АТОМНО-ВАКАНСИОННОЕ УПОРЯДОЧЕНИЕ НИЗШЕГО КАРБИДА ВОЛЬФРАМА W₂C

А. С. Курлов, А. И. Гусев*

Институт химии твердого тела Уральского отделения Российской академии наук 620041, Екатеринбург, Россия

Поступила в редакцию 27 апреля 2007 г.

Методами нейтронографии и рентгеновской дифракции изучено атомно-вакансионное упорядочение низшего карбида вольфрама W_2C с базисной гексагональной структурой типа L'3. Показано, что в интервале температур примерно от 2700 до 1370 К единственной упорядоченной фазой низшего карбида вольфрама является тригональная (пространственная группа $P\bar{3}1m$) фаза ε - W_2C . Установлено, что тригональная фаза ε - W_2C образуется по каналу фазового перехода беспорядок-порядок, включающему три сверх-структурных вектора $k_{15}^{(1)}$, $k_{17}^{(2)}$ и $k_{17}^{(1)}$ двух лифшицевских звезд { k_{15} } и { k_{17} }, и описывается двумя параметрами дальнего порядка η_{15} и η_{17} . Рассчитана функция распределения атомов углерода в тригональной сверхструктуре ε - W_2C , найдена соответствующая ей область допустимых значений параметров дальнего порядка η_{15} и η_{17} . Проведен симметрийный анализ других возможных сверхструктур низшего карбида вольфрама W_2C и определена физически допустимая последовательность фазовых превращений в W_2C .

PACS: 61.50.Ks, 61.66.Fn, 64.70.Kb, 81.30.-t

1. ВВЕДЕНИЕ

Карбиды MC_y и $\mathrm{M}_2\mathrm{C}_y$ переходных d-металлов IV-VI групп являются сильно нестехиометрическими соединениями внедрения [1, 2] и интересны как удобные модельные объекты для исследования взаимосвязи нестехиометрии и упорядочения. Изучение именно карбидов открыло увлекательные перспективы модификации структуры и свойств сильно нестехиометрических соединений с помощью упорядочения. В карбидах атомы углерода размещаются в октаэдрических междоузлиях металлической подрешетки. Незаполненные междоузлия называют структурными вакансиями 🗆. Вакансии и атомы углерода образуют в неметаллической подрешетке раствор замещения. Распределение атомов С и вакансий 🗆 по узлам решетки может быть неупорядоченным или упорядоченным. Если упорядочение высших кубических карбидов МС_у изучено достаточно детально [1-4], то упорядочение низших карбидов M_2C_y (0.7 < $y \le 1.0$), имеющих гексагональную структуру, изучено гораздо меньше. Среди гексагональных карбидов наименее изучен низший карбид вольфрам
а $\mathrm{W}_2\mathrm{C}_y.$

Низший карбид вольфрама W_2C_y входит в группу сильно нестехиометрических соединений внедрения [1, 2] и при температуре около 3000 К имеет область гомогенности от $WC_{0.34}$ до $WC_{0.52}$ [5]. При понижении температуры ширина области гомогенности уменьшается. В литературе упоминаются четыре модификации низшего карбида вольфрама W₂C_y. Во всех модификациях карбида W_2C_y атомы вольфрама образуют гексагональную плотноупакованную металлическую подрешетку, в которой от 34% до 52 % октаэдрических междоузлий может быть занято атомами углерода С. В зависимости от того, как распределены атомы С и вакансии П, низший карбид W₂C_u может быть неупорядоченным при высокой температуре или упорядоченным при низкой температуре. Последовательность фазовых превращений в низшем карбиде вольфрама W₂C_y до сих пор не установлена.

Высокотемпературная фаза β -W₂C имеет гексагональную (пространственная группа $P6_3/mmc$ (D_{6h}^4)) структуру типа L'3 (рис. 1) с неупорядоченным размещением атомов углерода С и структур-

^{*}E-mail: gusev@ihim.uran.ru

Рис. 1. Элементарная ячейка базисной неупорядоченной гексагональной (пространственная группа $P6_3/mmc$) фазы β -W₂C низшего карбида вольфрама со структурой типа L'3 (периоды элементарной ячейки в направлениях $[100]_{L'3}$ и $[010]_{L'3}$ равны a, в направлении $[001]_{L'3}$ период элементарной ячейки равен c). Примитивная (по неметаллической подрешетке) ячейка выделена штриховыми линиями, периоды a_x и a_y примитивной ячейки совпадают с соответствующими периодами элементарной ячейки, а период a_z примитивной ячейки в направлении $[001]_{L'3}$ вдвое меньше, чем период c элементарной ячейки, т. е. $a_z = c/2$: 1 — атомы вольфрама, 2 узлы неметаллической подрешетки, статистически (с вероятностью 1/2) занятые атомами углерода

ных вакансий □ в неметаллической подрешетке. В нейтронографическом исследовании [6] неупорядоченный карбид β-W₂C наблюдался вместе с упорядоченной фазой этого карбида.

В литературе есть сведения о трех упорядоченных фазах карбида W_2C : орторомбической β' - W_2C (пространственная группа $N^{\circ}60 - Pbcn$ (D_{2h}^{1h})) со структурой ζ -Fe₂N (Mo₂C), ромбоэдрической β'' - W_2C (α - W_2C) (пространственная группа $N^{\circ}164 - P\bar{3}m1$ (D_{3d}^{3})) со структурой C6 (анти-CdI₂) и тригональной ε - W_2C (пространственная группа $N^{\circ}162 - P\bar{3}1m$ (D_{3d}^{1h})) со структурой ε -Fe₂N. Иногда орторомбический карбид β' - W_2C обозначается как ζ - W_2C . В одних работах структура упорядоченных фаз низшего карбида вольфрама определялась методом рентгеновской дифракции на порошкообразных образцах, другие исследования выполнены

методом структурной нейтронографии. В связи с этим отметим возможности каждого метода применительно к карбиду вольфрама W₂C.

В порошковом рентгеновском дифракционном эксперименте модификации β -W₂C, β' -W₂C $(\zeta$ -W₂C), β'' -W₂C $(\alpha$ -W₂C) и ε -W₂C низшего карбида вольфрама практически неразличимы, поскольку имеют одинаковую гексагональную металлическую подрешетку, а рассеивающая способность атомов W во много раз больше, чем атомов С. По расчету изменение распределения атомов углерода в решетке карбида W₂C сказывается на рентгеновском дифракционном спектре только в области малых углов. Интенсивности отражений (110)_{orthorh} и (111)_{orthorh}, характерных для орторомбического карбида β' -W₂C, а также отражения $(001)_{C6}$ карбида β'' -W₂C и отражения $(101)_{\varepsilon}$, характерного для карбида ε -W₂C, составляют менее 0.5 % от интенсивности наиболее сильного структурного отражения (101)_{L'3}. Таким образом, в рентгеновском дифракционном эксперименте эти отражения находятся на уровне фона. Поэтому результаты работ, в которых структура упорядоченных фаз низшего карбида вольфрама определялась только методом рентгеновской дифракции на порошках, не вполне надежны. Вместе с тем наличие атомных смещений в упорядоченных фазах может приводить к специфическому расщеплению некоторых дифракционных отражений, что позволяет качественно оценить симметрию той или иной фазы.

Значительно больше сведений об упорядочении карбида вольфрама W₂C дает структурная нейтронография, так как амплитуды рассеяния нейтронов ядрами вольфрама и углерода сравнимы по величине. В нейтронографическом эксперименте перераспределение атомов углерода в решетке карбида W₂C сопровождается заметным изменением интенсивности дифракционных отражений и появлением измеримых сверхструктурных отражений, специфичных для каждой упорядоченной фазы. Расчет нейтронограмм неупорядоченного низшего карбида β -W₂C (WC_{0.50}) и идеальных упорядоченных фаз β' -W₂C (ζ -W₂C), β'' -W₂C (α -W₂C) и ε -W₂C с орторомбической, ромбоэдрической и тригональной симметрией показал, что характерные для этих фаз сверхструктурные отражения соответствуют межплоскостным расстояниям d > 0.24 нм и могут наблюдаться в области малых углов (рис. 2).

