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We consider the dynamics of a polymer molecule injected in the chaotic flow with a strong mean shear com-
ponent. The polymer experiences aperiodic tumbling in such flows. We consider the simplified model of the
chaotic velocity field given by the superposition of a steady shear flow and a large-scale isotropic short-correlated
random component. In the framework of this model, we present a detailed study of the statistical properties of
single-polymer dynamics. We obtain the stationary probability distribution function of the polymer orientation,
find the distribution of time periods between consequent events of tumbling, and find the tails of the polymer

size distribution.
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1. INTRODUCTION

Hydrodynamics and rheology of dilute polymer so-
lutions have recently attracted much theoretical and
experimental attention. Adding a small amount of
polymers to ordinary liquid leads to radical changes
of liquid properties. One of the most famous effects of
this type is the phenomenon of drag reduction. The
addition of few parts per million of long-chain polymer
molecules produces a dramatic reduction in the fric-
tion drag. Although this effect was first observed in
1949 [1], there is still no rigorous theory explaining the
phenomenon. A qualitative description was proposed
in [2, 3], but no quantitative theory is available. An-
other spectacular phenomenon observed in dilute poly-
mer solutions is the effect of elastic turbulence, discov-
ered recently in [4, 5]. In this experiment, a chaotic
fluid motion was observed in the system with a small
Reynolds number Re <« 1. Obviously, such behavior
cannot be observed in Newtonian liquids, where the
flow is laminar. Therefore, the chaotic flow is gener-
ated by elastic instabilities of the polymer solution.
The dynamics of polymers and possible mechanisms
explaining the chaotic state were studied in recent the-
oretical works [6-8]. It was proposed that elastic insta-
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bilities occur because of the back-reaction of dissolved
polymers on the flow. It is therefore important to un-
derstand the dynamics of single polymers in external
chaotic flows. Theoretical investigation of this problem
has a long history. It was shown in the early 1970s [3, 9]
that a polymer molecule in a random flow experiences
a coil-stretch transition. In relatively weak flows, the
molecule spends most of the time in the coiled state.
But when the Lyapunov exponent of the flow exceeds
the inverse polymer relaxation time, the molecules be-
come substantially elongated. With the development
of novel optical methods, a number of high-quality ex-
perimental observations focusing on resolving dynamics
of individual polymers (DNA molecules) placed in an
inhomogeneous flow have been reported [10-13]. This
allowed a direct observation of the coil-stretch transi-
tion [14].

Another important case corresponds to shear-like
flows. The dynamics of polymer molecules in such flows
have been extensively studied because of the impor-
tance in applications. For example, such a flow occurs
whenever a polymer passes near the wall. Rheologi-
cal properties of dilute polymer solutions are usually
studied in shear geometries [15]. Direct observation of
the polymer dynamics in a regular shear flow showed
that the polymer experiences aperiodic tumblings [12].
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This behavior is a combined effect of the shear flow
and thermal fluctuations of a molecule. The statistical
properties of such dynamics have been the subject of
great attention both experimentally and theoretically
[12,13,16-19].

The next important problem is the behavior of poly-
mer molecules in the flows where both shear and chaotic
flow components are important. Such flows occur in
many experimental situations, such as drag reduction
or elastic turbulence. Just this situation occurs when
a chaotic or turbulent flow is generated on top of a
shear-like velocity. The dynamics of polymers in such
flows have much in common with the dynamics of poly-
mers placed in statistically isotropic chaotic flows or,
conversely, in regular shear flows. However, there are
some details that are unique to the discussed situation.
A general qualitative analysis of such dynamics was
presented in [20]. In that paper, the authors did not
use any specific model of the turbulent flow but formu-
lated some general predictions concerning this problem.
In the present paper, we justify most of these predic-
tions ab initio in some particular model flow and also
present derivations of some general results that were
skipped in [20].

In the shear-flow geometry with a superimposed
chaotic component, as in the case of isotropic random
flows, the polymer experiences the coil-stretch transi-
tion. Below this transition, the polymer spends most
of the time in the coiled state, and the effect of the
flow results in algebraic tails of the probability distri-
bution function (PDF) of the polymer size [6]. In the
presence of a strong shear component, these tails be-
come significantly broadened in comparison to isotropic
flows without mean shear. More generally, it is shown
that the Lyapunov exponent associated with the flow
becomes parametrically large in the presence of mean
shear. The effect of the Lyapunov exponent increase
by a shear flow is rather surprising, because the sim-
ple shear flow cannot lead to exponential growth of the
polymer size. Therefore, such an increase is a combined
effect of shear and chaotic components. This effect is
discussed in detail in the last section of this article.

