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Using an effective low-energy Hamiltonian derived from the first-principle electronic structure calculations for
the narrow 2y bands of YTiOs, LaTiOs, YVOs3, and LaVOs3, we evaluate the contributions of the correlation
energy E. to the stability of different magnetic structures that can be realized in these distorted perovskite
oxides. We consider two approximations for E. that are based on the regular perturbation theory expansion
around a nondegenerate Hartree—Fock ground state. One is the second order of the perturbation theory,
which allows comparing the effects of local and nonlocal correlations. The other is the local t-matrix approach,
which allows treating some higher-order contributions to E.. The correlation effects systematically improve the
agreement with the experimental data and additionally stabilize the experimentally observed G- and C-type
antiferromagnetic (AFM) structures in YVO3 and LaVOs, although the absolute magnitude of the stabilization
energy is sensitive to the level of approximations and is somewhat smaller in the ¢-matrix method. The nonlocal
correlations additionally stabilize the ferromagnetic ground state in YTiO3 and the C-type AFM ground state
in LaVO3. Among two inequivalent transition-metal sites in the monoclinic structure, the local correlations
are stronger at the sites with the least distorted environment. Limitations of the regular perturbation-theory
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expansion for LaTiO3 are also discussed.
PACS: 71.10.-w, 71.15.N¢, 71.28.+d, 75.25.+z

1. INTRODUCTION

An interest in the transition-metal perovskite oxides
YTiO3, LaTiO3, YVOs3, and LaVOg3 is mainly related
to the variety of magnetic structures that can be real-
ized in these seemingly alike compounds. For example,
YTiO3 has the ferromagnetic structure [1]. LaTiOs is
a three-dimensional (G-type) antiferromagnet [2]. At
the low temperature, YVOj3 forms the G-type antiferro-
magnetic (AFM) structure, which can be transformed
to a chainlike (C-type) antiferromagnetic structure at
around 77 K [3]. On the contrary, LaVOj is a C-type
antiferromagnet in the entire temperature range below
the magnetic transition temperature [4]. Surprisingly,
the difference exists not only between titanates (YTiO3
and LaTiO3) and vanadites (YVO3 and LaVO3), which
have a different number of valent electrons, but also
within each group of formally isoelectronic materials.
The differences are apparently related to tiny changes
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in the distorted perovskite structure, which are ampli-
fied by Coulomb interactions in the narrow ¢, band.
The details of the crystal structure can be found in
Refs. [1-4]. Briefly, both titanites have an orthorhom-
bic structure, although the details of this structure
are rather different for YTiO3 and LaTiOz. LaVOs;
is crystallized in a monoclinic structure. The low-
temperature phase of YVOj3 is orthorhombic (shown
in the Figure), which becomes monoclinic at around
77 K. The structural orthorhombic-monoclinic transi-
tion coincides with the G-C' AFM transition. Gener-
ally, Y-based compounds are more distorted (due to
the smaller size of the Y3 ions).

There are a large number of theoretical articles de-
voted to the origin of the magnetic ground states in
the distorted ¢y, perovskite oxides. The problem has
been considered on the basis of the first-principle elec-
tronic structure calculations (see, e.g., Refs. [5]) and
the model approaches for strongly correlated systems
(see, e.g., Refs. [6-8]). The model theories typically
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A characteristic example of the crystal structure (a) and the electronic structure in the local-density approximation (b) of
the orthorhombically distorted YVO3. ¢ — the symbols a, b, and ¢ stand for orthorhombic translations, and the symbols
1-4 denote the transition-metal sites, which form the unit cell of the distorted perovskite oxides. b — the contributions
of the atomic V(3d) states are shown. Other symbols show the positions of the main bands. The Fermi level is at zero
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vary on the assessment of the role played by the lattice
distortions [6] and the Coulomb correlations [7, §].

