. (3), is crucial
for achieving a good description of the inertial nuclear
properties.
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Fig.2. Equilibrium deformations in the 3—y plane as a function of the angular momentum I = (J,) — 1/2 (in units of ).

The equilibrium deformations for **Dy provide the lower mean-field energies in the region —7/3 <~ < 0 (filled circles) in

comparison with those obtained in Ref. [16] (open squares). Both branches of the equilibrium deformations are obtained

by enforcing condition (7). The maximum difference between the minimal HB energies at positive and negative equilibrium
~v-values does not exceed 1 MeV for *°Dy

2.2. Negative-signature excitations

To describe quantum oscillations around mean-field
solutions, the boson-like operators

~I—

o ot T [ |
by =apa;, by =aopa), b =oa

I
are used. The first equality introduces a positive-
signature boson, and the other two determine negative-
signature ones. These two-quasiparticle operators are
treated in the quasi-boson approximation (QBA) as el-
ementary bosons, i.e., all commutators between them
are approximated by their expectation values with the
uncorrelated HB vacuum [26]. The corresponding com-
mutation relations can be found in Ref. [20]. In this ap-
proximation, the positive- and negative-signature bo-
son spaces are not mixed, because the corresponding
operators commute and

Hq = Ho(r = +1) + Ho(r = —1).

The positive-signature term Ho(r = +1) is analyzed in
Ref. [16].

In the UR frame, the negative-signature RPA
Hamiltonian has the form

Folr=—1]= g Y Ebfh - 30 @2 )
Iz pn3=1,2
where E,, = ¢;+¢; (E;; = £;+¢5) are two-quasiparticle
energies. Hereafter, we use the following definitions:
the index p runs over ij, ¢j and the index “u3” denotes
the projection on the quantization axis z. The doubly
stretched quadrupole operators

Q) =0l <€ = “‘;’) :

Wo

~(— N WaeW
QY =nQy”) <n= “2y>

W

are defined by means of the quadrupole operators Q%)
(m=0,1,2)

3
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Fig.3. The rotational dependence of the dynamic

) — —@®Enp/dQ® = d(J,)/dQ (the solid line)
and the Thouless—Valatin 77y moments of inertia (the
dashed line). The experimental values 7 = 4/AE,
are denoted by filled squares connected by a dash-dot-
ted line to guide the eye. AE, is the difference between
two consecutive y-transitions and E is the v-transition
energy between two neighboring states that differ by

two units of the angular momentum

7 ZKOT®, Bem. 5 (11)

i2+m+(r+3)/2
- X
2(1 + dmo)
< (Qom + ()2 ), (10)

m

where QA)\m = #Yy\,,. We recall that the residual dou-
bly stretched interaction does not distort the mean-
field deformations found self-consistently for Hamilto-
nian (1).

The RPA Hamiltonian in (9) contains only the
isoscalar part of the quadrupole interaction, because we
wish to establish a connection between the microscopic
approach and the phenomenological ARM to clearly
see similarities and differences. Moreover, in the con-
sidered nuclei, the main contribution of the isovector
quadrupole—quadrupole interaction is located in the en-
ergy region around 3 MeV and is responsible for M1
excitations [17]. We note, however, that the isovector
part of the quadrupole interaction may be important
for the analysis of wobbling excitations in odd—odd nu-
clei, having a different orientation of the neutron and
proton single-particle high-j orbitals and strong M 1-
transitions along yrast and /or yrare states. The pairing
interaction does not contribute to the boson Hamilto-
nian Ho[r = —1] because it is of the positive signature.
On the other hand, the matrix elements of the oper-
ators depend on the pairing interaction, which affects
the RPA solutions.

The linear boson part of the doubly stretched oper-
ators has the form

. 1 -
Qi) =5 3 S} +by)
nw

D= LY Bl b,
n

where ¢i, and go, are real matrix elements of the re-

fiu = €a, (1)

f;u = Nq2u; (12)

spective operators ng) and Qéf) (see the properties
of matrix elements in Ref. [21]). We solve the RPA
equations of motion

[ﬁmﬁ’u]:iwy)z'u, [ﬁm v] = —iw, P,

P 13
[X,,,P,,f]:lts,,,,f-, ( )

where X, = 7 X;/(bf,+b,) and P, = i 3, PY(b}, =)
are the collective coordinates and their conJugate mo-
menta (hereafter, we set i = 1 in all equations). The
RPA eigenfunction

|v) = O} |RPA) = ( —zP)|RPA>=

6{")b,)|RPA)  (14)

tmﬂ
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defines the amplitudes 1/)‘(1”) and gz&ff) by means of
the generalized coordinate and momentum amplitudes.
The ket vector |RPA) denotes the RPA vacuum (yrast
state) at the rotational frequency €. The solution of
Eqs. (13) determines the generalized coordinate and
momentum amplitudes,

v __ PU wl/flu ) Euf2p
Sy R (15)
v Sy Eu.flu HU Wquu
PM = Xle + XRQW,
with unknown coefficients
v 3 v 1 A A(—
V=) fubl = 7 [Ong )]
g (16)

and eigenvalues w,. To find the eigenvalues w,, we
transform system of equations (15) to the form

~ 1 ~
R? [Dn(w,,) - ;:| + Rngg(w,,) = 0.,

: (17)
R¥D12(wy) + Rlzl |:D22(wl,) — ;:| =0.
The condition
1
F(w,) = det <D — —) =0 (18)
X

determines all negative-signature RPA solutions. The
matrix elements

N fm Hckm
Dim(w,) = el U
k (w ) ;fk’u Eﬁ _wg

involve the coefficients Cﬁm = w, if K # m and E,
otherwise. Although the determinant has the dimen-
sion n = 2, we obtain a huge family of RPA solutions
with different degrees of collectivity. Among collective
solutions, there are solutions that correspond to shape
fluctuations of the system. We note that the direction
of the angular momentum is fixed in the UR frame.