Above the coil-stretch transition, the polymer
spends most of the time in a strongly elongated state.
The thermal forces are then less important than the ef-
fect of velocity gradient and the orientational dynamics
decouple from the evolution of the polymer size [20]. In
this case, the equation describing the polymer orienta-
tion dynamics formally coincides with the equation de-
rived in [21] for thermal fluctuations of thin solid rods
in a shear flow. The authors of [21] studied the station-
ary PDFs of the orientational angles of the solid rod
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direction vector. Although the statistical properties of
thermal forces can be very different from the statistics
of chaotic velocity gradients, most of the properties re-
lated to the stationary angular distribution remain the
same. An interesting effect specific to the chaotic-flow
problem is the nonuniversal algebraic tail of the PDF of
the off-plane angle f. This effect was briefly mentioned
in [20] and is explained in detail in the present paper.
Another extension of [21] presented in this paper is re-
lated to the statistics of tumbling time, i.e., the time
between consequent flips of a polymer molecule. Ob-
viously, this distribution cannot be expressed through
the stationary distribution functions and requires ad-
ditional analysis.

The statistical properties of real turbulent flows or
flows observed in elastic turbulence experiments are
not known in full detail. Furthermore, there exist no
universal analytical tools for studying the problem in
its full scale. To make any predictions regarding the
polymer dynamics in such flows, one has to make some
simplifications. In [20], the problem was studied under
general assumptions regarding the velocity statistics.
This allowed the authors to obtain some mostly quali-
tative predictions, which are universal (i.e., valid for a
very wide range of systems) but lack precision. In this
article, we follow another way by studying a simplified,
but reasonable model of chaotic flow in detail. These
rigorous results derived ab initio are certainly in a full
agreement with the general predictions in [20]. Recent
computer simulations [17] also confirm and extend the
results of the current paper.

In this paper, the external flow is modeled by the
superposition of a constant shear component and a ran-
dom component corresponding to a chaotic velocity
field. We assume the random component to be rela-
tively small. In the spirit of classic works [22, 23], we
model the chaotic velocity part with a Gaussian delta-
correlated stochastic field. Although such models are a
great simplification of real flows, recent developments
[24] showed that they can be successfully applied for
analysis of advection in turbulent flows. As long as
statistical properties of real flows are unknown, our ap-
proach is one of the possible ways of modeling single
polymers in chaotic flows. In the framework of this
approach, we are able to derive most of the results an-
alytically. The results in the present paper can form a
basis for future studies of more complicated problems,
such as statistics of polymer conformation in chaotic
flows.

We list the main results in this paper. First, we
obtain an exact expression for the probability distri-
bution of the polymer orientation vector. We show
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that the body of the angular distribution function is
located in the region of small angles, which correspond
to the polymer stretched in the shear direction. How-
ever, the tails of the PDF are algebraic, and hence the
fluctuations of the polymer direction are anomalously
strong. Second, we study the statistics of time periods
between consequent events of polymer tumbling. We
show that this PDF has an exponential tail at large
tumbling times, and two different asymptotic regimes
in the region of very small times. Finally, for polymers
below the coil-stretch transition, we obtain the asymp-
totic form of the polymer size distribution function,
which is also algebraic. We also show that the mean
shear component leads to a significant broadening of
the polymer size distribution in comparison to the pure
chaotic flow. This effect is surprising at first sight, be-
cause the shear component itself does not lead to an
exponential polymer growth, and cannot therefore lead
to algebraic tails of the polymer size distribution.

The plan of this paper is as follows. We first detail
the model that is used to study the polymer dynamics
and discuss its underlying assumptions and its validity.
In the next sections, we first analyze the stationary an-
gular distribution of strongly elongated polymers and
then obtain the probability distributions of the tum-
bling time. In Sec. 4, we analyze the size distribution
of the polymer molecules below the coil-stretch transi-
tion. The main results in this paper are listed in Con-
clusions.

