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CORRELATION ENERGIES IN DISTORTED 3d-t2gPEROVSKITE OXIDESI. V. Solovyev *Computational Materials S
ien
e Center (CMSC),National Institute for Materials S
ien
e (NIMS),1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JapanRe
eived O
tober 17, 2006Using an e�e
tive low-energy Hamiltonian derived from the �rst-prin
iple ele
troni
 stru
ture 
al
ulations forthe narrow t2g bands of YTiO3, LaTiO3, YVO3, and LaVO3, we evaluate the 
ontributions of the 
orrelationenergy E
 to the stability of di�erent magneti
 stru
tures that 
an be realized in these distorted perovskiteoxides. We 
onsider two approximations for E
 that are based on the regular perturbation theory expansionaround a nondegenerate Hartree � Fo
k ground state. One is the se
ond order of the perturbation theory,whi
h allows 
omparing the e�e
ts of lo
al and nonlo
al 
orrelations. The other is the lo
al t-matrix approa
h,whi
h allows treating some higher-order 
ontributions to E
. The 
orrelation e�e
ts systemati
ally improve theagreement with the experimental data and additionally stabilize the experimentally observed G- and C-typeantiferromagneti
 (AFM) stru
tures in YVO3 and LaVO3, although the absolute magnitude of the stabilizationenergy is sensitive to the level of approximations and is somewhat smaller in the t-matrix method. The nonlo
al
orrelations additionally stabilize the ferromagneti
 ground state in YTiO3 and the C-type AFM ground statein LaVO3. Among two inequivalent transition-metal sites in the mono
lini
 stru
ture, the lo
al 
orrelationsare stronger at the sites with the least distorted environment. Limitations of the regular perturbation-theoryexpansion for LaTiO3 are also dis
ussed.PACS: 71.10.-w, 71.15.N
, 71.28.+d, 75.25.+z1. INTRODUCTIONAn interest in the transition-metal perovskite oxidesYTiO3, LaTiO3, YVO3, and LaVO3 is mainly relatedto the variety of magneti
 stru
tures that 
an be real-ized in these seemingly alike 
ompounds. For example,YTiO3 has the ferromagneti
 stru
ture [1℄. LaTiO3 isa three-dimensional (G-type) antiferromagnet [2℄. Atthe low temperature, YVO3 forms the G-type antiferro-magneti
 (AFM) stru
ture, whi
h 
an be transformedto a 
hainlike (C-type) antiferromagneti
 stru
ture ataround 77 K [3℄. On the 
ontrary, LaVO3 is a C-typeantiferromagnet in the entire temperature range belowthe magneti
 transition temperature [4℄. Surprisingly,the di�eren
e exists not only between titanates (YTiO3and LaTiO3) and vanadites (YVO3 and LaVO3), whi
hhave a di�erent number of valent ele
trons, but alsowithin ea
h group of formally isoele
troni
 materials.The di�eren
es are apparently related to tiny 
hanges*E-mail: solovyev.igor�nims.go.jp

