
ÆÝÒÔ, 2007, òîì 132, âûï. 3 (9), ñòð. 746�755 

 2007
POLYMER DYNAMICS IN CHAOTIC FLOWSWITH A STRONG SHEAR COMPONENTK. S. Turitsyn *Landau Institute for Theoreti
al Physi
s119334, Mos
ow, RussiaTheoreti
al Division, LANL, Los Alamos, NM 87545, USARe
eived January 31, 2007We 
onsider the dynami
s of a polymer mole
ule inje
ted in the 
haoti
 �ow with a strong mean shear 
om-ponent. The polymer experien
es aperiodi
 tumbling in su
h �ows. We 
onsider the simpli�ed model of the
haoti
 velo
ity �eld given by the superposition of a steady shear �ow and a large-s
ale isotropi
 short-
orrelatedrandom 
omponent. In the framework of this model, we present a detailed study of the statisti
al properties ofsingle-polymer dynami
s. We obtain the stationary probability distribution fun
tion of the polymer orientation,�nd the distribution of time periods between 
onsequent events of tumbling, and �nd the tails of the polymersize distribution.PACS: 83.80.Rs, 83.50.Ax1. INTRODUCTIONHydrodynami
s and rheology of dilute polymer so-lutions have re
ently attra
ted mu
h theoreti
al andexperimental attention. Adding a small amount ofpolymers to ordinary liquid leads to radi
al 
hangesof liquid properties. One of the most famous e�e
ts ofthis type is the phenomenon of drag redu
tion. Theaddition of few parts per million of long-
hain polymermole
ules produ
es a dramati
 redu
tion in the fri
-tion drag. Although this e�e
t was �rst observed in1949 [1℄, there is still no rigorous theory explaining thephenomenon. A qualitative des
ription was proposedin [2, 3℄, but no quantitative theory is available. An-other spe
ta
ular phenomenon observed in dilute poly-mer solutions is the e�e
t of elasti
 turbulen
e, dis
ov-ered re
ently in [4, 5℄. In this experiment, a 
haoti
�uid motion was observed in the system with a smallReynolds number Re � 1. Obviously, su
h behavior
annot be observed in Newtonian liquids, where the�ow is laminar. Therefore, the 
haoti
 �ow is gener-ated by elasti
 instabilities of the polymer solution.The dynami
s of polymers and possible me
hanismsexplaining the 
haoti
 state were studied in re
ent the-oreti
al works [6�8℄. It was proposed that elasti
 insta-*E-mail: tur�itp.a
.ru

bilities o

ur be
ause of the ba
k-rea
tion of dissolvedpolymers on the �ow. It is therefore important to un-derstand the dynami
s of single polymers in external
haoti
 �ows. Theoreti
al investigation of this problemhas a long history. It was shown in the early 1970s [3, 9℄that a polymer mole
ule in a random �ow experien
esa 
oil�stret
h transition. In relatively weak �ows, themole
ule spends most of the time in the 
oiled state.But when the Lyapunov exponent of the �ow ex
eedsthe inverse polymer relaxation time, the mole
ules be-
ome substantially elongated. With the developmentof novel opti
al methods, a number of high-quality ex-perimental observations fo
using on resolving dynami
sof individual polymers (DNA mole
ules) pla
ed in aninhomogeneous �ow have been reported [10�13℄. Thisallowed a dire
t observation of the 
oil�stret
h transi-tion [14℄.Another important 
ase 
orresponds to shear-like�ows. The dynami
s of polymer mole
ules in su
h �owshave been extensively studied be
ause of the impor-tan
e in appli
ations. For example, su
h a �ow o

urswhenever a polymer passes near the wall. Rheologi-
al properties of dilute polymer solutions are usuallystudied in shear geometries [15℄. Dire
t observation ofthe polymer dynami
s in a regular shear �ow showedthat the polymer experien
es aperiodi
 tumblings [12℄.746
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s in 
haoti
 �ows : : :This behavior is a 
ombined e�e
t of the shear �owand thermal �u
tuations of a mole
ule. The statisti
alproperties of su
h dynami
s have been the subje
t ofgreat attention both experimentally and theoreti
ally[12; 13; 16�19℄.The next important problem is the behavior of poly-mer mole
ules in the �ows where both shear and 
haoti
�ow 
omponents are important. Su
h �ows o

ur inmany experimental situations, su
h as drag redu
tionor elasti
 turbulen
e. Just this situation o

urs whena 
haoti
 or turbulent �ow is generated on top of ashear-like velo
ity. The dynami
s of polymers in su
h�ows have mu
h in 
ommon with the dynami
s of poly-mers pla
ed in statisti
ally isotropi
 
haoti
 �ows or,
onversely, in regular shear �ows. However, there aresome details that are unique to the dis
ussed situation.A general qualitative analysis of su
h dynami
s waspresented in [20℄. In that paper, the authors did notuse any spe
i�
 model of the turbulent �ow but formu-lated some general predi
tions 
on
erning this problem.In the present paper, we justify most of these predi
-tions ab initio in some parti
ular model �ow and alsopresent derivations of some general results that wereskipped in [20℄.In the shear-�ow geometry with a superimposed
haoti
 