2. POLYMERS AND THE CHAOTIC-FLOW
MODEL

A polymer molecule injected in an external flow in-
teracts with the fluid in two ways: it is advected as a
whole and the velocity gradient stretches and rotates
it in different ways, thus affecting its internal dynam-
ics. If we assume the shear flow to be stationary and
spatially homogeneous, the advection of the polymer
is not important. Furthermore, the inertial effects can
be neglected for typical polymers, and we can assume
that the monomers simply follow the Lagrangian tra-
jectories of the velocity field. The effect of the flow can
then be described in terms of the dynamic equation
for the polymer end-to-end vector. We do not consider
different conformations of a polymer here and instead
use the simple dumb-bell model, where the end-to-end
separation vector R satisfies the equation [25, 26]

O:R; = RjVjv; — v(R)R; + G, (1)

where the relaxation rate 7 is a function of the absolute
value R of R and the velocity gradient V;v; is taken at
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the molecule center of mass. The term (; is the thermal
Langevin force with the power k. Real velocity fields
are large-scale: their correlation length is much larger
than the polymer length. Therefore, this field can be
assumed smooth on the polymer size scale. This as-
sumption justifies the linear approximation for the ve-
locity field used in Eq. (1). We discuss two different
situations. When the Lyapunov exponent associated
with the velocity field is larger than the polymer re-
laxation rate, which corresponds to the state above the
coil-stretch transition, the nonlinearity of the polymer
becomes important, preventing an unbounded polymer
stretching. In this case, the polymer length is much
larger than in the coiled state, and thermal forces (;
can be neglected in comparison to the velocity gradi-
ent stretching. The polymer direction vector n = R/R
can then be introduced. Its dynamics are governed by
the equation

(2)

We see that the direction evolution is completely decou-
pled from the dynamics of the polymer size R. In the
state below the coil-stretch transition, the dynamics of
the polymer are purely linear. Thermal forces cannot
be neglected in this regime, and hence the orientation
vector dynamics do not decouple from the evolution of
the polymer size. We restrict our analysis in this case to
the study of the polymer length distribution. For suf-
ficiently small polymer molecules, we can assume the
relaxation y(R) to be constant, in which case Eq. (1)
becomes linear and can be studied analytically in full
detail.

It is important to discuss how the chaotic veloc-
ity component is modeled. The statistical properties
of the velocity field observed in the elastic turbulence
experiments are not well known from either the ex-
perimental or the theoretical standpoint. The simplest
model of the velocity field studied in this paper consists
of a strong stationary shear component and of a weak
short-correlated chaotic component o;;. Under these
assumptions, the velocity gradient matrix has the fol-
lowing statistical properties:

Omi = nj(0 — ning)Vvg.

Vj?)i = séizéjy + Oij,

(3)

<Uij (t)o‘k[(tl)> = D(S(t_t,)(4(sik5jl_5il5kj_6ij5kl)-, (4)

where D is the “power” of the chaotic component and
s is the shear rate. We assume that the shear flow gra-
dients are in the zy plane. We also assume the shear
component to be relatively strong, s > D. The exact
form of correlation function (4) assumes the isotropy of
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the velocity component, but this assumption is not im-
portant, as we see in what follows, because for strong
shear component s > D, the polymer spends most of
the time stretched in the z direction. Its angular dy-
namics are determined only by the y component of the
chaotic velocity field.

To simplify the equations describing the polymer di-
rection evolution, we parameterize the vector n by the
angles as shown in the Figure. Then Eq. (2) acquires
the form

8t¢: _SSin2¢+£¢7 (5)

01 = —ssingcospsinb cost + & , (6)

where {4 and & are zero-mean random variables re-
lated to the chaotic components of the velocity gradi-
ent. The statistics of both &4 and & can be obtained
from correlation function (4):

(€o(t)8o(t)) = 4D5(t — t'), (7)

4D

(€6 (DE(t)) = —ob(t = ). (5)

3. POLYMER DIRECTION STATISTICS

3.1. ¢-angle distribution

In this section, we study the stationary distribu-
tion of polymer orientation angles. Equation (2) gov-
erning the dynamics of the polymer orientation vector
formally coincides with the equation describing the dy-
namics of thin rigid rods. Some of the results described
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in this section can be found in [21]. Unlike polymer
molecules, these thin rods have a fixed size and are
driven solely by thermal forces. But their dynamics are
similar to the dynamics analyzed in this paper. In what
follows, we first rederive the expression for the station-
ary ¢-angle distribution and then present several new
results, which have not been discussed in the literature
to our knowledge. We first analyze the nontrivial con-
tribution to the #-angle distribution that comes from
the stochastic dynamics and can be observed in real
experiments by inspecting the polymers in the stochas-
tic region. This contribution also has an algebraic tail,
but its exponent is nonuniversal and depends on the
statistics of the random velocity field. For a Gaussian
delta-correlated field, numerical analysis showed that
this tail behaves as =2 [17], and therefore its contri-
bution is subleading. Second, we study the statistical
properties of the tumbling time. Obviously, the dis-
tribution of such quantities cannot be calculated from
stationary angular distributions. But it can be eas-
ily measured experimentally [5, 18] or studied numer-
ically [16, 17]. We obtain some rigorous results con-
cerning the tumbling time distribution, which perfectly
confirm the qualitative predictions in [20].