in the distorted perovskite stru
ture, whi
h are ampli-�ed by Coulomb intera
tions in the narrow t2g band.The details of the 
rystal stru
ture 
an be found inRefs. [1�4℄. Brie�y, both titanites have an orthorhom-bi
 stru
ture, although the details of this stru
tureare rather di�erent for YTiO3 and LaTiO3. LaVO3is 
rystallized in a mono
lini
 stru
ture. The low-temperature phase of YVO3 is orthorhombi
 (shownin the Figure), whi
h be
omes mono
lini
 at around77 K. The stru
tural orthorhombi
-mono
lini
 transi-tion 
oin
ides with the G�C AFM transition. Gener-ally, Y-based 
ompounds are more distorted (due tothe smaller size of the Y3+ ions).There are a large number of theoreti
al arti
les de-voted to the origin of the magneti
 ground states inthe distorted t2g perovskite oxides. The problem hasbeen 
onsidered on the basis of the �rst-prin
iple ele
-troni
 stru
ture 
al
ulations (see, e.g., Refs. [5℄) andthe model approa
hes for strongly 
orrelated systems(see, e.g., Refs. [6�8℄). The model theories typi
ally57
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hara
teristi
 example of the 
rystal stru
ture (a) and the ele
troni
 stru
ture in the lo
al-density approximation (b) ofthe orthorhombi
ally distorted YVO3. a � the symbols a, b, and 
 stand for orthorhombi
 translations, and the symbols1�4 denote the transition-metal sites, whi
h form the unit 
ell of the distorted perovskite oxides. b � the 
ontributionsof the atomi
 V(3d) states are shown. Other symbols show the positions of the main bands. The Fermi level is at zeroenergyvary on the assessment of the role played by the latti
edistortions [6℄ and the Coulomb 
orrelations [7, 8℄.We believe that any realisti
 theoreti
al des
riptionof these 
ompounds is pra
ti
ally impossible withoutthe impa
t from the �rst-prin
iple ele
troni
 stru
ture
al
ulations: simply, the latti
e distortion is too 
om-plex, and, had we tried to postulate a model Hamil-tonian for these t2g perovskite oxides, we would haveinevitably fa
ed the problem of 
hoosing the valuesfor a large number of model parameters, whi
h 
an-not be �xed in an unbiased way. However, the 
on-ventional ele
troni
 stru
ture 
al
ulations are also farfrom being perfe
t. Typi
ally, they are supplementedwith some additional approximations, whi
h have se-rious limitations for treating the Coulomb 
orrelationsin the 
ase of strongly 
orrelated materials. A typi
alexample is the lo
al-density approximation. From thisstandpoint, a promising dire
tion is to make a bridgebetween the �rst-prin
iple ele
troni
 stru
ture 
al
ula-tions and models for strongly 
orrelated systems, and
onstru
t an appropriate model Hamiltonian entirely�from the �rst prin
iples�. Fortunately, in the 
ase oftransition-metal oxides, we are typi
ally dealing withonly a small group of states lo
ated near the Fermilevel and well separated from the remaining part ofthe spe
trum (for instan
e, t2g bands in the Figure).These states are mainly responsible for the ele
troni
and magneti
 properties of oxide materials.Therefore, in many 
ases, it su�
es to 
onsider a

minimal model, 
onsisting of only the t2g bands, andin
lude the e�e
t of the other bands into the renormal-ization of intera
tion parameters in the t2g band. Su
ha strategy was pursued in Refs. [9�11℄. It 
onsists ofthree major steps: �rst-prin
iple ele
troni
 stru
ture
al
ulations ! 
onstru
tion of the model Hamiltonian! solution of this model Hamiltonian.The �rst appli
ations to the distorted t2g perovskiteoxides were 
onsidered in Refs. [11, 12℄. The presentpaper deals with the last part of the problem. We solvethe model Hamiltonian derived in Ref. [11℄, and mainlyfo
us on the role played by the 
orrelation e�e
ts, be-yond the mean-�eld Hartree � Fo
k (HF) approxima-tion. In parti
ular, we 
onsider two perturbative ap-proa
hes. One is the regular se
ond-order perturbationtheory for the 
orrelation energy [13℄, and the other isthe t-matrix approa
h [14�16℄. In both approa
hes, theHF approximation is used as the starting point. Thisimplies that the degenera
y of the HF ground state isalready lifted by the 
rystal distortion su
h that theregular perturbation theory is justi�ed. We also dis-
uss some limitations of this treatment for LaTiO3.2. CONSTRUCTION OF THE MODELHAMILTONIANOur �rst goal is the 
onstru
tion of the e�e
tivemulti-orbital Hubbard model for the isolated t2g bands:58
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̂yR�
̂R0� ++ 12XR X�;�;
;ÆU��
Æ 
̂yR�
̂yR
 
̂R� 
̂RÆ; (1)where 
̂yR� (
̂R�) 
reates (annihilates) an ele
tron in theWannier orbital ~W�R of the transition-metal siteR, and� is a 
olle
tive index, in
orporating all the remaining(spin and orbital) degrees of freedom. The matrixĥRR0 = kh��RR0kparameterizes the kineti
 energy of ele
trons, wherethe site-diagonal part (R = R0) des
ribes the lo
allevel-splitting 
aused by the 
rystal �eld, and the o�-diagonal part (R 6= R0) stands for the transfer inte-grals,U��
Æ = Z dr Z dr0 ~W�yR (r) ~W �R(r)vs
r(r� r0)�� ~W 
yR (r0) ~W ÆR(r0) � h�
jvs
rj�Æiare matrix elements of s
reened Coulomb intera
tionvs
r(r � r0), whi
h are supposed to be diagonal withrespe
t to site indi
es. In prin
iple, U��
Æ 
an alsodepend on the site index R. Nevertheless, for simpli
-ity of notation, here and hereafter, we drop the indexR in the notation for the Coulomb matrix elements(however, we do 
onsider this dependen
e in all our
al
ulations).The pro
edure of mapping the �rst-prin
iple ele
-troni
 stru
ture 
al
ulations onto the model Hamilto-nian in (1) for distorted perovskite oxides has been dis-
ussed in detail in Refs. [10, 11℄. Here, we only outlinethe main idea. The kineti
-energy part ĥRR0 
an beobtained using the downfolding method, whi
h is exa
tand equivalent to the proje
tor-operator method [17℄.The Wannier fun
tions 
an be formally derived fromĥRR0 using the ideas of the linear-mu�n-tin-orbitalmethod [10, 18℄. The matrix of s
reened Coulomb in-tera
tions in the t2g band 
an be 
al
ulated using a hy-brid approa
h, whi
h 
ombines the 
onstraint density-fun
tional theory with the random-phase approxima-tion for the hybridization e�e
ts between transition-metal d and other atomi
 states [10℄. The values of themodel parameters obtained in su
h a way 
an be foundin Ref. [11℄.3. SOLUTION OF MODEL HAMILTONIAN3.1. Hartree � Fo
k approximationThe HF method provides the simplest approxima-tion for the solution of the many-ele
tron problem