omponent, as in the 
ase of isotropi
 random�ows, the polymer experien
es the 
oil�stret
h transi-tion. Below this transition, the polymer spends mostof the time in the 
oiled state, and the e�e
t of the�ow results in algebrai
 tails of the probability distri-bution fun
tion (PDF) of the polymer size [6℄. In thepresen
e of a strong shear 
omponent, these tails be-
ome signi�
antly broadened in 
omparison to isotropi
�ows without mean shear. More generally, it is shownthat the Lyapunov exponent asso
iated with the �owbe
omes parametri
ally large in the presen
e of meanshear. The e�e
t of the Lyapunov exponent in
reaseby a shear �ow is rather surprising, be
ause the sim-ple shear �ow 
annot lead to exponential growth of thepolymer size. Therefore, su
h an in
rease is a 
ombinede�e
t of shear and 
haoti
 
omponents. This e�e
t isdis
ussed in detail in the last se
tion of this arti
le.Above the 
oil�stret
h transition, the polymerspends most of the time in a strongly elongated state.The thermal for
es are then less important than the ef-fe
t of velo
ity gradient and the orientational dynami
sde
ouple from the evolution of the polymer size [20℄. Inthis 
ase, the equation des
ribing the polymer orienta-tion dynami
s formally 
oin
ides with the equation de-rived in [21℄ for thermal �u
tuations of thin solid rodsin a shear �ow. The authors of [21℄ studied the station-ary PDFs of the orientational angles of the solid rod

dire
tion ve
tor. Although the statisti
al properties ofthermal for
es 
an be very di�erent from the statisti
sof 
haoti
 velo
ity gradients, most of the properties re-lated to the stationary angular distribution remain thesame. An interesting e�e
t spe
i�
 to the 
haoti
-�owproblem is the nonuniversal algebrai
 tail of the PDF ofthe o�-plane angle �. This e�e
t was brie�y mentionedin [20℄ and is explained in detail in the present paper.Another extension of [21℄ presented in this paper is re-lated to the statisti
s of tumbling time, i. e., the timebetween 
onsequent �ips of a polymer mole
ule. Ob-viously, this distribution 
annot be expressed throughthe stationary distribution fun
tions and requires ad-ditional analysis.The statisti
al properties of real turbulent �ows or�ows observed in elasti
 turbulen
e experiments arenot known in full detail. Furthermore, there exist nouniversal analyti
al tools for studying the problem inits full s
ale. To make any predi
tions regarding thepolymer dynami
s in su
h �ows, one has to make somesimpli�
ations. In [20℄, the problem was studied undergeneral assumptions regarding the velo
ity statisti
s.This allowed the authors to obtain some mostly quali-tative predi
tions, whi
h are universal (i. e., valid for avery wide range of systems) but la
k pre
ision. In thisarti
le, we follow another way by studying a simpli�ed,but reasonable model of 
haoti
 �ow in detail. Theserigorous results derived ab initio are 
ertainly in a fullagreement with the general predi
tions in [20℄. Re
ent
omputer simulations [17℄ also 
on�rm and extend theresults of the 
urrent paper.In this paper, the external �ow is modeled by thesuperposition of a 
onstant shear 
omponent and a ran-dom 
omponent 
orresponding to a 
haoti
 velo
ity�eld. We assume the random 
omponent to be rela-tively small. In the spirit of 
lassi
 works [22, 23℄, wemodel the 
haoti
 velo
ity part with a Gaussian delta-
orrelated sto
hasti
 �eld. Although su
h models are agreat simpli�
ation of real �ows, re
ent developments[24℄ showed that they 
an be su

essfully applied foranalysis of adve
tion in turbulent �ows. As long asstatisti
al properties of real �ows are unknown, our ap-proa
h is one of the possible ways of modeling singlepolymers in 
haoti
 �ows. In the framework of thisapproa
h, we are able to derive most of the results an-alyti
ally. The results in the present paper 
an form abasis for future studies of more 
ompli
ated problems,su
h as statisti
s of polymer 
onformation in 
haoti
�ows.We list the main results in this paper. First, weobtain an exa
t expression for the probability distri-bution of the polymer orientation ve
tor. We show747
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tion islo
ated in the region of small angles, whi
h 
orrespondto the polymer stret
hed in the shear dire
tion. How-ever, the tails of the PDF are algebrai
, and hen
e the�u
tuations of the polymer dire
tion are anomalouslystrong. Se
ond, we study the statisti
s of time periodsbetween 
onsequent events of polymer tumbling. Weshow that this PDF has an exponential tail at largetumbling times, and two di�erent asymptoti
 regimesin the region of very small times. Finally, for polymersbelow the 
oil�stret
h transition, we obtain the asymp-toti
 form of the polymer size distribution fun
tion,whi
h is also algebrai
. We also show that the meanshear 
omponent leads to a signi�
ant broadening ofthe polymer size distribution in 
omparison to the pure
haoti
 �ow. This e�e
t is surprising at �rst sight, be-
ause the shear 
omponent itself does not lead to anexponential polymer growth, and 
annot therefore leadto algebrai
 tails of the polymer size distribution.The plan of this paper is as follows. We �rst detailthe model that is used to study the polymer dynami
sand dis
uss its underlying assumptions and its validity.In the next se
tions, we �rst analyze the stationary an-gular distribution of strongly elongated polymers andthen obtain the probability distributions of the tum-bling time. In Se
. 4, we analyze the size distributionof the polymer mole
ules below the 
oil�stret
h transi-tion. The main results in this paper are listed in Con-
lusions.2. POLYMERS AND THE CHAOTIC-FLOWMODELA polymer mole
ule inje
ted in an external �ow in-tera
ts with the �uid in two ways: it is adve
ted as awhole and the velo
ity gradient stret
hes and rotatesit in di�erent ways, thus a�e
ting its internal dynam-i
s. If we assume the shear �ow to be stationary andspatially homogeneous, the adve
tion of the polymeris not important. Furthermore, the inertial e�e
ts 
anbe negle
ted for typi
al polymers, and we 
an assumethat the monomers simply follow the Lagrangian tra-je
tories of the velo
ity �eld. The e�e
t of the �ow 
anthen be des
ribed in terms of the dynami
 equationfor the polymer end-to-end ve
tor. We do not 
onsiderdi�erent 
onformations of a polymer here and insteaduse the simple dumb-bell model, where the end-to-endseparation ve
tor R satis�es the equation [25, 26℄�tRi = Rjrjvi � 
(R)Ri + �i; (1)where the relaxation rate 
 is a fun
tion of the absolutevalue R of R and the velo
ity gradient rjvi is taken at

