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We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, pro-
ducing low-emittance beams appropriate even for the demanding high-energy linear collider specifications. We
discuss the injection mechanism into the acceleration phase of the wakefield in a plasma behind a high-intensity
laser pulse, which takes advantage of the laser polarization and focusing. The scheme uses the structurally
stable regime of transverse wakewave breaking, when electron trajectory self-intersection leads to the formation
of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser
pulse elongated in a transverse direction with an underdense plasma, the electrons injected via the transverse
wakewave breaking and accelerated by the wakewave perform betatron oscillations with different amplitudes
and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to
produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat

laser-accelerated ion beams is briefly discussed.

PACS: 52.38.Kd, 41.75.Jv, 52.38.Hb, 52.38.-r
1. INTRODUCTION

Electron accelerators with energies of many GeV
and low emittance are needed for coherent light sources
and linear colliders. The laser acceleration of charged
particles provides a promising approach toward such
development in a compact way, avoiding some of the
complications arising due to additional requirements
of asymmetric emittance for linear colliders, as out-
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lined below. In the laser wake-field accelerator (LWFA)
concept, electrons are accelerated by the longitudinal
electric field created in an underdense plasma by a
short high-intensity laser pulse [1]. Electrons injected
by conventional accelerators, self-injected by nonlinear
wakewave breaking (for details, see papers [2—4] and
review articles [5] and the references therein), or in-
jected in a multiple laser pulse configuration [6] can
achieve energies substantially higher than the initial
injection energies. Although the understanding and
production of high-intensity (~ nC) and low-emittance
(= 2-3 mm - mrad) electron beams via laser plasma
interaction has made rapid progress [5, 7-12], applica-
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tions to coherent light sources and linear colliders still
demand further advances. A symmetric emittance of
about 1 mm - mrad is needed for coherent light sources
to reach X-ray wavelengths of the order of 1 A [13]. Lin-
ear electron—positron colliders need asymmetric emit-
tances and polarized electrons, with the smaller vertical
emittance required to be of the order of 0.1 mm - mrad.
The asymmetric emittances (lat beam')) are needed to
reduce the beam-induced synchrotron radiation (beam-
strahlung) in the interaction (see below), and electron
polarization is required because the effective luminosity
can be up to 2 orders of magnitude larger (depending
on the process), as shown by the SLD experiment at
the Stanford Linear Collider (SLC) [14]. Additionally,
positron beam polarization is desirable because certain
processes can be measured with a higher signal-to-noise
ratio due to the additional positron polarization, and
it allows measuring transverse cross sections [15]. The
capability to selectively suppress unwanted background
processes is especially desired in the search for new
physics.

In producing 1 GeV range laser-accelerated electron
bunches [12], a more quantitative evaluation of the dif-
fering requirements of major applications using GeV
electrons is needed. These requirements include, in the
order of increasing beam quality, 1) fixed target—elect-
ron beam interactions, 2) synchrotron and coherent
light sources and 3) colliding electron (positron) beam
configurations.

1) For fixed-target applications, the electron beam
emittance is less important because the luminosity is
determined by the beam charge and the target thick-
ness [16]. In this application, the electron polarization
can play a role and enhance the effective luminosity.

2) In the case of the GeV electron beam use for
coherent light sources, e.g., for linac light sources,
low emittance is important, because radiation from a
high-emittance beam fails to be coherent. This ap-
plication requires small emittances, of the order of
1 mm - mrad for 1A wavelength, but a small spot size
is not necessary.

3) For colliding electron beams, the emittance de-
termines the minimum achievable spot size and is there-
fore directly related to the maximum luminosity. De-
pending on the electron energy, the required spot size is

1) This paper addresses both laser-plasma and accelerator
physics issues. One frequent confusion in the nomenclature is
the use of the term “flat beam”. In accelerator physics, flat
beam means an asymmetric spot size (created with an asym-
metric emittance). In laser physics, a flat beam is one with a
large focal length, and the means to achieve an asymmetric spot
size is a “line focus”.

approximately equal to 400 nm for 100 GeV electrons,
and 5 nm (small dimension) for 1 TeV colliders [17]. Re-
quired for colliders in addition are the electron beam
polarization (80 % or more) and flat beams with the
beam size aspect ratio about 100, in order to reduce
beamstrahlung losses and electron—positron pair pro-
duction [14,18].

The conditions to have beams of high electric charge
and low emittance are contradictory, because space
charge effects make the transverse emittance grow [19].

As is known, the emittance is calculated as the spot
size 0, times the divergence o/,, both determined at a
beam waist (or a pin hole); that is, the transverse emit-
tance is ¢ = o,0,. In addition, the normalized emit-
tance, defined as ey = 7.¢, is an adiabatic invariant
under beam acceleration, where -, is the electron rela-
tivistic gamma factor. The values of emittance quoted
above refer to the normalized emittances.