С учетом возможностей рентгеновской и нейтронной дифракции рассмотрим литературные данные по упорядочению низшего карбида вольфрама.

Утверждение о существовании фазы $\beta'\text{-}W_2C$

Рис.2. Рассчитанные нейтронограммы ($\lambda = 0.1532$ нм) неупорядоченного гексагонального (тип L'3, пространственная группа $P6_3/mmc$) карбида β -W₂C (WC_{0.50}) и идеальных упорядоченных фаз β' -W₂C (ζ -W₂C), β'' -W₂C и ε -W₂C соответственно с орторомбической (тип ζ -Fe₂N, пространственная группа Pbcn), ромбоэдрической (тип c6, пространственная группа $P\bar{3}m1$) и тригональной (тип ε -Fe₂N, пространственная группа $P\bar{3}1m$) симметриями

высказали авторы работ [7, 8], опираясь на порошковую рентгенограмму образца W₂C, закаленного от температуры 2630 К. Согласно работе [7], фаза β' -W₂C стабильна при температуре около 2370–2750 К и имеет орторомбическую (пространственная группа *Pbcn*) структуру. Изменение распределения атомов углерода в неметаллической подрешетке низшего карбида W₂C слабо сказывается на рентгеновском дифракционном спектре порошка только в области углов $2\theta < 30^\circ$, но в работе [7] при $2\theta < 34^\circ$ никаких отражений не обнаружено. Таким образом, в работе [7] нет экспериментальных данных, подтверждающих обнаружение орторомбической фазы β' -W₂C в области температур 2370–2750 К.

Предположение о существовании упорядоченной ромбоэдрической фазы β'' -W₂C (α -W₂C) сделано авторами работ [7, 8] без каких-либо структурных доказательств со ссылкой на работу [9]. В ней методом электронной дифракции была исследована пленка карбида W₂C, полученная карбидизацией металлического вольфрама в оксиде углерода СО при температуре около 1400 К в течение 5 мин. Авторы работы [9] на основе ограниченных данных, не рассматривая другие модели, предположили, что низший карбид β'' -W₂C (α -W₂C) имеет ромбоэдрическую структуру типа C6 (анти-CdI₂) с пространственной группой № 164 — $P\bar{3}m1$ (D^3_{3d}). По мнению авторов работы [7], фаза β'' -W₂C существует при температуре от 2300 до 1500 К. Позднее существование ромбоэдрической фазы β'' -W₂C никто не подтвердил.

Опираясь на скудные и неподтвержденные данные, авторы работ [7, 8] предположили, что в низшем карбиде вольфрама при понижении температуры последовательно происходят фазовые превращения «гексагональная неупорядоченная фаза β -W₂C \rightarrow орторомбическая упорядоченная фаза β' -W₂C \rightarrow ромбоэдрическая упорядоченная фаза β' -W₂C».

Результаты других работ полностью противоположны данным [7, 8].

В работе [10] на рентгенограммах образцов W_2C (WC_{0.50}), отожженных в течение 600 ч при $T \leq 1270$ K, некоторые дифракционные отражения базисной гексагональной решетки были расщеплены; расчет показал, что наблюдаемый рентгеновский дифракционный спектр соответствует упорядоченной орторомбической фазе β'-W₂C $(\zeta - W_2 C)$ со структурой типа $\zeta - Fe_2 N$. После отжига тех же образцов при 870, 1070 и 1270 К в течение соответственно 3000, 1500 и 750 ч [11] в них по-прежнему присутствовала упорядоченная орторомбическая (пространственная группа Pbcn) фаза β' -W₂C. По нейтронографическим данным [12, 13] орторомбическая фаза β' -W₂C со структурой ζ-Fe₂N наблюдается в образцах W_2C только после отжига при T < 1300 К. С учетом результатов [10-13] орторомбическая (пространственная группа Pbcn) модификация β' -W₂C $(\zeta$ -W₂C) существует при температуре ниже 1300 К.

В ряде работ найдена тригональная фаза ε-W₂C, которую авторы работ [7, 8] не упоминают.

Тригональная (пространственная группа $P\bar{3}1m$) фаза ε -W₂C обнаружена в образцах W₂C, полученных твердофазным спеканием смесей вольфрама и углерода при температурах 2370–2670 К [6] и 1920 К [14], дуговой плавкой смесей вольфрама и углерода [15]. В работах [12, 13, 16] образцы низшего карбида вольфрама отжигались в течение 100 ч при температуре 1470 К. Нейтронограммы отожженных порошков низшего карбида вольфрама снимались при 300 К, а также в интервале температур от 1520 до 2070 К. Нейтронная и электронная дифракции [16] обнаружили в отожженном образце тригональный карбид ε -W₂C со структурой типа ε -Fe₂N. Нейтронографические измерения [13] показали, что в отожженных порошках основной фазой является упорядоченный тригональный (пространственная группа $P\bar{3}1m$) карбид ε -W₂C, а примесной фазой — гексагональный монокарбид вольфрама WC. Что касается упорядоченного орторомбического (пространственная группа *Pbcn*) карбида β' -W₂C, то по данным [13] он в малом количестве образуется в образцах W₂C, отожженных при температуре 1190–1300 К и ниже.

В работе [17] рентгеновским методом изучались монокристаллы W₂C размером 0.2–0.5 мм, которые извлекались из образцов W₂C, полученных дуговой плавкой и отожженных при T = 1720-2120 К в течение 1.5 ч. По мнению авторов работы [17] при температуре около 2120 К неупорядоченный низший карбид β -W₂C переходит в тригональную упорядоченную фазу ε -W₂C, которая термодинамически стабильна в интервале температур от 2120 до 1520 К.

Таким образом, литературные сведения по упорядочению низшего карбида вольфрама W_2C противоречивы и неоднозначны. В связи с этим в данной работе для выявления возможных упорядоченных фаз выполнен их теоретический симметрийный анализ и проведены нейтроно- и рентгенографическое изучение структуры низшего карбида вольфрама, полученного разными способами в широкой области температур примерно от 3600 до 1370 К.

2. ОБРАЗЦЫ И МЕТОДИКИ ЭКСПЕРИМЕНТА

Образцы низшего карбида вольфрама W₂C синтезировали твердофазным спеканием порошковых смесей W + C в вакууме 0.0013 Па (10 $^{-5}$ мм рт. ст.) при температуре 2070 К в течение 10 ч; отжигом в вакууме в течение 35 ч при T = 1370 К образцов, спеченных из вольфрама и углерода при 2070 К; спеканием в вакууме при температуре 1370 К в течение 50 ч порошковых смесей W + C. При твердофазном вакуумном спекании в качестве исходных продуктов использовали порошок вольфрама со средним размером частиц 3-5 мкм и газовую сажу. Порошок W₂C также получали плазмохимическим синтезом из оксида WO₃ и пропана C₃H₈ в водородной плазме с закалкой от температуры примерно 2600 К. Полученные образцы карбидов вольфрама аттестовали по составу химическим и спектральным анализами.

Фазовый состав образцов и параметры кристал-

лических решеток фаз определяли методом рентгеновской дифракции на дифрактометре ДРОН-УМ1 в $K_{\alpha_{1,2}}$ -излучении Сu в интервале углов 2θ от 10° до 140° с шагом $\Delta 2\theta = 0.03^{\circ}$ и временем сканирования 2 с в точке.