the mole
ule 
enter of mass. The term �i is the thermalLangevin for
e with the power �. Real velo
ity �eldsare large-s
ale: their 
orrelation length is mu
h largerthan the polymer length. Therefore, this �eld 
an beassumed smooth on the polymer size s
ale. This as-sumption justi�es the linear approximation for the ve-lo
ity �eld used in Eq. (1). We dis
uss two di�erentsituations. When the Lyapunov exponent asso
iatedwith the velo
ity �eld is larger than the polymer re-laxation rate, whi
h 
orresponds to the state above the
oil�stret
h transition, the nonlinearity of the polymerbe
omes important, preventing an unbounded polymerstret
hing. In this 
ase, the polymer length is mu
hlarger than in the 
oiled state, and thermal for
es �i
an be negle
ted in 
omparison to the velo
ity gradi-ent stret
hing. The polymer dire
tion ve
tor n = R=R
an then be introdu
ed. Its dynami
s are governed bythe equation �tni = nj(Æik � nink)rjvk: (2)We see that the dire
tion evolution is 
ompletely de
ou-pled from the dynami
s of the polymer size R. In thestate below the 
oil�stret
h transition, the dynami
s ofthe polymer are purely linear. Thermal for
es 
annotbe negle
ted in this regime, and hen
e the orientationve
tor dynami
s do not de
ouple from the evolution ofthe polymer size. We restri
t our analysis in this 
ase tothe study of the polymer length distribution. For suf-�
iently small polymer mole
ules, we 
an assume therelaxation 
(R) to be 
onstant, in whi
h 
ase Eq. (1)be
omes linear and 
an be studied analyti
ally in fulldetail.It is important to dis
uss how the 
haoti
 velo
-ity 
omponent is modeled. The statisti
al propertiesof the velo
ity �eld observed in the elasti
 turbulen
eexperiments are not well known from either the ex-perimental or the theoreti
al standpoint. The simplestmodel of the velo
ity �eld studied in this paper 
onsistsof a strong stationary shear 
omponent and of a weakshort-
orrelated 
haoti
 
omponent �ij . Under theseassumptions, the velo
ity gradient matrix has the fol-lowing statisti
al properties:rjvi = sÆixÆjy + �ij ; (3)h�ij (t)�kl(t0)i = DÆ(t�t0)(4ÆikÆjl�ÆilÆkj�ÆijÆkl); (4)where D is the �power� of the 
haoti
 
omponent ands is the shear rate. We assume that the shear �ow gra-dients are in the xy plane. We also assume the shear
omponent to be relatively strong, s � D. The exa
tform of 
orrelation fun
tion (4) assumes the isotropy of748
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s in 
haoti
 �ows : : :z
x��

yn
S
hemati
 pi
ture of the polymer orientationgeometrythe velo
ity 
omponent, but this assumption is not im-portant, as we see in what follows, be
ause for strongshear 
omponent s � D, the polymer spends most ofthe time stret
hed in the x dire
tion. Its angular dy-nami
s are determined only by the y 
omponent of the
haoti
 velo
ity �eld.To simplify the equations des
ribing the polymer di-re
tion evolution, we parameterize the ve
tor n by theangles as shown in the Figure. Then Eq. (2) a
quiresthe form �t� = �s sin2 �+ �� ; (5)�t� = �s sin� 
os� sin � 
os � + �� ; (6)where �� and �� are zero-mean random variables re-lated to the 
haoti
 