As noted above, the angular dynamics of stretched
polymers are decoupled from the dynamics of the poly-
mer length and can therefore be analyzed separately.
There are two different terms in the right-hand side
of Eq. (5) that contribute to the polymer orientation
dynamics. In the limit s > D, the first term is rel-
atively large, but the effect of the second term can-
not be neglected, as we see in what follows. For the
vanishing chaotic component (D — 0), the determin-
istic polymer dynamics can easily be analyzed: there
are two semistable equilibrium states ¢, 2 = 0,7, with
A1 = 0, and the polymer direction vector n asymp-
totically approaches one of these points depending on
its initial orientation. But as the angle between the
polymer and the equilibrium directions becomes suf-
ficiently small, the chaotic components & cannot be
neglected, and the polymer dynamics become stochas-
tic. After some time, the chaotic component pushes
the polymer into an unstable region, and the regular
velocity rapidly (on times of the order of s~!) trans-
fers it to the opposite equilibrium direction. Due to
the stochastic nature of the chaotic velocity compo-
nent, random aperiodic tumbling of the polymer is to
be observed. This phenomenon was qualitatively ana-
lyzed in [20] for the general velocity statistics. In this
paper, we focus on the situation where the chaotic flow
is short-correlated, such that its characteristic correla-
tion time 7, is small compared with the time scale 7;
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associated with the tumbling effect, which can be esti-
mated as 7, = (Ds?)~'/3 > s~'. This time scale sep-
aration allows obtaining some explicit expressions for
the stationary and dynamical statistics of the polymer
orientation evolution.

In the case where D < s, the polymer spends most
of the time in the stochastic regime, close to the equilib-
rium point, and hence its orientation angles are small,
0,6 < 1 (we analyze only one equilibrium point, be-
cause of the symmetry n — —n). In this case, we can
set # = 0 in correlation function (8). The dynamics of
angle ¢ become decoupled from everything else, and we
can write the corresponding Fokker —Planck equation

(9)

where P is the PDF of the ¢ angle, i.e., the function
that represents the probability of finding the polymer
in a state with the inplane angle equal to the value of
¢. We use the usual normalization conditions for the
PDF:

[0 — 59 sin? ¢ — 2DAZ] P(t, ¢) = 0,

Tl'

/d¢P:1.

0

An important question that must be discussed here
is the boundary conditions to be used for this equa-
tion. The equation is invariant under the transforma-
tions ¢ — ¢ + w. It is therefore natural to use the
periodic boundary conditions P(t,—7/2) = P(t,7/2).
There then exists an asymptotic stationary solution
Py (¢) of Eq. (9). Obviously, all angles differing by
an integer multiple of 7 are identical to each other in
this solution. Another possibility is to use nonperiodic
boundary conditions

P(t,00) = P(t, —00) = 0

with the normalization condition

oo

/d¢73:1.

— o0

In this case, the angles ¢ and ¢ + 7k are not equivalent
and the absolute value of the angle contains the infor-
mation about the total number of polymer rotations.
The main disadvantage of working with these boundary
conditions is that there is no stationary solution of the
Fokker — Planck equation, because the PDF is widening
and drifting constantly. However, both approaches lead
to the same physical results, the two different PDFs be-
ing related by

P(t,¢) =Y P(t, ¢+ k). (10)
k
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In this section, we work with the periodic bound-
ary condition. To find the stationary PDF Pg (o), we
rewrite the Fokker — Planck equation as

dsU " (6)0sU (¢) Psi () = 0, (11)
s s .
U(¢) = exp E¢ ~gpSin 20| . (12)

Simple integration yields

Pst(

?)
[

where w is the average rotation frequency of the poly-
mer, which is determined from the normalization con-
dition