Структуру упорядоченных фаз низшего карбида W₂C изучали нейтронографическим методом на дифрактометрах $D7a~(\lambda = 0.1532~$ нм) и D2 $(\lambda = 0.1805 \text{ нм}),$ установленных на горизонтальном канале реактора ИВВ-2М (г. Заречный). Разрешение дифрактометров $\Delta d/d = 0.3$ %. Для монохроматизации первичного пучка нейтронов использовали двойные монохроматоры: на дифрактометре D7а дифракция нейтронов последовательно осуществлялась от грани (002) пирографита и грани (333) монокристалла германия Ge, а на дифрактометре D2 — от грани (111) пирографита и грани (002) монокристалла германия. Измерения вели при комнатной температуре в интервале углов 2θ от 5-10° до 115-125° в режиме пошагового сканирования с $\Delta 2\theta = 0.1^{\circ}$. При нейтронографическом изучении плазмохимического порошка W₂C длительность экспозиции в точке составляла 260 и 70 с на нейтронах соответственно с длиной волны 0.1532 и 0.1805 нм. Нейтронографические измерения на компактных спеченных образцах W₂C проводили на нейтронах с длиной волны 0.1532 нм с временем экспозиции 150 с в точке. Структуру фаз уточняли с помощью программы GSAS [18], фон описывали полиномом Чебышева 6-го порядка.

Средний размер областей когерентного рассеяния $\langle D \rangle$ оценивали методом Уоррена [19] по формуле

$$\langle D \rangle = \frac{K_{hkl}\lambda}{\beta(2\theta)\cos\theta},\tag{1}$$

где λ — длина волны излучения, θ — угол Брегга, $K_{hkl} \approx 1$ — постоянная Шеррера, величина которой зависит от формы кристаллита (домена) и индексов (hkl) отражения, $\beta(2\theta) =$ $\sqrt{(\mathrm{FWHM}_{exp})^2 - (\mathrm{FWHM}_R)^2}$ — уширение = дифракционного отражения, FWHM_{exp} — полная ширина отражения на половине высоты, FWHM_R — инструментальная функция углового разрешения дифрактометра. Функция разрешения $FWHM_R(2\theta) = (u \operatorname{tg}^2 \theta + v \operatorname{tg} \theta + w)^{1/2} \text{ рентгеновско-}$ го дифрактометра ДРОН-УМ1 была определена в специальном дифракционном эксперименте на кубическом гексабориде лантана LaB₆ (NIST Standart Reference Powder 660a) с периодом решетки a == 0.41569162 нм; параметры этой функции равны u = 0.0041, v = -0.0021 и w = 0.0093. Инструментальные функции разрешения нейтронных

дифрактометров D7а и D2 определяли на стандартном образце оксида алюминия Al_2O_3 (корунда) с периодами a = 0.4789 и c = 1.2991 нм.

3. СИММЕТРИЙНЫЙ АНАЛИЗ ВОЗМОЖНЫХ УПОРЯДОЧЕННЫХ ФАЗ НИЗШЕГО КАРБИДА ВОЛЬФРАМА

Превращения беспорядок-порядок или порядок-порядок, происходящие при понижении температуры, представляют собой переходы из состояния с большей свободной энергией в состояние с меньшей свободной энергией. Состояние вещества при атомном или атомно-вакансионном упорядочении можно характеризовать термодинамическим потенциалом Ландау, который в этом является функционалом вероятностей случае обнаружения атомов какого-либо сорта в узлах решетки, координат узлов и температуры. В свою очередь, вероятности являются функциями параметров дальнего порядка. Потенциал Ландау имеет несколько минимумов, соответствующих высокосимметричной неупорядоченной и низкосимметричным упорядоченным фазам. При понижении температуры переход от неупорядоченной фазы к какой-либо из упорядоченных фаз или от одной упорядоченной фазы к другой происходит только при понижении симметрии. Симметрийный анализ позволяет количественно установить величину понижения симметрии при образовании той или иной сверхструктуры и определить, в какой физически допустимой последовательности эти сверхструктуры могут образовываться.

Проведем симметрийный анализ возможных упорядоченных фаз низшего карбида вольфрама W₂C, т.е. найдем соответствующие им каналы перехода беспорядок-порядок, рассчитаем функции распределения атомов углерода, определим изменение симметрии при переходе от одной фазы к другой. Процедура расчета сверхструктурных векторов обратной решетки, канала перехода и функции распределения подробно описана в работах [1, 2].

Высокотемпературная фаза β -W₂C имеет гексагональную структуру типа L'3 с неупорядоченным размещением атомов углерода C и структурных вакансий \Box на позициях 2(a) с координатами (0 0 0) и (0 0 1/2). Объем элементарной ячейки карбида β -W₂C равен $V = (\sqrt{3}/2)a^2c$. В низшем неупорядоченном карбиде β -W₂C со структурой L'3 решетки Изинга, в которой может происходить атомно-вакансионное упорядочение, является гексагональная неметаллическая подрешетка. Для карбида β -W₂C периоды $a_x = a_y = a$, а период a_z примитивной (по неметаллической подрешетке) трансляционной ячейки в направлении [0 0 1] вдвое меньше, чем период c элементарной ячейки, т.е. $a_z = c/2$ (рис. 1). С учетом этого структурные векторы обратной решетки для базисной гексагональной решетки равны $\mathbf{b}_1 = (1, 0, 0)$ и $\mathbf{b}_2 = (0, 1, 0)$ в единицах $4\pi/(a\sqrt{3})$ и $\mathbf{b}_3 = (0, 0, 1)$ в единицах $4\pi/c$.

Предполагаемая модификация β' -W₂C (ζ -W₂C) со структурой типа (-Fe₂N обладает орторомбической (пространственная группа *Pbcn*) симметрией, хотя металлическая подрешетка остается гексагональной плотноупакованной, как в высокотемпературном карбиде β -W₂C. В этой структуре атомы вольфрама W находятся в позициях 8(d), атомы C занимают позиции 4(c) с координатами $(0 \sim 3/81/4)$, а позиции 4(c) с координатами $(0 \sim 7/81/4)$ являются вакантными. Периоды кристаллической решетки идеальной орторомбической фазы β' -W₂C равны $a_{orthorh} = c_{L'3}, b_{orthorh} = 2a_{L'3}$ и $c_{orthorh} = \sqrt{3}a_{L'3}$, элементарная ячейка орторомбической фазы имеет объем $V_{orthorh} = (2\sqrt{3})a^2c$. Фаза β' -W₂C (рис. 3) является упорядоченной по неметаллической подрешетке в сравнении с высокотемпературной гексагональной фазой β -W₂C (рис. 1).

Проведенный расчет показал, что при образовании орторомбической фазы в первой зоне Бриллюэна неупорядоченной неметаллической гексагональной подрешетки находится один неэквивалентный сверхструктурный вектор -(1/21/2 - 1/2), который соответствует лучу $\mathbf{k}_{14}^{(3)} = -(\mathbf{b}_1 + \mathbf{b}_2 - \mathbf{b}_3)/2$ трехлучевой звезды $\{\mathbf{k}_{14}\}$ (здесь и далее нумерация и описание звезд $\{\mathbf{k}_s\}$ волновых векторов гексагональной решетки даны в соответствии с работой [20]). Таким образом, канал перехода беспорядок-порядок β -W₂C (пространственная группа $P6_3/mmc) \rightarrow \beta'$ -W₂C (пространственная группа Pbcn) включает один сверхструктурный вектор $\mathbf{k}_{14}^{(3)}$.