3. THE WOBBLING MODE

3.1. Janssen—Mikhailov equation

We recall that in the RPA, the doubly stretched
residual interaction restores the rotational symmetry
broken in the mean-field approximation. Therefore, for

the cranking Hamiltonian, the conservation laws imply
that the relations

[Ho,J, FiJ.] = £Q(J, FiJ.) (19)

hold in the RPA. This condition is equivalent to the

condition of the existence of a negative-signature solu-
tion w, = Q created by the operator [27]

pr= T b0 p iyt
2(J,)

[, =1 (20)

The operator I'T describes a collective rotational mode
in the subspace of Hq(r = —1) arising from the symme-
tries broken by the external rotational field (the crank-
ing term). However, this is true only for a pure har-
monic oscillator model [25]. Because the additional
term hgqq in Eq. (3) contains a term proportional to
the [, operator, conservation laws (19) are broken for
Hamiltonian (1). Nevertheless, these laws can be sat-
isfied in the RPA if the strength constant in Eq. (18)
is changed in order to obtain the solution w, = Q [16].
To verify this fact, we calculated the RPA secular equa-
tion (18) for the mode w, = Q, with and without the

hwy,—q, MeV

0.4+

]62Yb

0.2

0 0.1 0.2 0.3 0.4 0.5
hQ, MeV

Fig.4. Evolution of the negative-signature RPA solu-

tion w, = Q with (dashed line) and without (solid line)

additional term (3) as a function of the rotational fre-

quency, calculated at the equilibrium deformations (see

Fig. 2). The straight dashed line parallel to the hQ2-axis
is the yrast line
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additional term hgqq, for the same strength constant
(see also Fig. 10 in Ref. [16]). The results evidently
demonstrate that conservation law (19) is satisfied with
a good accuracy (Fig. 4). In fact, due to a smallness of
the term proportional to [, in the additional term, the
violation is almost negligible. Based on this fact, we
use conservation laws (19) for Hamiltonian (9), which
yield the equations

QJ; + By JY = x6Afiy, (21)

QJY + B, J7 = xnB fop. (22)
The parameters A and B defined by

= ([Q{7i,)) = meﬂ

=2 Fudi

are obtained with the aid of the commutator [2§]

Q2+\/_Q0> (23)

= (@5, —i L)) =2(Qs)  (24)

[jx + ij, Q)\m] = \//\(/\ + 1) — m(m + 1)Q>\mj:1~
The above relations between the matrix elements,
Eqgs. (21) and (22), are a key point for the analysis of
wobbling excitations at a nonzero vy-deformation, i.e.,
(@Q2) # 0. Moreover, by virtue of the definitions of the
phonon operator (Eqgs. (14) and (15)) and the operator
I' (Eq. (20)), we can use Eqgs. (21), (22), and (30) below
to show that
,0,] = [, 0] = 0. (25)
Following the procedure described in Ref. [8], with
the aid of Eqgs. (21) and (22), we obtain the equation
(w2 — O*)A(w,) = 0. (26)
The determinant A(w,) corresponds to the system of
equations

Wy Syrt — QTpyry =0,
yT1 zyT2 (27)
OTp2r] —w,Ssry =0
for the unknowns
, Ry Ry
r = f_fll’ ry = 77_; (28)

This system no longer has the solution w, = Q. We
introduce the notation

jmy(z) = jx - jy(z) - WES/Qa

(29)
Sy,z = jy,z + QS,

where 7, = (J,)/Q is the kinematic moment of inertia,

JyJZ

S=2 ;o
and
W (%)
Z o w? -

From system (27), we obtam the relation between the
unknowns r{ and r§ as

r{ _ QT wS:

ry w,Sy QT
which is helpful in our analysis below.

The condition A(w,) = 0 leads to the Janssen-
Mikhailov equation [8]

(30)

Alw,) = w2 —

_ 2= 0y =28/ o= 7.~

[T, +QS)[T.+0QS]

which determines all vibrational modes of negative sig-
nature excluding the solution w, = €. We stress
that the solution of this equation alone is meaning-
less. While Eq. (31) is independent of the strength
constant, the violation of conditions (21) and (22) via
an arbitrary variation of the y-deformation or pairing
gap destroys the link between the systems of Eqs. (17)
and (27). As a result, the redundant mode cannot be
removed from Eq. (18) and it is impossible to obtain
Eq. (31). Providing the wobbling solution, this equa-
tion has a different form than the Bohr—Mottelson clas-
sical equation, however. Below, we present a simple
derivation of the microscopic analog of the latter equa-

wp S/

—0, (31)

tion.

3.2. Marshalek moments of inertia

Relations (30) are equivalent to

Tl'/Sy ijy o,)VSy
= = 32
ryS.  w,S: Qs (82)
and can be associated with the system of equations
w,S,a—QTb=0,
! (33)
N Tp.a —w,Syb =0

for the unknowns a = r7'S, and b = r5S.. Using defi-
nitions (29), we rearrange this system to the form

Wy <.72+wy5'§> a— (jx—jy—w,,s%) b=0,
) (34

a
<j jz Wy a) a—wy (jy + OJ;/SZ) b=0.
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Using (32), we define the effective moments of inertia hw,, MeV
in the UR frame as
T = Ty + w57 =jy+95”g’“v’, ]
b F. :
jSEﬁ =7.+w,S-=7.+QS xza
a Sy
which depend on the RPA frequency. Definitions (35)
are the same as those obtained by Marshalek in the 0.70 ' ' ' ' i56 '
time-dependent HB approach but in the principal-axis 065 —————= Dy |
(PA) frame [9]. The determinant for nonzero solutions 0.60 - _ _
of system (34) yields a nonlinear equation similar to v=1
. . . 0.55 -
the classical expression for the wobbling mode [1], - s - - - - -
0.35 0.40 0.45
hQ, MeV
[jx - j;ﬁ][jx - jgeﬁ]
Wy=w = Q eff eff ) (36)
NASVA Fig.6. The rotational dependence of the RPA solu-

with the microscopically defined moments of inertia.
Equation (36) was obtained by Marshalek in the PA
frame from the equations for the amplitudes of the
angular-frequency time oscillations. In the UR (time-
independent) frame, we obtain this equation with much
less effort. It is evident that for the rotation around the
x axis, the wobbling excitations with different collectiv-
ity can be found from Eq. (36) if the condition

