М. И. Игнатов^а^{*}, А. В. Богач^а, Г. С. Бурханов^b, В. В. Глушков^a, С. В. Демишев^a,

А. В. Кузнецов^с, О. Д. Чистяков^b, Н. Ю. Шицевалова^d, Н. Е. Случанко^a

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

^b Институт металлургии и материаловедения им. А. А. Байкова Российской академии наук 119991, Москва, Россия

^с Московский инженерно-физический институт (технический университет) 115409, Москва, Россия

^d Институт проблем материаловедения Национальной академии наук Украины 03680, Киев, Украина

В широком диапазоне температур (2–300 К) выполнены прецизионные измерения коэффициента термоэдс для соединений с тяжелыми фермионами CeB₆, CeAl₃, CeCu₆ и твердых растворов замещения CeCu_{6-x}Au_x (x = 0.1, 0.2). Для всех исследованных соединений на основе церия обнаружена необычная логарифмическая асимптотика температурной зависимости коэффициента термоэдс $S \propto -\ln T$. В случае гексаборида церия показано, что такое поведение S(T) сопровождается появлением асимптотики слабой локализации проводимости $\sigma(T) \propto T^{0.39}$ и изменением парамагнитной восприимчивости $\chi(T)$ и эффективной массы носителей заряда $m_{eff}(T)$ по степенному закону, $\chi(T), m_{eff}(T) \propto T^{-0.8}$, в интервале температур 10–80 К и отвечает перенормировке плотности электронных состояний вблизи E_F . Отмеченное поведение коэффициента термоэдс в CeB₆ и других интерметаллидах на основе Ce связывается с формированием при низких температурах многочастичных состояний — тяжелых фермионов в металлической матрице исследуемых соединений.

PACS: 72.15.Jf, 75.20.Hr

1. ВВЕДЕНИЕ

Измерения термоэлектрических характеристик являются одним из эффективных методов исследования спектров квазичастичных возбуждений в металлических системах [1]. В то же время существуют реальные сложности при интерпретации результатов экспериментальных исследований коэффициента термоэдс в случае соединений с тяжелыми фермионами на основе Се и Yb. Предсказания в рамках общепринятого подхода к описанию поведения транспортных характеристик, основанного на применении модели кондо-решетки [2, 3], в ряде случаев противоречат наблюдаемым в эксперименте температурным зависимостям сопротивления, коэффициентов Холла и термоэдс указанных соединений с сильными электронными корреляциями [4,5].

В настоящей работе выполнены измерения коэффициента термоэдс S(T) для ряда соединений с тяжелыми фермионами на основе церия в диапазоне температур 2–300 К. В качестве модельных объектов выбраны монокристаллические образцы высокого качества CeB₆ и поликристаллические образцы наиболее известных соединений с тяжелыми фермионами и квантовым критическим поведением CeAl₃ и CeCu_{6-x}Au_x (x = 0, 0.1, 0.2). Для прецизионных измерений коэффициента термоэдс использовалась четырехконтактная схема с пошаговым изменением температурного градиента на образце [6].

^{*}E-mail: ignatov@lt.gpi.ru

Рис. 1. Температурные зависимости коэффициента термоэдс в соединениях с тяжелыми фермионами CeB_6 , $CeAI_3$ и $CeCu_{6-x}Au_x$ (x = 0, 0.1, 0.2)

Температурные зависимости коэффициента термоэдс соединений с тяжелыми фермионами СеВ₆, CeAl₃, CeCu₆ и твердых растворов замещения $CeCu_{6-x}Au_x$ (x = 0.1, 0.2) представлены на рис. 1. В области промежуточных температур термоэдс исследуемых соединений характеризуется широким положительным максимумом с амплитудой приблизительно от 40–50 мк $\mathrm{B/K}$ для $\mathrm{CeAl_3}$ и $\mathrm{CeCu}_{6-x}\mathrm{Au}_x$ до приблизительно 80 мкВ/К для СеВ₆. Положения отмеченной особенности коэффициента термоэдс (рис. 1) для магнитной тяжелофермионной системы $CeB_6 (T_{max} \approx 5 \text{ K})$ и немагнитных соединений CeAl₃ и CeCu_{6-x}Au_x ($T_{max} \approx 50$ K) существенно различаются. При этом во всех исследуемых соединениях в области температур $T > T_{max}$ обнаружено необычное логарифмическое поведение коэффициента термоэдс $S \propto -\ln T$ (рис. 1), которое не согласуется с предсказаниями модели кондо-решетки для термоэлектрических характеристик соединений на основе церия [2,3].