Структуру упорядоченных фаз удобно описывать с помощью функции распределения $n(\mathbf{r})$, которая представляет собой вероятность обнаружения атома данного сорта на узле \mathbf{r} упорядочивающейся подрешетки. Отклонение вероятности $n(\mathbf{r})$ от ее значения в случае неупорядоченного (статистического) распределения можно представить как суперпозицию нескольких плоских концентрационных волн [21]. Волновыми векторами этих волн являются сверхструктурные векторы, образующие канал перехода беспорядок–порядок [1, 2]. В методе статических концентрационных волн [21] функция распре

Рис. 3. Положение элементарной ячейки орторомбической (пространственная группа *Pbcn*) упорядоченной фазы β'-W₂C (ζ-W₂C) типа ζ-Fe₂N в базисной решетке со структурой *L*'3: 1 — атомы вольфрама, 2 — атомы углерода, 3 — вакантные узлы неметаллической подрешетки

деления $n(\mathbf{r})$ имеет вид

$$n(\mathbf{r}) = y + \frac{1}{2} \sum_{s} \sum_{j \in s} \eta_s \gamma_s \left[\exp\left(i\varphi_s^{(j)}\right) \exp\left(i\mathbf{k}_s^{(j)}\mathbf{r}\right) + \exp\left(-i\varphi_s^{(j)}\right) \exp\left(-i\mathbf{k}_s^{(j)}\mathbf{r}\right) \right], \quad (2)$$

где y — доля узлов, занятых атомами данного сорта в упорядочивающейся подрешетке; η_s — параметр дальнего порядка, соответствующий звезде $\{\mathbf{k}_s\}$; $\mathbf{k}_s^{(j)}$ — сверхструктурный вектор звезды $\{\mathbf{k}_s\}$, порождающий концентрационную волну; $\eta_s \gamma_s$ и $\varphi_s^{(j)}$ соответственно амплитуда и фазовый сдвиг концентрационной волны.

С учетом формулы (2) функция распределения атомов углерода в орторомбической (пространственная группа *Pbcn*) фазе β' -W₂C зависит от одного параметра дальнего порядка η_{14} , соответствующего звезде { \mathbf{k}_{14} }. Согласно расчету, эта функция имеет вид

$$n(x_{\rm I}, y_{\rm I}, z_{\rm I}) = y + \frac{\eta_{14}}{2} \cos \pi (x_{\rm I} + y_{\rm I} - 2z_{\rm I}), \quad (3)$$

где $y \leq 0.5$ — относительное содержание углерода в карбиде β' -W₂C (WC_y); $x_{\rm I}$, $y_{\rm I}$, $z_{\rm I}$ — координаты узлов **r** неметаллической подрешетки базисной неупорядоченной гексагональной фазы. Функция (3) на

817

узлах, относящихся к разным позициям неметаллической подрешетки орторомбической сверхструктуры β' -W₂C, принимает два значения (табл. 1). Эти значения — степени заполнения узлов атомами углерода или, что то же самое, вероятности обнаружения атомов углерода на узлах, находящихся в разных кристаллографических позициях.

Точечная группа симметрии mmm (D_{2h}) орторомбического карбида β' -W₂C включает 8 элементов симметрии H_1 , H_4 , H_7 , H_9 , H_{13} , H_{16} , H_{19} и H_{21} , а в точечную группу $6/mmm~(D_{6h})$ базисной неупорядоченной фазы *β*-W₂C входят 24 элемента H_1, \ldots, H_{24} [1, 2, 20], поэтому поворотное снижение симметрии равно 3. Понижение трансляционной симметрии равно отношению объемов элементарных ячеек упорядоченной и неупорядоченной фаз и в переходе от неупорядоченного карбида β -W₂C к орторомбическому карбиду β' -W₂C равно 4. Общее понижение симметрии есть произведение поворотного и трансляционного понижений симметрии. В переходе *β*-W₂C (пространственная группа $P6_3/mmc) \rightarrow \beta'-W_2C$ (пространственная группа *Pbcn*) общее понижение симметрии $N = n(G)/n(G_D) = 12$, где n(G) и $n(G_D)$ — порядок пространственных групп G и GD высокосимметрич-

⁴ ЖЭТФ, вып. 4 (10)

Атом	Позиция и кратность	Атомн базисно	ње координ й неупорядс структуре	аты в)ченной	Атомные координаты в идеальной упорядоченной структуре			Значения функции распределения $n(x_{\rm I}, y_{\rm I}, z_{\rm I})$
		$x_{\rm I} = x/a_{L'3}$	$y_{\rm I} = y/b_{L'3}$	$z_{\rm I} = z/c_{L'3}$	$x/a_{orthorh}$	$y/b_{orthorh}$	$z/c_{orthorh}$	
С1 (вакансия)	4(c)	1	0	0	0	7/8	1/4	$n_1 = y - \eta_{14}/2$
C2	4(c)	0	0	0	0	3/8	1/4	$n_2 = y + \eta_{14}/2$
W	8(d)	-2/3	-1/3	1/4	1/4	1/8	1/12	

Орторомбическая (тип ζ-Fe₂N, пространственная группа №60 — $Pbcn~(D^{14}_{2h})$) упорядоченная фаза Таблица 1. $\beta' - W_2 C (\zeta - W_2 C), Z = 4: a_{orthorh} = \langle 001 \rangle_{L'3}, b_{orthorh} = 2 \langle 100 \rangle_{L'3}, c_{orthorh} = \langle 120 \rangle_{L'3}$

Рис.4. Положение элементарной ячейки ромбоэдрической (пространственная группа $P\bar{3}1m$) упорядоченной фазы β'' -W₂C (α -W₂C) типа C6 в базисной решетке со структурой L'3:1-атомы вольфрама, 2 — атомы углерода, 3 — вакантные узлы неметаллической подрешетки

ной неупорядоченной и низкосимметричной упорядоченной фаз.

Векторы трансляции элементарной ячейки ромбоэдрической (пространственная группа $P\bar{3}m1$) фазы β'' -W₂C со структурой типа C6 совпадают с векторами трансляции элементарной ячейки неупорядоченной гексагональной фазы (рис. 4), поэтому объем элементарной ячейки ромбоэдрической фазы $V_{C6} = (\sqrt{3}/2)a^2c$ совпадает с объемом элементарной

ячейки неупорядоченного карбида β-W₂C. В идеальном случае в фазе β'' -W₂C два атома W находятся в позициях 2(d) с координатами $(1/3 \ 2/3 \ z)$ и $(2/3 \ 1/3 \ -z)$, где z = 0.25, атом C занимает позицию 1(a) с координатами (000), а позиция 1(b) с координатами (001/2) является вакантной. Из сравнения с неупорядоченным карбидом β -W₂C (рис. 1) ясно, что в результате ромбоэдрического упорядочения позиции 2(a), статистически наполовину занятые атомами С, расщепляются на позиции 1(a) и 1(b), одна из которых занята атомом углерода, а другая вакантна.

По расчету фаза β'' -W₂C образуется по каналу перехода беспорядок-порядок, включающему луч $\mathbf{k}_{17}^{(1)} = \mathbf{b}_3/2$ звезды $\{\mathbf{k}_{17}\}$. В соответствии с этим функция распределения атомов углерода на узлах **г** неметаллической подрешетки упорядоченной ромбоэдрической фазы β'' -W₂C (WC_y) с любой степенью порядка имеет вид

$$n(x_{\rm I}, y_{\rm I}, z_{\rm I}) = y + (\eta_{17}/2) \cos 2\pi z_{\rm I} \tag{4}$$

и зависит от одного параметра дальнего порядка η_{17} . Значения функции распределения (4) на узлах неметаллической подрешетки ромбоэдрической сверхструктуры даны в табл. 2.

Точечная группа симметрии $\bar{3}m$ (D_{3d}) ромбоэдрического карбида β'' -W₂C включает 12 элементов симметрии H_1 , H_3 , H_5 , H_8 , H_{10} , H_{12} , H_{13} , H_{15} , H_{17} , H_{20}, H_{22} и H_{24} [1, 2, 20] из 24 элементов гексагональной группы 6/mmm, поэтому поворотное снижение симметрии равно 2. Поскольку объем элементарной ячейки при переходе из неупорядоченного состояния в упорядоченное не меняется, понижение трансляционной симметрии равно 1, а общее понижение симметрии в превращении β-W₂C (пространствен-

Атом	Позиция и кратность	Атомныє упор	цеальной гуре	Значения функции распределения $n(x_1, y_1, z_1)$	
		$x/a_{C6} \equiv x/a_{L'3}$	$n(x_{\mathrm{I}},y_{\mathrm{I}},z_{\mathrm{I}})$		
С1 (вакансия)	1(b)	0	0	1/2	$n_1 = y - \eta_{17}/2$
C2	1(a)	0	0	0	$n_2 = y + \eta_{17}/2$
W	2(d)	1/3	2/3	1/4	

1

Таблица 2. Ромбоэдрическая (тип C6 (анти-Cdl₂), пространственная группа № 164 — $P\bar{3}m1$ (D^3_{3d})) упорядоченная фаза β'' -W₂C, Z = 1: $a_{C6} = \langle 100 \rangle_{L'3}$, $b_{C6} = \langle 010 \rangle_{L'3}$, $c_{C6} = \langle 001 \rangle_{L'3}$

ная группа $P6_3/mmc$) $\rightarrow \beta''$ -W₂C (пространственная группа $P\bar{3}m1$) равно 2.

