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The recent experiments clarifying the details of exhaustion of the CD8 T cells specific to various strains of hu-
man immunodeficiency virus (HIV) are indicative of slow irreversible (on the one-year time scale) deterioration
of the immune system. The conventional models of HIV kinetics do not take this effect into account. Removing
this shortcoming, we show the likely influence of such changes on the HIV escape from control of the immune

system.
PACS: 87.18.-h, 87.19.Xx, 87.10.+e

1. INTRODUCTION

The kinetics of interaction of viruses and cells have
long attracted attention of mathematicians and physi-
cists interested in theoretical biology and biophysics [1].
During several decades, the theoretical works in this
field were almost exclusively focused on the interplay
of ensembles of virions and cells. The numerous models
belonging to this class (see reviews [2, 3] and recent ex-
amples including a multi-variable analysis of temporal
HIV kinetics [4-6] and simulations of spatio—temporal
kinetics [7]) are essentially extracellular in the sense
that the intracellular processes (such as virus genome
replication, synthesis of viral proteins, and assembly of
new virions) are not described explicitly. The models
of intracellular viral kinetics are now available as well,
including the analysis of specific systems [8, 9] (we note
that Ref. [8] is focused on HIV) and generic simulations
treating primarily stochastic effects [10, 11]. The gap
between the extracellular and intracellular models was
recently bridged in Ref. [12]. In addition to Refs. [1-12],
it is appropriate to mention reviews [13] of the applica-
tions of kinetic models and bioinformatics to assisting
the design of anti-HIV therapies.

In this work, focused on the kinetics of chronic HIV
infection, we briefly discuss available extracellular mod-
els (Sec. 2), outline some relevant recent experimen-
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tal results indicating the novel factors (Sec. 3), and,
introducing the related modifications into the theory
(Sec. 4), show the corresponding results clarifying the
likely details of the HIV escape from control of the im-
mune system (Secs. 5 and 6).

2. CONVENTIONAL MODELS

The immune system, defending us of viruses, bac-
teria, fungi, and other pathogenic agents (referred to
as antigen) includes a variety of cells and numerous
regulatory and effector molecules (see, e.g., review [14]
oriented to physicists). The key class of cells includes
white blood cells, known as lymphocytes (these cells
are created in the bone marrow), and can be subdivided
into B cells, secreting antibodies (protective molecules),
and T cells or, more specifically, helper T cells and ef-
fector (or cytotoxic) T cells, promoting the growth and
differentiation of B cells and killing infected cells, re-
spectively. In the case of HIV infection, the virus is well
known to mutate and, accordingly, there are typically
a few HIV quasispecies simultaneously.

At present, a full-scale description of the immune
system including all the species is impossible because
the available information is far from being complete.
For this reasons, the kinetic models of HIV infection
are focused on the generic factors. To illustrate the
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type of the models used now, it is instructive to intro-
duce deterministic kinetic equations

dv;
d—; = T — PiviTi + Z("éjivj — Kivi), (1)
J#i
dz;
d—tz = ki’l}i - /\zxz — Hi;UT; (2)

corresponding to the model representing a hybrid of the
models proposed in Refs. [3] and [6].

Equation (1) describes evolution of the HIV-
quasispecies concentrations v;, where 1 < ¢ < n and n
is the total number of the virus strains (n should be
sufficiently large such that the results are insensitive to
n; in different works, n is typically in the range from
10 to about 10%). The first term takes viral replication
into account (r; is the replication rate constant). The
second term is related to suppression of the viral
population due to immune response (the rate constant
p; characterizes the efficacy of the strain-specific
immune responses x;). The rate of elimination of
HIV-quasispecies is assumed to be proportional to
v;x; [3] (see Ref. [6] for a more complex expression).
The third and fourth terms take mutation of strains
into account (k;; is the mutation rate constant).

Equation (2) defines evolution of the strain-specific
immune responses z;. The first term in the right-hand
side of this equation represents the rate at which the re-
sponse is evoked (k; is the corresponding rate constant).
The second term takes relaxation of the immune sys-
tem into account (); is the relaxation rate constant).
The third term corresponds to the impairment of the
immune system due to interaction with virus (u; is the
corresponding rate constant). The rate of impairment
is assumed to be proportional to the total virus concen-
tration v = Y"1, v; [3] (see Ref. [6] for a more complex
expression).

