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PHONON DISPERSION IN GRAPHENEL. A. Falkovsky *Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es117334, Mos
ow, RussiaInstitute of High Pressure Physi
s, Russian A
ademy of S
ien
es142190, Troitsk, Mos
ow Region, RussiaRe
eived February 19, 2007Taking the 
onstraints imposed by the latti
e symmetry into a

ount, we 
al
ulate the phonon dispersionfor graphene with intera
tions between the �rst and se
ond nearest neighbors. We show that only �ve for
e
onstants give a very good �tting to the elasti
 
onstants and phonon frequen
ies observed in graphite.PACS: 63.20.Dj, 81.05.Uw, 71.15.Mb1. INTRODUCTIONSin
e the dis
overy of graphene (a single atomi
layer of graphite) [1; 2℄, mu
h attention has been de-voted to its ele
troni
 properties. Now, Raman spe
-tros
opy [3℄ extends to investigations of graphene. Forinterpretations of the Raman s
attering and of thetransport phenomena, the detailed knowledge of thelatti
e dynami
s and the ele
tron�phonon intera
tionsis needed [4℄.Several models [5�12℄ have been proposed to 
al-
ulate the phonon dispersion in bulk graphite. Mostimproved ones [9; 10℄ involve many (up to twenty) pa-rameters. Re
ently, the detailed measurements and�rst-prin
iple 
al
ulations of opti
al phonon frequen-
ies were made for graphite [13℄. They show the quali-tative disagreement with the models [5; 12℄, employingthe 
entral and angular atomi
 for
es between the �rstand se
ond neighbors in the graphite latti
e.The passage in the latti
e dynami
s from graphiteto graphene and then to nanotubes was examined inRef. [14℄ using the model in [5℄. Numeri
al 
al
ulationsof the dynami
al matrix in terms of the ele
tron energyfor graphene were performed in [15℄. The �rst-prin
iple
al
ulations [16℄ of the dynami
al properties of graphiteand graphene (and also of diamond) show that di�er-en
es between the phonon frequen
ies in graphene andthe related ones in graphite are negligible in 
ompari-son with the experimental errors for these frequen
iesin graphite. This 
ould be intuitively expe
ted for the*E-mail: falk�itp.a
.ru

highest frequen
ies be
ause intera
tions between thelayers in graphite are weak.Our aim here is to �nd an analyti
 des
ription ofthe phonon dispersion in graphene. This 
an be donein the framework of the Born � von Karman model forthe honey
omb graphene latti
e with intera
tions onlybetween the �rst and se
ond nearest neighbors, butwith the 
onstraints imposed by the latti
e symmetrytaken into a

ount. We �nd that the out-plane (bend-ing) modes are des
ribed by two for
e 
onstants, oneof whi
h is determined by the 
orresponding Ramanfrequen
y and the other by the smallest elasti
 
on-stant C44. For the in-plane modes, the latti
e stabil-ity 
ondition with respe
t to rotation of the layer as awhole around the z axis allows redu
ing the number offor
e 
onstants to three. These 
onstants are extra
tedfrom 
omparison with experimental data for graphite.We do not pay 
lose attention to the agreement oflower frequen
ies with experiment be
ause their val-ues in graphene are 
onvin
ingly smaller than the onesin graphite. The extent of agreement of the presenttheory with experiments 
orresponds to the 
ompari-son level between the �rst-prin
iple 
al
ulations by theauthors of Ref. [13℄ and their experimental data (seeTable 2 below).2. PHONON DYNAMICS IN THENEAREST-NEIGHBOR APPROXIMATIONThe equations of motion in the harmoni
 approxi-mation are written in the well-known form446



ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007 Phonon dispersion in grapheneXj;m;�0 ���0ij (an � am)u�0j (am)� !2u�i (an) = 0; (1)where the ve
tors an label latti
e 
ells, the supers
ripts��� and ��0� denote two sublatti
es A and B, and thesubs
ripts i; j = x; y; z take three values 
orrespond-ing to the spatial 
oordinates. Sin
e the potential en-ergy is a quadrati
 fun
tion of the atomi
 displa
ementsuAi (an) and uBi (an), the dynami
al matrix 
an be takenin the symmetri
 form:�ABij (an) = �BAji (�an):Its Fourier transform is then a Hermitian matrix. Ea
hatom, for instan
eA0 (Fig. 1), has three �rst neighborsin the other sublatti
e, i.e., B, with the relative ve
torsB1 = a(1; 0); B2;3 = a(�1;�p3)=2and six se
ond neighbors in the same sublatti
e A withthe relative ve
torsA1;4 = �a�0;p3� ; A2;5 = �a��3;p3� =2;A3;6 = �a�3;p3� =2;where a = 1:42Å is the 
arbon�
arbon distan
e.For the nearest neighbors (in the B sublatti
e), theFourier transform of the dynami
al matrix is given by
A2
A3 A4

