ЭФФЕКТ ХОЛЛА В СИСТЕМЕ $Ce(Al_{1-x}Co_x)_2$ С ТЯЖЕЛЫМИ ФЕРМИОНАМИ

А. В. Богач^{а,b*}, Г. С. Бурханов^с, В. В. Глушков^{а,b},

С. В. Демишев^{а,b}, О. Д. Чистяков^с, Н. Е. Случанко^{а,b}

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> ^b Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^с Институт металлургии и материаловедения им. А. А. Байкова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 20 октября 2006 г.

С целью выяснения влияния эффектов замещения на энергию связи многочастичных состояний и формирование магнитоупорядоченного состояния в системе CeAl₂ с тяжелыми фермионами в настоящей работе исследовались транспортные характеристики (эффект Холла, удельное сопротивление) интерметаллидов Ce(Al_{1-x}M_x)₂ (M = Ni, Co; $x \le 0.08$). Обнаружено, что в интерметаллидах Ce(Al_{1-x}Co_x)₂ при x = 0.05, 0.08 коэффициент Холла с понижением температуры возрастает более чем на порядок в исследуемом интервале 1.8–300 К. Из экспериментальных данных получены оценки эффективной массы, времени релаксации и радиуса локализации многочастичных состояний.

PACS: 72.15.Qm

Одним из наиболее интересных и сложных для интерпретации параметров соединений с тяжелыми фермионами на основе редкоземельных элементов является коэффициент Холла R_H [1–3]. В частности, эффект Холла в интерметаллидах на основе церия в подавляющем большинстве случаев оказывается аномальным как по абсолютной величине, так и по знаку R_H. Действительно, для соединений церия с металлическим типом проводимости величина R_H в десятки раз превосходит коэффициент Холла в их немагнитных аналогах (соединениях с La, Y, Lu и др.), причем при температурах, сравнимых с характерной температурой T_{sf} спиновых флуктуаций, наблюдается максимум величины $R_H(T)$ положительной полярности [1, 2]. Выполненные недавно исследования транспортных свойств так называемой магнитной кондо-решетки CeAl₂ позволили установить в этом интерметаллиде с тяжелыми фермионами сложный активационный характер поведения коэффициента Холла $R_H \propto \exp(E_{a1,2}/k_BT)$ со значениями энергий активации $E_{a1,2}/k_B = 12.0 \pm 0.5$ К и $E_{a2}/k_B = 7.6 \pm 0.2$ К [4,5]. В работе [5] было показано, что понижение температуры, обусловливающее изменение заселенности уровней расщепленного кристаллическим полем ${}^2F_{5/2}$ -состояния церия, приводит к перестройке и изменению характеристик многочастичных состояний (тяжелых фермионов), формирующихся в окрестности Се-центров в режиме быстрых флуктуаций электронной плотности.

В настоящей работе исследовались коэффициент Холла и удельное сопротивление твердых растворов замещения Ce(Al_{1-x}M_x)₂ (M=Ni, Co; $x \leq 0.08$). Измерения проводились на поликристаллических образцах высокого качества в температурном диапазоне 1.8–300 К методом вращения с последующей фиксацией положения образца в магнитном поле на установке, подробно описанной в работе [5].

Температурные зависимости удельного сопротивления ρ представлены на рис. 1. Для всех исследуемых образцов на кривых сопротивления наблюда-

^{*}E-mail: alex@lt.gpi.ru

Рис.1. Температурные зависимости удельного сопротивления растворов замещения $Ce(AI_{1-x}M_x)_2$, M = Co, Ni

ются максимум, отвечающий температуре спиновых флуктуаций $(T_{sf}(\text{CeAl}_2) \approx 5 \text{ K } [6])$, а также особенности в окрестности температур T < 100 K, связанные с расщеплением кристаллическим полем основного ${}^{2}F_{5/2}$ -состояния Ce³⁺ ($\Delta_{1} = 100$ K и $\Delta_{2} = 170$ K для CeAl₂ [7]). В окрестности низкотемпературного максимума на кривой $\rho(T)$ образца CeAl₂ при $T_N \approx 3.85 \text{ K}$ также наблюдается излом, связанный с переходом в магнитоупорядоченное (антиферромагнитное модулированное) состояние в этом соединении. Принято считать, что низкотемпературный максимум на зависимостях $\rho(T)$ соединений с тяжелыми фермионами на основе церия обусловлен сменой характера рассеяния носителей заряда от кондовского рассеяния с переворотом спина, приводящего к компенсации локализованных магнитных моментов на Се-центрах, к когерентному режиму, реализующемуся при низких температурах в концентрированных кондо-системах. При сохранении общего характера температурной зависимости сопротивления увеличение концентрации кобальта и никеля в системе $Ce(Al_{1-x}M_x)_2$ при x = 0.03-0.08 приводит к возрастанию абсолютной величины удельного сопротивления (см. рис. 1). Одновременно, вследствие появления беспорядка замещения, «размываются» особенности на зависимости $\rho(T)$ и подавляется переход к когерентному режиму рассеяния.