If we consider LWFA-produced electrons, we see
femtosecond-range electron bunches accelerated to
hundreds of MeV, and driven out of the plasma. The
energy spectrum has a quasi-mono-energetic form [8-
12, 20], mainly because fast electrons reach the maxi-
mum energy and are localized at the top of the sep-
aratrix in the x, p, phase plane [21,22]. We remark
concerning two properties of LWFA ejected relativistic
electrons: a) the bunch length times the energy spread,
the longitudinal emittance, is comparable to that of
conventional radiofrequency sources (in the range of
MeVps), while the very short bunch length is achieved
even without bunch compression, and b) the micron-
size transverse spot of the initial electron bunch corre-
sponds to the laser spot size, which may in turn lead
to a small transverse emittance. At present, the emit-
tance requirements, including the asymmetry, are sat-
isfied with the use of expensive damping rings, which
often yield long bunches and therefore require subse-
quent bunch compressions. There is another research
and development effort underway to produce asymmet-
ric beams using radiofrequency guns [23].

In the present paper, we consider the regime when
the electron injection into the acceleration phase of a
wakefield occurs due to nonlinear wave-breaking of a
Langmuir wave, as in Refs. [8-11]. As is well known,
there are several other injection mechanisms, e.g., the
optical injection proposed in Ref. [6] and experimen-
tally realized in Ref. [24]. Discussing the optical in-
jection is beyond the scope of this paper. The break-
ing of the Langmuir wave, known since Refs. [25, 26],
has been studied theoretically and experimentally (see
Ref. [5] and the references therein). It is important
to note that the realization of resilience against wave-
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breaking in the relativistic regime in the longitudinal
direction led to the original LWFA suggestion [1]. In
the non-one-dimensional case and in the case of an in-
homogeneous plasma density, the wake wave-breaking
acquires features that allow manipulation of the in-
jected electron bunch parameters. For example, prop-
erties of the transverse wake wave-breaking [27] were
used in Refs. [8,20,28] in order to explain nonlinear
wake evolution and electron acceleration in homoge-
neous and inhomogeneous plasmas. In addition, longi-
tudinal breaking was invoked to describe electron self-
injection in homogeneous plasmas [29, 30], and the con-
trollable electron injection regimes in plasmas with a
tailored density profile [31].

In what follows, we formulate an approach for
producing asymmetric emittance electron bunches by
using asymmetric laser pulse focusing for the laser
wakefield acceleration, when the transverse wake wave
breaking leads to the formation of an electron bunch
elongated along the transverse direction.

2. LASER LINE FOCUS

In laser systems based on chirped pulse amplifica-
tion (CPA), laser pulses have a Gaussian (TEMO00)-like
spatial profile. There are several schemes to achieve a
line focus with an asymmetric transverse spatial pro-
file. An astigmatism on the sagittal plane of a spheri-
cal mirror is used. This technique was applied to pro-
duce transient X-ray lasers. This scheme can generate
a large aspect ratio of 300:1, but the focusing depth is
limited and a time difference for arriving at the focus
arises [32]. A slightly misaligned off-axis parabolic mir-
ror generates astigmatism, resulting in an asymmetric
focal spot. A toroidal mirror can also be used. Here,
we propose to use a pair of reflective cylindrical mir-
rors. Cylindrical mirrors are easy to fabricate and are
cost-saving. A large value of the astigmatism of cylin-
drical mirrors placed off-axis can be improved when the
incident angle is chosen properly. Figure 1 shows an ex-
ample of the asymmetric laser focal spot in the configu-
ration with a pair of cylindrical mirrors. In this partic-
ular case, the focal lengths in the perpendicular planes
are equal to f; = —500 mm and fy = 1000 mm. In this
configuration, a round laser beam is transformed into
a 1:2 (horizontal and vertical sizes) asymmetric trans-
verse profile as seen in Fig. 1. To plot the asymmetric
beam profile shown in Fig. 1¢, a plane-convex lens op-
tical system was considered. In the actual experiment,
an off-axis parabolic mirror can be used instead of the
lens. We note that further studies are needed to exam-

<

Fig. 1. An example of the optical system to achieve an

asymmetric focal spot from a symmetric laser beam:

a) optical layout: 1 — symmetric laser beam, 2 —

cylindrical relecting mirrors, 3 — test focusing lens;

b) near-field pattern on the test lens with the trans-

verse size 50 x 100 mm?; ¢) far-field pattern in the
focus region with the size 125 x 500 um?

ine the effect of effective pulse elongation, which occurs
if these line focus techniques are used, for the wakefield
generation.