omponents of the velo
ity gradi-ent. The statisti
s of both �� and �� 
an be obtainedfrom 
orrelation fun
tion (4):h��(t)��(t0)i = 4DÆ(t� t0); (7)h��(t)��(t0)i = 4D
os2 � Æ(t� t0): (8)3. POLYMER DIRECTION STATISTICS3.1. �-angle distributionIn this se
tion, we study the stationary distribu-tion of polymer orientation angles. Equation (2) gov-erning the dynami
s of the polymer orientation ve
torformally 
oin
ides with the equation des
ribing the dy-nami
s of thin rigid rods. Some of the results des
ribed

in this se
tion 
an be found in [21℄. Unlike polymermole
ules, these thin rods have a �xed size and aredriven solely by thermal for
es. But their dynami
s aresimilar to the dynami
s analyzed in this paper. In whatfollows, we �rst rederive the expression for the station-ary �-angle distribution and then present several newresults, whi
h have not been dis
ussed in the literatureto our knowledge. We �rst analyze the nontrivial 
on-tribution to the �-angle distribution that 
omes fromthe sto
hasti
 dynami
s and 
an be observed in realexperiments by inspe
ting the polymers in the sto
has-ti
 region. This 
ontribution also has an algebrai
 tail,but its exponent is nonuniversal and depends on thestatisti
s of the random velo
ity �eld. For a Gaussiandelta-
orrelated �eld, numeri
al analysis showed thatthis tail behaves as ��3 [17℄, and therefore its 
ontri-bution is subleading. Se
ond, we study the statisti
alproperties of the tumbling time. Obviously, the dis-tribution of su
h quantities 
annot be 
al
ulated fromstationary angular distributions. But it 
an be eas-ily measured experimentally [5, 18℄ or studied numer-i
ally [16, 17℄. We obtain some rigorous results 
on-
erning the tumbling time distribution, whi
h perfe
tly
on�rm the qualitative predi
tions in [20℄.As noted above, the angular dynami
s of stret
hedpolymers are de
oupled from the dynami
s of the poly-mer length and 
an therefore be analyzed separately.There are two di�erent terms in the right-hand sideof Eq. (5) that 
ontribute to the polymer orientationdynami
s. In the limit s � D, the �rst term is rel-atively large, but the e�e
t of the se
ond term 
an-not be negle
ted, as we see in what follows. For thevanishing 
haoti
 
omponent (D ! 0), the determin-isti
 polymer dynami
s 
an easily be analyzed: thereare two semistable equilibrium states �1;2 = 0; �, with�1;2 = 0, and the polymer dire
tion ve
tor n asymp-toti
ally approa
hes one of these points depending onits initial orientation. But as the angle between thepolymer and the equilibrium dire
tions be
omes suf-�
iently small, the 
haoti
 
omponents �k 
annot benegle
ted, and the polymer dynami
s be
ome sto
has-ti
. After some time, the 
haoti
 
omponent pushesthe polymer into an unstable region, and the regularvelo
ity rapidly (on times of the order of s�1) trans-fers it to the opposite equilibrium dire
tion. Due tothe sto
hasti
 nature of the 
haoti
 velo
ity 
ompo-nent, random aperiodi
 tumbling of the polymer is tobe observed. This phenomenon was qualitatively ana-lyzed in [20℄ for the general velo
ity statisti
s. In thispaper, we fo
us on the situation where the 
haoti
 �owis short-
orrelated, su
h that its 
hara
teristi
 
orrela-tion time �v is small 
ompared with the time s
ale �t749
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iated with the tumbling e�e
t, whi
h 
an be esti-mated as �t = (Ds2)�1=3 � s�1. This time s
ale sep-aration allows obtaining some expli
it expressions forthe stationary and dynami
al statisti
s of the polymerorientation evolution.In the 
ase where D � s, the polymer spends mostof the time in the sto
hasti
 regime, 
lose to the equilib-rium point, and hen
e its orientation angles are small,�; � � 1 (we analyze only one equilibrium point, be-
ause of the symmetry n ! �n). In this 
ase, we 
anset � = 0 in 
orrelation fun
tion (8). The dynami
s ofangle � be
ome de
oupled from everything else, and we
an write the 
orresponding Fokker �Plan
k equation��t � s�� sin2 �� 2D�2��P (t; �) = 0; (9)where P is the PDF of the � angle, i. e., the fun
tionthat represents the probability of �nding the polymerin a state with the inplane angle equal to the value of�. We use the usual normalization 
onditions for thePDF: �Z0 d�P = 1:An important question that must be dis
ussed hereis the boundary 
onditions to be used for this equa-tion. The equation is invariant under the transforma-tions � ! � � �. It is therefore natural to use theperiodi
 boundary 
onditions P (t;��=2) = P (t; �=2).There then exists an asymptoti
 stationary solutionPst(�) of Eq. (9). Obviously, all angles di�ering byan integer multiple of � are identi
al to ea
h other inthis solution. Another possibility is to use nonperiodi
boundary 
onditionsP(t;1) = P(t;�1) = 0with the normalization 
ondition1Z�1 d�P = 1:In this 
ase, the angles � and �+�k are not equivalentand the absolute value of the angle 
ontains the infor-mation about the total number of polymer rotations.The main disadvantage of working with these boundary
onditions is that there is no stationary solution of theFokker �Plan
k equation, be
ause the PDF is wideningand drifting 
onstantly. However, both approa
hes leadto the same physi
al results, the two di�erent PDFs be-ing related byP (t; �) =Xk P(t; �+ �k): (10)

