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DYNAMIC PHASE TRANSITION IN THE KINETIC SPIN-1BLUME�CAPEL MODEL: PHASE DIAGRAMS IN THETEMPERATURE AND CRYSTAL-FIELD INTERACTION PLANEM. Keskin *, O. CankoDepartment of Physis, Eriyes University38039, Kayseri, TurkeyÜ. TemizerDepartment of Physis, Bozok University66100, Yozgat, TurkeyReeived Deember 6, 2006Within a mean-�eld approah, we study the stationary states of the kineti spin-1 Blume �Capel model inpresene of a time-dependent osillating external magneti �eld. We use the Glauber-type stohasti dynam-is to desribe the time evolution of the system and obtain the mean-�eld dynami equation of the motion.The dynami phase transition points are alulated and phase diagrams are presented in the temperature andrystal-�eld interation plane. Aording to the values of the magneti �eld amplitude, we �nd three fundamen-tal types of phase diagrams in whih they exhibit a dynami triritial point and only two of them a dynamizero-temperature ritial point.PACS: 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk1. INTRODUCTIONThe physis of equilibrium phase transitions is nowrather well understood (see, e.g., [1℄) within the frame-work of equilibrium statistial physis. But the meha-nism behind the nonequilibrium or dynami phase tran-sitions (DPT) has not yet been explored rigorously, andbasi phenomenology is still undeveloped. Hene, fur-ther e�orts on these hallenging time-dependent prob-lems, espeially alulating the DPT points and on-struting the phase diagram, must be rewarding in thefuture. The DPT was �rst found in a study withina mean-�eld approah to the stationary states of thekineti spin-1/2 Ising model under a time-dependentosillating �eld [2, 3℄, by using a Glauber-type stohas-ti dynamis [4℄, and it was followed by the Monte-Carlo simulation, whih allows the mirosopi �utu-ations, researh of kineti spin-1/2 Ising models [5�8℄,as well as further mean-�eld studies [9℄. Moreover,Tutu and Fujiwara [10℄ developed a systemati methodfor obtaining the phase diagrams in DPTs and on-*E-mail: keskin�eriyes.edu.tr

struted the general theory of DPTs near the transi-tion point based on the mean-�eld desription suh asLandau's general treatment of equilibrium phase tran-sitions. The DPT has also been found within the one-dimensional kineti spin-1/2 Ising model with bound-aries [11℄. Reent researh on the DPT is widely ex-tended to more omplex systems suh as vetor-typeorder parameter systems, e.g., the Heisenberg spin sys-tems [12℄, the XY model [13℄, the Zi� �Gulari �Barshadmodel for CO oxidation with CO desorption to peri-odi variation of the CO pressure [14℄, the mixed-spinIsing model, e.g., the kinetis of the mixed spin-1/2 andspin-1 Ising models [15℄, the kineti spin-1 Ising sys-tems [16℄, and the kineti spin-3/2 Ising systems [17℄.We also mention that experimental evidenes for theDPT has been found in highly anisotropi (Ising-like)and ultrathin Co/Cu(001) ferromagneti �lms [18℄ andin ferroi systems (ferromagnets, ferroeletris, and fer-roelastis) with pinned domain walls [19℄.Reently [20℄, we used the mean-�eld approah tostudy stationary states of the kineti spin-1 Blume �Capel model with the help of the Glauber stohasti8 ÆÝÒÔ, âûï. 6 1073