Te > j2eﬁ7j36ﬁ (or T < jzeﬁvj;ﬁ) (37)

is satisfied. It can be expected that for the RPA so-
lutions different from the wobbling mode, this condi-
tion should not hold. We note that Eq. (18) contains
the solutions of Eq. (36) but not vice versa, because
constraint (37) is valid in the latter case but is not re-
quired in the former. We obtain quite a remarkable
correspondence between the experimental and calcu-
lated values for the kinematic moment of inertia for
both nuclei (see top panels in Fig. 5). We also trace
the evolution of the irrotational fluid moment of iner-
tia and a rigid-body moment of inertia (cf. Ref. [26]) as
functions of the equilibrium deformations (see Fig. 2).
The irrotational fluid moment of inertia reproduces nei-
ther the rotational dependence nor the absolute values
of the experimental one as functions of the rotational
frequency. The rigid-body values provide the asymp-
totic limit of fast rotation without pairing. Evidently,
the difference between the rigid-body and the calcu-
lated kinematic moments of inertia in both nuclei de-
creases as the rotational frequency increases, although
it remains visible at high spins. At very fast rotation,
hQ > 0.45 MeV, the pairing correlations are reduced
due to multiple alignments, and the difference is there-
fore moderated.

tions obtained with the aid of Eq. (18) (solid line) and
Eq. (36) (dashed line). The RPA solutions obtained
with the aid of Eq. (18) satisfy condition (37)

The Marshalek moments of inertia in Eq. (35), cal-
culated for the first RPA solution of Eq. (18), signal the
appearance of the wobbling mode after a shape—phase
transition in '52Yb and ®®Dy (see Fig. 5, bottom pan-
els). As stressed above, the separation of the redundant
mode is an essential point for the RPA wobbling the-
ory that secures a reliable analysis of the RPA modes.
Additionally, to ensure the self-consistency of our RPA
calculations, we compare the solutions that may be as-
sociated with wobbling excitations from different RPA
Eqs. (18) and (36). We recall that Eq. (18) depends
on the strength constant y and contains different RPA
solutions including the redundant mode, while this de-
pendence is removed from Eq. (36). Evidently, if the
redundant mode were not removed from Eq. (18) by
our choice of the strength constants, conditions (21)
and (22) would be broken. As a result, the consis-
tency between Eqs. (18) and (36) would be broken as
well and these equations would provide different solu-
tions. A nice agreement between the roots of Eqs. (18)
and (36) (Fig. 6) confirms the viability and validity of
our approach. Below, we formulate specific criteria for
identifying collective wobbling excitations among RPA
solutions of Eq. (18).

3.3. Criteria for wobbling excitations

Using Eqs. (34) and (35), we can define the un-
known variables r{=" = a/S,, r§=" = b/S. (which

determine the wobbling mode) such that
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0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
hQ, MeV hQ), MeV

Fig.5. Top panels: the kinematic 7, = (J,)/Q (solid line), the rigid-body 7" = 2mAR’ (1 —\/=Bcos(y — 2T”))

(dashed line), and the hydrodinamical l(m") = ZmAR?B*sin® (y — Z£) (dash-dotted line) moments of inertia are com-
pared with the experimental values (filled squares). Experimental values 7, = I/) are connected by dotted lines to guide
the eye (hQ2 = E,/2). Bottom panels: the rotational dependence of the kinematic moment of inertia (solid line), Marshalek
moments of inertia 7,7 (dashed line) and 7,7 (dash-dotted line) for the first RPA solution v = 1 obtained from Eq. (18)

Y S.a_ S AT - T 11 11
= T o = Wo=|—705—-——|, Wy=|—7=-—1]. (39
7"5‘) Sy b Sy W jseﬁ 2 jzeﬁ Tx |’ 3 jgeﬁ Tu ( )
_S. wo s [Wa S. T (38) With the aid of Eqgs. (35) and definition (29), it is easy
Sy QT - Ty VW Sy gl to show that S, 7% /S, 7% = 1. Therefore,
i [T o)
Here, we wused that the dispersion equation for ry W'
the wobbling mode, Eq. (36), can be expressed as
Wy = (Jo )V WoWs5, where By means of the inverse transformation
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bl =v2>_ X2(0F - 0,) + PL(O} +0,),  (41)

we can express the operators Qg_z) (see Eqgs. (11), (12)
and (16)) in terms of the phonon operators:

3

Q17 = V23 RIOL +0,), (42)

QY = -iv2 > R5(0} - 0,). (43)

We use that the components of the quadrupole ten-
sor commute, i.e., the condition

v=all
=23 [0,.007] [0, 0] =0 (49)
v=all
holds. Here, we use the notation ﬁ,,:Q = T and

l§u¢9 = O, for other vibrational modes. Taking defi-
nitions (16) and (28) into account (also see Eqs. (20),
(23), and (24)), we obtain the exact definitions for the
unknowns 7“?72 associated with the redundant mode:

U N Pt R
T T T an [F’Ql ]_ s
_ (45)
Q Rgzﬂ ) fo =] 1
E nB nBv?2 [F"QQ ] 5 <jz>

This result allows expressing the sum in Eq. (44) as

1
Z ey el = e = — (46)
v#w,Q 4<J96>

We suppose that the sum in the left-hand side of
Eq. (46), defined by all physical solutions excluding the
wobbling one, is zero due to a mutual cancellation of
different terms. As a result, we obtain the equation for
the unknowns r{’,. Solving this equation with the aid
of Eq. (40), we obtain

1 — = 17 )
21/(J,) \ W3

1 W 1/4
po ()"
21/ (J,) \ V2
These expressions are similar to those of the wob-

bling mode in the Bohr—Mottelson model (see the Ap-
pendix, Eqgs. (A.14)), although the quantities W5 3 are

determined by the Marshalek moments of inertia and
(Jp) &~ I +1/2 (the factor 1/2 occurs due to the RPA
contribution of the redundant mode, see the discus-
sion in Ref. [29]). Similar expressions were obtained in
Ref. [7] in the PA frame (with the quantization condi-
tion (.J,) = I and some additional phases).