We believe that any realistic theoretical description
of these compounds is practically impossible without
the impact from the first-principle electronic structure
calculations: simply, the lattice distortion is too com-
plex, and, had we tried to postulate a model Hamil-
tonian for these t5, perovskite oxides, we would have
inevitably faced the problem of choosing the values
for a large number of model parameters, which can-
not be fixed in an unbiased way. However, the con-
ventional electronic structure calculations are also far
from being perfect. Typically, they are supplemented
with some additional approximations, which have se-
rious limitations for treating the Coulomb correlations
in the case of strongly correlated materials. A typical
example is the local-density approximation. From this
standpoint, a promising direction is to make a bridge
between the first-principle electronic structure calcula-
tions and models for strongly correlated systems, and
construct an appropriate model Hamiltonian entirely
“from the first principles”. Fortunately, in the case of
transition-metal oxides, we are typically dealing with
only a small group of states located near the Fermi
level and well separated from the remaining part of
the spectrum (for instance, ¢», bands in the Figure).
These states are mainly responsible for the electronic
and magnetic properties of oxide materials.

Therefore, in many cases, it suffices to consider a
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minimal model, consisting of only the ¢y, bands, and
include the effect of the other bands into the renormal-
ization of interaction parameters in the t5, band. Such
a strategy was pursued in Refs. [9-11]. It consists of
three major steps: first-principle electronic structure
calculations — construction of the model Hamiltonian
— solution of this model Hamiltonian.

The first applications to the distorted t», perovskite
oxides were considered in Refs. [11, 12]. The present
paper deals with the last part of the problem. We solve
the model Hamiltonian derived in Ref. [11], and mainly
focus on the role played by the correlation effects, be-
yond the mean-field Hartree—Fock (HF) approxima-
tion. In particular, we consider two perturbative ap-
proaches. One is the regular second-order perturbation
theory for the correlation energy [13], and the other is
the t-matrix approach [14-16]. In both approaches, the
HF approximation is used as the starting point. This
implies that the degeneracy of the HF ground state is
already lifted by the crystal distortion such that the
regular perturbation theory is justified. We also dis-
cuss some limitations of this treatment for LaTiOs3.

2. CONSTRUCTION OF THE MODEL
HAMILTONIAN

Our first goal is the construction of the effective
multi-orbital Hubbard model for the isolated ¢5, bands:
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where é}m (¢ra) creates (annihilates) an electron in the

Wannier orbital Wg of the transition-metal site R, and
« is a collective index, incorporating all the remaining
(spin and orbital) degrees of freedom. The matrix

hrr = [|hgg |

parameterizes the kinetic energy of electrons, where
the site-diagonal part (R = R') describes the local
level-splitting caused by the crystal field, and the off-
diagonal part (R # R') stands for the transfer inte-
grals,

Ui = [ de [ TR} (0 0) 00 =)
X W&T(rl)wgt(rl) = <a7‘vscr|ﬂ(5>

are matrix elements of screened Coulomb interaction
Vser (v — 1'), which are supposed to be diagonal with
respect to site indices. In principle, Uyg~s can also
depend on the site index R. Nevertheless, for simplic-
ity of notation, here and hereafter, we drop the index
R in the notation for the Coulomb matrix elements
(however, we do consider this dependence in all our
calculations).

The procedure of mapping the first-principle elec-
tronic structure calculations onto the model Hamilto-
nian in (1) for distorted perovskite oxides has been dis-
cussed in detail in Refs. [10, 11]. Here, we only outline
the main idea. The kinetic-energy part her' can be
obtained using the downfolding method, which is exact
and equivalent to the projector-operator method [17].
The Wannier functions can be formally derived from
iLRRr using the ideas of the linear-muffin-tin-orbital
method [10, 18]. The matrix of screened Coulomb in-
teractions in the f54 band can be calculated using a hy-
brid approach, which combines the constraint density-
functional theory with the random-phase approxima-
tion for the hybridization effects between transition-
metal d and other atomic states [10]. The values of the
model parameters obtained in such a way can be found
in Ref. [11].