M. Keskin, O. Canko, Ü. Temizer ÆÝÒÔ, òîì 131, âûï. 6, 2007dynamis in presene of a time-dependent osillatingexternal magneti �eld. Espeially, we investigatedthe behavior of the time dependene of the magneti-zation and the behavior of the average magnetizationin a period as funtions of the redued temperatureand redued external magneti �eld and alulated theDPT points. We only presented the phase diagramsin the redued magneti �eld amplitude (h) and re-dued temperature (T ) plane and obtained �ve di�er-ent phase-diagram topologies. We also alulated theLyapunov exponent to verify the stability of a solutionand the DPT points. On the other hand, one shouldstudy phase diagrams of the dynami phase boundariesin the temperature and rystal �eld interation plane.Therefore, the aim of this paper is to present the phasediagrams of the kineti spin-1 Blume �Capel model inpresene of a time-varying (sinusoidal) magneti �eldin the redued temperature and rystal-�eld interationplane by using the Glauber stohasti dynamis.The outline of this paper is as follows. In Se. 2,the spin-1 Blume �Capel model is presented brie�y andthe derivation of the mean-�eld dynami equations ofmotion is given by using a Glauber-type stohasti dy-namis in the presene of a time-dependent osillatingexternal magneti �eld. In Se. 3, the DPT points arealulated, and the obtained phase diagrams are pre-sented and disussed in the redued temperature andrystal �eld interation plane. A summary is given inSe. 4.2. THE MODEL AND THE DERIVATION OFMEAN-FIELD DYNAMIC EQUATION OFMOTIONThe spin-1 Ising model with a rystal-�eld inter-ation or single-ion anisotropy, whih is often alledthe spin-1 Blume �Capel model or simply the Blume �Capel model, was �rst introdued by Blume [21℄ andindependently by Capel [22℄. The model has been asubjet of many theoretial studies sine its introdu-tion [21, 22℄ nearly 40 years ago beause it plays afundamental role in multiritial phenomena assoiatedwith various physial systems, suh as multiomponent�uids, ternary alloys, and magneti systems. The in-vestigations [21; 22℄ were based on well-known methodsin equilibrium statistial physis suh as the mean-�eldapproximation, the luster variation method, the e�e-tive �eld theory, the renormalization-group tehniques,and the Monte-Carlo simulations (see, e.g., [23℄). Whilethe equilibrium properties of the model have been ex-tensively investigated by many di�erent methods, the

nonequilibrium properties of the model have not beenas thoroughly explored. As in Ref. [20℄, Fiig et al. [24℄used dynami Monte-Carlo simulations to study a dy-nami behavior of metastable states in the Blume �Capel model and found that the deay of a partiularmetastable state might happen either diretly or via asuession of separate steps, depending on the availabil-ity and relative stability of a seond metastable stateintermediate between the initial one and the equilib-rium phase. Manzo and Olivieri [25℄ have used thismodel to study the metastability and nuleation byalso using the dynami Monte-Carlo simulations. Ekizet al. [26℄ have studied the dynamis of the Blume �Capel model using the path probability method withpoint distribution [27℄ in order to investigate how toobtain the metastable phases with long-range order pa-rameters and also to see the ��atness� property of themetastable state and the unstable state. They havealso alulated the phase transitions of the metastableand the unstable branhes of the order parameters be-sides the stable branhes and presented the ompletephase diagram.The Hamiltonian of the spin-1 Blume �Capel modelis given byH = �JXhiji SiSj �DXi S2i �HXi Si; (1)where Si take the values �1 or 0 at eah site i of alattie and hiji indiates summation over all pairs ofnearest-neighbor sites; J is the bilinear exhange in-teration parameter; D is the rystal-�eld interationor a single-ion anisotropy, and H is a time-dependentexternal osillating magneti �eld: H(t) = H0 os!t,H0 and ! = 2�� are the amplitude and the angularfrequeny of the osillating �eld. The system is in on-tat with an isothermal heat bath at absolute temper-ature TA.We apply the Glauber-type stohasti dynamis toobtain the mean-�eld dynami equation of motion. Thesystem evolves aording to a Glauber-type stohastiproess at a rate of 1=� transitions per unit time. Wede�ne P (S1; S2; : : : ; SN ; t) as the probability that thesystem has the S-spin on�guration, S1; S2; : : : ; SN , attime t. The time dependene of this probability fun-tion is assumed to be governed by the master equationthat desribes the interation between spins and heatbath and an be written as1074



