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Taking the constraints imposed by the lattice symmetry into account, we calculate the phonon dispersion
for graphene with interactions between the first and second nearest neighbors. We show that only five force
constants give a very good fitting to the elastic constants and phonon frequencies observed in graphite.
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1. INTRODUCTION

Since the discovery of graphene (a single atomic
layer of graphite) [1,2], much attention has been de-
voted to its electronic properties. Now, Raman spec-
troscopy [3] extends to investigations of graphene. For
interpretations of the Raman scattering and of the
transport phenomena, the detailed knowledge of the
lattice dynamics and the electron—phonon interactions
is needed [4].

Several models [5-12] have been proposed to cal-
culate the phonon dispersion in bulk graphite. Most
improved ones [9, 10] involve many (up to twenty) pa-
rameters. Recently, the detailed measurements and
first-principle calculations of optical phonon frequen-
cies were made for graphite [13]. They show the quali-
tative disagreement with the models [5, 12], employing
the central and angular atomic forces between the first
and second neighbors in the graphite lattice.

The passage in the lattice dynamics from graphite
to graphene and then to nanotubes was examined in
Ref. [14] using the model in [5]. Numerical calculations
of the dynamical matrix in terms of the electron energy
for graphene were performed in [15]. The first-principle
calculations [16] of the dynamical properties of graphite
and graphene (and also of diamond) show that differ-
ences between the phonon frequencies in graphene and
the related ones in graphite are negligible in compari-
son with the experimental errors for these frequencies
in graphite. This could be intuitively expected for the
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highest frequencies because interactions between the
layers in graphite are weak.

Our aim here is to find an analytic description of
the phonon dispersion in graphene. This can be done
in the framework of the Born—von Karman model for
the honeycomb graphene lattice with interactions only
between the first and second nearest neighbors, but
with the constraints imposed by the lattice symmetry
taken into account. We find that the out-plane (bend-
ing) modes are described by two force constants, one
of which is determined by the corresponding Raman
frequency and the other by the smallest elastic con-
stant, Cyq. For the in-plane modes, the lattice stabil-
ity condition with respect to rotation of the layer as a
whole around the z axis allows reducing the number of
force constants to three. These constants are extracted
from comparison with experimental data for graphite.
We do not pay close attention to the agreement of
lower frequencies with experiment because their val-
ues in graphene are convincingly smaller than the ones
in graphite. The extent of agreement of the present
theory with experiments corresponds to the compari-
son level between the first-principle calculations by the
authors of Ref. [13] and their experimental data (see
Table 2 below).

2. PHONON DYNAMICS IN THE
NEAREST-NEIGHBOR APPROXIMATION

The equations of motion in the harmonic approxi-
mation are written in the well-known form
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where the vectors a,, label lattice cells, the superscripts
“k” and “k"” denote two sublattices A and B, and the
subscripts i,j = z,y,z take three values correspond-
ing to the spatial coordinates. Since the potential en-
ergy is a quadratic function of the atomic displacements
uf(a,) and uP(a,), the dynamical matrix can be taken
in the symmetric form:
A A
(I)ijB(an) = (I)ﬁ (—ay).
Its Fourier transform is then a Hermitian matrix. Each
atom, for instance Ag (Fig. 1), has three first neighbors
in the other sublattice, i.e., B, with the relative vectors
B, = a(1,0), Bys=a(-1,+V3)/2

and six second neighbors in the same sublattice A with
the relative vectors

Aig=*a (0\/5) . Ass=+a (—3\/3) /2,

Ass=Fa(3.V3) /2
where a = 1.42 A is the carbon—carbon distance.
For the nearest neighbors (in the B sublattice), the

Fourier transform of the dynamical matrix is given by

A,

Az A6

B

A;
As;

Ay

Fig. 1. First and second neighbors in the grapene lat-
tice
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3
(@) =) ®;°(B,)exp(iqB,) =

k=1
= ‘I’f}B(Bl) exp(iqz) + ‘I’iAjB(Bz) b
X exp [z (—q,E + qy\/§/2)] +

+ 4P (By) exp i (—ar — ,V3/2)]

AB
]

(2)

where the wave vector q is taken in units of 1/a. For
the next neighbors (in the A sublattice), we write

Z @AA

where Ay labels the atom chosen at the center of the
coordinate system in the A sublattice.

Symmetry considerations impose constraints on the
dynamical matrix. To obtain them, we introduce vari-
ables £, = x £ iy transforming under the C3 rotation
around the z axis (taken at the Ay atom) as

&n —

Under the rotation, the atoms change their positions
as

AA

A a) = @44 (Ag) + (3)

<) expliaA,),

(&,m) exp(£27mi/3).