Для выяснения природы необычного логарифмического роста при понижении температуры коэффициента термоэдс классической концентрированной кондо-системы CeB₆ [7, 8] в работе проведено сопоставление зависимости S(T) с данными измерений удельного сопротивления $\rho(T)$ и магнитной восприимчивости $\chi(T)$ (рис. 2), а также коэффициента Холла $R_H(T)$ (рис. 3) во всем температурном диапазоне 2–300 К. Оказалось, что в интервале температур

Рис.2. Температурные зависимости удельного сопротивления ρ , коэффициента термоэдс S, магнитной восприимчивости χ и эффективной массы носителей заряда m_{eff} [10] в CeB₆. T_N и T_Q — температуры перехода соответственно в антиферромагнитное и антиферроквадрупольное состояния [7,8]

Рис. 3. Температурные зависимости коэффициента Холла R_H , измеренные для различных направлений измерительного тока I через образец, и холловской подвижности $\mu(T) = R_H(T)/\rho(T)$ в CeB₆

7 К < $T < T^* \approx 80$ К удельное сопротивление также не описывается предсказываемой в рамках модели кондо-решетки логарифмической зависимостью вида $\rho \propto -\ln T$ [7]. При этом удельное сопротивление ρ и магнитный вклад

$$\rho_{mag} = \rho(\text{CeB}_6) - \rho(\text{LaB}_6)$$

(см. рис. 2) характеризуются степенным поведением $\rho \propto T^{-1/\eta}$, отвечающим режиму слабой локализации носителей заряда с критическим индексом $1/\eta = 0.39 \pm 0.02$ [9]. Наблюдаемое изменение режима зарядового транспорта при $T^* \approx 80$ K сопровождается существенным (примерно в 3 раза) уменьшением холловской подвижности носителей заряда

$$\mu_H(T) = \frac{R_H(T)}{\rho(T)}$$

отмеченным при понижении температуры в интервале 7 К < $T < T^*$ (рис. 3). Подчеркнем, что отклонение от степенной зависимости $\rho \propto T^{-1/\eta}$ (рис. 2) и увеличение холловской подвижности μ_H (рис. 3), наблюдаемые в СеВ₆ при понижении температуры в интервале $T_Q < T < 7$ К ($T_Q = 3.3$ К — температура перехода в антиферроквадрупольное состояние [7]), по-видимому, следует связать с переходом к проводимости по полосе многочастичных состояний, формирующейся в окрестности энергии Ферми в редкоземельных соединениях с тяжелыми фермионами (см., например, [10, 11]).

В рамках подхода, предложенного в работах [10, 11], с учетом температурной зависимости полуширины квазиупругого пика в спектрах магнитного рассеяния нейтронов $\Gamma/2$ [12] по данным о холловской подвижности $\mu_H(T)$ была выполнена оценка эффективной массы носителей заряда

$$m_{eff}(T) = \frac{2e\hbar}{\Gamma\mu_H(T)}$$

Анализ кривой $m_{eff}(T)$ (рис. 2) показывает, что уменьшение подвижности носителей заряда в области температур 7 К < T < 80 К, отвечающее логарифмическому росту термоэдс, связано со степенным поведением $m_{eff} \propto T^{-\alpha}$ ($\alpha = 0.8$) (рис. 2). Наблюдаемый рост эффективной массы до значений m_{eff} (10 К) $\approx 400m_0$ (m_0 — масса свободного электрона) сопровождается изменением паулиевской парамагнитной восприимчивости по аналогичному степенному закону $\chi(T) \propto T^{-\alpha}$ ($\alpha = 0.8$) (рис. 2) и, по-видимому, свидетельствует в пользу существенной перенормировки спектра квазичастичных возбуждений в CeB₆ в указанном температурном интервале. При этом сопоставление оценки радиуса лока-

Рис. 4. Температурные зависимости коэффициента термоэдс S и магнитной восприимчивости χ в $\operatorname{CeCu}_{6-x}\operatorname{Au}_x$ (x = 0, 0.1, 0.2)

лизации тяжелых фермионов $a^* \approx 5.5$ Å [11] с параметром элементарной ячейки $a \approx 4.2$ Å в CeB₆ позволяет сделать заключение о локальном характере многочастичных состояний (спиновых поляронов), формирующихся в режиме быстрых спиновых флуктуаций в окрестности Се-центров в матрице гексаборида церия.