3. SOLUTION OF MODEL HAMILTONIAN

3.1. Hartree — Fock approximation

The HF method provides the simplest approxima-
tion for the solution of the many-electron problem
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with Hamiltonian (1). In this case, the trial many-
electron wave function is searched in the form of a sin-
gle Slater determinant |S{py}), constructed from the
one-electron orbitals {¢y}. In this notation, k is a col-
lective index that contains the information about the
momentum k in the first Brillouin zone, the band num-
ber n, and the spin (o =7 or |) of the particle. The
one-electron orbitals {p} are subjected to the vari-
ational principle and requested to minimize the total
energy

Eyr = %<S{@k}\ﬂ\5{¢k}>

for a given number of particles A/, This yields the fol-
lowing equations for {pg}:

(o +7) lx) = eileon), @

where
I = [|hg7)]

is the kinetic part of model Hamiltonian (1) in the re-
ciprocal space:

a 1 a 4
heP = v > g exp(—ik - (R — R'))
RI

(N being the number of sites) and
V = [[Vasl
is the HF potential:

Vas = Y (Uaprs = Unsp) s (3)

%)

In what follows, we also use the notation iLHF, which
stands for the total Hamiltonian of the HF method,
h+ V. Equation (2) is solved self-consistently together
with the equation

occe
A=l (¢l
k

for the density matrix
i = |Inagl|

in the basis of Wannier orbitals. Finally, the total en-
ergy in the HF method can be obtained as

occ

Enr = Zﬁk - % ZVBa”aﬁ'
k af
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3.2. Second-order perturbation theory for
correlation energy

The simplest way to go beyond the HF approxi-
mation is to include the correlation interactions in the
second order of the perturbation theory for the total
energy [13]. The correlation interaction (or a fluctu-
ation) is defined as the difference between true many-
body Hamiltonian (1) and its one-electron counterpart,
obtained at the level of HF approximation:

=%

R

R O
5 Z Uaﬁ’ﬂscRachchBCRd_
afBvyé

- Z Vag é;aéRB (4)

af

By treating H, as a perturbation, the correlation en-
ergy can be easily estimated as [13]

=2

where |G) and |S) are the Slater determinants, respec-
tively, corresponding to the low-energy ground state in
the HF approximation and the excited state. Due to
the variational properties of the HF method, the only
processes that may contribute to E§2) are the two-par-
ticle excitations, for which each |S) is obtained from
|G) by replacing two one-electron orbitals, e.g., ¢, and
@k, , from the occupied part of the spectrum by two un-
occupied orbitals, e.g., ¢, and ¢,. Hence, using the
notation of Sec. 2, the matrix elements take the form

(6)

Then, we employ a common approximation of nonin-
teracting quasiparticles and replace the denominator in
Eq. (5) with the linear combination of HF eigenvalues:

(GIH. |s (S|H.|G)
—Enr(G)

(5)

Eur(S

(S|He|G) = (kska|veer|kika) — (kska|vaer kb ).

Epp(S) — Epr(G) ek, + €k, — €y — Eky

see [13]. Matrix elements (6) satisfy the condition
N 1 .
(SIHe|G) ~ ; exp(i(ks + ks —k; —k») - R)

if the screened Coulomb interactions are diagonal with
respect to the site indices.

A good point of the second-order of the perturba-
tion theory is that it allows estimating both on-site
(R = 0) and intersite (R # 0) elements of this ex-
pansion relatively easily. In what follows, we use this
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method in order to study the relative role played by
these effects in the stability of different magnetic struc-
tures of the distorted perovskite oxides. The R = 0
term corresponds to the commonly used single-site
approximation for the correlation interactions, which
becomes exact in the limit of infinite spatial dimen-
sions [19].