:% dcpexp{—%[ap—singocos(go—%ﬁ)]}, (13)

[ Putorao=1
0
and is given by
B Dexp (ns/8D)
- w21, (s/8D)I_;,(s/8D)’

(14)

where I, and I_;, are the modified Bessel functions.
For s/D > 1, the PDF is localized at small angles
¢ ~ (D/s)'/3 <« 1, and all expressions are significantly
simplified:

3 (D82)1/3
YT 43T (7/6) /7 1)
w 3
Pu(0) = 5 [ dpesn |- gete-20-355 | a0)
0

We see that the PDF is asymmetric in ¢, i.e.,
P(—¢) < P(¢), which means that the polymer spends
more time above the shear axis. Besides, the PDF has
algebraic tails P(¢) o« ¢~=2, (D/s)'/? « ¢ < 1, which
correspond to very large fluctuations of the angle:

D 1/3 \/7_1.31/3
W=(2) Ll a7)
1 5\2/3 1

where T'(z) is the gamma function and the last
asymptotic formula is valid in the intermediate re-
gion (D/s)'/? <« |¢| < 1. The asymptotic behavior
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P, o ¢~2 corresponds to a nonzero probability flux
of the stationary solultion. Physically, this means that
there is some preferred direction of the polymer rota-
tion, which is a manifestation of the tumbling effect
described above. The positive value of the average an-
gle ¢ shows that the polymer spends most of the time
in the region ¢ > 0, in agreement with the general anal-
ysis presented at the beginning of this section. It can
be seen that the polymer spends most of the time in
the region of small angles, and hence the only relevant
velocity component is v,. Therefore, the assumption
of isotropic statistics of the chaotic velocity component
is not therefore significant for the qualitative results in
this paper.

3.2. Tumbling time statistics

In this section, we calculate the PDF of the time
intervals between consequent tumblings. Such a PDF
can be directly measured experimentally. For this, it
is natural to use the nonstationary PDF P(t,¢). We
define the tumbling process by a polymer direction “tra-
jectory” starting at ¢ = 7/2 and reaching ¢ = —m /2
at time 7. In this case, the probability of finding the
polymer inside this region is given by

)

w/2

| .o

—m/2

p(t) (19)

where the initial condition is P(t,¢) = 6(¢ — /2 +0),
and hence p(0) 1.  The normalization condi-

oo
tion for this PDF is [ d¢P(t,¢) = 1. We substi-

tute P(t,¢) = UY?(¢)¥(t,¢), where U is defined in
Eq. (12). The evolution of ¥ is determined by the one-
dimensional Schrédinger equation in imaginary time:

A

0% = —HU, (20)

2
+ ;—Dsin4¢— s sin ¢ cos ¢.

It is now possible to use the quantum mechanical
analogy. The Hamiltonian H formally describes a par-
ticle in a periodic potential with period =. The general
solution of this problem is given by

¥(t.0)= Y [ dwn@vs, (5) %

X exp[—En (p)t]7

H = -2Dd} (21)

(22)

where p is the particle quasimomentum and n is the
Brillouin zone number. In this potential, the classical
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minima are separated by large barriers. For s > D,
the tight-binding method can be used (see, e.g., [27]).
Then the approximate relations

En(p) =€n — I/COS(ﬂ'p), (23)

U,p(0) = Y explimkp)in(d—kr),  (24)
k

where 1, and €, are the wave functions and energies,
hold for the spectrum formed near classical minima
when the tunneling processes are neglected; v is an ex-
ponentially small bandwidth. Therefore, at large times,
the leading asymptotic form of p(t) is determined by
the ground state energy €q:

p(t) oc exp(—egt), t — oc. (25)
It is easy to verify that this energy is given by
€0 = ¢(Ds?)'/3, where ¢ is a constant of the order of
unity. Indeed, the classical minimum is situated in the
region of small angles |¢| < 1, and we can therefore use
the Taylor expansion of trigonometric functions. After
the substitution ¢ = (D/s)'/?15, we obtain the Hamil-
tonian
4
H = (Ds?)!/? [—26,3 + % - n} . (26)
The operator in square brackets contains no dimen-
sionless parameters, and therefore its eigenvalues are
of the order of unity. The body of the PDF is also
located in the region of tumbling periods of the order
of T ~ (Ds?)~'/3. The left tail of the tumbling time
PDF, T < (Ds?)~'/3, is determined by rare trajecto-
ries, which turn the polymer through angle 7 at small
times 7. To find the optimal form of such trajecto-
ries, we use the functional integral representation of
the transition probability:

p(T) oc/D¢exp [—SiD/dt(qﬂssin? o). (27)

The integration is performed over trajectories with the
boundary conditions ¢(0) = 7/2, ¢(T') = —=n/2. For
small T < (Ds?)~'/3, the probability is determined by
the action A on the optimal trajectory with exponential
accuracy, p(T') o< exp(—A).