B1—>B2—>B37 A1—>A3—)A57

.A.2 —)A4 —>A.6.

Therefore, all the force constants @?UB(BN) with the
different x (as well as ®4P(B,)) are equal to one an-
other. Moreover, these constants are real because the
reflection 2 — 2z, y — —y belongs to the symmetry
group of the sublattices.

We similarly find

;P (B1) = B8 (By) exp (27i/3) =

— ®AP (By) exp (~27i/3),  (4)
because they transform as covariant variables. The re-
lation between @g‘ﬁA(AN) for k = 1,3,5 (and also for
k = 2,4,6) has the same form. For the atom Ay, there
are two real force constants, @?HA(AO) and ®244(Ay).

2.1. Dispersion of the out-plane modes

In the first- and second-neighbor approximation,
the out-plane vibrations u# and u? in the z direction
are not coupled to the in-plane modes. The correspond-
ing matrix for the out-plane modes has the form

( (a) )

AA

zz

AB
2z

AB
zz

AA
2z

(a)

(@ ©)

(q)
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where

¢AA (q) = (PzAzA(AO) + 2¢zAzA(A1) X

ZZ X lcos (\/§Qy) + 2 cos <3gx> cos (\/iQy)] )

AB(q) = (I)?ZB(Bl) X

o2 (1) o (450 |

The invariance with respect to the translation of the
layer as a whole in the z-direction imposes the condi-
tion

1M (Ag) + 601 (A1) +382P(B1)=0.  (6)

The phonon dispersion for the out-plane optical and
acoustic modes is found as
wzo,z4(a) = Vuxv, (7)

where we introduce the notation

cos (\/gqy) +

+2cos (3;]90) cos (@qy> —3] —3a,,

3
1+ 4 cos? <%> +

1/2
3¢a V3qy
+ 4 cos 5 cos 3 .

The force constants a, = ®48(B;) and v, = ®24(A,)
are real.

The last equations allow us to express the phonon
frequencies of the out-plane branches at the critical
points ', K, and M in terms of the force constants:

wzo(l) =+v—6a,, wzo(K)=+/—3a,—97,,

wzo(M) = \/(—3:1: Da. — 87..

u =2y,

V= Q.

(8)

Expanding Eq. (7) in powers of the wave vector q, we
find the velocity of the acoustic out-plane mode prop-
agating in the layer,

3 9 [C
Sz =a _Zaz_§72: %7 (9)

where we use the well-known formula for the velocity
of the acoustic z-mode propagating in the x direction
in terms of the elastic constant Cy4 and density p of
a hexagonal crystal. Because the interaction between
the layers in graphite is weak, we can attribute values
of C44 and p to graphite.

2.2. Force constants and frequencies of
in-plane modes

The dynamical matrix for the in-plane vibrations
has the form

( o) o' (a) ) | (10)

oB4q) ¢BB(q)

where the 2 x 2 matrices ¢(q) are

an o _ [ M@ ¢g‘g‘<q>>
¢a) (gag‘g*(q)* o2 (q) an
with

G (@) = 27 [cos (\/§qy) +
+ 2cos <3gz> cos (\/i%) — 3] - 3a,
AA . 3¢, 2w
Pe¢ (@) =0 {eXp (zx/gqy) +2cos < L §> .
< oxp Q@)

3¢, 27 iv/3qy,
+200s<2—?>exp< 5 ,

+ 0% [exp (—i\/gqy) +

and
- (o Fa) o
with ”
o6 (@) =
=a [exp (igz)+2exp <—%> cos (@)] )
o (@) =

=8 [exp (igz)+2exp <—%> cos (@—%)] ,
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f}f(q) = at the point R"(n) (in the lattice cell a,,) is displaced
. g \/gqy 9 under rotation by the vector with coordinates
= (" |exp (ig,)+2exp 5 | cos 5 -I-? ,
uy(n) = QRy(n), wuy(n) =-QR;(n), (15)
where where  is the infinitesimal angle of the rotation, e.g.,
a= ‘I’ (Bl) B = ‘I’ (B1) around the atom Ag. For the lattice stability, the force
moment acting on the atom Ag from other atoms,
7= ‘I’ (Al) 6= ‘I’ (Al)

The translation invariance condition similar to Eq. (6)
was imposed on the force constants. The constants «
and v are evidently real. The constant /3 is real be-
cause the reflection (z,y) — (x,—y) with By — By
belongs to the symmetry group; the only one constant
0 is complex.