To identify the wobbling mode among the solutions
of Eq. (18), it is convenient to transform Eq. (44) to

the form

> e =0, cV:4<jz>€—An—B. (48)

v=all

It follows from Eqs. (45) and (47) that

Cp—q=—1, cCp—p=1. (49)

Thus, if we solve only the system of the RPA equa-
tions for the quadrupole operators, Eq. (18), condi-
tion (49) allows identifying the redundant and the wob-
bling modes.

3.4. Analysis of experimental data

The experimental level sequences for all the cur-
rently observed rotational bands in '62Yb and 55Dy
are taken from Ref. [14]. All rotational states are
classified by the quantum number «, which is equiv-
alent to our signature r. The positive-signature states
(r = 41) correspond to a = 0 because the quantum
number « leads to selection rules for the total angu-
lar momentum I = «a + 2n, n = 0,£1,+2,... (cf.
Ref. [30]). In particular, in even—even nuclei, the yrast
band characterized by the positive-signature quantum
number r = 41 (a = 0) consists of even spins only.
The negative-signature states (r = —1) correspond to
a = 1 and are associated with odd-spin states in even—
even nuclei. All considered bands are of positive parity
T =+.

The redundant mode and four lowest RPA solutions
of Eq. (18) as functions of the rotational frequency are
shown in Figs. 7a and 8a. We recall that these solutions
are found at different equilibrium deformations (see
Fig. 2). Indeed, in both nuclei, criterion (49) uniquely
determines the redundant and the wobbling modes. In
Figs. 7b and 8b, the redundant mode is manifested as
a straight line, while the corresponding coefficient cq
is always —1 (Figs. 7c and 8¢). The rotational mode is
clearly separated from the vibrational modes. We note
that the solutions that are different from rotational and
wobbling modes contribute to the sum in Eq. (46) with
zero weight, as was proposed above.

To compare our results with the available experi-
mental data on low-lying excited states near the yrast
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Fig.7. The results for '2Yb. a) The rotational dependence of the positive-signature RPA solutions with even spins

(r = +,a = 0). The number denotes the RPA solution number: 1 is the first (v = 1) RPA solution, etc. Different

symbols display the experimental data associated with B1, B2.... bands (the band labels are taken in accordance with the

definitions given in Ref. [14]). b) The rotational dependence of the negative-signature RPA solutions with odd spins (7 = +,

a =1). The redundant mode w, = Q is denoted by “0" and is displayed by the dotted line. ¢) The rotational dependence
of the coefficients ¢, ~ RY RY (see Eq. (48)) determined by solutions of Eq. (18)
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Fig.8. The same as in Fig. 7 for **Dy
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line [14], we construct experimental Routhians for each
rotational band v (v = yrast, 8,7,...):

R,(Q) = E,(2) - hQL(Q),

Q) = [BE,(T+1) - E,(I - 1)] /2,

and define the experimental excitation energy in the
rotating frame as fw;™ = R,(Q) — R,,(Q) [31]. In
162Yh, only one negative-signature vy-vibrational state
is known. The first RPA solution (v = 1) is a nega-
tive-signature y-vibrational mode (with odd spins) up
to hQ) =~ 0.28 MeV. With an increase in the rotational
frequency, it is transformed into the wobbling mode
at hQ) ~ 0.32 MeV (according to criterion (49)). The
other solutions (v = 2,3,4) contribute to the sum in
Eq. (46) with zero weight. Our results for the v = 1
solution may be used as a guideline for possible ex-
periments on identification of the wobbling excitations
near the yrast line. Although the positive-signature
states have been discussed in Ref. [16], for complete-
ness of our analysis we compare RPA results for the
positive signature with an updated database in [14].
According to our analysis, the first RPA solution of
positive signature may be identified with S-excitations
at small rotation AQ2 < 0.2 MeV. With an increase in
the rotational frequency, a strong mixing between -
excitation (the second RPA solution at low spins) and
[-excitation occurs. At hQ2 > 0.2 MeV, the first RPA
solution of positive signature is determined by a single
two-quasiparticle neutron configuration (see the discus-
sion and Table 1 in Ref. [16]).

In 15Dy, the first (v = 1) positive-signature RPA
solution carries a large portion of quasiparticle states
with k' = 2. Because the quantum number K is reli-
able at small angular momenta, we associate the first
positive-signature RPA solution with the y-vibrational
mode. Rotation leads to a strong mixing between the
first and the second RPA solutions. With an increase in
the rotational frequency, the first solutions is separated
from the second one, while the latter strongly interacts
with the third RPA solution. At hQ ~ 0.3 MeV, there
is a crossing between the B1 (yrast) band and the B8
(excited) band, which becomes the yrast one after the
transition point. The first positive-signature RPA so-
lution describes this transition with a good accuracy:
the RPA mode vanishes at hQ) =~ 0.3 MeV. We recall
that according to our analysis in [16], precisely this vi-
brational mode is responsible for the backbending phe-
nomenon in this nucleus.

The first negative-signature RPA solution in Dy
can be associated with the negative-signature +-
vibrational mode with odd spins. After the transition

from the axial to nonaxial rotation, at AQ) ~ 0.3 MeV,
according to criterion (49), the first negative-signature
RPA solution describes the wobbling excitations. The
mode preserves its features with the increase in the ro-
tational frequency up to AQ2 =~ 0.55 MeV. There is a
good agreement (see Fig. 8) between this one-phonon
band and the experimental Routhian of band B10 (or
the (+,1); band according to Ref. [15]). Based on
this, we propose to consider the B10 band as the wob-
bling band in the range 0.45 MeV< 2} < 0.55 MeV
(337 < I < 39A for this band). We note that the B10
band contains the states with 314 — 53h. However, our
conclusion is reliable only for states with I = 33— 39 %
(or up to A2 < 0.55 MeV). At iQ2 ~ 0.55 MeV, a cross-
ing of the negative-parity and negative-signature (pos-
itive simplex) B6 band with the yrast band B8 is ob-
served. At AQ > 0.55 MeV (or for I > 397 for the
B10 band), the onset of octupole deformation in the
yrast states may be expected. The octupole deforma-
tion is beyond the scope of our model, based on the
quadrupole deformed mean field, and this feature will
be discussed elsewhere.