with Hamiltonian (1). In this 
ase, the trial many-ele
tron wave fun
tion is sear
hed in the form of a sin-gle Slater determinant jSf'kgi, 
onstru
ted from theone-ele
tron orbitals f'kg. In this notation, k is a 
ol-le
tive index that 
ontains the information about themomentum k in the �rst Brillouin zone, the band num-ber n, and the spin (� = " or #) of the parti
le. Theone-ele
tron orbitals f'kg are subje
ted to the vari-ational prin
iple and requested to minimize the totalenergy EHF = minf'kghSf'kgjĤjSf'kgifor a given number of parti
les N . This yields the fol-lowing equations for f'kg:�ĥk + V̂ � j'ki = "kj'ki; (2)where ĥk � kh��k kis the kineti
 part of model Hamiltonian (1) in the re-
ipro
al spa
e:h��k = 1N XR0 h��RR0 exp(�ik � (R�R0))(N being the number of sites) andV̂ � kV��kis the HF potential:V�� =X
Æ (U��
Æ � U�Æ
�)n
Æ: (3)In what follows, we also use the notation ĥHF , whi
hstands for the total Hamiltonian of the HF method,ĥ+ V̂ . Equation (2) is solved self-
onsistently togetherwith the equation n̂ = o

Xk j'kih'k jfor the density matrixn̂ � kn��kin the basis of Wannier orbitals. Finally, the total en-ergy in the HF method 
an be obtained asEHF = o

Xk "k � 12X�� V��n�� :59



I. V. Solovyev ÆÝÒÔ, òîì 132, âûï. 1 (7), 20073.2. Se
ond-order perturbation theory for
orrelation energyThe simplest way to go beyond the HF approxi-mation is to in
lude the 
orrelation intera
tions in these
ond order of the perturbation theory for the totalenergy [13℄. The 
orrelation intera
tion (or a �u
tu-ation) is de�ned as the di�eren
e between true many-body Hamiltonian (1) and its one-ele
tron 
ounterpart,obtained at the level of HF approximation:Ĥ
 =XR 0�12 X��
ÆU��
Æ
̂yR�
̂yR
 
̂R� 
̂RÆ��X�� V�� 
̂yR�
̂R�1A : (4)By treating Ĥ
 as a perturbation, the 
orrelation en-ergy 
an be easily estimated as [13℄E(2)
 = �XS hGjĤ
jSihSjĤ
jGiEHF (S)�EHF (G) ; (5)where jGi and jSi are the Slater determinants, respe
-tively, 
orresponding to the low-energy ground state inthe HF approximation and the ex
ited state. Due tothe variational properties of the HF method, the onlypro
esses that may 
ontribute to E(2)
 are the two-par-ti
le ex
itations, for whi
h ea
h jSi is obtained fromjGi by repla
ing two one-ele
tron orbitals, e.g., 'k1 and'k2 , from the o

upied part of the spe
trum by two un-o

upied orbitals, e.g., 'k3 and 'k4 . Hen
e, using thenotation of Se
. 2, the matrix elements take the formhSjĤ
jGi = hk3k4jvs
rjk1k2i � hk3k4jvs
rjk2k1i: (6)Then, we employ a 
ommon approximation of nonin-tera
ting quasiparti
les and repla
e the denominator inEq. (5) with the linear 
ombination of HF eigenvalues:EHF (S)�EHF (G) � "k3 + "k4 � "k1 � "k2see [13℄. Matrix elements (6) satisfy the 
onditionhSjĤ
jGi � 1N XR exp(i(k3 + k4 � k1 � k2) �R)if the s
reened Coulomb intera
tions are diagonal withrespe
t to the site indi
es.A good point of the se
ond-order of the perturba-tion theory is that it allows estimating both on-site(R = 0) and intersite (R 6= 0) elements of this ex-pansion relatively easily. In what follows, we use this