The sublattice B can be obtained from A by the
(5 rotation (z,y) — —(z,y) of the graphene symmetry
group. Therefore,

OB (a) = 8 [exp (~iv/3a, ) +

+ 6"

3

X exp (—@)] . (13)

The optical phonon frequencies for the in-plane
branches at I' and K are found

w%pl([‘) =v—6a,

3¢z 2
exp (Z\/gqy) + 2 cos < + _7r> X

doublet,

WinP(K) = /=30 — 97, doublet,  (14)
wi? (K) = V/=3a = 9y £ 3]3].

Using Eqgs. (10)—(13), we can find the dispersion of
in-plane modes for the G-K direction in the explicit
form, but a forth-order algebraic equation has to be
solved for the M point as well as for points of the gen-
eral position.

2.3. Elastic constants for in-plane modes

2.3.1. Condition following from the rotational
symmetry

We already applied the conditions imposed on the
force constants by the invariance under translations of
the layer as a whole. The constants «, 3, v, and § satisfy
another condition resulting from the invariance under
rotations of the layer around the z axis. Any atom

9 ZKST®, Bem. 2 (8)

@K,K,

> Ri(n

nKj

(n)uf(n) — RE(n)®5 (n)uff(n),

has to vanish for any €, i.e.,

ZQ(I)

()Rj(n) — B55(n) Ry (n)”

In terms of the &, 7 variables, we have

B (n) = BES(n) + B ().

Using these equalities, we obtain the lattice stability

condition as
> aa,

(n)Rj(n) — BE"(n)RE (n)” —

- (I>7’;n“(n)RZ(n)2 =0.

Here, the term corresponding to the nearest neigh-
bor B; equals 2a*[a— 3] and each other atom By 3 gives
the same contribution in accordance with Eqs. (4).
From the next neighbor A, we obtain 6a?[y — Red].
Thus, summing up the contributions of the first and
second neighbors, we find the rotational symmetry con-
dition

a—p+6y—6Red=0. (17)

2.3.2. Contribution of in-plane modes to the
elastic constants

The in-plane vibrations make a contribution to the
elastic constants C'y; and Cy2. The corresponding re-
lation between the dynamical matrix elements and the
elastic constants can be deduced by taking the long-
wavelength limit (q — 0) in Egs. (1), which we rewrite
for the two-dimensional variables u# and u® as

(¢AA

¢BAuA

_w2)uA + ¢ABuB — 07

+(¢BB

—wHul =0
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Fig.4. Another version of the phonon dispersion for

Fig. 2. Calculated phonon dispersion for graphene; Ra-
man frequencies are listed in Table 1, the force con-
stants and elastic constants are in Table 2
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Fig.3. A version of the phonon dispersion for

graphene

using the form of matrix (10). Making the transforma-
tion

A

u t

ZUGC—I—UOI), B

u Pt

— uac _ uO

to the new variables u®® and u®”, we obtain
(¢AA+¢AB_w2)uac+(¢AA_w2_¢AB)uopt — O, (18)

(¢BB_w2_¢BA)uopt_(¢BB+¢BA_W2)uac =0.

Expanding the matrices

¢ = 0o+ ¢1+ P2

in a series with recpect to ¢, where the subscripts “0”,
“1”, and “2” indicate the order of terms, we see that

450

graphene

the diagonal terms in Eqs. (18) are of the first order
because

0"+ 05" =0

and w & ¢ for the acoustic modes. We can then elimi-
nate u’?! ~ ¢ from Eqs. (18). Using the notation

— LAA
$o0 = g

and calculating the inverse matrix, we find, to the first
order,

— 4BB _

AB BA
= %o 0 =—¢0

(¢ — 6B /2)7 = (14 ¢5 ' ¢1*8/2)65 "

For the acoustic modes u®®, we obtain

[(¢AA +¢AB +¢BB +¢BA)/2 +
+ ¢/14B¢61 143 _ w?] u = 07

where the subscripts “0” and “1” mean that terms of the
zeroth and first order have to be kept, correspondingly,
but the other expressions have to be expanded to the
second order in q. We find the matrix factor of u®¢ in
Eqgs. (19):

(19)

$14°  $2q7
ss> s> )]
where
9 3 32 9 3
S1 —5 —Z<O[—E> S92 ZRe(s—gﬂ

We thus obtain the velocities of longitudinal and trans-
verse acoustic in-plane modes related to the elastic con-
stants