The model introduced above represents one class of
extracellular models. For extracellular models explic-
itly taking helper (CD4+) T cells into account and for
combined models, see, e.g., Refs. [2, 4, 15] and [16], re-
spectively. With an appropriate choice of the parame-
ter values, the conventional models like that introduced
above are well known [3, 6] to be able to describe the
first stages of the HIV infection including a rapid in-
crease in the viral load at the beginning of verimia,
followed by a sharp decline due to immunological con-
trol and a long period of latency. The model in [6] also
describes a subsequent (after 6-10 years) increase in
the viral load corresponding to the onset of AIDS. But
this does not mean that such models are fully sufficient

in order to understand what happens in reality, at least
conceptually.

3. RECENT EXPERIMENTS

HIV predominantly infects helper (CD4+) T
cells [14]. In addition, during persistent infections in
general [17, 18] and HIV infection in particular [19-
21], the effector (CD8+) T cells gradually dwindle in
number and lose the ability to kill cells and to make
cytokines. This seems to be related to exhaustion of
the memory CD8 T cells [17, 19] (exhausted cells are
characterized by the abundance of surface-receptor
protein called programmed death-1, PD-1).

Recent studies of HIV-infected patients [19, 20]
show that both the proportion of cytotoxic T cells ex-
pressing PD-1 and the level of PD-1 on the cell surface
correlate with the viral load in the blood plasma — cur-
rently, the best indicator of disease progression. Specif-
ically, the PD-1 expression was examined on HIV-
specific CD8 T cells [19], using histocompatibility com-
plex class I tetramers specific for frequently targeted
epitopes (i.e., for the parts of an antigen molecule
to which an antibody attaches itself). The measure-
ments were performed inspecting infected people who
were naive to anti-HIV treatments and also people
after initiation of the therapy (on the one-year time
scale). The latter resulted in a dramatic decline of de-
tectable plasma viral load, coincident with a decrease
in PD-1 expression. In the context of our presenta-
tion, it is of interest that the decrease was different
for different cells. For some of them (e.g., for those
marked by tetramer B*0801 EIR), it followed the de-
cline of viral load. For others (e.g., for those marked
by tetramer B*4201 TL9), it was rather small. One of
the likely interpretations of these observations is that
during chronic infection, the HIV induces irreversible
changes in the immune system in the sense that on
the one-year time scale, the system is not able to com-

pletely recover even after an appreciable decline of viral
load.

4. UPDATED MODEL

Although the conventional models do not explic-
itly describe exhausted memory CD8 T cells, it may
be argued that the corresponding deterioration of the
immune system related to their generation could be im-
plicitly taken into account by the last term, u;x;v, in
the right-hand side of Eq. (2) (this is the only rele-
vant term in Eqs. (1) and (2) unless we modify them).

14*



V. P. Zhdanov

MIT®, Tom 132, Beim. 4 (10), 2007

3

To some extent, this argument is correct, but not com-
pletely. For example, if we assume that at some mo-
ment the virus is completely eliminated (hypotheti-
cally) or its load is appreciably reduced (this can be
done in reality), the recovery of the immune system is
described by dx; /dt = —\;z; (cf. Eq. (2)). This means
that the corresponding time scale is ~ 1/)\;. Typi-
cally, \; ~ 0.01-0.03 days™! (such values, used, e.g., in
Ref. [6], can be validated taking into account that the
models should reproduce termination of the growth of
the viral population after the first few weeks after in-
fection). Therefore, the recovery time scale is expected
to be about one or two months. This value is much
shorter than the one-year (or longer) time scale char-
acterizing the irreversible changes discussed above. For
these reasons, we believe that Eqs. (1) and (2) should
be revised.

The presence of exhausted cells indicates that the
potential for generation of functional effector cells is
somehow reduced on the long-term scale (one of the
likely reasons of this effect is the virus-related destruc-
tion of the niches of stem cells involved into the function
of the immune system). The most natural way to in-
corporate this effect into the model is to introduce an
additional equation describing slow reduction of k; in
Eq. (2) due to the irreversible influence of virus on the
immune system. This reduction explicitly takes into
account that the rate of production of functional ef-
fector cells becomes lower and implicitly describes the
increase in the population of exhausted cells. The vari-
ation of other constants is less appropriate. For exam-
ple, r; can hardly be changed, because this constant
corresponds to replication of virions after infection of
healthy cells, and its relation to the deterioration of the
immune system is accordingly less explicit compared to
that of k;.