3.3. The t-matrix approach

The basic idea of the t-matrix approach is to look
at the true many-electron system as a superposition
of independent two-electron subsystems, and to rigor-
ously solve the Schrédinger equations for each of these
subsystems [14, 15, 16]. Hence, we consider the two-
electron Hamiltonian

H(1,2) = hgr(1) + hyp(2) + Ad(1,2),
where

Aﬁ(]-vQ) = ﬁscr(lv 2) - ‘7(1) - ‘7(2)7

Oser(1,2) is the screened (by other bands) Coulomb in-
teractions between electrons «1» and «2» in the ty4
band, and hyp (V) is the one-electron Hamiltonian
(potential) in the HF approximation. For a periodic
system, the Schrodinger equation can be written as

IA{|‘I’/€11€2> =Ek1k2‘wk1k2>' (7)

Any two-electron wave function |¥y,;,) can be ex-
panded in the basis of (also two-electron) Slater de-
terminants:

k) = %mlu)%@) ~ ot (Dpn )},

etc. Apart from a normalization factor, this expansion
has the form [16]

kak

Wioko) = [ika) + D Ti42 kska). (8)
|kska)

We note that the summation ranges only nonequiv-

alent Slater determinant |ksks) constructed from the

one-electron orbitals k3 and k4. For example, because
|kaks) = —|kska),

the determinant |k4k3) must be excluded from the sum
in (8), etc. Substituting Eq. (8) in Eq. (7) and intro-
ducing the new notation

AE/ﬂkz = Eklkz - Ekl - Ekz

such that
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harp (1) 4+ hap(2) — ep, — kg | |F1ka) =

(i.e., e, and ey, are the eigenvalues of the HF Hamil-
tonian), we obtain the following equation for AFEj, .,
and T2yt

(AD — AEg k) [k1ks) +
+ Z (Eks +Eks — €Ry
[k3ka)
+ A — AEy, 1) T3 [ksks) = 0.

— &gyt

By considering the matrix element of this equation with
(k1ka]|, we can find that
AEy ky = (k1ko|AD|k1 ko) +

k3k4
Z Fklkz

[kska)

(k1ka| Av|ksky), (9)

where the first term is the energy of the Coulomb and
exchange interactions in the HF approximation (minus
the potential energy), while the second term is the cor-
relation energy. By considering the matrix elements
with (kske| # (k1ke|, we can find another set of equa-
tions for Fﬁfﬁ;‘

(kske|AD|k1 ko) +

+ (Sks + Ekg — €y — Eky — ABj1a) T3 +
+ Z rm; (kske|AD|ksks) = 0.
|k3ka)

They are solved iteratively with respect to Ad. For this,
it is convenient to introduce the two-particle Green’s
function

|k3ka) (k3ka)
Cky T Eky — Eky — ko

Griks =

>

kaka) - AEkle

and derive a matrix equation for {I’k3k4} to be substi-
tuted in Eq. (9). It is then rather stralghtforward to
derive the following expression for AEy, ,:

AEkle = <k1k2‘fk1k2|klk2>v (10)
where Tkle is the so-called ¢-matrix:

. PO -1

Tk1k2 =Av |1+ Gk1k2Aﬁ (].].)

The correlation energy of the t-matrix method is ob-
tained after subtracting the energies of Coulomb and
exchange interactions in the HF approximation from
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Eq. (10) and summing over all Slater determinants con-
structed from the occupied one-electron orbitals of the
HF method:

occ

E(Et) = Z <k1k2‘Tk1k2
|k1ka)

— Adlkiks).  (12)

In practice, each HF orbital has been expanded over the
basis of Wannier functions, and then all calculations of
Tkle and Egt) have been performed in this basis.

By expanding Tk1k2 up to the second order in Ao,
we regain Eq. (5), obtained in the second order of the
perturbation theory. Therefore, the good point of the
t-matrix approach is that it allows going beyond the
second order of the perturbation theory and evaluat-
ing the higher-order effects in Ad on the correlation
energy. Nevertheless, it was supplemented with some
additional approximations.