A1 A6
A5A0B2

B3 B1
Fig. 1. First and se
ond neighbors in the grapene lat-ti
e

�ABij (q) = 3X�=1�ABij (B�) exp(iqB�) == �ABij (B1) exp(iqx) + �ABij (B2)�� exp hi��qx + qyp3=2�i++�ABij (B3) exp hi��qx � qyp3=2�i ; (2)where the wave ve
tor q is taken in units of 1=a. Forthe next neighbors (in the A sublatti
e), we write�AAij (q) = �AAij (A0) + 6X�=1�AAij (A�) exp(iqA�); (3)where A0 labels the atom 
hosen at the 
enter of the
oordinate system in the A sublatti
e.Symmetry 
onsiderations impose 
onstraints on thedynami
al matrix. To obtain them, we introdu
e vari-ables �; � = x� iy transforming under the C3 rotationaround the z axis (taken at the A0 atom) as(�; �)! (�; �) exp(�2�i=3):Under the rotation, the atoms 
hange their positionsas B1 ! B2 ! B3; A1 ! A3 ! A5;A2 ! A4 ! A6:Therefore, all the for
e 
onstants �AB�� (B�) with thedi�erent � (as well as �ABzz (B�)) are equal to one an-other. Moreover, these 
onstants are real be
ause there�e
tion x ! x, y ! �y belongs to the symmetrygroup of the sublatti
es.We similarly �nd�AB�� (B1) = �AB�� (B2) exp (2�i=3) == �AB�� (B3) exp (�2�i=3); (4)be
ause they transform as 
ovariant variables. The re-lation between �AA�� (A�) for � = 1; 3; 5 (and also for� = 2; 4; 6) has the same form. For the atom A0, thereare two real for
e 
onstants, �AA�� (A0) and �AAzz (A0).2.1. Dispersion of the out-plane modesIn the �rst- and se
ond-neighbor approximation,the out-plane vibrations uAz and uBz in the z dire
tionare not 
oupled to the in-plane modes. The 
orrespond-ing matrix for the out-plane modes has the form �AAzz (q) �ABzz (q)�ABzz (q)� �AAzz (q) ! ; (5)447



L. A. Falkovsky ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007where�AAzz (q) = �AAzz (A0) + 2�AAzz (A1)�� "
os�p3qy�+ 2 
os�3qx2 � 
os p3qy2 !# ;�ABzz (q) = �ABzz (B1)�� "exp (iqx) + 2 exp�� iqx2 � 
os p3qy2 !# :The invarian
e with respe
t to the translation of thelayer as a whole in the z-dire
tion imposes the 
ondi-tion �AAzz (A0) + 6�AAzz (A1) + 3�ABzz (B1) = 0: (6)The phonon dispersion for the out-plane opti
al anda
ousti
 modes is found as!ZO;ZA(q) = pu� v; (7)where we introdu
e the notationu = 2
z "
os�p3qy�++ 2 
os�3qx2 � 
os p3qy2 !� 3#� 3�z;v = �z "1 + 4 
os2 p3qy2 !++ 4 
os�3qx2 � 
os p3qy2 !#1=2 :The for
e 
onstants �z = �ABzz (B1) and 
z = �AAzz (A1)are real.The last equations allow us to express the phononfrequen
ies of the out-plane bran
hes at the 
riti
alpoints �;K, and M in terms of the for
e 
onstants:!ZO(�) = p�6�z; !ZO(K) =p�3�z � 9
z;!ZO(M) =p(�3� 1)�z � 8
z: (8)Expanding Eq. (7) in powers of the wave ve
tor q, we�nd the velo
ity of the a
ousti
 out-plane mode prop-agating in the layer,sz = ar�34�z � 92
z =sC44� ; (9)