The simplest relevant phenomenological equation
for kz is

dkl/dt = —’}/i’l}(ki - k;rmn)’ (3)
where v; is the corresponding rate constant and k™" is
the minimal value of k;. This equation implies that the
rate of deterioration of the immune system is propor-
tional to the viral load. For chronic infection, we should
typically have v;v < A; because the degradation of the
immune system is slow.

Equations (1)—(3), representing the model we sug-
gest, can be analyzed analytically in the mean-field
approximation (Sec. 5) or numerically (Sec. 6). Both
these approaches indicate that if k" are close to k;(0),
the model predicts an asymptotic (as ¢ — oo) transi-
tion to a final stable steady state. This solution corre-

sponds to rare cases where the immune system is able
to co-exist with virus. If k" are appreciably smaller
than k;(0), the analysis indicates that there is no steady
state with finite virus concentration. Under such cir-
cumstances, Eqs. (1)—(3) predict unlimited growth of
the virus concentration during a finite time interval.
This means that the virus population escapes control
by the immune system.

5. MEAN-FIELD AND STEADY-STATE
APPROXIMATIONS

The mean-field approximation allows describing
chronic HIV infection including the HIV escape from
control of the immune system. In this approximation,
we consider the scales of the values of the parameters r;,
pis kiy Aiy iy vi, and k™" to be the same for all differ-
ent virus strains and drop the subscript ¢ accordingly.
In addition, taking into account that the degradation
of the immune system is slow, we use the steady-state
approximation for Egs. (1) and (2). We then have

rv; — puix; + k(v — nv;) = 0, (4)
kv; — Ax; — pvz; = 0, (5)
dk/dt = —yv(k — kmin)- (6)

To proceed, we replace v; in the second term of
Eq. (4) by the average value, i.e., by v/n. Then the
summation of all the equations (4) yields

x = nr/p, (7)

where z =), ;.
After summation of all the equations (5), we obtain

kv — Az — poz = 0. (8)
Substituting expression (7) in this equation results in

_ nri
p(k - kcr) ’

where k.. = nru/p is the critical k value defining the
condition of the existence of the steady state. Substi-
tuting the last expression in Eq. (6), we have

(9)

v

% _ _m"y)\(k — kmin)
dt p(k - kcr)
Equation (7) indicates that x should be constant

under steady-state conditions. With decreasing k, this
can be reached if v increases (see Eq. (9)). This results

(10)
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in a further decrease in k (see Eq. (10)). Due to this
feedback, Eq. (10) may predict collapse of the immune
system. Specifically, the solution of Eq. (10) depends
on the relation between k., and k,,in.

If ker < kmin, Eq. (10) asymptotically (as ¢ — o)
describes a transition from the initial state (with
k(0) > Ekmin) to the final stable steady state with the
virus concentration given by

nri

V=
p(kmzn -

o)’ (11)
As already noted, this solution corresponds to rare
cases where the immune system is able to coexist with
virus.

If kep > kmin, there is no steady state with a finite
virus concentration and the virus population eventually
escapes control by the immune system. To illustrate
this regime explicitly, it is instructive to analyze the
situation with k,,;, = 0. In this case, after elementary
integration, Eq. (10) yields
k(t)

k(0) — k(t) + ker In H0)

= at, (12)
where a = nry\/p. This equation shows that the time
interval corresponding to the collapse of the immune

system (this happens when k(t) reaches k.,.) is given by

1 ker )

At = — —
k(0)
For the virus concentration, Eq. (9) can be rewritten

- (13)
as

<k(0) — kep + ker In

voker

TR = ke

(14)
where vg = nr\/pke,.

Typical dependences of k£ and v on time, calcu-
lated using Eqs. (12) and (14), are exhibited in Fig. 1.
The virus concentration is seen to be nearly constant
during a long period (up to ~ 0.9At), and then (at
0.9A¢ < t < At) the virus spirals out of control. We
note that the growth of v is far from purely exponen-
tial, because the induction phase is very long and the
collapse is reached during a final time interval. Choos-
ing a in Eq. (13) such that At ~ 10 years, we can use
Eq. (14) to describe typical real runs of persistent HIV
infection.

~

6. NUMERICAL CALCULATIONS

Taking into account that the accuracy of the mean-
field and steady-state approximations is open for de-
bate, we present results of numerical calculations (with
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Fig.1. Virus population v and the parameter k char-

acterizing the efficacy of the immune system, as a

function of time according to Egs. (12) and (14) with
E(0)/ker =2

kmin = 0) illustrating the HIV escape from control of
the immune system.