3. STRUCTURE OF TRANSVERSE WAKE
WAVE BREAKING

Due to a nonlinear dependence of the Langmuir
wave frequency on its amplitude, constant-phase sur-
faces in the wake wave give rise to a paraboloidal
form [33, 34]. The curvature of constant-phase surfaces
increases with the distance from the laser pulse until
the curvature radius R becomes comparable to the elec-
tron displacement ( in the wake, leading to electron tra-
jectory self-intersection. This is the so-called regime of
transverse wake breaking, which may result in the elec-
tron injection into the acceleration phase [27]. Along
the lines of Ref. [27], we consider a wakefield plasma
wave excited by a laser pulse of finite width. The con-
dition of the wake excitation determines the wake fre-
quency and wavenumber w,, and k,,. Here, w,, = kv,
and v, is the group velocity of the driver laser pulse.
The wake wave frequency, equal to the local value of
the Langmuir frequency, depends on the transverse co-
ordinates y and z. This dependence arises due to the
plasma outward motion caused by the laser pulse pon-
deromotive pressure and by the relativistic dependence
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of the Langmuir frequency on the wave amplitude. The
dependence on the wave amplitude is determined by
the laser pulse transverse shape, which can be approx-
imated in the vicinity of the axis as

aly,2) = ao [1 = (y/sy)” = (2/s:)*].

It therefore has an elliptic form in the transverse plane.
The wake frequency near the axis may be approximated

by the simple expression
y 2 L\ 2
(2]
Sy Sy

where s, and s, are related to the curvature radii in the
y and z directions, and Aw,, is the difference between
the Langmuir frequency outside and on the axis of the
wake field, wy,0. From the expression for constant-
phase surfaces in the wake wave,

ww(y7 Z) ~ ww,O + AWw

Y (T, y, 2, 1) = wy(y, 2) <t - ;) = const,
9

it follows that their curvature increases with the
distance [ from the laser pulse front: the curva-
ture radii decrease as R, = ww,osZ,/QAwwl and
Ry = wy,052 /20wyl with | = ¢,v, /w0

We write the equation for the constant-phase sur-
face in the form

2 22
MO(yO',ZO) = <2yT? + 2; > e; + Yoe€y + Zo€:z, (1)
y z

where e,, e,, and e are the unit vectors along the z,
y, and z axes. In a nonlinear wake, the actual position
of the constant-phase surface is given by the equation

M(yo, z0) = Mo (Yo, 20) + (n(yo, 20), (2)

where ( is the amplitude of the electron displacement

and
Oy M x 0,;M
n(yo,zo) = ‘

= 3
Oy M x 0., M]| 3)
is the unit vector normal to the constant-phase surface.

In the case where the surface is given by Eq. (1), the
normal vector is

Yo ’ 20 ?
1 2 -
(%) (&)

Yo 20
X <ez + R—yey + R—zez> . (4)

—1/2

n(yo, 20) = X

Writing Eq. (2) in components, we obtain

o, % ¢ 5)

Fig. 2. 1
R, = 1.666, and ¢ = 1.5, in the =, y, z space (a);
and its projections on the (wz,y) (b); and (y,z) (¢)

The constant-phase surface for R, =

planes
v=u0- Sl . ©
Ry\/l + (yO/Ry)2 + (Z'O/R,z)2
Z =2z $2 (7)

 R.\/T+ (yo/Ry)? + (20/R:)2

For a suffuciently large electron displacement (,
the map given by Egs. (4)—(7) has a singularity, at
which the constant surface folds. The condition for
the singularity occurrence corresponds to the ( value
for which the Jacobian of the transformation from
the variables (y,z) to the variables (yo,zp) vanishes,
|0(y, 2)/0(yo, 20)| = 0. Assuming the curvature radius
in the z direction to be larger than in the y direction,
R. > Ry, in the limit of relatively small but finite val-
ues of yo/R, and zy/R., we find that the position of
the singularity in the yg, zo plane is determined by the
equation

2R, = ([2-3(yo/Ry)* — (20/R-)] . (8)

This equation has a solution if ( > R,, i.e., the
displacement is larger than the curvature radius.
For ( > R,, the curve determined by Eq. (8) is

an ellipse with the semi-axes R,\/2(¢ — R,)/3( and
R.\/2(¢ — Ry)/¢ in the yo and zy directions.

We plot the surface in the z, y, z space in which
¢ = 0 is the paraboloid = y2 /2R, + 22 /2R., vy = vo,
2z = zp. With Eqgs. (5)—(7), we obtain the constant-
phase surfaces in the cases with { # 0 presented in
Figs. 2 and 3. In both cases, in Figs. 2 and 3, the
projections of the constant-phase surface onto the x.y
plane have the form of a “swallow tail”. This corre-
sponds to one of the forms of fundamental catastrophes
(see [35]).