where we use the well-known formula for the velo
ityof the a
ousti
 z-mode propagating in the x dire
tionin terms of the elasti
 
onstant C44 and density � ofa hexagonal 
rystal. Be
ause the intera
tion betweenthe layers in graphite is weak, we 
an attribute valuesof C44 and � to graphite.2.2. For
e 
onstants and frequen
ies ofin-plane modesThe dynami
al matrix for the in-plane vibrationshas the form  �AA(q) �AB(q)�BA(q) �BB(q) ! ; (10)where the 2� 2 matri
es �(q) are�AA(q) =  �AA�� (q) �AA�� (q)�AA�� (q)� �AA�� (q) ! (11)with�AA�� (q) = 2
 "
os�p3qy�++ 2 
os�3qx2 � 
os p3qy2 !� 3#� 3�;�AA�� (q) = Æ �exp�ip3qy�+ 2 
os�3qx2 + 2�3 � �� exp � ip3qy2 !#+ Æ� "exp��ip3qy�++ 2 
os�3qx2 � 2�3 � exp ip3qy2 !# ;and �AB(q) =  �AB�� (q) �AB�� (q)�AB�� (q) �AB�� (q) ! (12)with�AB�� (q) == �"exp (iqx)+2 exp�� iqx2 � 
os p3qy2 !# ;�AB�� (q) == � "exp (iqx)+2 exp�� iqx2 � 
os p3qy2 �2�3 !# ;448



ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007 Phonon dispersion in graphene�AB�� (q) == �� "exp (iqx)+2 exp�� iqx2 � 
os p3qy2 +2�3 !# ;where � = �AB�� (B1); � = �AB�� (B1);
 = �AA�� (A1); Æ = �AA�� (A1):The translation invarian
e 
ondition similar to Eq. (6)was imposed on the for
e 
onstants. The 
onstants �and 
 are evidently real. The 
onstant � is real be-
ause the re�e
tion (x; y) ! (x;�y) with B1 ! B1belongs to the symmetry group; the only one 
onstantÆ is 
omplex.The sublatti
e B 
an be obtained from A by theC2 rotation (x; y)! �(x; y) of the graphene symmetrygroup. Therefore,�BB�� (q) = Æ hexp��ip3qy�++ 2 
os�3qx2 � 2�3 � exp ip3qy2 !#++ Æ� "exp�ip3qy�+ 2 
os�3qx2 + 2�3 � �� exp � ip3qy2 !# : (13)The opti
al phonon frequen
ies for the in-planebran
hes at � and K are found!in-pl1;2 (�) = p�6�; doublet;!in-pl1;2 (K) =p�3�� 9
; doublet;!in-pl3;4 (K) =p�3�� 9
 � 3j�j: (14)Using Eqs. (10)�(13), we 
an �nd the dispersion ofin-plane modes for the G�K dire
tion in the expli
itform, but a forth-order algebrai
 equation has to besolved for the M point as well as for points of the gen-eral position.2.3. Elasti
 
onstants for in-plane modes2.3.1. Condition following from the rotationalsymmetryWe already applied the 
onditions imposed on thefor
e 
onstants by the invarian
e under translations ofthe layer as a whole. The 
onstants �; �; 
, and Æ satisfyanother 
ondition resulting from the invarian
e underrotations of the layer around the z axis. Any atom

at the point R�(n) (in the latti
e 
ell an) is displa
edunder rotation by the ve
tor with 
oordinatesu�x(n) = 
R�y (n); u�y(n) = �
R�x(n); (15)where 
 is the in�nitesimal angle of the rotation, e.g.,around the atom A0. For the latti
e stability, the for
emoment a
ting on the atom A0 from other atoms,Xn�j R�x(n)��0�yj (n)u�j (n)�R�y(n)��0�xj (n)u�j (n);has to vanish for any 
, i.e.,Xn� 2��0�xy (n)R�x(n)R�y (n)���0�xx (n)R�y (n)2 ����0�yy (n)R�x(n)2 = 0:In terms of the �; � variables, we have��0��� (n) = ��0�xx (n)���0�yy (n)� 2i��0�xy (n);��0��� (n) = ��0�xx (n) + ��0�yy (n): (16)Using these equalities, we obtain the latti
e stability
ondition asXn� 2��0��� (n)R�� (n)R�� (n)���0��� (n)R�� (n)2 ����0��� (n)R�� (n)2 = 0:Here, the term 
orresponding to the nearest neigh-borB1 equals 2a2[���℄ and ea
h other atomB2;3 givesthe same 
ontribution in a