В отличие от сопротивления, значительно более заметные изменения наблюдаются на кривых $R_H(T)$ с ростом x в твердых растворах замещения $Ce(Al_{1-x}M_x)_2$ (рис. 2*a*). Так, с ростом беспорядка замещения амплитуда максимума R_H заметно увеличивается (в три раза для Ce(Al_{0.92}Co_{0.08})₂ по сравнению с $CeAl_2$). В то же время увеличение x приводит к подавлению когерентного режима в твердых растворах замещения при гелиевых температурах. В результате максимум на температурных зависимостях коэффициента Холла сменяется тенденцией к насыщению (рис. 2*a*). Отметим, что столь заметное изменение абсолютной величины низкотемпературной особенности на кривой $R_H(T)$ с ростом беспорядка замещения коррелирует с поведением удельного сопротивления $\rho(T)$ (см. рис. 1). В результате при значительном и согласованном увеличении абсолютных значений $R_H(T)$ и $\rho(T)$ в области низких температур (для x = 0.08 оба параметра возрастают примерно в три раза) их отношение $\mu_H = R_H / \rho$ оказывается слабо меняющейся функцией параметра x(см. рис. 2*a*). Так, для всех исследуемых соединений $Ce(Al_{1-x}M_x)_2$ (M = Ni, Co, $x \le 0.08$) изменение подвижности μ_H в зависимости от магнитного поля и беспорядка замещения не превышает 20 %.

На рис. 26 представлены температурные зависимости коэффициента Холла в «активационных» координатах. Для всех исследуемых растворов замещения $Ce(Al_{1-x}M_x)_2$ (M = Ni, Co; $x \leq 0.08$) наблюдаются два активационных участка роста величин $R_H(T)$ (рис. 26), причем с изменением x значительный рост амплитуды аномального эффекта Холла сопровождается существенным изменением энергии связи многочастичных состояний, формирующихся в окрестности Се-центров при промежуточных температурах от $E_{a1}/k_B \approx 12$ К в CeAl₂ до $E_{a1}/k_B \approx 40$ К для $Ce(Al_{0.92}Co_{0.08})_2$ (см. таблицу и диапазон I на рис. 2б). Отметим, что приведенные в таблице значения энергий активации E_{a1} и E_{a2} найдены для магнитной 4f-компоненты коэффициента Холла R_H , полученной вычитанием из величины R_H для $\operatorname{Ce}(\operatorname{Al}_{1-x}\operatorname{M}_x)_2$ коэффициента Холла немагнитного аналога — соединения LaAl₂ $(R_H^{{
m LaAl}_2} \approx -6 \cdot 10^{-4} {
m ~cm}^3/{
m K}$ л [8]). Как видно из рис. 2, энергия связи тяжелофермионных состояний, определяющих характеристики низкотемпературного (T < 50 K, диапазон II на рис. 26) транспорта носителей заряда сравнительно слабо меняется с ростом x в ряду $Ce(Al_{1-x}M_x)_2$. Отметим, что отсутствие заметного изменения энергии связи E_{a2} (величины E_{a2}/k_B от 6.5 К до 9 К, см. таблицу) в условиях значительного беспорядка замещения в

Рис.2. Температурные зависимости параметра $\mu_H = R_H/\rho$ и коэффициента Холла R_H для твердых растворов замещения Се(Al_{1-x} M_x)₂ в обычных (a) и обратных логарифмических (б) координатах в поле H = 3.7 кЭ

Значения энергий связи многочастичных состояний в ряду $Ce(A|_{1-x}M_x)_2$ (M = Ni, Co; $x \le 0.08$)

	x = 0	Ni, $x = 0.05$	Co, $x = 0.03$	Co, $x = 0.05$	Co, $x = 0.08$
$E_{a1}/k_B \ (T \ge 50 \text{ K})$	$12.0\pm0.8~{\rm K}$	$14 \pm 1 \ \mathrm{K}$	$40 \pm 5 \text{ K}$		
$E_{a2}/k_B \ (T < 50 \ {\rm K})$	$7.1\pm0.5~{\rm K}$	$6.5\pm0.5~{\rm K}$	$6.9\pm0.5~\mathrm{K}$	$7.7\pm0.5~{ m K}$	$9.1\pm0.5~{\rm K}$

Се $(Al_{1-x}M_x)_2$ следует рассматривать как аргумент в пользу малых значений радиуса локализации многочастичных состояний (a_p^*) , сравнимых с постоянной решетки CeAl₂ $(a \approx 8 \text{ Å})$. Оценка из величин эффективной массы носителей заряда $m^* \approx 60m_0$ $(m_0 - \text{масса свободного электрона) и времени ре$ $лаксации <math>\tau_{eff} \approx (1-2) \cdot 10^{-12}$ с, полученных нами из транспортных измерений, приводит к значениям $a_p^* \leq 10 \text{ Å}$ для всех исследуемых в работе твердых растворов замещения Ce $(Al_{1-x}M_x)_2$ (M = Ni, Co; $x \leq 0.08$).