When the displacement value is between the curva-
ture radii, i.e., Ry < ( < R., as in the case shown in

1055



M. Kando, Y. Fukuda, H. Kotaki et al.

MIOT®, 7Tom 132, Boin. 5 (11), 2007

Fig. 3.
R. = 1.666, and ¢ = 2, in the z, y, z space (a); and its
projections on the (z,y) (b); and (y, 2z) (c) planes

The constant-phase surface for R, = 1,

Fig. 2, the singularity in the (y,z) plane is elongated
along the z axis. On the other hand, if R, < R. < (,
the singularity in the (y, z) plane is elongated along the
y axis, as shown in Fig. 3¢. These types of singularities
are typical, or, in other words, are structurally stable.
In 3D configurations, they correspond to the transverse
wave breaking with the injection into the acceleration
phase of flat electron bunches.

In the axially symmetric geometry, when the curva-
ture radii along the y and z directions are equal to each
other, R, = R., the injected electron bunch also has
an axial symmetry. However, this configuration is not
structurally stable and small perturbations of a general
type transform it into a structurally stable configura-
tion with an axially nonsymmetric electron bunch. We
point out that in the case of a gradual increase in the
wake wave curvature, the first breaking occurs when the
electron displacement becomes greater than the mini-
mal curvature radius, e.g., when R, < ( < R;, and the
injected electron bunch is elongated along the minimal
curvature direction as in Fig. 2.

After the electron trajectory self-intersection has
occurred, the injected electrons are accelerated and
perform betatron oscillations in the transverse direc-
tion. This stage of the electron bunch evolution is dis-
cussed in Secs. 4 and 5 below, where we present the
results of the particle-in-cell (PIC) simulations and the
analytic theory of betatron oscillations when the effects
of the space charge are taken into account.

4. RESULTS OF SIMULATIONS OF
TRANSVERSE WAKE WAVE BREAKING
AND ELECTRON BUNCH INJECTION

The paraboloidal structures of the wake plasma
wave have been seen routinely in the three-dimensional

particle-in-cell simulations of high-intensity laser
pulse propagation in underdense plasmas (e.g., see
Refs. [36, 37], where the laser pulse frequency upshifting
was discussed in counter- and co-propagating two-
pulse-interaction configurations). The paraboloidal
wake plasma waves were observed in experiments
involving laser pulse interactions with an underdense
plasma [34]. In Refs. [10, 37], 3D PIC simulations
distinctly show the “swallow tail” structure in the
electron density distribution formed in the nonlinear
wake wave. In this section, we present 3D PIC simu-
lation results for the electron bunch injection, which
clearly demonstrate the elongated electron bunch
generation during the transverse wake wave breaking.
We use the electromagnetic relativistic PIC computer
code FPLaser3D [30], which exploits the moving
window technique and the density decomposition
scheme of the current assignment with bell-shaped
quasiparticles [38]; this current-weighting scheme
significantly reduces the unphysical numerical effects
of the standard PIC method.

The flat electron bunch injection is seen in Fig. 4,
where the results of the simulations of the ultrashort
laser-pulse interaction with an underdense plasma tar-
get are shown. A linearly polarized laser pulse with the
electric field along the z direction and with the wave-
length A = 0.8 um has the irradiance I = 10%° W /cm?.
The pulse duration is 27 fs, and the pulse is focused
into a spot with the diameter 16 ym. The laser pulse
propagates along the z direction from the right to the
left in a plasma with the density n. = 10' em™3.
The simulations were performed with the use of “the
moving window” technique in a simulation box of size
80 x 56 x 56\%. The mesh sizes in the direction of the
laser pulse propagation and in the transverse direction
are Az = /20 and Ay = Az = A\/10, with 8 particles
(electrons and protons) per cell. In Fig. 4, where the
electron density distribution in the z = 0 plane (a),
in the y = 0 plane (b), and in the = + ¢t = 315\
plane (¢) are presented, we distinctly see fast electron
bunches injected into the second period of the wake
wave. The electron bunch width in the z-direction is
approximately two times larger than in the y-direction.
The flat electron bunch formation is also seen in Fig. 5,
where the density distributions of fast electrons (with
px > 200 MeV/c) in the z = 0 plane (a) and in the
y = 0 plane (b) are presented. We note that electron
oscillations in the perpendicular directions, along the y
and z axes, have different frequencies, as is distinctly
seen in Fig. 5. The electron energy spectrum presented
in Fig. 6 demonstrates a quasi-mono-energetic compo-
nent at the energy around 100 MeV with the maximal
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400 400

0 X+ ct 600 O

600 0

X+ ct y 400

Fig.4. Results of the 3D PIC simulations: the electron density distribution in the z = 0 plane (a); in the y = 0 plane (b);
and in the = + ¢t = 315\ plane (¢). The laser pulse propagates from left to right in the z direction

400 400

pz py

0 0
300 X+ ct 600 300 X+ ct 600

Fig.5. Fast electron (with p, > 200 MeV/c) density
distribution in the z = 0 plane (a); and in the y = 0
plane (b)

£, MeV

Fig.6. Electron energy spectrum

energy equal to 200 MeV. The geometrical emittance
for the electrons with the energy E > 100 MeV is esti-
mated as 10~*7 mm - mrad.