In general, the number of variables and kinetic pa-
rameter values in Eqs. (1)-(3) may be huge (up to
about 10° [6]) and their choice may reflect many real
details. To not obscure the main message, we use a
relatively simple procedure of the specification of the
values of the model parameters and show that even in
this case, the model behavior is very robust.

To specify the kinetic parameters, we first note that
the concentrations v; and x; can be normalized to arbi-
trarily chosen concentrations and can therefore be di-
mensionless. With this choice used here, the dimension
of all the rate constants should be day~—!. The values
of the kinetic parameters should be distributed in a rel-
atively wide range and chosen such that the model rea-
sonably describes all the stages of the infection on the
time scale corresponding to reality. In our calculations,
we use n = 10 and distribute the kinetic parameter val-
ues at random as follows: r; is in the range from 0.2 to
0.4 day !, p; is in the range from 2 to 4 day !, k;j is
in the range from 0 to 0.01 day~!, k;(0) and \; are in
the range 0.01 to 0.02 day !, p; is in the range from
0.001 to 0.002 day !, and =; is in the range from 10~4
to 2-107* day~!'. The initial conditions for Eqs. (1)
and (2) are v;(0) = 0.01 and 0 for i = 1 and ¢ > 1,
respectively, and z;(0) = 0 for ¢ > 1.
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v constants k; are independent of time. In this case, as
30 ' expected, the model describes only stages (i)—(iii).
20r 7. CONCLUSION
10 | We have proposed a new model of the kinetics of
Lv HIV infection. In addition to the conventional ingredi-
A I ents, it accounts for slow irreversible (on the one-year
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Fig.2. Virus population (a) v = >, v; and immune
response (b) x =Y. x; as a function of time. Panel ¢
shows the virus population during the first 200 days in
more detail. The solid lines correspond to Egs. (1)-(3).
For comparison, the dashed lines show the kinetics pre-
dicted by Eqgs. (1) and (2) in the case where the rate
constants k; are independent of time. We note that
during the first 200 days, the solid and dashed lines
practically coincide. For this reason, the dashed lines
are nearly or completely invisible on panels b and ¢

The wviral kinetics obtained by integrating
Eqs. (1)-(3) with the parameters specified above,
are shown in Fig. 2. The model is seen to reproduce
all the stages of the HIV infection including (i) a rapid
increase in the viral load at the beginning of verimia
(during the first six weeks), (ii) a sharp decline due
to immunological control (week 7), (iii) a long period
(about ten years) of latency, and (iv) a subsequent
(after 10 years) increase in the viral load corresponding
to the onset of AIDS.

For comparison, we also show in Fig. 2 the kinetics
predicted by Egs. (1) and (2) in the case where the rate

time scale) changes in the immune system related to
its interaction with virus. Our analysis shows that the
model reasonably describes all the stages of the HIV in-
fection even with the simplest choice of the parameter
values. Specifically, we show that the slow irreversible
changes in the immune system may play a key role in
the HIV escape from control of the immune system. If
necessary, we can increase n and/or specify the param-
eter values in more detail, e.g., introduce correlations of
the mutation rate constants. Such modifications do not
change our conclusions. As already noted, the behavior
of the model is fairly robust.

Physically or chemically, the viral kinetics (Figs. 1
and 2) predicted by our model represents an example
of kinetic explosion. In different systems, the driving
forces behind kinetic explosion are different, and hence
the corresponding equations are usually far from uni-
versal. For comparison, we mention the analysis of the
kinetics of “explosions” in heterogeneous catalytic reac-
tions [22].

Finally, it is appropriate to recall that 25 years
after the start of the HIV epidemic, the world is still
contending with more than 27 million HIV-related
deaths to date, and an estimated 4.9 million new
infections each year [23]. Since the first observations of
HIV, the experiments, simulations, and trials to design
the corresponding therapies are primarily focused
on HIV mutations. There is no doubt that this key
feature of HIV should be explored, described, and
treated in detail. On the whole, however, the HIV
escape from control of the immune system seems to
result from a complex interplay of various factors
including slow degradation of the system. Our goal
was to articulate and illustrate this point by using a
generic model. The key new ingredient of our model
(Eq. (3)) was introduced phenomenologically. The
scrutiny of biochemistry and/or biophysics behind this
equation is of high interest.

This work is a part of the FP6-project STREP
NANOCUES funded by the European Commission and
is partially funded by the Chalmers Bioscience Pro-
gram, the Swedish Science Council, and the Foundation
for Strategic Research.
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