Variation of the effective action leads to the follow-
ing equation for the saddle-point trajectory:

¢ = s sin® ¢ cos ¢. (28)
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This mechanical problem can easily be solved, yielding
the following relation between the tumbling time and
the effective particle energy:

w/2

S

, V2E+ssin® a

I R Pt

{E(2E e
where K () is the elliptic integral of the first kind. The
action is then evaluated as

1
2

P
4D 4D V2E + s2sin® ¢
ET 3ns? 1573 52
=+ p (2,250 30
1D ' 32DvaE 2(2’4’4’2’ ’ 2E>’ (30)

where we omit the constant term 2sf¢sin2¢dt
= 7s/8D because it is cancelled by the normalization
constant. Because of the additional time scale s™',
there are two different asymptotic branches of p(¢). For
sT < 1, we have s < 2E and E = 7n2/2T2. In this
case,

71'2

~ 8DT"

(31)

In the other limit case s~ « T <« (Ds?)'/3, the en-
ergy is given by E = 8K*(1/2)/s*T* and the action
is

2 (1/2)

A=—"—1r"7
3Ds2T3

(32)

The intermediate asymptotic form in (32) is deter-
mined by the dynamics in the region of small angles
and is therefore a function of the product Ds?>T?3. The
dynamics at these angles are determined mainly by the
component v, and hence this asymptotic form is uni-
versal, in the sense that it is independent of the details
of the chaotic velocity statistics. On the contrary, the
asymptotic form (31) at small times does not depend
on s at all, because such small times can be reached
only due to very rare fluctuations of the chaotic velocity
field. Therefore, this asymptotic form strongly depends
on the assumption of an isotropic velocity statistics,
and is not universal.

3.3. OB-angle distribution

It was shown in [20] that there are two contribu-
tions to the intermediate right tail of the f-angle dis-
tribution, (D/s)'/? « # < 1. The first comes from the
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deterministic regions where ¢ ~ 1 and the angular dy-
namics are determined by the regular terms in Egs. (5)
and (6). The algebraic tail of the stationary PDF P(6)
is then proportional to =2 at § < 1. But there is also
a nonuniversal algebraic part, which comes from the
stochastic region of ¢ ~ (D/s)'/? and is determined by
statistical properties of the random velocity field. In
this section, we analyze this part and obtain a relation
between the scaling exponent and the entropy function
of the random velocity process. In the region 6§ < 1,
Eq. (6) can be easily solved:

0(t) = /Oodr X

X exp —g/sin2¢(t')dt' &t —1). (33)

t—1

As we have seen, the random process ¢(t) is station-
ary and independent of £y(¢). This allows us to rewrite
the expression for 6 as

0= [ dre 2Mey(r), (34)
[

T

/sin 20(t) dt.

0

o(r) = (35)

N | ®»

To obtain the PDF P(#), we first average over the noise
&o:

1 e
PO = s=ew(-57). (0
A=4D / dr exp[—20(7)], (37)

where P(6]o) is the PDF of 6 for a fixed realization of
the process o(t). Because of the positive average value
(6) ~ (Ds?)'/3 the dynamics are relaxational and the
body of P(f) is located in the region of small angles
6 ~ (D/s)'/? <« 1. The tails of the PDF are deter-
mined by large deviations of negative o(t). Assuming
that the process o(t) reaches its most negative value at
an instant 7%, such that o(7*) = —p¢* and ¢* > 1, we
can estimate the value of A with exponential accuracy
as A ~ (D/s)'/3 exp(20*).

The characteristic correlation time of o(t) is
7. = (Ds?)~1/3. Therefore, for large 7* > 7., we can
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apply the results of the theory of large deviations [28],
which predict the scaling for the tails of the ¢* PDF as

P(o"|") = exp [—T—*s (9—)] S

Te T*

where S(z) is the entropy function, which is one of
the most important characteristic of the chaotic veloc-
ity. This function is nonuniversal and strongly depends
on the statistical properties of velocity gradients. It is
impossible to find the exact expression for this func-
tion analytically even in the framework of our model.
Numerical computations of this entropy function were
recently presented in [17].