In the case under consideration, the transverse
asymmetry of the wake breaking and the electron
bunch generation occurs due to the effect of the lin-
ear polarization of the laser. As found in Ref. [39], the

4 ZKST®, Bom. 5 (11)

linearly polarized laser pulse generates axially asym-
metric self-focusing channels and a wake with different
amplitudes in the directions along and perpendicular to
the polarization direction. We note that the wakefield
accelerated electron bunches with an elliptic form in
the transverse direction have been observed in the ex-
periments in Ref. [40], where the transverse elongation
was attributed to the effects of the linear polarization
of the laser pulse driver.

5. EQUILIBRIUM AND BETATRON
OSCILLATIONS OF A TRANSVERSALLY
ELONGATED ELECTRON BUNCH WITH

SPACE CHARGE

In this section, we consider the electron bunch equi-
librium configuration inside the wake when its trans-
verse size is substantially smaller than its length. We
describe betatron oscillations of the bunch in the trans-
verse direction. We assume that the longitudinal (along
the = axis) scale length of the fast electron bunch is
much greater than its scale length in the transverse di-
rection. Below, we therefore assume that the wakefield
and the electron bunch are homogeneous along the z
axis. Such an approximation may be valid in the near-
axis region of the wake when the injection time is of
the order of the electron acceleration time.

Betatron oscillations of electrons moving inside the
wake wave occur due to the transverse component of
the wake electric field vanishing along the axis and hav-
ing a linear dependence on the transverse coordinates
y and z in the vicinity of the axis: E; = Eye, + E.e;
with the components F, and E. dependent on the spe-
cific form of the wakefield. The effects of the magnetic
field, which is self-generated in the regular wake wave,
are substantially weaker than the electric field effects
(e.g., see Ref. [18]), and we neglect them in our model
for simplicity. On the other hand, the pinching by the

1057



M. Kando, Y. Fukuda, H. Kotaki et al.

magnetic field generated by the electric current carried
by fast electrons partially compensates the repelling
force due to the electron space charge and we incorpo-
rate its effects into our description.

We assume that the transverse cross section of the
wake wave has an elliptic form with the semi-axes equal
to Ry Asy and Ry Ass, with Ry being the transverse
scale length. The positive electric charge density in the
wake is eng. Using the Dirichlet formula for the elec-
tric field of a uniformly charged elliptic cylinder (see
Ref. [41] for the explanations of the Dirichlet formal-
ism for the solution of the Poisson equation in confocal
ellipsoidal coordinates), we write the transverse electric
field originating from the electric charge separation in-
side the wake as

4meng
EWVFe +EBVFe =
voyTTE T Aoy + Ass

Within the framework of the test-particle approxi-
mation, when we can neglect the effects of the electric
and magnetic field produced by the fast electron bunch,
the relativistic electron motion in the electric field given
by Eq. (9) corresponds to the betatron oscillations. It
is easy to obtain that the oscillations are performed
along the y and z axes with the respective frequencies

Wy = wp /A_/ W = Wy /&7 (10)
A22 + A33 A22 + A33

which do not coincide. Here, wy = wpe/\/7e with the
electron gamma factor 7, and the Langmuir frequency

wpe = y/4mnge?/m.. The structure of the mode is

given by the relations

Z Ch,+ exp(Liwit)
+

( 5@22 > _ (11)
dazs Z Co, 1 exp(Liwat) ’
+

(Aggyey+A22zez) . (9)

where C + and U5 + are constants determined by the
initial conditions. Here and below, we assume for sim-
plicity that the electron gamma factor 4. is indepen-
dent of time. The time dependence of 7, can easily
be incorporated into our model similarly to Ref. [21],
where the betatron oscillations were studied assuming
an axial symmetry of the wake and electron bunch.

We now take the space charge effects generating
electric and magnetic fields from the electron bunch
into account. As was done above, in order to find
the electric and magnetic fields E} and BY generated
by the elliptic cylindrical electron bunch, we use the
Dirichlet formulas. We write expressions for the elec-
tric and magnetic fields as

46Nb

Ele,+ Ele. = ——
vy =0 Tg(a22+a33)

(aszyey + aznze.) (12)

MIOT®, 7Tom 132, Boin. 5 (11), 2007
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4ervb
B? Ble,= ——— 22> — 13
yey+ 2€z ,’,zc(a22 + a33) (a33zey a22yeZ)a ( )

where ryass and ryass are the electron bunch semi-axes
in the transverse plane, v, and N, are the electron ve-
locity along the a axis and the number of electrons per
unit length, and r, is a typical transverse size of the
bunch.

