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PHONON DISPERSION IN GRAPHENEL. A. Falkovsky *Landau Institute for Theoretial Physis, Russian Aademy of Sienes117334, Mosow, RussiaInstitute of High Pressure Physis, Russian Aademy of Sienes142190, Troitsk, Mosow Region, RussiaReeived February 19, 2007Taking the onstraints imposed by the lattie symmetry into aount, we alulate the phonon dispersionfor graphene with interations between the �rst and seond nearest neighbors. We show that only �ve foreonstants give a very good �tting to the elasti onstants and phonon frequenies observed in graphite.PACS: 63.20.Dj, 81.05.Uw, 71.15.Mb1. INTRODUCTIONSine the disovery of graphene (a single atomilayer of graphite) [1; 2℄, muh attention has been de-voted to its eletroni properties. Now, Raman spe-trosopy [3℄ extends to investigations of graphene. Forinterpretations of the Raman sattering and of thetransport phenomena, the detailed knowledge of thelattie dynamis and the eletron�phonon interationsis needed [4℄.Several models [5�12℄ have been proposed to al-ulate the phonon dispersion in bulk graphite. Mostimproved ones [9; 10℄ involve many (up to twenty) pa-rameters. Reently, the detailed measurements and�rst-priniple alulations of optial phonon frequen-ies were made for graphite [13℄. They show the quali-tative disagreement with the models [5; 12℄, employingthe entral and angular atomi fores between the �rstand seond neighbors in the graphite lattie.The passage in the lattie dynamis from graphiteto graphene and then to nanotubes was examined inRef. [14℄ using the model in [5℄. Numerial alulationsof the dynamial matrix in terms of the eletron energyfor graphene were performed in [15℄. The �rst-priniplealulations [16℄ of the dynamial properties of graphiteand graphene (and also of diamond) show that di�er-enes between the phonon frequenies in graphene andthe related ones in graphite are negligible in ompari-son with the experimental errors for these frequeniesin graphite. This ould be intuitively expeted for the*E-mail: falk�itp.a.ru

highest frequenies beause interations between thelayers in graphite are weak.Our aim here is to �nd an analyti desription ofthe phonon dispersion in graphene. This an be donein the framework of the Born � von Karman model forthe honeyomb graphene lattie with interations onlybetween the �rst and seond nearest neighbors, butwith the onstraints imposed by the lattie symmetrytaken into aount. We �nd that the out-plane (bend-ing) modes are desribed by two fore onstants, oneof whih is determined by the orresponding Ramanfrequeny and the other by the smallest elasti on-stant C44. For the in-plane modes, the lattie stabil-ity ondition with respet to rotation of the layer as awhole around the z axis allows reduing the number offore onstants to three. These onstants are extratedfrom omparison with experimental data for graphite.We do not pay lose attention to the agreement oflower frequenies with experiment beause their val-ues in graphene are onviningly smaller than the onesin graphite. The extent of agreement of the presenttheory with experiments orresponds to the ompari-son level between the �rst-priniple alulations by theauthors of Ref. [13℄ and their experimental data (seeTable 2 below).2. PHONON DYNAMICS IN THENEAREST-NEIGHBOR APPROXIMATIONThe equations of motion in the harmoni approxi-mation are written in the well-known form446



ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007 Phonon dispersion in grapheneXj;m;�0 ���0ij (an � am)u�0j (am)� !2u�i (an) = 0; (1)where the vetors an label lattie ells, the supersripts��� and ��0� denote two sublatties A and B, and thesubsripts i; j = x; y; z take three values orrespond-ing to the spatial oordinates. Sine the potential en-ergy is a quadrati funtion of the atomi displaementsuAi (an) and uBi (an), the dynamial matrix an be takenin the symmetri form:�ABij (an) = �BAji (�an):Its Fourier transform is then a Hermitian matrix. Eahatom, for instaneA0 (Fig. 1), has three �rst neighborsin the other sublattie, i.e., B, with the relative vetorsB1 = a(1; 0); B2;3 = a(�1;�p3)=2and six seond neighbors in the same sublattie A withthe relative vetorsA1;4 = �a�0;p3� ; A2;5 = �a��3;p3� =2;A3;6 = �a�3;p3� =2;where a = 1:42Å is the arbon�arbon distane.For the nearest neighbors (in the B sublattie), theFourier transform of the dynamial matrix is given by
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Fig. 1. First and seond neighbors in the grapene lat-tie