We can now find the most probable time 7* by max-
imizing the above probability with respect to 7*. This
leads to the expression 7* = 7.0* /2*, where 2* is found
from the equation

S(x*) = 2*S'(2*), (39)
where S’ is the derivative of S(z) with respect to x.
The entropy function is of the order of unity, and we
can hence expect the same for x*. The asymptotic form
of the ¢* PDF is therefore given by

P(9*) o exp[—0*S' (z*)]. (40)

After averaging Eq. (36) over p*, we obtain the asymp-
totic expression for the § PDF:

PO) x 6|75 (D)s)'P < 1] < 1. (41)
It follows that the tails are algebraic, as in the case
of the angle ¢, but the exponent is now nonuniversal
and depends on the statistical properties of the veloc-
ity field. For the delta-correlated Gaussian process g,
this tail was found numerically in [17]. It was shown
there that in the stochastic region |¢| < 1, the f-angle
PDF behaves as #~3-0. In our model, this contribution
is small compared to the tail from the regular region
6~2, but it can be expected that the situation may be
different for some specific velocity statistics.

4. STATISTICS OF POLYMER ELONGATION

In this section, we study the polymer molecules
placed in a relatively weak flow, where the Lyapunov
exponent of the flow is smaller than the relaxation time
of the polymer. In this case, the polymer spends most
of the time in the coiled phase, and we can assume
its relaxation force to be linear. Thermal noise can
be neglected in this case, in contrast to the situation
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above the coil-stretch transition discussed in the previ-
ous sections. We study only the size distribution of the
polymer for this situation. The tails of the polymer-
size PDF can be examined similarly to the analysis in
Sec. 3.3.

The formal solution of dynamic equation (1) in the
case of a linear relaxation force is given by

Ri(t) = / dtexp [ (t — )] Wiy (6. (F), (42)

t
W =T exp /&(T) dr |, (43)

t/
where 6;; = V;v; is the velocity gradient matrix. To

obtain the polymer elongation PDF, we first average
over the thermal Langevin force & (t):

P(R|5) o exp {—%RTI”R} , (44)
I=# / AW (YW (e, (45)

where W (t) = W (¢,0) and P(R|&) stands for the PDF
with a fixed realization of the process (t). At large
enough times t > 7., the eigenvalues of the matrix
WTW become widely separated and the absolute value
of the end-to-end vector R is determined by the largest
eigenvalue I;:

RZ
P(R|6) x exp <—2—Il> . (46)
It can be easily shown (see, e.g., [29]) that for large
times, when the eigenvalues \; of the WTTW matrix
are widely separated (A > As > A3), the dynamics
of the largest eigenvalue \; = exp(2p) are described by
the equation

= g cos? sin2¢ + 6D + &, (47)

(6o (D& (t")) = 2D (t — 1), (48)

where &, is obtained from the chaotic velocity correla-
tion function (4). The eigenvalue I; is then given by
the expression

L = n/dt exp [2p(t) — 2vt]. (49)



K. S. Turitsyn

MIT®, Tom 132, Boin. 3(9), 2007

As in the previous section, p(t) is an integral of the
stationary random process with the correlation time of
the order of 7, = (Ds?)~'/3, and large deviations of I
are determined by large deviations of p(¢). Assuming
that integral (49) is determined by one saddle point
7*, we can estimate it as I; o exp(2p* — 2y7*), where
p* = p(t*). The asymptotic behavior of the p* PDF
for a fixed value of 7* is given by

T*
P(p*|T*) x exp {——Sp <
TC
where S,(z) is an entropy function corresponding to
the process p(7).
Exactly as in the previous section, we find the opti-
mum value 7% = 7.p* /xz. The coefficient z satisfies the
equation

*
P Te
T*

(50)

Sy(x) = xS, () + y7.5, (). (51)

In the linear region below the coil-stretch transition,
we have y7. > 1. The tail of the PDF is algebraic, as
in case of the # angle, P(R) oc R~!7%, and the value of
a can be determined for large values of y7. > 1. Large
deviations of R are determined by the region where
thermal Langevin forces can be neglected and Eq. (47)
can be used.

We are interested in the asymptotic behavior of the
polymer size moments

My (t) = (R(t)) o< exp(Agt).