method in order to study the relative role played bythese e�e
ts in the stability of di�erent magneti
 stru
-tures of the distorted perovskite oxides. The R = 0term 
orresponds to the 
ommonly used single-siteapproximation for the 
orrelation intera
tions, whi
hbe
omes exa
t in the limit of in�nite spatial dimen-sions [19℄. 3.3. The t-matrix approa
hThe basi
 idea of the t-matrix approa
h is to lookat the true many-ele
tron system as a superpositionof independent two-ele
tron subsystems, and to rigor-ously solve the S
hrödinger equations for ea
h of thesesubsystems [14, 15, 16℄. Hen
e, we 
onsider the two-ele
tron HamiltonianĤ(1; 2) = ĥHF (1) + ĥHF (2) + �v̂(1; 2);where �v̂(1; 2) = v̂s
r(1; 2)� V̂ (1)� V̂ (2);v̂s
r(1; 2) is the s
reened (by other bands) Coulomb in-tera
tions between ele
trons �1� and �2� in the t2gband, and ĥHF (V̂ ) is the one-ele
tron Hamiltonian(potential) in the HF approximation. For a periodi
system, the S
hrödinger equation 
an be written asĤ j	k1k2i = Ek1k2 j	k1k2i: (7)Any two-ele
tron wave fun
tion j	k1k2i 
an be ex-panded in the basis of (also two-ele
tron) Slater de-terminants:jk1k2i = 1p2f'k1(1)'k2(2)� 'k2(1)'k1(2)g;et
. Apart from a normalization fa
tor, this expansionhas the form [16℄j	k1k2i = jk1k2i+ Xjk3k4i�k3k4k1k2 jk3k4i: (8)We note that the summation ranges only nonequiv-alent Slater determinant jk3k4i 
onstru
ted from theone-ele
tron orbitals k3 and k4. For example, be
ausejk4k3i = �jk3k4i;the determinant jk4k3i must be ex
luded from the sumin (8), et
. Substituting Eq. (8) in Eq. (7) and intro-du
ing the new notation�Ek1k2 = Ek1k2 � "k1 � "k2su
h that60



ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007 Correlation energies in distorted : : :hĥHF (1) + ĥHF (2)� "k1 � "k2i jk1k2i = 0(i.e., "k1 and "k2 are the eigenvalues of the HF Hamil-tonian), we obtain the following equation for �Ek1k2and �k3k4k1k2 :(�v̂ ��Ek1k2) jk1k2i++ Xjk3k4i ("k3 + "k4 � "k1 � "k2++ �v̂ ��Ek1k2) �k3k4k1k2 jk3k4i = 0:By 
onsidering the matrix element of this equation withhk1k2j, we 
an �nd that�Ek1k2 = hk1k2j�v̂jk1k2i++ Xjk3k4i�k3k4k1k2hk1k2j�v̂jk3k4i; (9)where the �rst term is the energy of the Coulomb andex
hange intera
tions in the HF approximation (minusthe potential energy), while the se
ond term is the 
or-relation energy. By 
onsidering the matrix elementswith hk5k6j 6= hk1k2j, we 
an �nd another set of equa-tions for �k3k4k1k2 :hk5k6j�v̂jk1k2i++ ("k5 + "k6 � "k1 � "k2 ��Ek1k2) �k5k6k1k2 ++ Xjk3k4i�k3k4k1k2hk5k6j�v̂jk3k4i = 0:They are solved iteratively with respe
t to�v̂. For this,it is 
onvenient to introdu
e the two-parti
le Green'sfun
tionĜk1k2 = Xjk3k4i jk3k4ihk3k4j"k3 + "k4 � "k1 � "k2 ��Ek1k2and derive a matrix equation for f�k3k4k1k2g to be substi-tuted in Eq. (9). It is then rather straightforward toderive the following expression for �Ek1k2 :�Ek1k2 = hk1k2jT̂k1k2 jk1k2i; (10)where T̂k1k2 is the so-
alled t-matrix:T̂k1k2 = �v̂ h1̂ + Ĝk1k2�v̂i�1 : (11)The 
orrelation energy of the t-matrix method is ob-tained after subtra
ting the energies of Coulomb andex
hange intera
tions in the HF approximation from