1. When we compute the matrix elements of the
form (kgks|A0|k1k2), being proportional to

1 .
N Zexp(z(kg + k4 — k1 — kg) . R),
R

we consider only the R = 0 part of this sum and ne-
glect all other contributions. This corresponds to the
single-site approximation for the t-matrix.

2. In all matrix elements (k3ks|A0|k1 ko), we replace
Av with ¥4, and drop the one-electron potentials of the
HF method. Strictly speaking, this procedure is justi-
fied only when both one-electron states ky and ko are
different from ks and k4, for example, when they be-
long, correspondingly, to the occupied and unoccupied
part of the spectrum, as in the second-order of pertur-
bation theory. However, this is no longer true for the
higher-order terms in Ad. Nevertheless, we believe that
the difference is small.

All correlation energies have been computed in the
mesh of 75 points in the first Brillouin zone, corre-
sponding to the 4 : 4 : 2 division of the reciprocal
translation vectors for the distorted perovskite struc-
ture. The actual integration over the Brillouin zone
has been replaced by the summation over this mesh of
points.

4. RESULTS AND DISCUSSIONS

First applications of the proposed method to
YTiO3, LaTiOs, YVO3, and LaVO3 have been con-
sidered in Ref. [11], where we have summarized results
of HF calculations for model (1) and the behavior of
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Table 1.
lation energies obtained in the second order of pertur-
bation theory, EC(Q), and in the t-matrix approach, Ec(t),
for the orthorhombic phase of YTiO3. The Hartree—
Fock energies are measured from the most stable mag-

The Hartree — Fock energy Enr and corre-

netic state in meV per one formula unit. The correla-
tion energies are measured in meV per one transition-
metal site or a pair of sites, correspondingly for the
on-site and intersite contributions. The ¢-matrix was
computed in the single-site approximation. Therefore,
only the site-diagonal part of EY is shown. The po-

sitions of the transition-metal sites are shown in the

Figure

Phase | Exr EY EY

Tiy | Ti;-Tip | Ti;-Tiz | Tiy
F 0 —-5.13 | —0.38 —-0.01 | —4.58
A 2.05| -6.19 | —0.37 0 —4.80
C 1440 | =8.32 | —0.17 —-0.01 | —=5.28
G 16.25 | —8.48 | —0.18 —-0.01 | =5.31

Table 2. The Hartree—Fock energy Exr and cor-

relation energies obtained in the second order of per-

turbation theory, EC(Q), and in the ¢-matrix approach,

E, for the low-temperature orthorhombic phase of

YVOs (T < 77 K). All energies are measured in meV.
See the Figure for the details of the notation

Phase | Exr E§2) Egt)
Vi Vi-Va | Vi-V3 Vi

F | 2166 | —2.19 | —0.12 | —0.02 | —2.16

A | 1459 | —4.67 | —0.12 | —0.01 | —3.31

c | 1014 | =561 | —007 | 0 | —3.14

G 0 —7.07 | —0.07 | —=0.01 | —4.06

correlation energies in the second order of the pertur-
bation theory, supplemented with the single-site ap-
proximation. In the present work, we further elaborate
the problem by focusing on the following questions:

1. the role of higher-order contributions to the cor-
relation energy;

2. the role of nonlocal (or intersite) contributions
to the correlation energy.

We also consider the effects of monoclinic distortion
and analyze the contributions to the correlation energy
of inequivalent transition-metal sites. The results of
these calculations are presented in Tables 1-5 for all
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the considered compounds. First, we summarize the
main results in Ref. [11].

1. The HF approximation yields the correct mag-
netic ground state for YTiO3, LaVOs3, and both phases
of YVOg3. This conclusion is fully consistent with the
results of accurate all-electron band-structure calcula-
tions [5], and it is quite remarkable that all these results
can be reproduced in our minimal model derived for the
tag bands.

2. The correlation effects favor the AFM spin
alignment and additionally stabilize the experimentally
observed G- and C-type AFM states in YVO3 and
LaV03.