In this se
tion, we work with the periodi
 bound-ary 
ondition. To �nd the stationary PDF Pst(�), werewrite the Fokker �Plan
k equation as��U�1(�)��U(�)Pst(�) = 0; (11)U(�) = exp h s4D�� s8D sin 2�i : (12)Simple integration yieldsPst(�) == !D �Z0 d' expn� s4D ['� sin' 
os('� 2�)℄o ; (13)where ! is the average rotation frequen
y of the poly-mer, whi
h is determined from the normalization 
on-dition �Z0 Pst(�) d� = 1and is given by! = D exp (�s=8D)�2Iix(s=8D)I�ix(s=8D) ; (14)where Iix and I�ix are the modi�ed Bessel fun
tions.For s=D � 1, the PDF is lo
alized at small angles� � (D=s)1=3 � 1, and all expressions are signi�
antlysimpli�ed: ! = (Ds2)1=34 � 31=6�(7=6)p� ; (15)Pst(�) = !D 1Z0 d' exp �� s8D'('�2�)2� s'324D� : (16)We see that the PDF is asymmetri
 in �, i. e.,P (��) < P (�), whi
h means that the polymer spendsmore time above the shear axis. Besides, the PDF hasalgebrai
 tails P (�) / ��2; (D=s)1=3 � � � 1, whi
h
orrespond to very large �u
tuations of the angle:h�i = �Ds �1=3 p� 31=3�(1=6) ; (17)Pst(�) � 116 � 31=6�(7=6)p� � sD�2=3 1�2 ; (18)where �(z) is the gamma fun
tion and the lastasymptoti
 formula is valid in the intermediate re-gion (D=s)1=3 � j�j � 1. The asymptoti
 behavior750
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s in 
haoti
 �ows : : :Pst / ��2 
orresponds to a nonzero probability �uxof the stationary solultion. Physi
ally, this means thatthere is some preferred dire
tion of the polymer rota-tion, whi
h is a manifestation of the tumbling e�e
tdes
ribed above. The positive value of the average an-gle � shows that the polymer spends most of the timein the region � > 0, in agreement with the general anal-ysis presented at the beginning of this se
tion. It 
anbe seen that the polymer spends most of the time inthe region of small angles, and hen
e the only relevantvelo
ity 
omponent is vz . Therefore, the assumptionof isotropi
 statisti
s of the 
haoti
 velo
ity 
omponentis not therefore signi�
ant for the qualitative results inthis paper.3.2. Tumbling time statisti
sIn this se
tion, we 
al
ulate the PDF of the timeintervals between 
onsequent tumblings. Su
h a PDF
an be dire
tly measured experimentally. For this, itis natural to use the nonstationary PDF P(t; �). Wede�ne the tumbling pro
ess by a polymer dire
tion �tra-je
tory� starting at � = �=2 and rea
hing � = ��=2at time T . In this 
ase, the probability of �nding thepolymer inside this region is given byp(t) = �=2Z��=2 P(t; �) d�; (19)where the initial 
ondition is P(t; �) = Æ(�� �=2 + 0),and hen
e p(0) = 1. The normalization 
ondi-tion for this PDF is 1R�1 d�P(t; �) = 1. We substi-tute P(t; �) = U1=2(�)	(t; �), where U is de�ned inEq. (12). The evolution of 	 is determined by the one-dimensional S
hrödinger equation in imaginary time:�t	 = �Ĥ	; (20)Ĥ = �2D�2� + s28D sin4 �� s sin� 
os�: (21)It is now possible to use the quantum me
hani
alanalogy. The Hamiltonian Ĥ formally des
ribes a par-ti
le in a periodi
 potential with period �. The generalsolution of this problem is given by	(t; �) =Xn Z dp	np(�)	�np ��2��� exp[�En(p)t℄; (22)where p is the parti
le quasimomentum and n is theBrillouin zone number. In this potential, the 
lassi
al

minima are separated by large barriers. For s � D,the tight-binding method 
an be used (see, e.g., [27℄).Then the approximate relationsEn(p) = �n � � 
os(�p); (23)	np(�) =Xk exp(i�kp) n(�� k�); (24)where  n and �n are the wave fun
tions and energies,hold for the spe
trum formed near 
lassi
al minimawhen the tunneling pro
esses are negle
ted; � is an ex-ponentially small bandwidth. Therefore, at large times,the leading asymptoti
 form of p(t) is determined bythe ground state energy �0:p(t) / exp(��0t); t!1: (25)It is easy to verify that this energy is given by�0 = 
(Ds2)1=3, where 
 is a 
onstant of the order ofunity. Indeed, the 
lassi
al minimum is situated in theregion of small angles j�j � 1, and we 
an therefore usethe Taylor expansion of trigonometri
 fun
tions. Afterthe substitution � = (D=s)1=3�, we obtain the Hamil-tonian Ĥ = (Ds2)1=3 ��2�2� + �48 � �� : (26)The operator in square bra
kets 
ontains no dimen-sionless parameters, and therefore its eigenvalues areof the order of unity. The body of the PDF is alsolo
ated in the region of tumbling periods of the orderof T � (Ds2)�1=3. The left tail of the tumbling timePDF, T � (Ds2)�1=3, is determined by rare traje
to-ries, whi
h turn the polymer through angle � at smalltimes T . To �nd the optimal form of su
h traje
to-ries, we use the fun
tional integral representation ofthe transition probability:p(T ) / Z D� exp �� 18D Z dt( _�+ s sin2 �)2� : (27)The integration is performed over traje
tories with theboundary 
onditions �(0) = �=2, �(T ) = ��=2. Forsmall T � (Ds2)�1=3, the probability is determined bythe a
tion A on the optimal traje
tory with exponentiala