Eq. (10) and summing over all Slater determinants 
on-stru
ted from the o

upied one-ele
tron orbitals of theHF method:E(t)
 = o

Xjk1k2ihk1k2jT̂k1k2 ��v̂jk1k2i: (12)In pra
ti
e, ea
h HF orbital has been expanded over thebasis of Wannier fun
tions, and then all 
al
ulations ofT̂k1k2 and E(t)
 have been performed in this basis.By expanding T̂k1k2 up to the se
ond order in �v̂,we regain Eq. (5), obtained in the se
ond order of theperturbation theory. Therefore, the good point of thet-matrix approa
h is that it allows going beyond these
ond order of the perturbation theory and evaluat-ing the higher-order e�e
ts in �v̂ on the 
orrelationenergy. Nevertheless, it was supplemented with someadditional approximations.1. When we 
ompute the matrix elements of theform hk3k4j�v̂jk1k2i, being proportional to1N XR exp(i(k3 + k4 � k1 � k2) �R);we 
onsider only the R = 0 part of this sum and ne-gle
t all other 
ontributions. This 
orresponds to thesingle-site approximation for the t-matrix.2. In all matrix elements hk3k4j�v̂jk1k2i, we repla
e�v̂ with v̂s
r and drop the one-ele
tron potentials of theHF method. Stri
tly speaking, this pro
edure is justi-�ed only when both one-ele
tron states k1 and k2 aredi�erent from k3 and k4, for example, when they be-long, 
orrespondingly, to the o

upied and uno

upiedpart of the spe
trum, as in the se
ond-order of pertur-bation theory. However, this is no longer true for thehigher-order terms in�v̂. Nevertheless, we believe thatthe di�eren
e is small.All 
orrelation energies have been 
omputed in themesh of 75 points in the �rst Brillouin zone, 
orre-sponding to the 4 : 4 : 2 division of the re
ipro
altranslation ve
tors for the distorted perovskite stru
-ture. The a
tual integration over the Brillouin zonehas been repla
ed by the summation over this mesh ofpoints. 4. RESULTS AND DISCUSSIONSFirst appli
ations of the proposed method toYTiO3, LaTiO3, YVO3, and LaVO3 have been 
on-sidered in Ref. [11℄, where we have summarized resultsof HF 
al
ulations for model (1) and the behavior of61



I. V. Solovyev ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007Table 1. The Hartree � Fo
k energy EHF and 
orre-lation energies obtained in the se
ond order of pertur-bation theory, E(2)
 , and in the t-matrix approa
h, E(t)
 ,for the orthorhombi
 phase of YTiO3. The Hartree �Fo
k energies are measured from the most stable mag-neti
 state in meV per one formula unit. The 
orrela-tion energies are measured in meV per one transition-metal site or a pair of sites, 
orrespondingly for theon-site and intersite 
ontributions. The t-matrix was
omputed in the single-site approximation. Therefore,only the site-diagonal part of E(t)
 is shown. The po-sitions of the transition-metal sites are shown in theFigurePhase EHF E(2)
 E(t)
Ti1 Ti1�Ti2 Ti1�Ti3 Ti1F 0 �5:13 �0:38 �0:01 �4:58A 2:05 �6:19 �0:37 0 �4:80C 14:40 �8:32 �0:17 �0:01 �5:28G 16:25 �8:48 �0:18 �0:01 �5:31Table 2. The Hartree � Fo
k energy EHF and 
or-relation energies obtained in the se
ond order of per-turbation theory, E(2)
 , and in the t-matrix approa
h,E(t)
 , for the low-temperature orthorhombi
 phase ofYVO3 (T < 77 K). All energies are measured in meV.See the Figure for the details of the notationPhase EHF E(2)
 E(t)
V1 V1�V2 V1�V3 V1F 21:66 �2:19 �0:12 �0:02 �2:16A 14:59 �4:67 �0:12 �0:01 �3:31C 10:14 �5:61 �0:07 0 �3:14G 0 �7:07 �0:07 �0:01 �4:06
orrelation energies in the se
ond order of the pertur-bation theory, supplemented with the single-site ap-proximation. In the present work, we further elaboratethe problem by fo
using on the following questions:1. the role of higher-order 
ontributions to the 
or-relation energy;2. the role of nonlo
al (or intersite) 
ontributionsto the 
orrelation energy.We also 
onsider the e�e
ts of mono
lini
 distortionand analyze the 
ontributions to the 
orrelation energyof inequivalent transition-metal sites. The results ofthese 
al
ulations are presented in Tables 1�5 for all