ÆÝÒÔ, òîì 131, âûï. 6, 2007 Dynami phase transition in the kineti spin-1 : : :ddtP (S1; S2; : : : ; SN ; t) == �Xi 0� XSi 6=S0i Wi(Si ! S0i)1A�� P (S1; S2; : : : ; Si; : : : ; SN ; t) ++Xi 0� XSi 6=S0i Wi(S0i ! Si)1A�� P (S1; S2; : : : ; S0i; : : : ; SN ; t); (2)where Wi(Si ! S0i) is the probability per unit timethat the ith spin hanges from the value Si to S0i, andin this sense the Glauber model is stohasti. Beausethe system is in ontat with a heat bath at absolutetemperature TA, eah spin an hange from the valueSi to S0i with the probability per unit timeWi(Si ! S0i) = 1� exp [���E(Si ! S0i)℄XS0i exp [���E(Si ! S0i)℄ ; (3)where � = 1=kBTA, kB is the Boltzmann onstant, thesum ranges the three possible values �1 and 0 for S0i,and�E(Si ! S0i) == �(S0i � Si)0�JXhji Sj +H1A� (S0i2 � S2i )D (4)gives the hange in the energy of the system when theSi spin hanges. The probabilities satisfy the detailedbalane onditionWi(Si ! S0i)Wi(S0i ! Si) = P (S1; S2; : : : ; S0i; : : : ; SN )P (S1; S2; : : : ; Si; : : : ; SN) : (5)Substituting the possible values of Si, we obtainWi(1! �1) = Wi(0! �1) == 1� exp(��D)2 h(�a) + exp(��D) ;Wi(1! �1) = Wi(0! �1) == 1� exp(��a)2 h(�a) + exp(��D) ;Wi(0! 1) = Wi(�1! 1) == 1� exp(�a)2 h(�a) + exp(��D) ; (6)
where a = JPhji Sj + H . We note that beauseWi(Si ! S0i) is independent of Si, we an write

Wi(Si ! S0i) = Wi(S0i). Then the master equationbeomesddtP (S1; S2; : : : ; SN ; t) =Xi 0� XS0i 6=Si Wi(S0i)1A�� P (S1; S2; : : : ; Si; : : : ; SN ; t) ++Xi Wi(S)0� XS0i 6=Si P (S1; S2; : : : ; S0i; : : : ; SN ; t)1A :(7)Beause the sum of probabilities is normalized tounity, by multiplying both sides of Eq. (7) by Sk andtaking the average, we obtain� ddt hSki = �hSki++* 2 sh� 24JXhji Sj +H352 h� 24JXhji Sj +H35+ exp(��D)+ ; (8)or, in terms of the mean-�eld approah,� ddt hSi = �hSi++ 2 sh� [JzhSi+H0 os!t)℄2 h� [JzhSi+H0 os!t℄ + exp(��D) ; (9)where z is the oordination number. The systemevolves aording to the di�erential equation given byEq. (9), whih an be written as
 dd�m = �m++ sh [(m+ h os �)=T ℄h [(m+ h os �)=T ℄ + exp(�d=T )=2 ; (10)where m = hSi, � = !t, 
 = �!, T = (�zJ)�1,d = D=zJ , and h = H0=zJ . We �x z = 4 and 
 = 2�.3. DYNAMIC PHASE TRANSITION POINTSAND PHASE DIAGRAMSIn this setion, we �rst solve the mean-�eld dy-nami equation and present the behavior of averageorder parameters in a period as a funtion of the re-dued temperature. As a result, the DPT points arealulated. For these purposes, we �rst have to studythe stationary solutions of the dynami equation, given1075 8*