3. None of the considered approaches reproduces
the experimental G-type AFM ground state of LaTiO3
(instead, the theoretical calculations steadily converge
to the A-type AFM ground state [11, 12]).

Then, what is to happen if we go beyond the second-
order perturbation theory and apply the t-matrix ap-
proach? Generally, the ¢t-matrix approach reduces the
absolute value of the correlation energy. But the mag-
nitude of this reduction strongly depends on the mag-
netic state. For example, if the ferromagnetic state
is only weakly affected by the higher-order correla-
tion effects (the typical changes of E. vary from 1%
in YVO3 to 13% in LaTiO3), E. in the G-type AFM
phase can drop by nearly 50 %. From this standpoint,
if the second order of the perturbation theory does not
solve the problem of the G-type AFM ground state of
LaTiOg3, it seems to be unlikely that the higher-order
effects can reverse the situation. Apparently, LaTiO3
is different from other perovskite oxides, and the regu-
lar perturbation-theory expansion, although justifiable
for the majority of considered compounds, does not
work for LaTiO3. This seems to be reasonable because
LaTiO3 has the largest correlation energies, which are
comparable to the splitting of the 5, levels caused by
the crystal distortion (= 37 meV [11]). Therefore, it
is quite possible that the correlation effects in LaTiO3
should be considered at the first place, and the sim-
ple HF theory for the spin and orbital ordering with
the subsequent inclusion of the correlation effects as a
perturbation to the HF ground state may not be ap-
propriate here [7, 8]. We note that in other materials,
the situation is different: the typical values of the t54-
levels splitting in YTiO3, YVOs3, and LaVO3 are about
100 meV [11], which exceeds the correlation energy by
at least one order of magnitude. Therefore, it seems
that the degeneracy of the HF ground state is already
lifted by the crystal distortion, and the correlation ef-
fects are well described by means of the regular pertur-
bation theory expansion. This is partly supported by



MKIT®, Ttom 132, Boin. 1(7), 2007

Correlation energies in distorted . ..

Table 3.

The Hartree — Fock energy Ernr and correlation energies obtained in the second order of perturbation theory,

E, and in the t-matrix approach, EY, for the high-temperature monoclinic phase of YVO3 (77 K < T < 116 K). All
energies are measured in meV. See Table 1 for the details of the notation. In the monoclinic phase, the planes 1-2 and

3-4 are inequivalent (see the Figure). Therefore, there are two different types of on-site (denoted as Vi and V4) and
intersite (denoted as V1-V2 and V4-V3) contributions to the correlation energy. The contributions Vi-V3 and V4-V»

are equivalent and are both shown only for the sake of completeness

Phase | Enp E? E®
Vi V-V, Vi-V3 A\ V4-V3 Vi4-Vo Vi A\
F 11.71 —-2.81 —0.02 —0.03 —-1.74 —-0.01 —-0.03 —2.76 —-1.71
A 13.97 —5.87 —-0.03 —-0.01 —-3.63 —-0.01 —-0.01 —4.14 —2.55
C 0 —8.08 —0.02 —0.05 —6.98 —0.03 —0.05 —4.85 —-4.33
G 6.63 —7.56 —0.02 —0.01 —6.49 —0.03 —-0.01 —4.38 —3.76
Table 4.  The Hartree —Fock energy Ernr and correlation energies obtained in the second order of perturbation theory,

E® and in the t-matrix approach, E"), for the monoclinic phase of LaVOs. All energies are measured in meV. See
Tables 1 and 3 for the details of the notation. In the monoclinic phase, the planes 1-2 and 3-4 (see the Figure) are

inequivalent, which results in two types of V sites as well as the in-plane interactions

recent total-energy calculations for the orthorhombic
phase of YVO3 using the path-integral renormalization-
group method, which is free of any perturbation-theory
expansions for the correlation energy [20]. The method
was applied to the same model, and the main conclu-
sions concerning the magnetic phase diagram were sim-
ilar to our present finding.