ordan
e with Eqs. (4).From the next neighbor A1, we obtain 6a2[
 � Re Æ℄:Thus, summing up the 
ontributions of the �rst andse
ond neighbors, we �nd the rotational symmetry 
on-dition �� � + 6
 � 6Re Æ = 0: (17)2.3.2. Contribution of in-plane modes to theelasti
 
onstantsThe in-plane vibrations make a 
ontribution to theelasti
 
onstants C11 and C12. The 
orresponding re-lation between the dynami
al matrix elements and theelasti
 
onstants 
an be dedu
ed by taking the long-wavelength limit (q! 0) in Eqs. (1), whi
h we rewritefor the two-dimensional variables uA and uB as(�AA � !2)uA + �ABuB = 0;�BAuA + (�BB � !2)uB = 09 ÆÝÒÔ, âûï. 2 (8) 449
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torFig. 2. Cal
ulated phonon dispersion for graphene; Ra-man frequen
ies are listed in Table 1, the for
e 
on-stants and elasti
 
onstants are in Table 2

�Redu
ed wave ve
tor� M K050010001500Frequen
y, 
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Fig. 3. A version of the phonon dispersion forgrapheneusing the form of matrix (10). Making the transforma-tion uA = ua
 + uopt; uB = ua
 � uoptto the new variables ua
 and uopt, we obtain(�AA+�AB�!2)ua
+(�AA�!2��AB)uopt = 0;(�BB�!2��BA)uopt�(�BB+�BA�!2)ua
 = 0: (18)Expanding the matri
es� = �0 + �1 + �2in a series with re
pe
t to q, where the subs
ripts �0�,�1�, and �2� indi
ate the order of terms, we see that

�Redu
ed wave ve
tor� M K050010001500Frequen
y, 
m�1

Fig. 4. Another version of the phonon dispersion forgraphenethe diagonal terms in Eqs. (18) are of the �rst orderbe
ause �AA0 + �AB0 = 0and ! � q for the a
ousti
 modes. We 
an then elimi-nate uopt � q from Eqs. (18). Using the notation�0 � �AA0 = �BB0 = ��AB0 = ��BA0and 
al
ulating the inverse matrix, we �nd, to the �rstorder, (�0 � �AB=2)�1 = (1 + ��10 �AB1 =2)��10 :For the a
ousti
 modes ua
, we obtain�(�AA + �AB + �BB + �BA)=2 ++ �AB1 ��10 �AB1 � !2�ua
 = 0; (19)where the subs
ripts �0� and �1� mean that terms of thezeroth and �rst order have to be kept, 
orrespondingly,but the other expressions have to be expanded to these
ond order in q. We �nd the matrix fa
tor of ua
 inEqs. (19):  s1q2 s2q2+s�2q2� s1q2 ! ;wheres1 = �92
 � 34 ��� �2� � ; s2 = 94 Re Æ � 38�:We thus obtain the velo
ities of longitudinal and trans-verse a
ousti
 in-plane modes related to the elasti
 
on-stantsC11� = a2(s1+js2j); C11�C122� = a2(s1�js2j): (20)450



ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007 Phonon dispersion in grapheneTable 1. Latti
e mode frequen
ies at 
riti
al points, in 
m�1 (the supers
ripts �z� and �k� stand for the out-plane andin-plane bran
hes, 
orrespondingly)� [0 0℄ M [1p3℄�=3a K [0 1℄4�=sp3a!k !z !k1 !k2 !k3 !k4 !z1 !z2 !k1 !k2;3 !k4 !z1;2Exp. 1590a 861a 1389a 630d 670a 471
 1313d 1184b 482d1583b 868
 1390b 1323b 1290b 451d 1265b 1194b 517d1565bTheor.b 1581 1425 1350 1315 1300 1220 950Theor. 1558 840 1423 1288 1261 583 564 288 1326 1195 1047 426aReferen
e [17℄, bReferen
e [13℄, 
Referen
e [6℄, dReferen
e [18℄.Table 2. For
e 
onstants in 105 
m�2 and elasti
 