�ABij (q) = 3X�=1�ABij (B�) exp(iqB�) == �ABij (B1) exp(iqx) + �ABij (B2)�� exp hi��qx + qyp3=2�i++�ABij (B3) exp hi��qx � qyp3=2�i ; (2)where the wave vetor q is taken in units of 1=a. Forthe next neighbors (in the A sublattie), we write�AAij (q) = �AAij (A0) + 6X�=1�AAij (A�) exp(iqA�); (3)where A0 labels the atom hosen at the enter of theoordinate system in the A sublattie.Symmetry onsiderations impose onstraints on thedynamial matrix. To obtain them, we introdue vari-ables �; � = x� iy transforming under the C3 rotationaround the z axis (taken at the A0 atom) as(�; �)! (�; �) exp(�2�i=3):Under the rotation, the atoms hange their positionsas B1 ! B2 ! B3; A1 ! A3 ! A5;A2 ! A4 ! A6:Therefore, all the fore onstants �AB�� (B�) with thedi�erent � (as well as �ABzz (B�)) are equal to one an-other. Moreover, these onstants are real beause there�etion x ! x, y ! �y belongs to the symmetrygroup of the sublatties.We similarly �nd�AB�� (B1) = �AB�� (B2) exp (2�i=3) == �AB�� (B3) exp (�2�i=3); (4)beause they transform as ovariant variables. The re-lation between �AA�� (A�) for � = 1; 3; 5 (and also for� = 2; 4; 6) has the same form. For the atom A0, thereare two real fore onstants, �AA�� (A0) and �AAzz (A0).2.1. Dispersion of the out-plane modesIn the �rst- and seond-neighbor approximation,the out-plane vibrations uAz and uBz in the z diretionare not oupled to the in-plane modes. The orrespond-ing matrix for the out-plane modes has the form �AAzz (q) �ABzz (q)�ABzz (q)� �AAzz (q) ! ; (5)447



L. A. Falkovsky ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007where�AAzz (q) = �AAzz (A0) + 2�AAzz (A1)�� "os�p3qy�+ 2 os�3qx2 � os p3qy2 !# ;�ABzz (q) = �ABzz (B1)�� "exp (iqx) + 2 exp�� iqx2 � os p3qy2 !# :The invariane with respet to the translation of thelayer as a whole in the z-diretion imposes the ondi-tion �AAzz (A0) + 6�AAzz (A1) + 3�ABzz (B1) = 0: (6)The phonon dispersion for the out-plane optial andaousti modes is found as!ZO;ZA(q) = pu� v; (7)where we introdue the notationu = 2z "os�p3qy�++ 2 os�3qx2 � os p3qy2 !� 3#� 3�z;v = �z "1 + 4 os2 p3qy2 !++ 4 os�3qx2 � os p3qy2 !#1=2 :The fore onstants �z = �ABzz (B1) and z = �AAzz (A1)are real.The last equations allow us to express the phononfrequenies of the out-plane branhes at the ritialpoints �;K, and M in terms of the fore onstants:!ZO(�) = p�6�z; !ZO(K) =p�3�z � 9z;!ZO(M) =p(�3� 1)�z � 8z: (8)Expanding Eq. (7) in powers of the wave vetor q, we�nd the veloity of the aousti out-plane mode prop-agating in the layer,sz = ar�34�z � 92z =sC44� ; (9)

where we use the well-known formula for the veloityof the aousti z-mode propagating in the x diretionin terms of the elasti onstant C44 and density � ofa hexagonal rystal. Beause the interation betweenthe layers in graphite is weak, we an attribute valuesof C44 and � to graphite.2.2. Fore onstants and frequenies ofin-plane modesThe dynamial matrix for the in-plane vibrationshas the form  �AA(q) �AB(q)�BA(q) �BB(q) ! ; (10)where the 2� 2 matries �(q) are�AA(q) =  �AA�� (q) �AA�� (q)�AA�� (q)� �AA�� (q) ! (11)with�AA�� (q) = 2 "os�p3qy�++ 2 os�3qx2 � os p3qy2 !� 3#� 3�;�AA�� (q) = Æ �exp�ip3qy�+ 2 os�3qx2 + 2�3 � �� exp � ip3qy2 !#+ Æ� "exp��ip3qy�++ 2 os�3qx2 � 2�3 � exp ip3qy2 !# ;and �AB(q) =  �AB�� (q) �AB�� (q)�AB�� (q) �AB�� (q) ! (12)with�AB�� (q) == �"exp (iqx)+2 exp�� iqx2 � os p3qy2 !# ;�AB�� (q) == � "exp (iqx)+2 exp�� iqx2 � os p3qy2 �2�3 !# ;448



ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007 Phonon dispersion in graphene�AB�� (q) == �� "exp (iqx)+2 exp�� iqx2 � os p3qy2 +2�3 !# ;where � = �AB�� (B1); � = �AB�� (B1); = �AA�� (A1); Æ = �AA�� (A1):The translation invariane ondition similar to Eq. (6)was imposed on the fore onstants. The onstants �and  are evidently real. The onstant � is real be-ause the re�etion (x; y) ! (x;�y) with B1 ! B1belongs to the symmetry group; the only one onstantÆ is omplex.The sublattie B an be obtained from A by theC2 rotation (x; y)! �(x; y) of the graphene symmetrygroup. Therefore,�BB�� (q) = Æ hexp��ip3qy�++ 2 os�3qx2 � 2�3 � exp ip3qy2 !#++ Æ� "exp�ip3qy�+ 2 os�3qx2 + 2�3 � �� exp � ip3qy2 !# : (13)The optial phonon frequenies for the in-planebranhes at � and K are found!in-pl1;2 (�) = p�6�; doublet;!in-pl1;2 (K) =p�3�� 9; doublet;!in-pl3;4 (K) =p�3�� 9 � 3j�j: (14)Using Eqs. (10)�(13), we an �nd the dispersion ofin-plane modes for the G�K diretion in the expliitform, but a forth-order algebrai equation has to besolved for the M point as well as for points of the gen-eral position.2.3. Elasti onstants for in-plane modes2.3.1. Condition following from the rotationalsymmetryWe already applied the onditions imposed on thefore onstants by the invariane under translations ofthe layer as a whole. The onstants �; �; , and Æ satisfyanother ondition resulting from the invariane underrotations of the layer around the z axis. Any atom

at the point R�(n) (in the lattie ell an) is displaedunder rotation by the vetor with oordinatesu�x(n) = 
R�y (n); u�y(n) = �
R�x(n); (15)where 
 is the in�nitesimal angle of the rotation, e.g.,around the atom A0. For the lattie stability, the foremoment ating on the atom A0 from other atoms,Xn�j R�x(n)��0�yj (n)u�j (n)�R�y(n)��0�xj (n)u�j (n);has to vanish for any 
, i.e.,Xn� 2��0�xy (n)R�x(n)R�y (n)���0�xx (n)R�y (n)2 ����0�yy (n)R�x(n)2 = 0:In terms of the �; � variables, we have��0��� (n) = ��0�xx (n)���0�yy (n)� 2i��0�xy (n);��0��� (n) = ��0�xx (n) + ��0�yy (n): (16)Using these equalities, we obtain the lattie stabilityondition asXn� 2��0��� (n)R�� (n)R�� (n)���0��� (n)R�� (n)2 ����0��� (n)R�� (n)2 = 0:Here, the term orresponding to the nearest neigh-borB1 equals 2a2[���℄ and eah other atomB2;3 givesthe same ontribution in aordane with Eqs. (4).From the next neighbor A1, we obtain 6a2[ � Re Æ℄:Thus, summing up the ontributions of the �rst andseond neighbors, we �nd the rotational symmetry on-dition �� � + 6 � 6Re Æ = 0: (17)2.3.2. Contribution of in-plane modes to theelasti onstantsThe in-plane vibrations make a ontribution to theelasti onstants C11 and C12. The orresponding re-lation between the dynamial matrix elements and theelasti onstants an be dedued by taking the long-wavelength limit (q! 0) in Eqs. (1), whih we rewritefor the two-dimensional variables uA and uB as(�AA � !2)uA + �ABuB = 0;�BAuA + (�BB � !2)uB = 09 ÆÝÒÔ, âûï. 2 (8) 449
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LA LALOTOZOTAZARedued wave vetorFig. 2. Calulated phonon dispersion for graphene; Ra-man frequenies are listed in Table 1, the fore on-stants and elasti onstants are in Table 2
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Fig. 3. A version of the phonon dispersion forgrapheneusing the form of matrix (10). Making the transforma-tion uA = ua + uopt; uB = ua � uoptto the new variables ua and uopt, we obtain(�AA+�AB�!2)ua+(�AA�!2��AB)uopt = 0;(�BB�!2��BA)uopt�(�BB+�BA�!2)ua = 0: (18)Expanding the matries� = �0 + �1 + �2in a series with repet to q, where the subsripts �0�,�1�, and �2� indiate the order of terms, we see that