Переходя к анализу термоэдс в немагнитных цериевых соединениях, отметим, что сопоставление термоэлектрических и магнитных свойств для твердых растворов CeCu_{6-x}Au_x также выявило корреляцию температурных интервалов логарифмического роста коэффициента термоэдс $S(T) \propto -\ln T$ и степенного изменения магнитной восприимчивости $\chi(T) \propto T^{-\alpha}$ (рис. 4). При этом значения показателя степени α ($\alpha = 0.69, 0.73$ и 0.74 для x = 0, 0.1 и 0.2, соответственно) оказываются сравнимы с величиной аналогичного параметра для CeB₆, что, по-видимому, свидетельствует в пользу общей природы низкотемпературных аномалий транспортных и магнитных свойств в тяжелофермионных соединениях на основе церия.

В заключение отметим, что логарифмическая температурная зависимость коэффициента термоэдс

$$S(T) = -\left(\frac{3k_B}{2e}\right)\ln T + \text{const}$$

обычно используется для описания термоэлектрических свойств невырожденных полупроводников *p*- или *n*-типа [12]. В такой ситуации логарифмический рост термоэдс $S(T) \propto -\ln T$, обнаруженный в исследуемых соединениях на основе церия при $T > T_{max}$ (рис. 1), по-видимому, следует связать с формированием тяжелых носителей заряда (спиновых поляронов) вследствие перенормировки плотности состояний в окрестности энергии Ферми, которая, в свою очередь, определяет и степенную температурную зависимость паулиевской парамагнитной восприимчивости $N(\varepsilon_F) \sim \chi(T) \propto T^{-\alpha}$ (рис. 2, 3). При этом изменение логарифмической асимптотики $S(T) \propto -\ln T$ на характерное для металлов поведение коэффициента термоэдс, наблюдаемое при понижении температуры в диапазоне $T < T_{max}$ (рис. 1), может указывать на переход к когерентному режиму зарядового транспорта по сформировавшейся зоне тяжелофермионных состояний спиновых поляронов $(m_{eff}(\text{CeB}_6) \approx 300-400m_0)$ (рис. 2), m_{eff} (CeAl₃) $\approx 45m_0$ [13], m_{eff} (CeCu₆) \approx \approx 135–150 m_0 [14]). Следует также отметить, что значения коэффициентов, определяющих логарифмическое изменение термоэдс в CeB₆, CeAl₃ и $CeCu_{6-x}Au_x$ (\approx 40–60 мкB/K), оказываются существенно меньше значения параметра $3k_B/2e \approx$ $\approx 130~{
m MKB/K}$ для невырожденного полупроводника [12]. На наш взгляд, отмеченное несоответствие может отражать понижение эффективной размерности при переходе к зарядовому транспорту по зоне спин-поляронных комплексов малого радиуca $(a^*(\text{CeB}_6) \approx 5.4 \text{ Å} [11], a^*(\text{CeAl}_3) \approx 16 \text{ Å} [13],$ $a^*(\text{CeCu}_6) \approx 14 \text{ Å} [14])$. Однако для окончательного выяснения природы аномальных свойств тяжелофермионных соединений на основе церия требуется проведение комплексных исследований транспортных и магнитных свойств в температурном интервале, отвечающем логарифмическому поведению коэффициента термоэдс.

Работа выполнена при финансовой поддержке РФФИ (грант № 04-02-16721) и INTAS (грант № 03-51-3036), а также программы ОФН РАН «Сильнокоррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах» и Российского Фонда содействия отечественной науке.

ЛИТЕРАТУРА

- P. M. Chaikin, in Organic Superconductivity, Plenum Press, New York (1991), p. 101.
- 2. V. Zlatic et al., Phys. Rev. B 48, 16152 (1993).
- 3. K. Fischer, Z. Phys. B 76, 315 (1989).
- **4**. Н. Е. Случанко и др., ЖЭТФ **125**, 906 (2004).
- 5. M. I. Ignatov et al., Physica B 363, 252 (2005).
- **6**. Н. Е. Случанко и др., ЖЭТФ **113**, 339 (1998).
- 7. N. Sato et al., J. Phys. Soc. Jpn. 53, 3967 (1984).
- K. Hanzawa and T. Kasuya, J. Phys. Soc. Jpn. 53, 1809 (1984).
- 9. W. L. McMillan, Phys. Rev. B 24, 2739 (1981).
- 10. N. E. Sluchanko et al., Physica B 378-380, 773 (2006).
- D. N. Sluchanko et al., J. Magn. Magn. Mater. 300, e288 (2006).
- S. Horn, F. Steglich, M. Loewenhaupt et al., Z. Phys. B 42, 125 (1981).
- **13**. Н. Е. Случанко и др., ЖЭТФ **131**, 133 (2007).
- 14. Б. М. Аскеров, Электронные явления в полупроводниках, Наука, Москва (1985), с. 150.