ura
y, p(T ) / exp(�A).Variation of the e�e
tive a
tion leads to the follow-ing equation for the saddle-point traje
tory:�� = s2 sin3 � 
os�: (28)751
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hani
al problem 
an easily be solved, yieldingthe following relation between the tumbling time andthe e�e
tive parti
le energy:T = �=2Z��=2 d�p2E + s2 sin4 � == � 8E(2E + s2)�1=4K  12 �r E4E + 2s2 ! ; (29)whereK(x) is the ellipti
 integral of the �rst kind. Thea
tion is then evaluated asA = ET4D + s24D Z d� sin4 �p2E + s2 sin4 � == ET4D + 3�s232Dp2E 3F2�12 ; 54 ; 74 ; 32 ; 2;� s22E� ; (30)where we omit the 
onstant term 2s R _� sin2 � dt == �s=8D be
ause it is 
an
elled by the normalization
onstant. Be
ause of the additional time s
ale s�1,there are two di�erent asymptoti
 bran
hes of p(t). ForsT � 1, we have s � p2E and E = �2=2T 2. In this
ase, A = �28DT : (31)In the other limit 
ase s�1 � T � (Ds2)�1=3, the en-ergy is given by E = 8K4(1=2)=s2T 4 and the a
tionis A = 2K4(1=2)3Ds2T 3 : (32)The intermediate asymptoti
 form in (32) is deter-mined by the dynami
s in the region of small anglesand is therefore a fun
tion of the produ
t Ds2T 3. Thedynami
s at these angles are determined mainly by the
omponent vy, and hen
e this asymptoti
 form is uni-versal, in the sense that it is independent of the detailsof the 
haoti
 velo
ity statisti
s. On the 
ontrary, theasymptoti
 form (31) at small times does not dependon s at all, be
ause su
h small times 
an be rea
hedonly due to very rare �u
tuations of the 
haoti
 velo
ity�eld. Therefore, this asymptoti
 form strongly dependson the assumption of an isotropi
 velo
ity statisti
s,and is not universal.3.3. �-angle distributionIt was shown in [20℄ that there are two 
ontribu-tions to the intermediate right tail of the �-angle dis-tribution, (D=s)1=3 � � � 1. The �rst 
omes from the

deterministi
 regions where � � 1 and the angular dy-nami
s are determined by the regular terms in Eqs. (5)and (6). The algebrai
 tail of the stationary PDF P (�)is then proportional to ��2 at � � 1. But there is alsoa nonuniversal algebrai
 part, whi
h 
omes from thesto
hasti
 region of � � (D=s)1=3 and is determined bystatisti
al properties of the random velo
ity �eld. Inthis se
tion, we analyze this part and obtain a relationbetween the s
aling exponent and the entropy fun
tionof the random velo
ity pro
ess. In the region � � 1,Eq. (6) 
an be easily solved:�(t) = 1Z0 d� �� exp0��s2 tZt�� sin 2�(t0) dt01A ��(t� �): (33)As we have seen, the random pro
ess �(t) is station-ary and independent of ��(t). This allows us to rewritethe expression for � as� = 1Z0 d�e�%(�)��(�); (34)%(�) = s2 �Z0 sin 2�(t) dt: (35)To obtain the PDF P (�), we �rst average over the noise��: P (�j%) = 1p2�A exp�� �22A� ; (36)A = 4D 1Z0 d� exp[�2%(�)℄; (37)where P (�j%) is the PDF of � for a �xed realization ofthe pro
ess %(t). Be
ause of the positive average valueh _%i � (Ds2)1=3, the dynami
s are relaxational and thebody of P (�) is lo
ated in the region of small angles� � (D=s)1=3 � 1. The tails of the PDF are deter-mined by large deviations of negative %(t). Assumingthat the pro
ess %(t) rea
hes its most negative value atan instant ��, su
h that %(��) = �%� and %� � 1, we
an estimate the value of A with exponential a

ura
yas A � (D=s)1=3 exp(2%�).The 
hara
teristi
 
orrelation time of %(t) is�
 = (Ds2)�1=3. Therefore, for large �� � �
, we 
an752



ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007 Polymer dynami
s in 
haoti
 �ows : : :apply the results of the theory of large deviations [28℄,whi
h predi
t the s
aling for the tails of the %� PDF asP (%�j��) = exp �����
 S �%��
�� �� ; (38)where S(x) is the entropy fun
tion, whi
h is one ofthe most important 
hara
teristi
 of the 
haoti
 velo
-ity. This fun
tion is nonuniversal and strongly dependson the statisti
al properties of velo
ity gradients. It isimpossible to �nd the exa
t expression for this fun
-tion analyti
ally even in the framework of our model.Numeri
al 
omputations of this entropy fun
tion werere
ently presented in [17℄.We 
an now �nd the most probable time �� by max-imizing the above probability with respe
t to ��. Thisleads to the expression �� = �
%�=x�, where x� is foundfrom the equationS(x�) = x�S0(x�); (39)where S0 is the derivative of S(x) with respe
t to x.The entropy fun
tion is of the order of unity, and we
an hen
e expe
t the same for x�. The asymptoti
 formof the %� PDF is therefore given byP (%�) / exp[�%�S0(x�)℄: (40)After averaging Eq. (36) over %�, we obtain the asymp-toti
 expression for the � PDF:P (�) / j�j�S0(x�); (D=s)1=3 � j�j � 1: (41)It follows that the tails are algebrai
, as in the 
aseof the angle �, but the exponent is now nonuniversaland depends on the statisti
al properties of the velo
-ity �eld. For the delta-
orrelated Gaussian pro
ess ��,this tail was found numeri
ally in [17℄. It was shownthere that in the sto
hasti
 region j�j � 1, the �-anglePDF behaves as ��3:0. In our model, this 
ontributionis small 
ompared to the tail from the regular region��2, but it 
an be expe
ted that the situation may bedi�erent for some spe
i�
 velo
ity statisti
s.4. STATISTICS OF POLYMER ELONGATIONIn this se
tion, we study the polymer mole
ulespla
ed in a relatively weak �ow, where the Lyapunovexponent of the �ow is smaller than the relaxation timeof the polymer. In this 
ase, the polymer spends mostof the time in the 
oiled phase, and we 
an assumeits relaxation for
e to be linear. Thermal noise 
anbe negle
ted in this 
ase, in 
ontrast to the situation

above the 
oil�stret
h transition dis
ussed in the previ-ous se
tions. We study only the size distribution of thepolymer for this situation. The tails of the polymer-size PDF 
an be examined similarly to the analysis inSe
. 3.3.The formal solution of dynami
 equation (1) in the
ase of a linear relaxation for
e is given byRi(t) = 1Z0 dt exp [�
(t� t0)℄Wij(t; t0)�j(t0); (42)W = T exp24 tZt0 ~�(�) d�35 ; (43)where ~�ij = rjvi is the velo
ity gradient matrix. Toobtain the polymer elongation PDF, we �rst averageover the thermal Langevin for
e �i(t):P (Rj~�) / exp��12RT I�1R� ; (44)I = � 1Z0 dt0W T (t0)W (t)e�2
t; (45)where W (t) =W (t; 0) and P (Rj~�) stands for the PDFwith a �xed realization of the pro
ess ~�(t). At largeenough times t � �
, the eigenvalues of the matrixW TW be
ome widely separated and the absolute valueof the end-to-end ve
torR is determined by the largesteigenvalue I1: P (Rj~�) / exp��R22I1� : (46)It 
an be easily shown (see, e.g., [29℄) that for largetimes, when the eigenvalues �i of the W TW matrixare widely separated (�1 � �2 � �3), the dynami
sof the largest eigenvalue �1 = exp(2�) are des
ribed bythe equation _� = s2 
os2 � sin 2�+ 6D + ��; (47)h��(t)��(t0)i = 2DÆ(t� t0); (48)where �� is obtained from the 
haoti
 velo
ity 
orrela-tion fun
tion (4). The eigenvalue I1 is then given bythe expressionI1 = � 1Z0 dt exp [2�(t)� 2
t℄ : (49)15 ÆÝÒÔ, âûï. 3 (9) 753



K. S. Turitsyn ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007As in the previous se
tion, �(t) is an integral of thestationary random pro
ess with the 
orrelation time ofthe order of �
 = (Ds2)�1=3, and large deviations of I1are determined by large deviations of �(t). Assumingthat integral (49) is determined by one saddle point��, we 
an estimate it as I1 / exp(2�� � 2
��), where�� = �(��). The asymptoti
 behavior of the �� PDFfor a �xed value of �� is given byP (��j��) / exp �����
 S� ����
�� �� ; (50)where S�(x) is an entropy fun
tion 
orresponding tothe pro
ess �(�).Exa
tly as in the previous se
tion, we �nd the opti-mum value �� = �
��=x. The 
oe�
ient x satis�es theequation S�(x)� xS0�(x) + 
�
S0�(x): (51)In the linear region below the 
oil�stret
h transition,we have 
�
 > 1. The tail of the PDF is algebrai
, asin 
ase of the � angle, P (R) / R�1��, and the value of� 
an be determined for large values of 
�
 � 1. Largedeviations of R are determined by the region wherethermal Langevin for
es 
an be negle
ted and Eq. (47)
an be used.We are interested in the asymptoti
 behavior of thepolymer size momentsMq(t) = hRq(t)i / exp(Aqt):The value of � is then determined from the equationA� = 0. Integrating over the fun
tion ��, we 
anrewrite Mq asMq = exp �Dq2t� 
qt� Z d�Zq(�; t); (52)Zq = hexp[q�(t)℄Æ(� � �(t))i ; (53)where the angular bra
kets denote averaging over thepro
ess �(t). The fun
tion Zq satis�es the equation�tZq = h2D�2� + s�� sin2 �+ qs2 sin 2�iZq : (54)The only di�eren
e from Fokker �Plan
k equation (9)is in the last term. We follow the same pro
edure as inSe
. 2.2. Substituting Zq = U(�)	(t; �), we obtain theimaginary-time S
hrödinger equation�t	 = �Ĥq	; (55)Ĥq = �2D�2� + s28D sin4 �+ (q � 1)s sin� 
os�: (56)This equation 
annot be expli
itly solved in the 
aseq � 1, but the solution 
an be easily found for q � 1.