Тригональная (пространственная группа $P\bar{3}1m$) фаза ε -W₂C имеет элементарную ячейку (рис. 5) с векторами трансляции $\mathbf{a}_{\varepsilon} = [1-10]_{L'3}$, $\mathbf{b}_{\varepsilon} = [120]_{L'3}$, $\mathbf{c}_{\varepsilon} = [001]_{L'3}$ и объемом $V_{\varepsilon} = (3\sqrt{3}/2)a^2c$. В идеальной тригональной сверхструктуре, в которой атомы W занимают позиции 6(k) с координатами $(1/3\ 0\ 1/4)$, атомы C занимают узлы 1(a) с координатами $(0\ 0\ 0)$ и 2(d) с координатами $(1/3\ 2/3\ 1/2)$, тогда как узлы 1(b) с координатами $(0\ 0\ 1/2)$ и узлы 2(c) с координатами $(1/3\ 2/3\ 0)$ вакантны.

Расчет сверхструктурных векторов обратной решетки тригональной фазы є-W₂C и их трансляция показали, что в первой зоне Бриллюэна неупорядоченной неметаллической гексагональной подрешетки находятся три неэквивалентных сверхструктурных вектора. Первый из них соответствует лучу $\mathbf{k}_{17}^{(1)} = \mathbf{b}_3/2$ однолучевой лифшицевской звезды $\{\mathbf{k}_{17}\}$, а два других — лучам $\mathbf{k}_{15}^{(1)} = (\mathbf{b}_1 + \mathbf{b}_2)/3 + \mathbf{b}_3/2$ и $\mathbf{k}_{15}^{(2)} = -\mathbf{k}_{15}^{(1)}$ двухлучевой лифшицевской звезды $\{k_{15}\}$. Таким образом, канал перехода беспорядок-порядок, связанный с образованием тригональной упорядоченной фазы *ε*-W₂C, включает три сверхструктурных вектора $\mathbf{k}_{15}^{(1)}, \ \mathbf{k}_{15}^{(2)}$ и $\mathbf{k}_{17}^{(1)}$. Наличие в канале перехода лучей только лифшицевских звезд означает, что образование тригональной сверхструктуры удовлетворяет критерию Ландау для фазовых переходов второго рода. Это согласуется с экспериментальными данными [13], по которым превращение беспорядок-порядок β -W₂C $\leftrightarrow \varepsilon$ -W₂C является переходом второго рода. Функция распределения атомов углерода в тригональной фазе є-W₂C_{y'} $(WC_y, y \le 0.5)$ имеет вид

$$n(x_{\rm I}, y_{\rm I}, z_{\rm I}) = y - \frac{\eta_{17}}{6} \cos 2\pi z_{\rm I} + \frac{2\eta_{15}}{3} \cos \left[\frac{2\pi}{3}(x_{\rm I} + y_{\rm I} + 3z_{\rm I})\right].$$
 (5)

Найденная функция зависит от двух параметров дальнего порядка η_{17} и η_{15} , соответствующих лифшицевским звездам $\{\mathbf{k}_{17}\}$ и $\{\mathbf{k}_{15}\}$, и на узлах неметаллической подрешетки тригональной фазы ε -W₂C принимает четыре разных значения (табл. 3).

Луч $\mathbf{k}_{17}^{(1)}$ звезды $\{\mathbf{k}_{17}\}$ и параметр дальнего порядка η_{17} отвечают за порядок чередования неметаллических атомных плоскостей $(00z)_{\varepsilon}$, перпендикулярных оси *с* и различающихся степенями заполнения атомами углерода С: в идеальной упорядоченной фазе ε -W₂C чередуются плоскости $(00z)_{\varepsilon}$ со степенями заполнения 1/3 (при z = 0) и 2/3 (при z = 1/2) (рис. 5). Лучи $\mathbf{k}_{15}^{(1)}$ и $\mathbf{k}_{15}^{(2)}$ звезды $\{\mathbf{k}_{15}\}$ и параметр дальнего порядка η_{15} отвечают за размещение атомов углерода и вакансий в неметаллических плоскостях $(00z)_{\varepsilon}$.

Точечная группа симметрии $\bar{3}m$ тригонального карбида ε -W₂C включает 12 элементов симметрии, поэтому поворотное снижение симметрии равно 2. Понижение трансляционной симметрии при переходе от неупорядоченного карбида β -W₂C к тригональному карбиду ε -W₂C равно 3. Общее понижение симметрии в переходе β -W₂C (пространственная группа $P6_3/mmc$) $\rightarrow \varepsilon$ -W₂C (пространственная группа $P\bar{3}1m$) равно 6.

Изменение симметрии при образовании возможных орторомбической и ромбоэдрической фаз таково, что предложенная в работах [7, 8] последовательность превращений «гексагональная неупорядоченная фаза β -W₂C \rightarrow орторомбическая упорядоченная фаза β' -W₂C \rightarrow ромбоэдрическая упорядоченная фаза β'' -W₂C \rightarrow физически недопустима, так как

Рис. 5. Положение элементарной ячейки тригональной (пространственная группа $P\bar{3}1m$) упорядоченной фазы ε -W₂C типа ε -Fe₂N в базисной решетке со структурой L'3: 1 – атомы вольфрама, 2 – атомы углерода, 3 – вакантные узлы неметаллической подрешетки

Таблица 3. Идеальная тригональная (тип ε -Fe₂N, пространственная группа № 162 — $P\bar{3}1m$ (D^1_{3d})) упорядоченная фаза ε -W₂C, Z = 3: $a_{\varepsilon} = \langle 1 - 10 \rangle_{L'3}$, $b_{\varepsilon} = \langle 120 \rangle_{L'3}$, $c_{\varepsilon} = \langle 001 \rangle_{L'3}$

Атом	Позиция и кратность	Атомные ко неупоряд	Атомные координаты в идеальной упорядоченной структуре			Значения функции распределения $n(x_{\mathrm{I}},y_{\mathrm{I}},z_{\mathrm{I}})$		
		$x_{\mathrm{I}} = x/a_{L'3}$	$y_{\mathrm{I}} = y/b_{L'3}$	$z_{\rm I} = z/c_{L'3}$	x/a_{ε}	y/b_{ε}	z/c_{ε}	
С1 (вакансия)	1(b)	0	0	1/2	0	0	1/2	$n_1 = y + \eta_{17}/6 - 2\eta_{15}/3$
С2 (вакансия)	2(c)	1	1	0	1/3	2/3	0	$n_2 = y - \eta_{17}/6 - \eta_{15}/3$
C3	1(a)	0	0	0	0	0	0	$n_3 = y - \eta_{17}/6 + 2\eta_{15}/3$
C4	2(d)	1	1	1/2	1/3	2/3	1/2	$n_4 = y + \eta_{17}/6 + \eta_{15}/3$
W	6(k)	1/3	-1/3	1/4	1/3	0	1/4	

при переходе β' -W₂C $\rightarrow \beta''$ -W₂C вместо понижения будет происходить повышение симметрии.