�Redued wave vetor� M K050010001500Frequeny, m�1

Fig. 4. Another version of the phonon dispersion forgraphenethe diagonal terms in Eqs. (18) are of the �rst orderbeause �AA0 + �AB0 = 0and ! � q for the aousti modes. We an then elimi-nate uopt � q from Eqs. (18). Using the notation�0 � �AA0 = �BB0 = ��AB0 = ��BA0and alulating the inverse matrix, we �nd, to the �rstorder, (�0 � �AB=2)�1 = (1 + ��10 �AB1 =2)��10 :For the aousti modes ua, we obtain�(�AA + �AB + �BB + �BA)=2 ++ �AB1 ��10 �AB1 � !2�ua = 0; (19)where the subsripts �0� and �1� mean that terms of thezeroth and �rst order have to be kept, orrespondingly,but the other expressions have to be expanded to theseond order in q. We �nd the matrix fator of ua inEqs. (19):  s1q2 s2q2+s�2q2� s1q2 ! ;wheres1 = �92 � 34 ��� �2� � ; s2 = 94 Re Æ � 38�:We thus obtain the veloities of longitudinal and trans-verse aousti in-plane modes related to the elasti on-stantsC11� = a2(s1+js2j); C11�C122� = a2(s1�js2j): (20)450



ÆÝÒÔ, òîì 132, âûï. 2 (8), 2007 Phonon dispersion in grapheneTable 1. Lattie mode frequenies at ritial points, in m�1 (the supersripts �z� and �k� stand for the out-plane andin-plane branhes, orrespondingly)� [0 0℄ M [1p3℄�=3a K [0 1℄4�=sp3a!k !z !k1 !k2 !k3 !k4 !z1 !z2 !k1 !k2;3 !k4 !z1;2Exp. 1590a 861a 1389a 630d 670a 471 1313d 1184b 482d1583b 868 1390b 1323b 1290b 451d 1265b 1194b 517d1565bTheor.b 1581 1425 1350 1315 1300 1220 950Theor. 1558 840 1423 1288 1261 583 564 288 1326 1195 1047 426aReferene [17℄, bReferene [13℄, Referene [6℄, dReferene [18℄.Table 2. Fore onstants in 105 m�2 and elasti onstants (in 10 GPa), alulated (Theor.) and observed [19℄ (Exp.);the parameter  = �0:238 � 105 is determined from Eq. (17)� � Æ �z z C11 C12 C44Theor. �4:046 1.107 �1:096 �1:176 0.190 92 24 0:43Exp. 106� 2 18� 2 0:45� 0:053. FITTING WITH RAMAN AND ELASTICDATAThe alulated phonon dispersion is shown in Fig. 2.We note, �rst, that the sound veloities (for the longwaves, q ! �) have no dispersion in the xy plane, as itshould be due to the C6 symmetry of graphene. Seond,the in-plane LO/TO modes at �, the in-plane LO/LAmodes at K, and the out-plane ZA/ZO modes at Kare doubly degenerate, beause graphene is a nonpo-lar rystal and the symmetry of these points in theBrillouin zone inludes the C3v group with the two-dimensional representation (observation of splitting ofthose modes in graphene would display the symmetrybreaking of the rystal).Beause of the lak of information about graphene,we ompare the present theory with experiments ongraphite. We prefer to obtain more aurate �tting forthe higher frequenies beause the absene of the neigh-boring layers in graphene a�ets low frequenies moreintensely. Moreover, the low frequenies in graphenefor the out-plane branhes have to be less than theirvalues in graphite, sine the atoms are freer to move inthe z diretion in graphene than in graphite.Thus, we have only two onstants, �z and z, to�t four Raman frequenies of the out-plane modes andone elasti onstant C44 (see Tables 1 and 2). The on-

stant �z is determined by the Raman frequeny !ZO ,Eq. (8). The sound veloity sz in Eq. (9) is very sen-sitive to small variations of z and beomes omplexfor z > 0:2 � 105 m�2. This indiates that grapheneis nearly unstable with respet to transformation intoa phase of the lower symmetry group at �. From theresults of �tting, we an also see that the phonon fre-quenies for the z-modes are smaller than their valuesin graphite.Fitting of the in-plane branhes is unsensitive tothe imaginary part of the onstant Æ. Therefore, Æ istaken as a real parameter. Thus, for the in-plane mode,we have to �t eight Raman frequenies and two elastionstants using three fore onstants. The �tting re-sults are presented in Fig. 2 and in Tables 1 and 2. Wenote that the extent of agreement of the present the-ory with the data obtained for graphite orresponds tothe omparison level between the �rst-priniple alu-lations obtained by the authors of Ref. [13℄ for graphiteand their experimental data (see Table 1). We see onlyqualitative disrepany in the sequene of levels at M :in Fig. 2, the highest level is the LO mode, whereasthe experiment appears to reveal a rossover of the TOand LO modes on the ��M line (similar to ��K line),yielding the TO mode higher at M . We examined theversions with the rossover, shown in Figs. 3 and 4.451 9*
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