The proposed criterion in Eq. (49) is necessary but
not sufficient for concluding that we have found a solu-
tion related to the wobbling excitations. It is brought
about by the formal equivalence between the classi-
cal (Eq. (A.3) in the Appendix) and the microscopic
(Eq. (36)) equations for the wobbling mode. Our solu-
tion is determined in the UR frame, where the fluctu-
ations of the angular momentum are absent (they are
responsible for the wobbling mode in the PA frame).
To identify the wobbling mode, we also have to specify
the relation between electromagnetic transitions in the
Bohr—Mottelson model defined in the PA systems and
our model defined in the UR frame.

3.5. Electromagnetic transitions
Transition probabilities for the XA\ transition
|Iv) — |I'v') between two high-spin states are given
by
B(X\Iv = T1'V) =~
~ (T |12 (| (X 1 = I' = D). (50)
In the high-spin limit (I > A, I' > \), the transition

from a one-phonon state into the yrast-line state takes
the form [32]

B(XX\Iv — I'yr)) =~
~ [(RPA| (MW (X = I'=1), O} [RPA) [, (51)

1112



MIT®, Tom 132, Boin. 5 (11), 2007

Microscopic analysis of wobbling excitations . ..

where M®) (X Ay ) is the linear boson part of the corre-
sponding transition operator of type X, multipolarity
A, and the projection p; onto the rotation axis z in
the UR frame. The commutator in (51) can be easily

expressed in terms of phonon amplitudes w,(f) and (;5‘(]/)
(see Eq. (14)). With the aid of the transformation from
x- to z-axis quantization [32],

Z DM3M1 ( ’

and definitions (16) and (28), and taking into account
that the relation

o (E
<V|M2(u3):0,2"/> =

holds in the first RPA order, we obtain

M(X M) = 0) M(Xdug),  (52)

~r(E
(M) )

BB 1y > 1 1yr) = [( [V 0] )| =
2

L . (33)

O" OWIE) At
f 17 ] V2¢ [ b ”]
where M) = (eZ/A)M. By Eqs. (16) and (47), the
above expression yields the definition of the quadrupole
transitions from the one-phonon wobbling state to the
yrast states,

B(E2;Iw — I £ 1yr) =

1/4 1/4 2
<%> / AB) £ <%> s

W3 W

which is similar to Eq. (A.13) in the Appendix. Thus,
we provide a complete microscopic definition of the
wobbling excitations in accordance with the criteria
suggested by Bohr and Mottelson for the rigid rotor [1].
We note a clear difference between the microscopic and
the rigid rotor models: the microscopic moments of
inertia, Eqs. (35), should be calculated for the RPA
solutions of Eq. (18) that must satisfy condition (49).

For intraband transitions, we have (see Eq. (43)
in [16])

. 1
A(J,)

;o (54)

B(E2Iv — I —2v) = MM(EQ; v = 2)|v)

= 5 [vaa®

‘2
— @] (9)

For illustrative purposes, to give a rough idea on
the major trend of quadrupole transitions, we use the
relations from the pairing-plus-quadrupole model (cf.
Ref. [30]):

mwifcosy = x(Qo), muwyBsiny = —x(Q2).

From these relations and the definition of the
quadrupole isoscalar strength,
drmwd  4rmwd
= ~ R~ 124" f
XY= 502 Y 3AR e
we obtain

2
B(E2;In,=1—-T+1yr)=0 §

T

W 1/4 W 1/4 2
2 . T 3 .
(er) Sin (g — "y) + (m) Sin "y] N (56)

where © = (9/167%)e*Z>R*. For W53 > 0, Eq. (56)

yields selection rules for the quadrupole transitions

from the one-phonon wobbling band to the yrast one:
—60° <y <O0:

B(E2;Ing — I —1yr) >

> B(E2;In, — I +1yr), (57a)
0 <~y <60°:
B(E2;Iny, — I+ 1yr) >
> B(E2;Iny, — I —1yr). (57b)
For the intraband transitions, we obtain
1 5 o7
B(E2; Iny, — I —2n,) = 304 cos (g - 7) . (58)

Tt follows from Eq. (58) that for the transitions along
the yrast line (n,, = 0), the onset of the positive (neg-
ative) values of the vy-deformation leads to an increase
(decrease) in the transition probability along the yrast
line. Experimental values of B(E2, [v — I' yr) are de-
duced from the half life of the yrast states [14] using
the standard, long-wave-limit expressions [26]

P(i— f) 2 4

B(E2,i— f) = 1223 10757 e fm".

Here, the transition energy FE, is in megaelec-
tronvolts and the absolute transition probability
P(i — f) =In2/T(i — f) is related to the half life
T(i — f) (in seconds). In comparing our results
with experimental data, we take the Clebsch—Gordan
coefficient into account (see Eq. (50)) up to I < 107.
For I > 10h, the asymptotic value for the Clebsch—
Gordan coefficient, which is 1, is used. We note that
in the vicinity of the backbending, the mean-field
description becomes less reliable (cf. Ref. [33]). While
the cranking approach should be complemented with
a projection technique in the backbending region due
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Fig.9. Reduced transition probabilities B(E2; I yr —

— I — 2yr) along the yrast line. Experimental data

(filled squares) are connected with a thin line to guide

the eye. The results of calculations based on Egs. (58)

and (55) are connected by dashed and solid lines, re-
spectively

to large fluctuations of the angular momentum (cf.
Ref. [26]), its validity becomes much better at high
spins. Evidently, the larger the rotational frequency,
the better the predictive quality of the CRPA because
it is based on the cranking approach aimed for the
high-spin physics [30].

Experimental data for the quadrupole transitions
along the yrast line are compared with the results of
calculations (a) by means of Eq. (55) and (b) by means
of Eq. (58) (Fig. 9). In calculations (a), we use the
mean-field values for the quadrupole operators. Cal-
culations (a) evidently manifest the backbending ef-
fect obtained for the moments of inertia (see Fig. 5)
at hQ, ~ 0.25 MeV and Q. = 0.3 MeV for 52Yb and
156Dy, respectively. Thus, the use of the self-consistent
expectation values <QA£,;E)) is crucial in order to repro-
duce the experimental behavior of the yrast band decay.
Calculations (b) (Eq. (58)) reproduce the experimen-
tal data with less accuracy, while providing the major
trend of the transitions with the sign of v-deformation.
The agreement between the calculated and experimen-
tal values of intraband B(E2) transitions along the
yrast line is especially good after the transition point.