Если на разных этапах упорядочения карбида W_2C образуются все три сверхструктуры, то симметрийный анализ позволяет предложить единственную возможную последовательность фазовых превращений, которые происходят при понижении температуры и не противоречат изменению симметрии: гексагональная (пространственная группа $P6_3/mmc$) неупорядоченная фаза β -W₂C \rightarrow ромбоэдрическая (пространственная группа $P\bar{3}m1$) упорядоченная фаза β'' -W₂C \rightarrow тригональная (пространственная группа $P\bar{3}1m$) упорядоченная фаза ε -W₂C \rightarrow орторомбическая (пространственная группа Pbcn) упорядоченная фаза β' -W₂C. В этом случае симметрия снижается в 2 раза при переходе от гексагонального к ромбоэдрическому карбиду, затем в 3 раза при переходе от ромбоэдрического к тригональному карбиду и в 2 раза при переходе от тригонального к орторомбическому карбиду. Если экспериментально какая-либо упорядоченная фаза не обнаруживается, то последовательность превращений и без этой фазы остается физически верной.

С учетом выполненного анализа рассмотрим результаты экспериментального изучения структуры низшего карбида вольфрама W₂C.

4. РЕАЛЬНАЯ СТРУКТУРА УПОРЯДОЧЕННОЙ ФАЗЫ НИЗШЕГО КАРБИДА ВОЛЬФРАМА

На рентгенограмме порошка, полученного плазмохимическим синтезом, присутствуют дифракционные отражения трех фаз: низшего W₂C и высшего WC карбидов вольфрама, а также вольфрама W. Все отражения сильно уширены вследствие малого размера частиц синтезированного порошка. Средний размер областей когерентного рассеяния, оцененный по величине уширения, равен 55 ± 10 нм. Минимизация рентгеновского спектра показала, что нанокристаллический образец содержит около 75 вес. % W₂C (пространственная группа *P*6₃/*mmc*), около 15 вес.% W и примерно 10 вес.% WC; фактор $R_I = 0.135$. Попытка учесть наличие упорядоченных фаз (ε -W₂C, β' -W₂C или β'' -W₂C) не привела к улучшению сходимости из-за большого уширения дифракционных отражений.

По результатам химического анализа в полученном нанопорошке общее содержание углерода равно примерно 6.2 вес. %, в том числе содержание свободного аморфного углерода составляет примерно 3.6 вес. %. С учетом данных рентгеновской дифракции и химического анализа нанокристаллический порошок содержал около 72.5 вес. % W₂C, 14.5 вес. % W, 9.5 вес. % WC и 3.5 вес. % C.

Нанокристаллический порошок, на три четверти состоящий из низшего карбида вольфрама W_2C , изучали методом структурной нейтронографии с использованием нейтронов с длинами волн 0.1532 нм и 0.1805 нм. Съемку на нейтронах с большей длиной волны проводили для более детального анализа малоугловой области рассеяния, в которой могут присутствовать отражения, характерные для той или иной упорядоченной фазы. Нейтронограммы нанокристаллического порошка показаны на рис. 6.

Съемка нейтронограмм нанокристаллического порошка в излучении $\lambda = 0.1532$ нм охва-

Рис.б. Нейтронограммы ($\lambda = 0.1532$ нм и $\lambda = 0.1805$ нм) нанокристаллического порошка, содержащего неупорядоченный низший карбид вольфрама W₂C, упорядоченный тригональный (пространственная группа $P\bar{3}1m$) карбид ε -W₂C, вольфрам и высший карбид вольфрама WC. В нижней части рисунка нейтронограммы показаны как функции межплоскостного расстояния $d = \lambda/2 \sin \theta$. На вставке выделен общий для обеих нейтронограмм интервал 0.5 нм > d > 0.08 нм. В области $2\theta < 33^{\circ}$ на нейтронограммах видно сверхструктурное отражение $(011)_{\varepsilon}$ с $d \approx 0.3304$ нм, характерное для упорядоченного тригонального карбида ε -W₂C

тила интервал межплоскостных расстояний $0.9\,$ нм $\geq~d~\geq~0.09\,$ нм, а съемка в длинноволновом излучении $\lambda = 0.1805$ нм позволила охватить более широкий интервал 1.7 нм $\geq d \geq 0.1$ нм. В области 2θ < 32° на обеих нейтронограммах хорошо видно сверхструктурное отражение (011) с с $d \approx 0.3304$ нм, характерное для упорядоченного карбида ε -W₂C (рис. 6). В целом нейтронограммы содержат одинаковый набор дифракционных отражений четырех фаз: неупорядоченного низшего гексагонального (пространственная группа $P6_3/mmc$) карбида вольфрама W_2C , упорядоченного тригонального (пространственная группа $P\bar{3}1m$) карбида ε -W₂C, металлического вольфрама

W с ОЦК-структурой (пространственная группа $Im\bar{3}m$) и гексагонального (пространственная группа $P\bar{6}m2$) монокарбида WC. Отражений орторомбического (пространственная группа Pbcn) или ромбоэдрического (пространственная группа $P\bar{3}m1$) упорядоченных карбидов β' -W₂C и β'' -W₂C не обнаружено.

Для более детального анализа структуры наблюдаемых фаз использовалась нейтронограмма, снятая с большим накоплением сигнала в излучении $\lambda = 0.1532$ нм. Согласно расчету, содержание найденных кристаллических фаз в нанокристаллическом порошке составляет около 67.5 вес.% W₂C, 9.8 вес. % ε -W₂C, 14.5 вес. % W и 8.2 вес. % WC. С учетом наличия в нанопорошке свободного углерода содержания фаз равны примерно 65.0 вес.% W₂C, 9.5 вес.% ε -W₂C, 14.0 вес.% W, 8.0 вес.% WC и 3.5 вес. % С, что согласуется с данными, полученными минимизацией рентгенограммы этого же порошка. Сравнительно малое (около 10 вес.%) содержание в нанокристаллическом порошке упорядоченного карбида ε -W₂C и большое (около 65.0 вес.%) содержание неупорядоченного карбида W₂C обусловлены тем, что нанопорошок закален от высокой температуры — примерно 2600 К.

Согласно уточнению нейтронограммы с помощью программы GSAS [18], периоды элементарной ячейки монокарбида вольфрама WC равны a = 0.2893(8) нм и c = 0.2818(9) нм, а период элементарной ячейки металлического вольфрама равен 0.3155(2) нм. Что касается низшего карбида вольфрама W₂C, то для неупорядоченной фазы $a_{L'3} = 0.29947(6)$ нм и $c_{L'3} = 0.4728(1)$ нм; этим значениям периодов приблизительно соответствует состав WC_{0.46}. Для упорядоченной фазы ε -W₂C периоды и объем элементарной ячейки равны $a_{\varepsilon} = 0.5152(6)$ нм, $c_{\varepsilon} = 0.4681(2)$ нм, $V_{\varepsilon} = 107.568 \cdot 10^{-3}$ нм³. Таким образом, периоды a_{ε} и c_{ε} немного меньше, чем теоретические значения этих периодов $a_{\varepsilon \ theor} = a_{L'3}\sqrt{3}$ и $c_{\varepsilon \ theor} = c_{L'3}$ для идеальной упорядоченной фазы. При минимизации нейтронограммы с учетом упорядоченной фазы ε-W₂C с фиксированными степенями заполнения позиций, равными степеням заполнения в идеальной тригональной сверхструктуре, удалось достичь хорошей сходимости рассчитанного спектра с экспериментальным: фактор $R_I = 0.052$. Из-за многофазности образца, большого уширения дифракционных отражений и малого содержания упорядоченного карбида є-W₂C варьирование степеней заполнения позиций в тригональной сверхструктуре не привело к значимому улучшению сходимости расчетной и

Рис.7. Экспериментальная (+) и расчетная (сплошная линия) нейтронограммы ($\lambda = 0.1532$ нм) низшего карбида W₂C, полученного спеканием порошков W и C при температуре 2070 K в течение 10 ч. Длинные и короткие штрихи соответствуют отражениям упорядоченной фазы ε -W₂C и вольфрама W. Внизу показана разница ($I_{obs} - I_{calc}$) между экспериментальной и расчетной нейтронограммами

экспериментальной нейтронограмм.