In this 
ase, the leading exponential asymptoti
 behav-ior at large times is given by Zq(t) / exp[��(q)t℄, where�(q) is the ground-state energy. For q � 1, the main
ontribution to �(q) is equal to the value of the 
lassi
alminimum of the potential. After some simple algebra,we obtain�(q) � �3 � 2�5=3 �q4Ds2�1=3 ; 1� q � s=D; (57)�(q) � qs=2; q � s=D: (58)Finally, we haveA(q) = Dq2 � 
q � �(q); (59)and the 
riti
al value � depends on the dimensionlessparameter 
=s:� = 8>><>>: 8132 
3Ds2 ; 
 � s;
D ; 
 � s: (60)The last expression 
oin
ides with the value of the ex-ponent for a purely isotropi
 
haoti
 velo
ity, be
ausefor 
 � s, large polymer-size �u
tuations are deter-mined by rare �u
tuations of the 
haoti
 
omponent,when the �ow has a strong elongation 
omponent withthe Lyapunov exponent � > 
 for a long time. Onthe other hand, the top line in (60) shows that in the
ase 
 � s, the shear 
omponent 
an signi�
antlybroaden the tails of the polymer-size PDF 
omparedto the 
haoti
 �ow without mean shear. This fa
t isnontrivial be
ause the regular shear 
omponent itself
annot lead to an exponential polymer elongation, anda nontrivial exponent 
omes from the 
ombined e�e
tof the 
haoti
 and regular 
omponents.5. CONCLUSIONSWe have studied the statisti
al properties of a sin-gle polymer mole
ule dynami
s in a 
haoti
 �ow withmean shear. In the framework of the velo
ity �owmodel 
onsisting of a stationary shear part and adelta-
orrelated 
haoti
 part, and the dumb-bell modelof a polymer mole
ule, we obtained several analyti-
ally rigorous results. First, for strongly elongatedpolymers, the stationary angular distribution was dis-
ussed in detail. We obtained an expli
it expressionfor the �-angle probability distribution. The asymp-toti
 behavior of this fun
tion formally 
oin
ides withthe results obtained for solid rods [21℄. Se
ond, weanalyzed the previously unreported 
ontribution to thealgebrai
 tail of the �-angle PDF. In 
ontrast to theuniversal tail 
oming from the regular region, whi
h754
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s in 
haoti
 �ows : : :was analyzed in [20; 21℄, this tail is determined by thepolymer dynami
s in the sto
hasti
 region. In 
on-trast to the �-angle PDF, this asymptoti
 form is notuniversal and depends on the statisti
al properties ofthe 
haoti
 velo
ity 
omponent. Next, we dis
ussedthe probability distribution of the tumbling time, i.e.,the time between 
onsequent polymer �ips. We haveshown that the 
hara
teristi
 time is of the same orderas the inverse Lyapunov exponent asso
iated with the�ow. However, the �u
tuations of the tumbling timeare rather strong. The asymptoti
 tail 
orrespondingto the large-time periods between �ips has a universalexponential form, while the tail 
orresponding to qui
k�ips has a far more 
ompli
ated stru
ture, whi
h is ingeneral sensible to the velo
ity �eld statisti
s. We havealso dis
ussed the size distribution of linear polymerspla
ed in a strong shear �ow with a 
haoti
 
ompo-nent. We show that the existen
e of the strong shear
omponent results in signi�
antly broadening the sizedistribution 
ompared to the isotropi
 
ase 
onsideredin [6℄. This e�e
t is rather nontrivial to our opinion,be
ause the shear 
omponent itself 
annot lead to anexponential elongation of the polymer and the distri-bution broadening is the 
ombined e�e
t of the 
haoti
and regular velo
ity 
omponents. Finally, we mentionthat all the results in this paper were obtained underthe assumption of an isotropi
 and short-
orrelated
haoti
 velo
ity �ow. As was dis
ussed throughout thepaper, the �rst assumption is irrelevant for most ofthe results, but the e�e
t of the �nite 
orrelation timerequires a more sophisti
ated analysis. Comparison ofour results with the more general results in [20℄ showsthat the delta-
orrelated model re�e
ts most of thequalitative features of the problem. Furthermore, allrigorous results obtained in its framework are in agree-ment with general predi
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