The equations of the motion of a fluid element of
the electron bunch in the transverse direction are

Oy + Vi (ving) =0, (14)

v X Bl
opL+(vi-Vi)pL=e <E¢ X f) . (15)
where the electron density n,(y, z,t) and the transverse

component of the electron momentum

PL(y, 2z, t) = py(y, 2, t)ey +p.(y, 2, t)e.

depend on the coordinates y and z and time ¢. The
operator V| is given by V| = d,e, + 0.e..

For the electric and magnetic fields linearly depen-
dent on the coordinates, as given by Eqs. (9), (12), and
(13), the equations of the bunch motion admit a self-
similar solution, which describes the fluid motion with
a homogeneous deformation [42]. Within the frame-
work of the homogeneous deformation approximation,
the relation between the Euler (r;) and Lagrange (2¥)
coordinates has the form

T; = aij(t)xg, (16)

where a;; is a deformation matrix with time-dependent
components. Summation over repeated indices is as-
sumed. Differentiating this relation with respect to
time, we find that the velocity of the electron fluid el-
ement is given by v; = w;;(t)z; with w;; = aika,:jl.
Here, a,;jl is the inverse matrix to the matrix a;;. A
kinematical interpretation of the velocity gradient ma-
trix w;; is provided by analyzing the relative motion of
two neighboring fluid particles [43]. The particles we
consider are separated by dx;. The relative velocity dv;
can be written as

6vi = 8jl),'5$j = wijéxj = Eijéxj + Qijéxj.,

where J; = e, 0y + e.0.; the tensors Z;; and ;; are
given by

- _ Qu_ajvi—aﬂ)j __ajkwk
uzg——Q ) ij — D) - D)

with €55, being the antisymmetric Ricci tensor. The
vector wy, is the fluid vorticity w = V x v. The term
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Eijox; describes pure straining motion and ;;0z; de-
scribes rigid-body rotation.

In the approximation |p,| <« p;, the trans-
verse component of the momentum can be written
as pi = MeYe(vyey + v.€,) with the gamma factor
Ye = (1 —v}/c?)~1/% calculated for the longitudinal
energy of fast electrons. In this case, we obtain

— . = 0
Pt,i = MeVeWijlj = MeYeQijl;.

In what follows, we consider the case of curl-free
motion, V| x pi = 0, i.e., the vanishing matrix );;.
This corresponds to the diagonal form of the defor-
mation matrix: a;; = diag{l, ass,ass}. Assuming the
electron density to be homogeneous and substituting
the expression v; = w;;(t)x; with w;; = aika,;; for the
electron velocity in continuity equation (13), we find
that the electron density inside the bunch is given by

n(t) = ny(0) (‘“—(m) | ()

det Qjj (t)

In the case under consideration, det a;; = as2ass.

To illustrate the property of the motion with homo-
geneous deformation, we consider the simplest example
of the dynamics of a pressureless gas for which the de-
formation matrix satisfies the equation a;; = 0 with the
initial conditions a;; = 6;; and a;;(0) = w;;(0). The
solution of this equation is a;;(t) = 6;; + w;;(0)¢t. The
catastrophe corresponds to the situation where the de-
terminant of a;; vanishes, det a;;(ts) = 0, and the beam
density tends to infinity in accordance with Eq. (17),
ny(ts) = oo. If the initial matrix of the fluid velocity
gradients is diagonal,

w;5(0) = diag{0, w22(0), w33(0)},
the deformation matrix is equal to
a;j(t) = diag{1,1 + wo2(0)t, 1 + w33 (0)t},
with
det a;;(t) = (1 4+ wa2(0)¢) (1 + ws3(0)?).

A singularity occurs when either ¢t = —1/w12(0) or
ts = —1/w33(0). The singularity occurs as a line in
3D space for wy2(0) and ws3(0) being equal and both
negative, and the singularity appears as a surface in 3D
space when just one value among w2 (0) and ws3(0) is
negative. The generic case corresponds to the situa-
tion where just one value among ws2(0) and w33(0) is
negative. This means that in the generic case, the sin-
gularity develops as a surface. We note that such a type
of singularity on a surface has been studied in detail in

applications of nonlinear dynamics of the gravitational
instability [44] and in the theory of magnetic field line
reconnection in high-conductivity plasmas [45].
Because the number of electrons per unit length of
the elliptical cylinder with the semi-axes a = ryass and
b = rpass is equal to N = nbﬁrfaggagg, we can rewrite
Eq. (17) as ny = Ny/7mriassass. From Egs. (9), (12),
(13), (15), and (16), we obtain a system of ordinary
differential equations for the matrix a;; components:

d _ 471'62 [A33n0a22 Nb :| (]_8)
22 = — - .,
Meve | Azo+Asg  mriv2(ass+ass)
d o 471'62 [A22n0a33 Nb :| (19)
33 = — - .
Mmeve | Azo+Asg  mriv2(asn+ass)