Для выяснения температурного интервала существования низшего карбида вольфрама W_2C и упорядоченной фазы ε - W_2C образцы низшего карбида дополнительно синтезировали твердофазным спеканием порошков W и C при температурах 2070 K и 1370 K. Нейтронограмма образца, полученного при температуре 2070 K в течение 10 ч, показана на рис. 7.

Нейтронограмма (рис. 7) содержит набор дифракционных отражений, характерный для упорядоченной тригональной (пространственная группа $P\bar{3}1m$) фазы ε -W₂C; кроме того, присутствуют отражения кубического (пространственная группа $Im\bar{3}m$) вольфрама с периодом a = 0.31651(1) нм. Лучшее совпадение экспериментального и теоретического спектров ($R_p = 0.0353, \ \omega R_p = 0.0448,$ $R_I = 0.0258)$ было достигнуто при учете разного заполнения позиций неметаллической подрешетки атомами С (табл. 4), причем степень заполнения позиций 1(a) и 2(d) оказалась меньше 1, тогда как небольшое количество атомов углерода находилось на позициях 1(b) и 2(c), которые в идеальной упорядоченной фазе полностью вакантны. Отличие заполнения позиций неметаллической подрешетки от идеальных значений 1 и 0 обусловлено отклонением состава изученного упорядоченного карбида от стехиометрического состава W₂C и тем, что степень дальнего по-

Таблица 4.	Реальная структура тригонального ((тип ε -Fe ₂ N,	пространственная группа	№ 162 — <i>P</i> 31 <i>m</i> (<i>I</i>	$D_{3d}^{1}))$
	упорядоченного карбида $arepsilon$ -V	W_2C_y (Z = 3	3) до и после отжига		

		Ka	- W_2C_y , получ	енный	Тот же карбид ε -W $_2$ С $_y$ после					
Атом		спеканием при $T = 2070$ К				отжига при $T = 1370 \; { m K}$				
	Позиция и	1	з течен	ие 10 ч: W ₂ C	0.953,	в течение 35 ч: $W_2C_{1.00}$,				
	кратность	$a_{\varepsilon} = b_{\varepsilon} = 0.51813(3)$ нм,				$a_{\varepsilon} = b_{\varepsilon} = 0.51880(2)$ нм,				
		$c_{\varepsilon} = 0.47283(8)$ нм,				$c_{\varepsilon} = 0.47273(5)$ нм,				
		$V_arepsilon = 109.932 \cdot 10^{-3} ~ \mathrm{Hm}^3$				$V_{\varepsilon} = 110.192 \cdot 10^{-3} _{\mathrm{HM}}{}^{3}$				
		Атомные координаты			Степень	Атом	иные координаты Степени			
		в упорядоченной структуре			заполнения	в упорядоченной структуре заполнен.				
		x/a_{ε}	y/b_{ε}	z/c_{ε}		x/a_{ε}	y/b_{ε}	z/c_{ε}		
С1 (вакансия)	1(b)	0	0	1/2	0.0175	0	0	1/2	0	
С2 (вакансия)	2(c)	1/3	2/3	0	0.2656	1/3	2/3	0	0.2316	
C3	1(a)	0	0	0	0.7983	0	0	0	0.7253	
C4	2(d)	1/3	2/3	1/2	0.7565	1/3	2/3	1/2	0.9093	
W	6(k)	0.328(1)	0	0.253(5)	1	0.331(7)	0	0.252(4)	1	

рядка в изученном карбиде меньше максимальной.

Действительно, относительное содержание углерода в упорядоченной тригональной фазе равно $y = (n_1 + 2n_2 + n_3 + 2n_4)/6$, где n_1 , n_2 , n_3 и n_4 — степени заполнения узлов неметаллической подрешетки, находящихся соответственно в позициях 1(b), 2(c), 1(a) и 2(d) (см. табл. 3 и 4). С учетом заполнения позиций (табл. 4) исследованная упорядоченная тригональная фаза ε -W₂C имеет состав W₂C_{0.953} (WC_{0.48}). Величину параметров дальнего порядка η_{17} и η_{15} можно определить по найденным степеням заполнения с учетом значений, которые принимает функция распределения, описывающая тригональную сверхструктуру ε -W₂C:

$$\eta_{15} = (n_3 + n_4 - n_1 - n_2)/2, \eta_{17} = n_1 + 2n_4 - 2n_2 - n_3.$$
(6)

Согласно выполненной оценке параметры дальнего порядка в упорядоченном тригональном карбиде ε -W₂C_{0.953} (WC_{0.48}), полученном примерно при температуре 2070 K, равны $\eta_{15} = 0.636$ и $\eta_{17} = 0.201$. Периоды и объем элементарной ячейки этого карбида ε -W₂C равны $a_{\varepsilon} = b_{\varepsilon} = 0.51813$ нм, $c_{\varepsilon} = 0.47284$ нм и $V_{\varepsilon} = 109.932 \cdot 10^{-3}$ нм³, т. е. больше, чем периоды a_{ε} и c_{ε} и объем элементарной ячейки этой же упорядоченной фазы в нанокристаллическом порошке.

Образец W₂C, синтезированный при 2070 К в те-

Рис.8. Экспериментальная (+) и расчетная (сплошная линия) нейтронограммы ($\lambda = 0.1532$ нм) низшего карбида W₂C после дополнительного отжига при 1370 К в течение 35 ч. Длинные и короткие штрихи соответствуют отражениям упорядоченной фазы ε -W₂C и вольфрама. Внизу показана разница ($I_{obs} - I_{calc}$) между экспериментальной и расчетной нейтронограммами

чение 10 ч, был дополнительно отожжен при температуре 1370 К в течение 35 ч. На нейтронограмме отожженного образца (рис. 8) наблюдается тот же набор дифракционных отражений только двух фаз ε -W₂C и W, что и на нейтронограмме образца до отжига (см. рис. 7). Отожженный и синтезированный образцы в пределах ошибок расчета имеют одинаковый фазовый состав и содержат примерно 85 ± 2 вес.% ε -W₂C и 15 ± 2 вес.% W. Уточнение структуры упорядоченной фазы в отожженном образце показало, что лучшее совпадение экспериментального и теоретического спектров $(R_p = 0.0299, \, \omega R_p = 0.0390, \, R_I = 0.0252)$ достигается при уменьшении заполнения атомами С вакансионных позиций 1(b) и 2(c) и росте заполнения позиций 2(d) (табл. 4). В результате отжига состав упорядоченной фазы изменился от ε -W₂C_{0.953} (WC_{0.48}) до ε -W₂C_{1.00} (WC_{0.50}). После отжига параметры дальнего порядка в тригональном карбиде ε -W₂C_{1.00} увеличились до $\eta_{15} = 0.702$ и $\eta_{17} = 0.630$. Периоды и объем элементарной ячейки отожженного карбида ε -W₂C немного больше, чем периоды и объем элементарной ячейки этой же упорядоченной фазы до отжига (см. табл. 4). Увеличение периодов обусловлено изменением содержания углерода в упорядоченном тригональном карбиде от $WC_{0.48}$ до $WC_{0.50}$.

В целом рентгеновское и нейтронографическое исследования фазового состава и структуры показали, что образец W₂C, синтезированный при $T \approx 2070$ K, и тот же образец, дополнительно отожженный в течение 35 ч при температуре 1370 К, содержат только упорядоченный тригональный карбид ε -W₂C и вольфрам W (см. рис. 7, 8). Содержание этих фаз в образце до и после отжига почти одинаково, но после отжига степень порядка в тригональном карбиде ε -W₂C выросла. Отсутствие на нейтронограмме отожженного образца отражений орторомбической (пространственная группа Pbcn) фазы β' -W₂C согласуется с результатами работ [11, 13]. В них показано, что орторомбическая фаза β' -W₂C со структурой ζ -Fe₂N наблюдается в образцах W₂C только после отжига при T < 1300 К.