the 
onsidered 
ompounds. First, we summarize themain results in Ref. [11℄.1. The HF approximation yields the 
orre
t mag-neti
 ground state for YTiO3, LaVO3, and both phasesof YVO3. This 
on
lusion is fully 
onsistent with theresults of a

urate all-ele
tron band-stru
ture 
al
ula-tions [5℄, and it is quite remarkable that all these results
an be reprodu
ed in our minimal model derived for thet2g bands.2. The 
orrelation e�e
ts favor the AFM spinalignment and additionally stabilize the experimentallyobserved G- and C-type AFM states in YVO3 andLaVO3.3. None of the 
onsidered approa
hes reprodu
esthe experimental G-type AFM ground state of LaTiO3(instead, the theoreti
al 
al
ulations steadily 
onvergeto the A-type AFM ground state [11, 12℄).Then, what is to happen if we go beyond the se
ond-order perturbation theory and apply the t-matrix ap-proa
h? Generally, the t-matrix approa
h redu
es theabsolute value of the 
orrelation energy. But the mag-nitude of this redu
tion strongly depends on the mag-neti
 state. For example, if the ferromagneti
 stateis only weakly a�e
ted by the higher-order 
orrela-tion e�e
ts (the typi
al 
hanges of E
 vary from 1%in YVO3 to 13% in LaTiO3), E
 in the G-type AFMphase 
an drop by nearly 50%. From this standpoint,if the se
ond order of the perturbation theory does notsolve the problem of the G-type AFM ground state ofLaTiO3, it seems to be unlikely that the higher-ordere�e
ts 
an reverse the situation. Apparently, LaTiO3is di�erent from other perovskite oxides, and the regu-lar perturbation-theory expansion, although justi�ablefor the majority of 
onsidered 
ompounds, does notwork for LaTiO3. This seems to be reasonable be
auseLaTiO3 has the largest 
orrelation energies, whi
h are
omparable to the splitting of the t2g levels 
aused bythe 
rystal distortion (� 37 meV [11℄). Therefore, itis quite possible that the 
orrelation e�e
ts in LaTiO3should be 
onsidered at the �rst pla
e, and the sim-ple HF theory for the spin and orbital ordering withthe subsequent in
lusion of the 
orrelation e�e
ts as aperturbation to the HF ground state may not be ap-propriate here [7, 8℄. We note that in other materials,the situation is di�erent: the typi
al values of the t2g-levels splitting in YTiO3, YVO3, and LaVO3 are about100 meV [11℄, whi
h ex
eeds the 
orrelation energy byat least one order of magnitude. Therefore, it seemsthat the degenera
y of the HF ground state is alreadylifted by the 
rystal distortion, and the 
orrelation ef-fe
ts are well des
ribed by means of the regular pertur-bation theory expansion. This is partly supported by62
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k energy EHF and 
orrelation energies obtained in the se
ond order of perturbation theory,E(2)
 , and in the t-matrix approa
h, E(t)
 , for the high-temperature mono
lini
 phase of YVO3 (77 K < T < 116 K). Allenergies are measured in meV. See Table 1 for the details of the notation. In the mono
lini
 phase, the planes 1�2 and3�4 are inequivalent (see the Figure). Therefore, there are two di�erent types of on-site (denoted as V1 and V4) andintersite (denoted as V1�V2 and V4�V3) 
ontributions to the 
orrelation energy. The 
ontributions V1�V3 and V4�V2are equivalent and are both shown only for the sake of 
ompletenessPhase EHF E(2)
 E(t)
V1 V1�V2 V1�V3 V4 V4�V3 V4�V2 V1 V4F 11:71 �2:81 �0:02 �0:03 �1:74 �0:01 �0:03 �2:76 �1:71A 13:97 �5:87 �0:03 �0:01 �3:63 �0:01 �0:01 �4:14 �2:55C 0 �8:08 �0:02 �0:05 �6:98 �0:03 �0:05 �4:85 �4:33G 6:63 �7:56 �0:02 �0:01 �6:49 �0:03 �0:01 �4:38 �3:76Table 4. The Hartree � Fo
k energy EHF and 
orrelation energies obtained in the se
ond order of perturbation theory,E(2)
 , and in the t-matrix approa
h, E(t)
 , for the mono
lini
 phase of LaVO3. All energies are measured in meV. SeeTables 1 and 3 for the details of the notation. In the mono
lini
 phase, the planes 1�2 and 3�4 (see the Figure) areinequivalent, whi
h results in two types of V sites as well as the in-plane intera
tionsPhase EHF E(2)
 E(t)
V1 V1�V2 V1�V3 V4 V4�V3 V4�V2 V1 V4F 20:98 � 3:82 �0:02 �0:15 � 4:13 �0:02 �0:15 �3:74 �4:02A 20:63 �11:77 �0:22 �0:03 � 8:80 �0:02 �0:03 �8:34 �5:84C 0 �13:37 �0:04 �0:26 �12:54 �0:02 �0:26 �8:86 �8:39G 7:65 �10:52 �0:04 �0:02 � 9:02 �0:03 �0:02 �6:17 �5:41re
ent total-energy 
al
ulations for the orthorhombi
phase of YVO3 using the path-integral renormalization-group method, whi
h is free of any perturbation-theoryexpansions for the 
orrelation energy [20℄. The methodwas applied to the same model, and the main 
on
lu-sions 
on
erning the magneti
 phase diagram were sim-ilar to our present �nding.The 
orrelations additionally stabilize the experi-mentally observed G- and C-type AFM states in YVO3and LaVO3. Moreover, in the orthorhombi
 phase ofYVO3, the 
orrelation e�e
ts tend to stabilize the G-type AFM state; while in the mono
lini
 phase, theystabilize the C-type AFM state, being in total agree-ment with the experimental data. This trend is 
learlyseen both in the se
ond order of the perturbation the-ory and in the t-matrix approa
h, although the latteryields somewhat smaller values for the stabilization en-ergy asso
iated with the 
orrelation e�e
ts.The higher-order 
orrelations play an importantrole in YTiO3 and additionally stabilize the ferromag-neti
 phase. The latter emerges as the ground state