At small rotational frequency, in both nuclei, transi-
tions probabilities from the first positive- and negative-
signature RPA solutions are much weaker in compar-
ison with the quadrupole transitions along the yrast
line (see Fig. 9 and top panels in Figs. 10 and 11).
At AQ ~ 0.05 MeV, the transition strengths for the
first positive (r = +1) and negative (r = —1) RPA

solutions are approximately 330 e - fm? for '62Yb
and 500 e? - fm* for %Dy with small differences be-
tween different transitions due to Clebsch-Gordan coef-
ficients. We obtain a good correspondence between the
shape evolution and selection rules (57) for both nuclei
(see top panels in Figs. 10 and 11 and Fig. 2). Tran-
sition probabilities (53) are calculated using the zp,(f')
and qﬁf}') phonon amplitudes expressed in terms of the
coordinate and momentum amplitudes (see Eqs. (14),
(15), (16), and (28)). We compare these results for
the first negative-signature RPA solution (which is as-
sociated with a wobbling mode) with the results ob-
tained by means of the Marshalek moments of inertia
(see Egs. (35), (39), and (54)). Evidently, if the “spu-
rious” solution (the redundant mode) is not removed
from Eq. (18), it contributes to the variables (28).
These variables cannot obey condition (30) in this case.
As a result, orthogonality condition (25) is broken and
Eqs. (53) and (54) for the transitions should produce
completely different results. A good agreement be-
tween both calculations (see the right top panels in
Figs. 10 and 11) is the most valuable proof of the valid-
ity of our approach. The observed negligible differences
are due to the approximate fulfillment of conservation
laws (19), caused by the presence of additional term (3)
(see Fig. 4).

According to our analysis, a transition from the
axially deformed to nonaxial shapes with the nega-
tive y-deformation in 1%2Yh occurs at hQ =~ 0.25 MeV
(see Fig. 2 and the discussion in Ref. [16]). At
hQ > 0.28 MeV, the excited band of the negative sig-
nature, created by the first RPA solution, changes the
decay properties. The negative values of 7y-deformation
produce the dominance of the interband quadrupole
transitions from the one-phonon state to the yrast ones
with a lower spin (Al =1, the case in Eq. (57a)).

Similar results are obtained in '"°Dy for the
lowest negative-signature excited band created by
the first RPA solution. At low angular momenta
(hQ2 < 0.3 MeV), this band populates the yrast states
with I' = I + 1 with approximately equal probabilities
(I is the angular momentum of the excited state). At
hQ ~ 0.3 MeV, a shape-phase transition occurs, which
leads to the triaxial shapes with the negative ~y-defor-
mation. In turn, the excited band created by the first
RPA solution decays stronger on the yrast states with
angular momenta I' = I — 1 (Al = 1, the case in
Eq. (57a)), starting from 72 > 0.32 MeV.

It follows from the above analysis of the electric
quadrupole transitions that there is no need to know
the definition of the wobbling phonon operator in the
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Fig.10. The electric B(E2)- (top) and the magnetic B(M1)- (bottom) reduced probabilities of transition from the one-
phonon bands to the yrast band. The positive- (negative) signature phonon band is described by the first r = +1 (r = —1)
RPA solution. We observe a strong dominance of the B(FE2)- and B(M1)-transitions from the wobbling states (r = —1)
with spin I to the yrast states with spin I’ = T — 1, starting from the rotational frequency AQ2 > 0.28 MeV. The transitions
calculated using the 1/1{[’=1) and qﬁfL":l) phonon amplitudes are connected by thick lines. In the right panels, the results
obtained using Eqs. (54) and (65) (with the aid of the variables W5 3, Eq. (39)) are connected by thin lines, starting from the
rotational frequency AQ2 ~ 0.3 MeV. This point is associated in our analysis with the appearance of wobbling excitations

UR frame. Indeed, in this frame, the direction of the
angular momentum is fixed and fluctuations of the an-
gular momentum are absent. But there is a vibrational
mode related to shape fluctuations that carries one
unit of angular momentum. In the PA frame, accord-
ing to the analysis of Bohr and Mottelson, the system
shape is fixed, while the angular momentum fluctuates
around the rotation axis that coincides with one of the
principal axes of the inertia tensor. Evidently, the re-
sult for the transition probabilities in the laboratory
frame must be independent of the choice of the refer-
ence frame.

To prove the equivalence of both results for the elec-

tric quadrupole transitions, we use the Bohr—Mottelson
definition of the wobbling phonon operator, Eq. (A.5),

- 1/4 W 1/4
X [(f2)PA (Wj) +(if3)PA (Wj) ] (59)

Here, the quantities W5 3 are determined by the Mar-
shalek moments of inertia, Eqs. (39). In the PA frame,
we must use transformation (A.12) in order to calcu-
late the transition probability and commutation rela-
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Fig.11. Similar to Fig. 10. A strong dominance of the B(E2)- and B(M1)-transitions from the wobbling states (r = —1)
with spin I to the yrast states with spin I’ = I — 1 starting from the rotational frequency A2 > 0.3 MeV can be observed

tions (A.2). This transformation and definition (59)
yield the expression

B(E2;Tw — I+ 1yr) = K[M(E):ﬂ,éjvbr -

2p1
1/4 1/4
W /A(E):F Ws /B<E>
W3 W2

which is indeed the same as Eq. (54), obtained in the
UR frame. We use this fact below to understand major
features of the magnetic transitions from the wobbling
band.