Полная ширина на половине высоты (FWHM) дифракционных отражений на рентгенограммах и нейтронограммах спеченных образцов низшего карбида вольфрама не превышает инструментальной функции углового разрешения FWHM_R дифрактометров. Отсутствие уширения означает, что размер доменов упорядоченной фазы ε -W₂C в спеченных образцах превышает 200–300 нм [22].

Как было отмечено, в упорядоченном тригональном карбиде перпендикулярно направлению $[001]_{\varepsilon}$ чередуются неметаллические атомные плоскости $(00z)_{\varepsilon}$ с z = 0 и z = 1/2, различающиеся степенью заполнения атомами углерода (см. рис. 5). Вероятности обнаружения атома углерода в этих плоскостях равны $n_{z=0} = (2n_2 + n_3)/3$ и $n_{z=1/2} = (n_1 + 2n_4)/3$. В неупорядоченной базисной гексагональной фазе β -W₂C эти вероятности одинаковы и равны 1/2,

а в идеальной упорядоченной фазе ε -W₂C имеем $n_{z=0} = 1/3$, $n_{z=1/2} = 2/3$. В карбиде ε -W₂C_{0.953}, синтезированном при температуре около 2070 K, вероятности составляют $n_{z=0} = 0.443$ и $n_{z=1/2} = 0.510$. После дополнительного отжига в течение 35 ч этого карбида при температуре около 1370 K параметры дальнего порядка η_{15} и η_{17} увеличились, а вероятности $n_{z=0}$ и $n_{z=1/2}$ достигли значений 0.396 и 0.606, близких к значениям $n_{z=0}$ и $n_{z=1/2}$ в идеальной упорядоченной фазе ε -W₂C. Из сравнения величин $n_{z=0}$ и $n_{z=1/2}$ следует, что при тригональном упорядочении низшего карбида вольфрама происходит перераспределение атомов углерода между соседними неметаллическими атомными плоскостями $(00z)_{\varepsilon}$ с z = 0 н z = 1/2.

Для рассмотренных упорядоченных фаз и соответствующих им функций распределения зависимость максимальной величины параметра дальнего порядка от состава нестехиометрического карбида $W_2C_{y'} \equiv WC_y$, где $y \leq 0.5$, имеет вид

$$\eta^{max}(y) = \begin{cases} 2(1-y), & \text{если} \quad y \ge 0.5\\ 2y, & \text{если} \quad y < 0.5. \end{cases}$$
(7)

Поскольку зависимость максимального значения любого параметра дальнего порядка от состава карбида WC_y , упорядочивающегося по типу W_2C , определяется уравнением (7), а минимальная величина параметров порядка равна нулю, для любого параметра порядка, описывающего рассмотренные сверхструктуры, выполняется условие

$$0 \le \eta_s \le m^*, \tag{8}$$

где $m^* = 2(1 - y)$, если $y \ge 0.5$, и $m^* = 2y$, если y < 0.5.

Условие (8) однозначно определяет одномерные области допустимых значений параметров порядка сверхструктур, которые описываются одним параметром η_s . Тригональная фаза ε -W₂C описывается функцией распределения (5), зависящей от двух параметров дальнего порядка η_{17} и η_{15} . В случае сверхструктур, описываемых несколькими параметрами дальнего порядка, нужно дополнительно учитывать, что значения функции распределения всегда лежат между 0 и 1. С учетом значений функции распределения (табл. 3) и отмеченных ограничений область допустимых значений параметров дальнего порядка $\eta_{17}(y)$ и $\eta_{15}(y)$ для тригональной (пространственная группа $P\bar{3}1m$) сверхструктуры ε -W₂C определяется условиями

Рис.9. Двумерная область допустимых значений параметров дальнего порядка для тригонального (пространственная группа $P\bar{3}1m$) упорядоченного карбида вольфрама ε -W₂C

$$-m^* \le -\eta_{17}(y) + 4\eta_{15}(y) \le 3m^*, 0 < \eta_{17}(y) < m^*.$$
(9)

Область допустимых значений параметров η для тригональной упорядоченной фазы ε -W₂C показана на рис. 9.

5. ЗАКЛЮЧЕНИЕ

Проведенный эксперимент показал, что низший карбид вольфрама W₂C термодинамически стабилен от температуры плавления $T \approx 3050$ K до T = 1370 K и в этой области температур не испытывает распада. В интервале температур примерно от 2700 K до 1370 K единственной упорядоченной фазой низшего карбида вольфрама W₂C является тригональная (пространственная группа $P\bar{3}1m$) фаза ε -W₂C. Следов упорядоченной орторомбической (пространственная группа Pbcn) фазы β' -W₂C даже после длительного отжига при T = 1370 K не обнаружено.

Таким образом, экспериментально и теоретически реализуется следующая последовательность фазовых превращений: гексагональная (пространственная группа $P6_3/mmc$) неупорядоченная фаза β -W₂C \rightarrow тригональная (пространственная группа $P\bar{3}1m$) упорядоченная фаза ε -W₂C. Возможно, что при температуре ниже 1370 К происходит переход от тригональной фазы ε -W₂C к орторомбической

(пространственная группа Pbcn) фазе β' -W₂C, что не противоречит теоретически допустимой последовательности фазовых превращений. Экспериментально о таком превращении свидетельствуют результаты работ [11, 13].

Авторы благодарят И. Ф. Бергера за помощь в нейтронографических измерениях. Работа выполнена при финансовой поддержке РФФИ (гранты №№ 06-03-32047а, 07-03-96066а) и Фонда содействия отечественной науке.

ЛИТЕРАТУРА

- A. I. Gusev, A. A. Rempel, and A. A. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides, and Oxides, Springer, Berlin-Heidelberg-New York-London (2001).
- А. И. Гусев, Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле, Физматлит, Москва (2007).
- A. I. Gusev and A. A. Rempel, Phys. Stat. Sol.(a) 135, 15 (1993).
- 4. А. И. Гусев, УФН 170, 3 (2000).
- **5**. А. С. Курлов, А. И. Гусев, Успехи химии **75**, 687 (2006).
- K. Yvon, H. Nowotny, and F. Benesovsky, Monatsh. Chemie 99, 726 (1968).
- E. Rudy and S. Windisch, J. Amer. Ceram. Soc. 50, 272 (1967).
- E. Rudy and J. R. Hoffman, Planseeber. Pulvermet. 15, 174 (1967).
- 9. Л. Н. Буторина, З. Г. Пинскер, Кристаллография 5, 585 (1960).
- В. С. Телегус, Е. И. Гладышевский, П. И. Крипякевич, Кристаллография 12, 936 (1967).
- В. С. Телегус, Ю. Б. Кузьма, М. А. Марко, Порошк. металлургия № 11, 56 (1971).
- J. Dubois, T. Epicier, C. Esnouf, G. Fantozzi, and P. Convert, Acta Metallurg. 36, 1891 (1988).
- T. Epicier, J. Dubois, C. Esnouf, G. Fantozzi, and P. Convert, Acta Metallurg. 36, 1903 (1988).
- 14. A. Harsta, S. Rundqvist, and J. O. Thomas, Acta Chem. Scand. A 32, 891 (1978).

- B. Lönnberg, T. Lundström, and R. Tellgren, J. Less-Common Metals 120, 239 (1986).
- 16. T. Epicier, J. Dubois, C. Esnouf, and G. Fantozzi, Compt. Rend. Acad. Sci. Paris. Ser. II 297, 215 (1983).
- 17. В. З. Кублий, Т. Я. Великанова, Порошк. металлургия № 11/12, 101 (2004).
- 18. A. C. Larson and R. B. von Dreele, Los Alamos National Laboratory Report LAUR 86-748. Los Alamos (2004).

- B. E. Warren, B. L. Averbach, and B. W. Roberts, J. Appl. Phys. 22, 1493 (1951).
- **20.** О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- 21. А. Г. Хачатурян, Теория фазовых превращений и структура твердых растворов, Наука, Москва (1974).
- 22. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials, Cambridge Intern. Science Publ., Cambridge (2004), p. 149.