The value of « is then determined from the equation
A, = 0. Integrating over the function ¢,, we can
rewrite M, as

M, = exp (D¢t — vqt) /d¢ Zq(0,1), (52)

Zq = (explgp(t)10(¢ — 6(1))) ,

where the angular brackets denote averaging over the
process ¢(t). The function Z, satisfies the equation

0 Zy = |2DI] + 504 sin® ¢ + % sin2¢| Zg. (54)

(53)

The only difference from Fokker — Planck equation (9)
is in the last term. We follow the same procedure as in
Sec. 2.2. Substituting Z, = U(¢)¥(t, ¢), we obtain the
imaginary-time Schrodinger equation

oV =—H,U, (55)

2,
8_D Sin ¢ +

This equation cannot be explicitly solved in the case
q ~ 1, but the solution can be easily found for ¢ > 1.

A

H, = —2D6; + (g —1)ssingcosp. (56)
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In this case, the leading exponential asymptotic behav-
ior at large times is given by Z,(¢) o« exp[—€(q)t], where
€(q) is the ground-state energy. For ¢ > 1, the main
contribution to €(q) is equal to the value of the classical
minimum of the potential. After some simple algebra,
we obtain

eq) ~ =327 (¢'Ds)'" . 1< q< /D, (5T)
e(q) ~qs/2, q¢>s/D. (58)

Finally, we have
A(q) = Dg® = vq — €(q), (59)

and the critical value a depends on the dimensionless
parameter v/s:
3

g’}/_ fy<<s
2'/ 3
%, v > S.

The last expression coincides with the value of the ex-
ponent for a purely isotropic chaotic velocity, because
for v > s, large polymer-size fluctuations are deter-
mined by rare fluctuations of the chaotic component,
when the flow has a strong elongation component with
the Lyapunov exponent A > v for a long time. On
the other hand, the top line in (60) shows that in the
case 7 < s, the shear component can significantly
broaden the tails of the polymer-size PDF compared
to the chaotic flow without mean shear. This fact is
nontrivial because the regular shear component itself
cannot lead to an exponential polymer elongation, and
a nontrivial exponent comes from the combined effect
of the chaotic and regular components.

5. CONCLUSIONS

We have studied the statistical properties of a sin-
gle polymer molecule dynamics in a chaotic flow with
mean shear. In the framework of the velocity flow
model consisting of a stationary shear part and a
delta-correlated chaotic part, and the dumb-bell model
of a polymer molecule, we obtained several analyti-
cally rigorous results. First, for strongly elongated
polymers, the stationary angular distribution was dis-
cussed in detail. We obtained an explicit expression
for the ¢-angle probability distribution. The asymp-
totic behavior of this function formally coincides with
the results obtained for solid rods [21]. Second, we
analyzed the previously unreported contribution to the
algebraic tail of the f-angle PDF. In contrast to the
universal tail coming from the regular region, which
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was analyzed in [20,21], this tail is determined by the
polymer dynamics in the stochastic region. In con-
trast to the ¢-angle PDF, this asymptotic form is not
universal and depends on the statistical properties of
the chaotic velocity component. Next, we discussed
the probability distribution of the tumbling time, i.e.,
the time between consequent polymer flips. We have
shown that the characteristic time is of the same order
as the inverse Lyapunov exponent associated with the
flow. However, the fluctuations of the tumbling time
are rather strong. The asymptotic tail corresponding
to the large-time periods between flips has a universal
exponential form, while the tail corresponding to quick
flips has a far more complicated structure, which is in
general sensible to the velocity field statistics. We have
also discussed the size distribution of linear polymers
placed in a strong shear flow with a chaotic compo-
nent. We show that the existence of the strong shear
component results in significantly broadening the size
distribution compared to the isotropic case considered
in [6]. This effect is rather nontrivial to our opinion,
because the shear component itself cannot lead to an
exponential elongation of the polymer and the distri-
bution broadening is the combined effect of the chaotic
and regular velocity components. Finally, we mention
that all the results in this paper were obtained under
the assumption of an isotropic and short-correlated
chaotic velocity flow. As was discussed throughout the
paper, the first assumption is irrelevant for most of
the results, but the effect of the finite correlation time
requires a more sophisticated analysis. Comparison of
our results with the more general results in [20] shows
that the delta-correlated model reflects most of the
qualitative features of the problem. Furthermore, all
rigorous results obtained in its framework are in agree-
ment with general predictions in [20].
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