Cu Ci1—Chra

2p

= a*(s1+]s2]), = a’(s1—[s2]). (20)
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Table 1. Lattice mode frequencies at critical points, in cm™" (the superscripts “z" and “||" stand for the out-plane and
in-plane branches, correspondingly)
T [00] M [1/3]7/3a K [01]47/sv/3a
D Lo | o ol [l |l [ [an | o [ by | ol o
1590% | 861% | 1389¢ 6307 | 670% | 471°¢ | 13139 | 1184° 4824
Exp. | 1583% | 868 | 1390° | 1323 | 1290° 4514 | 1265° | 1194° 5174
1565°

Theor.® | 1581 1425 1350 | 1315 1300 1220 | 950

Theor. 1558 840 1423 1288 | 1261 583 564 288 1326 1195 | 1047 | 426

@Reference [17], *Reference [13], “Reference [6], “Reference [18].

Table 2. Force constants in 10° cm™?2 and elastic constants (in 10 GPa), calculated (Theor.) and observed [19] (Exp.);
the parameter v = —0.238 - 10° is determined from Eq. (17)
o B 0 Qz 7z Ci Cr2 Cua
Theor. —4.046 1.107 —1.096 —1.176 0.190 92 24 0.43
Exp. 106 £ 2 18+ 2 0.45+0.05

3. FITTING WITH RAMAN AND ELASTIC
DATA

The calculated phonon dispersion is shown in Fig. 2.
We note, first, that the sound velocities (for the long
waves, ¢ — I') have no dispersion in the zy plane, as it
should be due to the C's symmetry of graphene. Second,
the in-plane LO/TO modes at T, the in-plane LO/LA
modes at K, and the out-plane ZA/ZO modes at K
are doubly degenerate, because graphene is a nonpo-
lar crystal and the symmetry of these points in the
Brillouin zone includes the Cj3, group with the two-
dimensional representation (observation of splitting of
those modes in graphene would display the symmetry
breaking of the crystal).

Because of the lack of information about graphene,
we compare the present theory with experiments on
graphite. We prefer to obtain more accurate fitting for
the higher frequencies because the absence of the neigh-
boring layers in graphene affects low frequencies more
intensely. Moreover, the low frequencies in graphene
for the out-plane branches have to be less than their
values in graphite, since the atoms are freer to move in
the z direction in graphene than in graphite.

Thus, we have only two constants, a, and 7, to
fit four Raman frequencies of the out-plane modes and
one elastic constant Cyy (see Tables 1 and 2). The con-

stant a, is determined by the Raman frequency wzo,
Eq. (8). The sound velocity s, in Eq. (9) is very sen-
sitive to small variations of +, and becomes complex
for 4, > 0.2-10° em 2. This indicates that graphene
is nearly unstable with respect to transformation into
a phase of the lower symmetry group at I'. From the
results of fitting, we can also see that the phonon fre-
quencies for the z-modes are smaller than their values
in graphite.

Fitting of the in-plane branches is unsensitive to
the imaginary part of the constant . Therefore, § is
taken as a real parameter. Thus, for the in-plane mode,
we have to fit eight Raman frequencies and two elastic
constants using three force constants. The fitting re-
sults are presented in Fig. 2 and in Tables 1 and 2. We
note that the extent of agreement of the present the-
ory with the data obtained for graphite corresponds to
the comparison level between the first-principle calcu-
lations obtained by the authors of Ref. [13] for graphite
and their experimental data (see Table 1). We see only
qualitative discrepancy in the sequence of levels at M:
in Fig. 2, the highest level is the LO mode, whereas
the experiment appears to reveal a crossover of the TO
and LO modes on the T-M line (similar to T-K line),
yielding the TO mode higher at M. We examined the
versions with the crossover, shown in Figs. 3 and 4.

451 9*
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The agreement with experiments is not so good in these
cases as in the case shown in Fig. 2 and Tables 1 and 2,
but the discrepancies of the order of 50 cm™' between
the different experiments, as well as the distinctions
between graphene and graphite, do not allow choosing
the version conclusively. The experiment on graphene
would clarify this point.

4. CONCLUSIONS

We have calculated the phonon dispersion in
graphene using the Born—von Karman model with only
the first and second-neighbor interactions imposed by
the symmetry constraints. The bending (out-plane)
modes are not coupled to the in-plane branches and
indicate the instability of graphene with respect to
transformation into a lower-symmetry phase. The
Raman frequencies of these modes are less than the
corresponding values in graphite. The fitting of the
higher in-plane modes shows good agreement of the
calculated optical frequencies as well as of elastic
constants with experiments.

The work was supported by the RFBR (grant
No.07-02-00571).
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