The correlations additionally stabilize the experi-
mentally observed G- and C-type AFM states in YVOg3
and LaVQOjs. Moreover, in the orthorhombic phase of
YVOj3;, the correlation effects tend to stabilize the G-
type AFM state; while in the monoclinic phase, they
stabilize the C-type AFM state, being in total agree-
ment with the experimental data. This trend is clearly
seen both in the second order of the perturbation the-
ory and in the t-matrix approach, although the latter
yields somewhat smaller values for the stabilization en-
ergy associated with the correlation effects.

The higher-order correlations play an important
role in YTiO3 and additionally stabilize the ferromag-
netic phase. The latter emerges as the ground state
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Phase | Epnr EY EY
Vi Vi-Vy | Vi-V3 Vi Vy-V3 | V4=V, Vi A\
F 20.98 — 3.82 —0.02 —0.15 — 413 —0.02 —0.15 -3.74 —4.02
A 20.63 —-11.77 —0.22 —0.03 — 8.80 —0.02 —0.03 —8.34 —5.84
C 0 —13.37 —0.04 —0.26 —12.54 —0.02 —0.26 —8.86 —8.39
G 7.65 —10.52 —0.04 —0.02 — 9.02 —0.03 —0.02 —6.17 —5.41
Table 5.  The Hartree—Fock energy Exr and cor-

relation energies obtained in the second order of per-

turbation theory, EC(Q), and in the ¢-matrix approach,

Ec(t), for the orthorhombic phase of LaTiOs5. All ener-

gies are measured in meV. See Table 1 for the details
of the notation

Phase | Exr E£2) Egt)
Ti; | Ti;-Tip | Tiy-Tis | Tiy
F 4.95| —-11.08 | —0.52 | —0.08 | — 9.66
A 0 —22.53| —0.54 | —0.07 | —15.17
C 19.57 | —-17.19| —-0.23 | —0.11 | —-11.04
G 11.51 | —=23.02| —0.22 | —0.09 |—13.99

already in the HF approach, where the total energy
difference between ferromagnetic and the next A-type
AFM state is about 2.05 meV per one Ti site (Table 1).
However, if we take the correlation effects in the sec-
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ond order of the perturbation theory into account (and
consider the single-site approximation), this difference
is reduced to only 0.99 meV. Therefore, the situation
is very fragile. Nevertheless, the t-matrix approach,
which affects the A-type AFM state more strongly, re-
covers some of these energy gains and is to make the
total energy difference between ferromagnetic and A-
type AFM states about 1.83 meV per one Ti site.

The intersite correlation energies estimated in the
second order of the perturbation theory, can be large
in some ferromagnetically coupled bonds. This is espe-
cially true for YTiO3 and LaVO3. For example, the en-
ergy of interaction between nearest-neighbor sites «1»
and «2» (see the Figure), located in the ab-plane of
the ferromagnetic phase of YTiO3 is about —0.38 meV
(Table 1). Because each transition-metal atom inter-
acts with four nearest neighbors in the ab-plane, this
value corresponds to the additional energy gain

—0.38 x4 = —1.52 meV

per one Ti site. Similar estimates yield

—0.37x4=-148meV, —0.17x4=—-0.68 meV,

and —0.18 x 4 = —0.72 meV,
correspondingly for the A-, C-, and G-type AFM
states. Therefore, the in-plane intersite correlations
tend to additionally stabilize the ferromagnetic phase
relative to the AFM states C' and G. In the A-type
AFM phase, the sites «1» and «2» are also ferro-
magnetically coupled, as in the totally ferromagnetic
phase. Therefore, these two phases have practically
the same intersite correlation energies in the ab-plane.
The inter-plane correlations appear to be small in all
magnetic phases of YTiOs.