In the CRPA approach, the magnetic transitions are
defined as

2

L . (60)

~

A

B(M1;Iv — T £1yr) ~ K[M(M):ﬂ, OLMZ . (61)

1pa

With the aid of the transformation from the z-axis to
the z-axis quantization in Eq. (52), we obtain

B(M1;Iv = T+1yr) ~
L [y A ~ (M) A2
~ 5 ‘Z |:M1(1/3):17011;j| + |:M1(u3):070li|

(62)

The linear bosonic term of the magnetic operator has
the form (see also Ref. [21])

N 1 . R
Ml(,]/\;[):(m = NN\/§ <§g§6ff)501u3 + gl(eff)LOhIg) =

Z'u3+2
5 SOAD f + (1], (63)
7

where i is the nucleon magneton, ggeff) and gl(eff) are

the spin and orbital effective gyromagnetic ratios, re-
spectively, and the quasiparticle matrix elements A‘(}“)
are real. Taking the definition of the phonon opera-
tor in Eq. (14) into account, we express the magnetic
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transition with the aid of generalized coordinate and
momentum amplitudes (15) as

B(M1;Iv - I £1yr) ~
2
~ Y ADXEEIADPY L (64)
i i

Our results evidently demonstrate the dominance
of B(M1;Inw — I — 1yr) (see the right bottom pan-
els in Figs. 10 and 11) for both nuclei. To understand
this result, we define the magnetic transitions using the
Marshalek moments of inertia. With the aid of defi-
nition (59), transformation (A.12), and commutation
relations

(I, iy, Mam] = VAN + 1) = m(m F 1) Mamz
for the PA frame [34], we obtain from Eq. (61) that

2
B(MUTv —T+1yr)~ (M) [r=+1]) x

X — . (65)

Although the expression for the magnetic transitions
in Eq. (65) is similar to the one of the Bohr—Mottelson
model, we stress that the moments of inertia are de-
fined self-consistently within the CRPA approach. We
note that the dipole magnetic moment (Ml(,],\;[)zl[ﬂ) in-
creases quite drastically if a nucleus undergoes back-
bending (see the discussion about the M1 strength in
Ref. [17]). Keeping in mind that W5 3 > 0 for the wob-
bling states, we have

B(M1;Inw — I —1yr) >
>B(M1;Inw — I+ 1yr). (66)

Therefore, the tendency observed in the microscopic
calculations with the aid of the phonon amplitudes is
understood in terms of rules (66). Independently of the
sign of the y-deformation of rotating nonaxial nuclei,
these rules determine the dominance of AT = 14 mag-
netic transitions from the wobbling to the yrast states.

4. SUMMARY

We presented a transparent, self-consistent deriva-
tion of the basic equations for the wobbling excitations
in the UR (time-independent) frame, which determine
the energy spectrum and electromagnetic properties of
these states in even—even nuclei. We obtained the same

expressions (35) for the effective moments of inertia
as those obtained by Marshalek in the time-dependent
Hartree-Bogoliubov approach in the PA frame [9]. We
established a one-to-one correspondence between the
main characteristics of the wobbling excitations in the
Bohr—Mottelson model and those derived within the
CRPA approach. We note, however, that the CRPA
breaks down at the transition point when A, or A,
vanishes [32]. We have avoided this problem by means
of the phenomenological prescription for the rotational
dependence of the pairing gap. A good agreement be-
tween the dynamic moment of inertia calculated in the
mean-field approximation and the Thouless—Valatin
moment of inertia calculated in the RPA supports the
consistency of our mean-field calculations (see Fig. 3).
In contrast to the standard RPA calculations, where
the residual strength constants are fixed for all values
of Q (see, e.g., [7, 12, 13]), we determined the strength
constants for each value of Q by the requirement of
the validity of conservation laws. This allows overcom-
ing the instability of RPA calculations at the transition
region, for the excitations at least. In principle, pro-
jection methods may be used in the transition region
in order to calculate transition matrix elements. Al-
though the amplitudes ¢\ (see Eq. (14)) are larger for
the RPA modes in the transition region than in other
regions, the relation |¢LV)\ < |w,(]/)\ is still valid. The
CRPA also becomes quite effective at high spins, after
the transition point, when the pairing correlations still
persist.

It follows from our analysis that an excited band can
be regarded as the wobbling one if the magnetic tran-
sitions from this band into the yrast one satisfy con-
dition (66). We note that these rules are independent
of the y-deformation sign. In contrast, the collective
electric quadrupole transitions from this band to the
yrast one must satisfy staggering rules (57) depending
on the v-deformation sign. We predict that the low-
est excited negative-signature and positive-parity band
in 1%2Yb (which is a natural prolongation of the odd
angular momentum part of the y-band) transforms to
the wobbling band at 7 > 0.3 MeV. We found that
strong E2 transitions from this band populate the yrast
states, with the branching ratio

B(E2;Tw — I —1yr)/B(E2;Tw — I + 1yr) > 1.

Such behavior is brought about by the onset of nonaxial
nuclear shapes with the negative sign of v-deformation
after the backbending. According to our definition
of ~-deformation, with an increase in the rotational
frequency, the system is driving to a noncollective
oblate rotation (around the z axis). This trend is
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confirmed by a good agreement between the results
for the quadrupole transitions along the yrast line
and available experimental data (see Fig. 9). A sim-
ilar transition also occurs in '°°Dy after the back-
bending, at A2 > 0.3 MeV. In this nucleus, we
found that the lowest negative-signature and positive-
parity band represents a natural prolongation of the
~v-band with odd spins, observed at small angular mo-
menta up to hf) ~ 0.3 MeV. At rotational frequencies
A > 0.3 MeV, this band transforms to the wobbling
band. A good agreement between our results and ex-
perimental Routhians allows concluding that the ex-
perimental states associated with the (+,1); band in
Ref. [15] are wobbling excitations at the rotational fre-
quency values 0.45 MeV< R} < 0.55 MeV. These states
satisfy all the requirements that are specific for the
wobbling excitations of nonaxially deformed rotating
nuclei, with the negative y-deformation.

It turns out that strongly deformed triaxial shapes
produce relatively high-lying vibrational states, asso-
ciated with a wobbling mode (the case of 6Dy). In
contrast, a soft shape—phase transition from the axially
deformed to nonaxial shapes provides the low-lying
wobbling excitations (the case of 152Yb). Further
detailed studies are required to shed light on the
interplay between different shape—phase transitions
and their manifestations by means of vibrational
states at high spins. Evidently, it is quite desirable
to obtain new experimental data on electromagnetic
decay properties of these states in order to reach a final
conclusion about our prediction and, consequently, on
the validity of the CRPA analysis.