Table 5. The Hartree � Fo
k energy EHF and 
or-relation energies obtained in the se
ond order of per-turbation theory, E(2)
 , and in the t-matrix approa
h,E(t)
 , for the orthorhombi
 phase of LaTiO3. All ener-gies are measured in meV. See Table 1 for the detailsof the notationPhase EHF E(2)
 E(t)
Ti1 Ti1�Ti2 Ti1�Ti3 Ti1F 4:95 �11:08 �0:52 �0:08 � 9:66A 0 �22:53 �0:54 �0:07 �15:17C 19:57 �17:19 �0:23 �0:11 �11:04G 11:51 �23:02 �0:22 �0:09 �13:99already in the HF approa
h, where the total energydi�eren
e between ferromagneti
 and the next A-typeAFM state is about 2:05 meV per one Ti site (Table 1).However, if we take the 
orrelation e�e
ts in the se
-63



I. V. Solovyev ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007ond order of the perturbation theory into a

ount (and
onsider the single-site approximation), this di�eren
eis redu
ed to only 0:99 meV. Therefore, the situationis very fragile. Nevertheless, the t-matrix approa
h,whi
h a�e
ts the A-type AFM state more strongly, re-
overs some of these energy gains and is to make thetotal energy di�eren
e between ferromagneti
 and A-type AFM states about 1:83 meV per one Ti site.The intersite 
orrelation energies estimated in these
ond order of the perturbation theory, 
an be largein some ferromagneti
ally 
oupled bonds. This is espe-
ially true for YTiO3 and LaVO3. For example, the en-ergy of intera
tion between nearest-neighbor sites �1�and �2� (see the Figure), lo
ated in the ab-plane ofthe ferromagneti
 phase of YTiO3 is about �0:38 meV(Table 1). Be
ause ea
h transition-metal atom inter-a
ts with four nearest neighbors in the ab-plane, thisvalue 
orresponds to the additional energy gain�0:38� 4 = �1:52 meVper one Ti site. Similar estimates yield�0:37� 4 = �1:48 meV; �0:17� 4 = �0:68 meV;and �0:18� 4 = �0:72 meV;
orrespondingly for the A-, C-, and G-type AFMstates. Therefore, the in-plane intersite 
orrelationstend to additionally stabilize the ferromagneti
 phaserelative to the AFM states C and G. In the A-typeAFM phase, the sites �1� and �2� are also ferro-magneti
ally 
oupled, as in the totally ferromagneti
phase. Therefore, these two phases have pra
ti
allythe same intersite 
orrelation energies in the ab-plane.The inter-plane 
orrelations appear to be small in allmagneti
 phases of YTiO3.In LaVO3, the situation is somewhat di�erent, andthis is a good example of a system where the inter-plane 
orrelations already play a more important role.Indeed, the energies of intersite 
orrelations are thelargest in the ferromagneti
 
hains of C-type AFMphase, whi
h is also the magneti
 ground state of this
ompound. These energies are asso
iated with thebonds �1�3� and �2�4�, whi
h are shown in the Fig-ure, and the results are summarized in Table 4. Thus,in the 
ase of LaVO3, the inter-plane 
orrelations ad-ditionally stabilize the C-type AFM ground state. Butbe
ause ea
h transition-metal atom intera
ts with onlytwo nearest neighbors along the 
 axis, the stabilizationenergy is not parti
ularly large, about�0:26� 2 = �0:52 meVper one V atom.