In LaVOg;, the situation is somewhat different, and
this is a good example of a system where the inter-
plane correlations already play a more important role.
Indeed, the energies of intersite correlations are the
largest in the ferromagnetic chains of C-type AFM
phase, which is also the magnetic ground state of this
compound. These energies are associated with the
bonds «1-3» and «2-4», which are shown in the Fig-
ure, and the results are summarized in Table 4. Thus,
in the case of LaVQg3, the inter-plane correlations ad-
ditionally stabilize the C-type AFM ground state. But
because each transition-metal atom interacts with only
two nearest neighbors along the ¢ axis, the stabilization
energy is not particularly large, about

—0.26 x 2 = —0.52 meV

per one V atom.
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The intersite correlation energies are also large in
the case of LaTiO3 (Table 5). However, they tend to
stabilize either ferromagnetic or A-type AFM states,
and do not explain the appearance of the experimental
G-type AFM ground state. Again, we believe that the
problem is related to the use of the regular perturba-
tion theory expansion, which may not be justified in
the case of LaTiO3.

The monoclinic distortion realized in LaVO3 and
in the high-temperature phase of YVO3 produces two
inequivalent pairs of transition-metal sites, which are
shown correspondingly as (7,2) and (3,4) in the Fig-
ure. Therefore, it is interesting to consider the interplay
between correlation energies and the lattice distortions
around different transition-metal sites. In our nota-
tions, the crystal structure around the sites «3» and
«4» is more distorted than the one around the sites
«1» and «2». Such a distortion directly correlates with
the magnitude of the crystal-field splitting in differ-
ent sublattices [11]. Then, the on-site correlations are
generally stronger at the sites with the least distorted
environment (site «1» in the Tables 3 and 4). This rule
holds both for YVO3 and LaVO3 (although with some
exception for the ferromagnetic phase of LaVO3). In
the C-type AFM phase, which is always realized as the
magnetic ground state in the monoclinic structure, the
difference of on-site correlation energies associated with
sites «1» and «4» is about 1 meV per one V site, as ob-
tained in the second order of the perturbation theory.
This value is further reduced to 0.5 meV per one V site
by higher-order correlations in the ¢-matrix theory.

5. SUMMARY AND CONCLUSIONS

This paper is a continuation of the previous works
(Refs. [10-12]) devoted to the construction and solu-
tion of an effective low-energy models for the series of
distorted ¢24 perovskite oxides on the basis of the first-
principle electronic structure calculations. It deals with
the analysis of correlation interactions and their con-
tributions to stability of different magnetic structures
that can be realized in these compounds. The cor-
relation energies have been calculated on the basis of
a regular perturbation theory expansion starting from
the ground state of the HF method. Thus, our strategy
implies that the degeneracy of the HF ground state is
already lifted by the crystal distortion and the regu-
lar perturbation theory is justified. This seems to be
a good approximation for the most distorted YTiOs,
YVO3;, and even LaVOg3, where
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1. the correct magnetic ground state can be for-
mally obtained at the level of the HF approximation;

2. the correlation effects included as a perturbation
into the HF ground state, systematically improve the
agreement with the experimental data.

However, in LaTiOg3, the situation is completely dif-
ferent:

1. the HF method yields an incorrect magnetic
ground state (A-type AFM instead of G-type AFM);

2. the correlation interactions, treated as a pertur-
bation to this incorrect HF ground state, do not change
the overall picture, and the G-type AFM state remains
unstable relative to the A-state.

Thus, the origin of the G-type AFM ground state
in LaTiO3 seems to be different from other perovskite
oxides and remains a challenging problem for future
theories. Apparently, one of our basic assumptions
about the nondegeneracy of the HF ground state breaks
down in the case of LaTiO3, and the true ground state
cannot be approached through a series of continuous
corrections applied to the single-Slater-determinant HF
theory. Therefore, the next important step for LaTiO3
would to abandon this “nondegeneracy assumption”
and expand the class of the possible ground states,
which would include some aspects of the orbital liquid
theory [7].
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