This work is a part of the research plan MSM
0021620859 supported by the Ministry of Education
of the Czech Republic and by the project 202/06/0363
of Czech Grant Agency. It is also partly supported
by Grant No.FIS2005-02796 (MEC, Spain). One of
the authors (R. G. N.) gratefully acknowledges support
from the Ramoén y Cajal program (Spain).

APPENDIX

Asymmetric rotor model

In this appendix, we review the basic features of
the wobbling excitations in the rotor model [1] in order
to compare it with the microscopic model discussed in
Sec. 3. In addition to well-known results, we provide
a novel analysis of magnetic properties of the wobbling
states.

In the high-spin limit I > 1, the rotor Hamiltonian
has the form (see Ref. [1])

MIT®, 7Tom 132, Boin. 5 (11), 2007
. B2 X
H=H0+—(I)2pA+Hwobba (Al)

201
[L;. Ijlpa = —icije (L) pa, (A.2)

where (I;)%, and J; are the angular momentum and
principal moment of inertia components in the rotating,
principal-axis (PA) coordinate system. It is assumed
that the yrast band is generated by rotation around
the z axis I ~ I; = K. Small oscillations of the an-
gular momentum create wobbling excitations described
by the term

A A 1
Hyoppt = Ty <QL0bewobb + _> )

2 (A.3)
hww = hQI\/ W2W3,
where
1 1 1 1
Wo=——-——, Wz=———. A4
T h 4 A (A-4)

The wobbling (excited) state at spin I is created by the
wobbling phonon

OAjuobb = xBT_yB < BT = xOALObb‘*’yOAwobb (A5)
with
m(2+ZS)PA7 ( ), ( )
T = 7”1/1/3; VVVQ(W2W3)—1/4’ (A.7)
Wy — /W
y= %(W@Wﬁ_l“, (A.8)

and the normalization condition 2? — 3% = 1. Tt fol-
lows from Eq. (A.3) that the diagonalization of Houobs
requires W > 0, W3 > 0, and J;1 > Jo > J3.

At I ~ I > 0, the eigenfunction of Hamilto-
nian (A.1) is given by the Wigner D-function times the
intringic eigenfunction defined by the wobbling quan-
tum number |ny,) = (Qf )™ |0). The variable

wobb
ne=(IK|B'BIK)~I -1, =1-K  (A.9)

is defined with respect to the state |[IK = (I;)pa) =
= |ny) such that

BYIK) = Vg + 1IK — 1) = Vg + 1|ny + 1),

0) = |IK =I).
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The transition probability for the operator of the type
X and multipolarity A,

B(X\IvK, —» I'V'K') =

= 2I+1|< I'E || M(XNTE )P, (A10)
is defined by the reduced matrix element
(I'K'n! ||M(XN)|[TKn,) = V2T + 1 x
X ﬁ: (! |(TK Xy [I'K'YM(X Ay = T' = 1|ny).
o (A.11)

We note that the eigenmodes of the Hamiltonian H, do
not change the projection K onto the first PA axis. But
if the wobbling mode is excited with |n!, —n,| # 0, the
projection K changes and the corresponding Clebsch—
Gordan coefficients in Eq. (A.11) can be expressed in
terms of the Bf and B operators (see Sec. 4.5¢ in
Ref. [1]).

Using this procedure for the Clebsch-Gordan coef-
ficients, a relation between multipole operators in the
PA frame with the z- and z-quantization axis, and de-
finition (10),

X)\Hl

ZDH1M3 ( '/z

we obtain the interband E2 transitions between the
one-phonon wobbling band (n, = 1) and the yrast
band (n, = 0) as

) M(XApz), (A12)

B(E2;In,, — I+ 1yr)=
=01 AP £ 0, BE2 (A13)

where the variables A(F) and B(P) are defined by
Eqs. (23) and (24), ng) = e%QAm, and

B 1 W2 1/4 B 1 W3 1/4 (A 14)
01 = \/ﬁ W3 ) 02 = \/ﬁ W2 . .

For intraband transitions, we have

B(E2; Ing — I —2ny) =
2

= VB - @) ()

where we use that
(M(E2, v, = +1)) =0,

(M(E2,v1 = 2)) = (M(E2,1, = —2))

and neglect terms of the order of or higher than 1/1.

A similar procedure can be used to derive M1
transitions from one-phonon wobbling band into the
yrast band. Ignoring the terms of the order of I-! in
Eq. (A.11) in the high-spin limit (I & K > 1), we have
the following approximative values for the Clebsch—
Gordan coefficients in terms of the matrix elements of
the operators B and Bt (or Qwobb and Qwobb)

(IK10|IK) =1,
(IK10|I+1K) =

—>:|:L<n:|:1 B! n>
VI B ’
(IK1+£1|IK+£1)—

1 B
—>:Fﬁ<n:|:1 B n>,
(IK1£1|IT£1K+1)—>1.

(A.16)

Because (M(M1v; = 1)) = 0, we obtain
(I'K'n! || M(M1 vy = 0)|[IKny,) =

= V2I + 1{n},] l51'71<M(M1a v =0) +

%(M(ML v = 0))(@Q 0+ yOuwors) —

1 N . R
- 51'71—177<M(M17 vi = 0))(2Quobs + yQT 1)

+ 01 141

X

X [nw),  (A.17)

where
M(Ml'yl) = un V3 x

X Z < @I r @ Yicolin, + 91"l @ Yl=0]1"1>

is the magnetic dipole operator. With the aid of
Eqs. (A7), (A.8), and (A.12) and the definition of op-
erators given in Ref. [21], we obtain the expression

2

B(M1;In, — I+ 1yr) = (MM [r = +1])|
2
VW3 Vs
X — (Vs ¥ 2) (A.18)
4] W2W3

for M1 transitions from the one-phonon wobbling band
(ny = 1) into the yrast band (n, = 0). The magnetic
moment (Ml(,],\;[)zl[ﬂ) can be calculated in any micro-
scopic model.
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