Отметим, что изменение xв системе обусловливает переход $Ce(Al_{1-x}Co_x)_2$ «антиферромагнитный металл (CeAl₂, $T_N = 3.8$ K)-паметалл-сверхпроводник» $(CeCo_2,$ рамагнитный $T_C = 1.5$ K). Таким образом, в ряду соединений $Ce(Al_{1-x}Co_x)_2$ следует ожидать реализации квантовой критической точки (см., например, работы [9,10]) и связанных с этим аномалий в поведении физических характеристик.

На рис. 3 представлены концентрационные зависимости удельного сопротивления $\rho|_{T=5 \text{ K}}$, коэффициента Холла $R_H|_{T=3 \text{ K}}$ и холловской подвижности $\mu_H|_{T=3 \text{ K}}$ для соединений ряда $Ce(Al_{1-x}Co_x)_2$, построенные по данным рис. 1, 2. Как видно из рис. 3a, сопротивление $\rho|_{T=5 \text{ K}}(x)$ и коэффициент Холла $R_H|_{T=3 \text{ K}}(x)$ монотонно возрастают с увеличением концентрации кобальта *х*. На рис. 3 также представлены значения $\rho|_{T=5}$ к и $R_{H}|_{T=3}$ к для раствора замещения $Ce(Al_{0.95}Ni_{0.05})_{2}$ (светлые символы), которые могут быть условно сопоставлены соответствующим значениям $\rho|_{T=5 \text{ K}}$ и $R_H|_{T=3}$ к для концентрации кобальта $x \approx 0.012$ в системе $Ce(Al_{1-x}M_x)_2$ (см. заштрихованную область). Таким образом, на рис. З отчетливо наблюдается особенность в виде минимума на

Рис. 3. Концентрационные зависимости a) удельного сопротивления $\rho|_{T=5 \text{ K}}$ (треугольники), коэффициента Холла $R_H|_{T=3 \text{ K}}$ (квадраты) и б) холловской подвижности $\mu_H|_{T=3 \text{ K}}$ для Ce(Al_{1-x}Co_x)₂. Светлыми символами представлены данные для Ce(Al_{0.95}Ni_{0.05})₂; QCP — квантовая критическая точка

кривой холловской подвижности $\mu_H|_{T=3 \text{ K}}(x)$, соответствующая концентрации кобальта $x \approx 0.02$ в системе Ce(Al_{1-x}Co_x)₂. По-видимому, данная аномалия в поведении величины $\mu_H|_{T=3 \text{ K}}(x)$, наблюдающаяся при концентрации кобальта $x \approx 0.02$,

может быть сопоставлена возникновению квантовой критической точки и связанного с этим режима нефермижидкостного поведения в ряду соединений $Ce(Al_{1-x}Co_x)_2$.

Работа выполнена при финансовой поддержке РФФИ (грант №04-02-16721), INTAS (грант №03-51-3036) и Программы «Сильнокоррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах» РАН.

ЛИТЕРАТУРА

- P. Coleman, P. W. Anderson, and T. V. Ramakrishnan, Phys. Rev. Lett. 55, 414 (1985).
- 2. P. M. Levy and A. Fert, Phys. Rev. B 39, 12224 (1989).
- M. Hadzic-Leroux, A. Hamzic, A. Fert et al., Europhys. Lett. 1, 579 (1986).
- Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., Письма в ЖЭТФ 76, 31 (2002).
- Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 125, 906 (2004).
- F. Steglich, C. D. Bredl, M. Loewenhaupt, and K. D. Schotte, J. de Phys. Coll. C5-Suppl. 40, 301 (1979).
- M. Loewenhaupt, B. D. Rainford, and F. Steglich, Phys. Rev. Lett. 42, 1709 (1979).
- M. Christen and M. Godet, Phys. Lett. 63A, 125 (1977).
- 9. Q. Si, E-print archives, cond-mat/0302110v1.
- H. v. Lohneysen, T. Pietrus, G. Portrich et al., Phys. Rev. Lett. 72, 3262 (1994).