onstants (in 10 GPa), 
al
ulated (Theor.) and observed [19℄ (Exp.);the parameter 
 = �0:238 � 105 is determined from Eq. (17)� � Æ �z 
z C11 C12 C44Theor. �4:046 1.107 �1:096 �1:176 0.190 92 24 0:43Exp. 106� 2 18� 2 0:45� 0:053. FITTING WITH RAMAN AND ELASTICDATAThe 
al
ulated phonon dispersion is shown in Fig. 2.We note, �rst, that the sound velo
ities (for the longwaves, q ! �) have no dispersion in the xy plane, as itshould be due to the C6 symmetry of graphene. Se
ond,the in-plane LO/TO modes at �, the in-plane LO/LAmodes at K, and the out-plane ZA/ZO modes at Kare doubly degenerate, be
ause graphene is a nonpo-lar 
rystal and the symmetry of these points in theBrillouin zone in
ludes the C3v group with the two-dimensional representation (observation of splitting ofthose modes in graphene would display the symmetrybreaking of the 
rystal).Be
ause of the la
k of information about graphene,we 
ompare the present theory with experiments ongraphite. We prefer to obtain more a

urate �tting forthe higher frequen
ies be
ause the absen
e of the neigh-boring layers in graphene a�e
ts low frequen
ies moreintensely. Moreover, the low frequen
ies in graphenefor the out-plane bran
hes have to be less than theirvalues in graphite, sin
e the atoms are freer to move inthe z dire
tion in graphene than in graphite.Thus, we have only two 
onstants, �z and 
z, to�t four Raman frequen
ies of the out-plane modes andone elasti
 
onstant C44 (see Tables 1 and 2). The 
on-

stant �z is determined by the Raman frequen
y !ZO ,Eq. (8). The sound velo
ity sz in Eq. (9) is very sen-sitive to small variations of 
z and be
omes 
omplexfor 
z > 0:2 � 105 
m�2. This indi
ates that grapheneis nearly unstable with respe
t to transformation intoa phase of the lower symmetry group at �. From theresults of �tting, we 
an also see that the phonon fre-quen
ies for the z-modes are smaller than their valuesin graphite.Fitting of the in-plane bran
hes is unsensitive tothe imaginary part of the 
onstant Æ. Therefore, Æ istaken as a real parameter. Thus, for the in-plane mode,we have to �t eight Raman frequen
ies and two elasti

onstants using three for
e 
onstants. The �tting re-sults are presented in Fig. 2 and in Tables 1 and 2. Wenote that the extent of agreement of the present the-ory with the data obtained for graphite 
orresponds tothe 
omparison level between the �rst-prin
iple 
al
u-lations obtained by the authors of Ref. [13℄ for graphiteand their experimental data (see Table 1). We see onlyqualitative dis
repan
y in the sequen
e of levels at M :in Fig. 2, the highest level is the LO mode, whereasthe experiment appears to reveal a 
rossover of the TOand LO modes on the ��M line (similar to ��K line),yielding the TO mode higher at M . We examined theversions with the 
rossover, shown in Figs. 3 and 4.451 9*



L. A. Falkovsky ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007The agreement with experiments is not so good in these
ases as in the 
ase shown in Fig. 2 and Tables 1 and 2,but the dis
repan
ies of the order of 50 
m�1 betweenthe di�erent experiments, as well as the distin
tionsbetween graphene and graphite, do not allow 
hoosingthe version 
on
lusively. The experiment on graphenewould 
larify this point.4. CONCLUSIONSWe have 
al
ulated the phonon dispersion ingraphene using the Born�von Karman model with onlythe �rst and se
ond-neighbor intera
tions imposed bythe symmetry 
onstraints. The bending (out-plane)modes are not 
oupled to the in-plane bran
hes andindi
ate the instability of graphene with respe
t totransformation into a lower-symmetry phase. TheRaman frequen
ies of these modes are less than the
orresponding values in graphite. The �tting of thehigher in-plane modes shows good agreement of the
al
ulated opti
al frequen
ies as well as of elasti

onstants with experiments.The work was supported by the RFBR (grantNo. 07-02-00571). REFERENCES1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al.,S
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