The intersite 
orrelation energies are also large inthe 
ase of LaTiO3 (Table 5). However, they tend tostabilize either ferromagneti
 or A-type AFM states,and do not explain the appearan
e of the experimentalG-type AFM ground state. Again, we believe that theproblem is related to the use of the regular perturba-tion theory expansion, whi
h may not be justi�ed inthe 
ase of LaTiO3.The mono
lini
 distortion realized in LaVO3 andin the high-temperature phase of YVO3 produ
es twoinequivalent pairs of transition-metal sites, whi
h areshown 
orrespondingly as (1,2 ) and (3,4 ) in the Fig-ure. Therefore, it is interesting to 
onsider the interplaybetween 
orrelation energies and the latti
e distortionsaround di�erent transition-metal sites. In our nota-tions, the 
rystal stru
ture around the sites �3� and�4� is more distorted than the one around the sites�1� and �2�. Su
h a distortion dire
tly 
orrelates withthe magnitude of the 
rystal-�eld splitting in di�er-ent sublatti
es [11℄. Then, the on-site 
orrelations aregenerally stronger at the sites with the least distortedenvironment (site �1� in the Tables 3 and 4). This ruleholds both for YVO3 and LaVO3 (although with someex
eption for the ferromagneti
 phase of LaVO3). Inthe C-type AFM phase, whi
h is always realized as themagneti
 ground state in the mono
lini
 stru
ture, thedi�eren
e of on-site 
orrelation energies asso
iated withsites �1� and �4� is about 1 meV per one V site, as ob-tained in the se
ond order of the perturbation theory.This value is further redu
ed to 0:5 meV per one V siteby higher-order 
orrelations in the t-matrix theory.5. SUMMARY AND CONCLUSIONSThis paper is a 
ontinuation of the previous works(Refs. [10�12℄) devoted to the 
onstru
tion and solu-tion of an e�e
tive low-energy models for the series ofdistorted t2g perovskite oxides on the basis of the �rst-prin
iple ele
troni
 stru
ture 
al
ulations. It deals withthe analysis of 
orrelation intera
tions and their 
on-tributions to stability of di�erent magneti
 stru
turesthat 
an be realized in these 
ompounds. The 
or-relation energies have been 
al
ulated on the basis ofa regular perturbation theory expansion starting fromthe ground state of the HF method. Thus, our strategyimplies that the degenera
y of the HF ground state isalready lifted by the 
rystal distortion and the regu-lar perturbation theory is justi�ed. This seems to bea good approximation for the most distorted YTiO3,YVO3, and even LaVO3, where64
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orre
t magneti
 ground state 
an be for-mally obtained at the level of the HF approximation;2. the 
orrelation e�e
ts in
luded as a perturbationinto the HF ground state, systemati
ally improve theagreement with the experimental data.However, in LaTiO3, the situation is 
ompletely dif-ferent:1. the HF method yields an in
orre
t magneti
ground state (A-type AFM instead of G-type AFM);2. the 
orrelation intera
tions, treated as a pertur-bation to this in
orre
t HF ground state, do not 
hangethe overall pi
ture, and the G-type AFM state remainsunstable relative to the A-state.Thus, the origin of the G-type AFM ground statein LaTiO3 seems to be di�erent from other perovskiteoxides and remains a 
hallenging problem for futuretheories. Apparently, one of our basi
 assumptionsabout the nondegenera
y of the HF ground state breaksdown in the 
ase of LaTiO3, and the true ground state
annot be approa
hed through a series of 
ontinuous
orre
tions applied to the single-Slater-determinant HFtheory. Therefore, the next important step for LaTiO3would to abandon this �nondegenera
y assumption�and expand the 
lass of the possible ground states,whi
h would in
lude some aspe
ts of the orbital liquidtheory [7℄.This work was supported in part by Grant-in-Aidfor S
ienti�
 Resear
h in Priority Area �AnomalousQuantum Materials� from the Ministry of Edu
ation,Culture, Sports, S
ien
e and Te
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