We see a similarity between these equations and the
equations for the charged particle beam dynamics in
high-energy accelerators, which are obtained within the
framework of the Kapchinskij— Vladimirskij approxi-
mation [46] (e.g., see Refs. [47,48]).

Using the notation

47rn0 62 A33

Ky, = ,
? MeC?e (Ao + Ass)’

a =rpasz, b=ryazs,

and
4drnge® Ass

MeC?Ye(Aa + Asg)

K3 =

and incorporating the transverse emittance effects, we
rewrite Egs. (18) and (19) as

a”+Ka:é-|— 3 (20)
2 a3 a+b’
€2 ¢
V' + Ksb= =2 21
TR =t o (21)

where 5 and e3 are the transverse emittance values in
the y and z directions, £ = Nj/mngri~?2 is a dimension-
less space-charge parameter, and the primes denote dif-
ferentiation with respect to the variable s = ¢t. Prop-
erties of this system of equations are discussed in detail
in Ref. [47].

Equations (20) and (21) can be presented in the
Hamiltonian form with the Hamiltonian depending on
the canonical coordinates a and b and on the canonical
momenta mo and ms. It is given by

1
H(ro,7m3,a,b) = 3 <7r§ +7r?2, + Kya® +

4R+ g + ﬁ) —&n(a+0b), (22)
a? = b2 ’
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~
(1)-&'1 2 3

Fig.7. lIsocontours of the potential function II(a,b)

for a) Ko =25, K3 =5,ea2=1,e3=1,and ¢ =1

and b) for Ko =1, K3 = 2.25, 2 =1, e3 = 1, and
£=5

from which we conclude that for @ > 0 and b > 0, the
bunch performs nonlinear oscillations around the equi-
librium. In Fig. 7, we plot isocontours of the potential
function,

I(a,b) =

DO | =

b2
—&ln(a+0b), (23)

2 2
<K2a2 + K3b® + E—i + E—3> -
a

for Ko = 2.5, K3 = 5,63 = 1,63 =1, and £ = 1
in frame (a), and for Ko = 1, K3 = 2.25, 9 = 1,
e3 = 1, and £ = 5 in frame (b). From the form of the
potential function II(a,b), we can see that in the gen-
eral case, the frequencies of the oscillations along the y
and z directions are different and depend on the oscil-
lation amplitudes. If the emittances 5 and e3, which
are determined by the injection mechanism, vanish, as
in Fig. 7b, the isocontours of I(a,b) can intersect the
axis at @ = 0 or b = 0. This corresponds to the case
where one semi-axis of the bunch becomes equal to zero
in nonlinear oscillations and the bunch aspect ratio for-
mally tends to infinity. We note that in the axially sym-
metric configuration, the space-charge effect prevents
the bunch radius from vanishing. For a flat electron
beam, the space-charge effects are not strong enough
and the bunch demagnification in one of the directions
becomes possible.

The transverse equilibrium of the electron bunch
in the wake corresponds to the local minimum of the
function II(a,b) given by Eq. (23). It is obtained by
a static solution of Eqs. (20) and (21) for which the
terms in the right-hand sides vanish. We consider the

case where the emittances vanish. Solving these alge-
braic equations with e = 0 and 3 = 0, we obtain

K> q K3
— €l = 24
. b= \at e

for the equilibrium. We point out that in equilibrium,
the electron bunch has an elliptic cross section with
the aspect ratio a®?/b°? equal to the aspect ratio of the
wake: a®?/b°? = Ayy/Az3. The electron density inside
the bunch in the equilibrium is equal to

eq __ Nb _
nriab

no’Yz- (25)

It is 72 times greater than the ion density in the plasma.
The characteristic transverse size r, of the bunch can
be found as

Ny
rb: 2 0 (26)
TTIoYe
i.e., the dimensionless space charge parameter

& = Ny/mnoriy? is equal to unity, & = 1, for the
equilibrium configuration.

Using definition (26) of the transverse size 7 of the
bunch and linearizing Eqgs. (20) and (21) in the vicinity
of the equilibrium solution (24) with eo = 0, e3 = 0,
a®l = \/Ass/Ass, and b1 = \/A3z3/Ass, i.e., represent-
ing the functions a and b as a = a®?+da and b = b9+ 9b
with da < a and 6b < b, we obtain

. Ass Asr Az
8 = —w? )
“ “b { |:A22 + Asg * (Ao + A33)2} ot
AspAss

+ (Ao + Ag3)? +A33)26b}’ (27)

. Axn A
_ 2 224133
0b = —wj {7(1422 + Ag)?

Asy
_|_
[A22 + Ass

oa+

Asp Asg ] }
+ obp. (28
(Aga + Ags)? (28)

These equations describe oscillations with the frequen-

cies
| 2452 A
wi’ = Wp, wg = Wy ﬁ . (29)

As we see, for Asy < Ass, the frequency wl is much
lower than w?. We also see that the frequency val-
ues in the case where the space-charge effect is taken
into account, Eq. (29), are different from the frequen-
cies in Eq. (10) obtained within the framework of the

test-particle approximation.

1060



MIT®, Tom 132, Boin. 5 (11), 2007

On the production of flat electron bunches ...

The structure of the mode is described by the rela-
tions

da _ 1 "
ob | A, + A2,

Z O+ exp(Fiwbt)
><< Ass A22> + (30)
—Az  Ass ZCQi exp(ziwdt)
+

where C; 4+ and (U + are constants given by the initial
conditions. This expression corresponds to the skewed
ellipse form of the potential energy isocontours in the
vicinity of the bunch equilibrium position presented in
Fig. 7b.

6. DISCUSSION AND CONCLUSION

In conclusion, a method is suggested for electron
injection via transverse wake wave breaking, when the
electron trajectory self-intersection leads to the for-
mation of an electron bunch elongated in the trans-
verse direction. In this scheme, we use a laser pulse
focused into an elongated spot. This results in a
wakefield generation localized in the axially nonsym-
metric region with the components of the transverse
electric field not equal to each other. With the aid
of catastrophe theory, we demonstrate that a struc-
turally stable regime of transverse wake breaking leads
to the transversally elongated electron bunch genera-
tion. Three-dimensional particle-in-cell simulations of
the laser pulse interaction with an underdense plasma
show that electrons injected via the transverse wake
wave breaking form a bunch with an aspect ratio larger
than unity, which qualitatively confirms the theory.
Electrons accelerated by the wake perform betatron
oscillations with different amplitudes and frequencies
along two transverse coordinates. An exact analytic so-
lution of the electron hydrodynamics equations demon-
strates the space-charge effects, which modify the elec-
tron bunch equilibrium and the frequencies and struc-
ture of the mode of betatron oscillations.

For a typical total number of electrons in the bunch
accelerated by the wake equal to Ny = 10'%, which
corresponds to the charge 1.6 nC, and the bunch
length 10 pm, the electron number per unit length is
N, = 10'"® em~'. If the plasma density and electron
gamma factor are ng = 10'? cm™3 and v, = 500, ex-
pression (26) yields the bunch size in the transverse
direction as r, ~ 0.01 gm. In this case, betatron fre-
quencies (29) are w? ~ 10" s™! and wf ~ 1.4-10"% 571,
if we assume that the aspect ratio Ass/Ass equals 100.

One of the most important applications of laser-
produced relativistic electrons is to generate positron
bunches for their injection into conventional acceler-
ators. To obtain polarized positron beams, an addi-
tional circularly polarized laser pulse (counterpropa-
gating with the electron bunch) may be used to gener-
ate longitudinally polarized gamma-ray photons, which
then collide with a thin-film target [49].

The emittance of laser-accelerated ions can also
be manipulated by changing the structure of either
the target irradiated by the laser pulse or the form
of the focusing system. In the first case, we refer
to the double-layer target proposed in Ref. [50] in
order to produce beams with controlled quality, and
studied in detail via computer simulations [51] and
experiments [52]. The authors of Ref. [50] proposed
using two-layer targets in which the first layer consists
of heavy multicharged ions and the second layer (thin
and narrow in the transverse direction) consists of
light ions (e.g., protons). Elongating the thin proton
layer in one direction results in the generation of a
flat proton beam. A more complex form of the proton
layer may be used to provide a uniform irradiation
of the target, which is required in the applications
of laser-accelerated ions for hadron therapy. The
second case uses an ion focusing technique corre-
sponding to a thin hollow cylindrical shell irradiated
by a femtosecond high-power laser pulse when the
ion bunch flies through it. As demonstrated in the
experiments in Ref. [53], this technique allows simul-
taneously focusing the proton beam and cuting it into
quasi-monoenergetic beamlets. The use of an elliptical
cylinder shell provides a way for transverse emittance
manipulation. In addition, a phase rotator, which also
produces quasi-monoenergetic ion beamlets [54] when
its transverse electric field is made anisotropic, can
produce flat ion beams.
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Ministry of Education, Science, Sports and Culture,
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