M. Keskin, O. Canko, Ü. Temizer ÆÝÒÔ, òîì 131, âûï. 6, 2007in Eq. (10), when the parameters T , d, and h are var-ied. The stationary solution of Eq. (10) is a periodifuntion of � with period 2�. Moreover, it an be oneof two types aording to whether it has or does nothave the propertym(� + �) = �m(�): (11)A solution that satis�es Eq. (11) is alled a symmet-ri solution, whih orresponds to a paramagneti (P)solution. In this solution, the average magnetizationm(�) osillates around the zero value and is delayedwith respet to the external magneti �eld. The se-ond type of solution, whih does not satisfy Eq. (11),is alled nonsymmetri solution and orresponds to aferromagneti (F) solution. In this ase, the magneti-zation does not follow the external magneti �eld, butinstead of osillating around a zero value, it osillatesaround a nonzero value. These fats are seen expli-itly by solving Eq. (10) numerially. Equation (10)is solved using the numerial method of the Adams �Moulton preditor orretor method for a given set ofparameters and initial values, and is shown in Fig. 1.From Fig. 1, we see that three di�erent solutions ex-ist in the system: the P, F, and oexistene (P+F)solutions, in whih the F and P solutions oexist. InFig. 1a, only the symmetri solution is always obtained,and hene we have the P solution, but in Fig. 1b, onlythe nonsymmetri solution is found; therefore, we havethe F solution. Neither solution depends on the initialvalues. On the other hand, in Fig. 1, both the sym-metri and nonsymmetri solutions always exist in thesystem, and hene we have the F+P solution. In thisase, the solutions depend on the initial values, seen inFig. 1 expliitly.Thus, Fig. 1 shows that we have two types of so-lutions, symmetri and nonsymmetri. Moreover, itdisplays that the P solution or phase, the F phase, andthe F+P phase exist in the system. To see the bound-aries between these three regions, we have to alulateDPT points, and then we an present phase diagramsof the system. DPT points are to be obtained by inves-tigating the behavior of the average magnetization in aperiod, whih is also alled the dynami magnetization,as a funtion of the redued temperature. Moreover,we also alulate the Lyapunov exponent to verify thestability of a solution and the DPT points.The average magnetization in a period or the dy-nami magnetization M is given byM = 12� 2�Z0 m(�) d�: (12)
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Fig. 1. Time variations of the magnetization m:a) exhibiting a paramagneti phase (P), d = �0:25,h = 0:5, and T = 0:75; b) exhibiting a ferromag-neti phase (F), d = �0:25, h = 0:2, and T = 0:5;) exhibiting a oexistene region (F+P), d = �0:25,h = 0:75, and T = 0:1The behavior ofM as a funtion of the redued temper-ature for several values of h and d is obtained by om-bining the numerial methods of the Adams �Moultonpreditor orretor with the Romberg integration; theresults are plotted in Fig. 2 together with the Lyapunovexponent �. Figure 2a represents the redued temper-ature dependene of the average magnetization M forh = 0:75 and d = 0:25. In this ase,M dereases to zerodisontinuously as the redued temperature inreases,and therefore a �rst-order phase transition ours atTt = 0:2950. Figures 2b and 2 illustrate the thermalvariations of M for h = 0:675 and d = 0:25 for twodi�erent initial values M = 1 and M = 0, respetively.In Fig. 2b, M dereases to zero ontinuously as the re-dued temperature inreases, and therefore the systemexhibits a seond-order phase transition at T = 0:46.In Fig. 2, the system undergoes two suessive phasetransitions. The �rst is a �rst-order transition from the1076
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Fig. 2. The redued temperature dependene of the dynami magnetization M (the thik solid line) and the Lyapunovexponents �s and �n (the thin solid line), the subsript �s� indiates a symmetri solution whih orresponds to the P phaseand �n� indiates a nonsymmetri solution that orresponds to the F phase; Tt and T are the �rst- and seond-order phasetransition temperatures, respetively. The F+P region exists for d = 0:25 and h = 0:675. a) Exhibiting a �rst-order phasetransition from the F phase to the P phase for d = 0:25 and h = 0:75; Tt is found to be 0.2950; b) exhibiting a seond-orderphase transition from the F phase to the P phase for d = 0:25 and h = 0:675; T is found to be 0.460; ) exhibiting twosuessive phase transitions, the �rst one is a �rst-order phase transition from the P phase to the F phase and the seondone is a seond-order phase transition from the F phase to the P phase for d = 0:25 and h = 0:675; Tt and T are foundto be 0:1950 and 0:460, respetively; d) exhibiting a seond-order phase transition from the F phase to the P phase ford = 0:25 and h = 0:4; Tt is found to be 0:6720P phase to the F phase at Tt = 0:1950 and the seondis a seond-order transition from the F phase to the Pphase at T = 0:46. Finally, Fig. 2d shows the behav-ior of M as a funtion of the redued temperature forh = 0:4 and d = 0:25. It is easily seen that the systemundergoes only a seond-order phase transition, fromthe F phase to the P phase at T = 0:6720.In order to hek the DPT points and verify thestability of solutions, we must alulate the Lyapunovexponent �. If we write Eq. (10) as

dmd� = F (m; �); (13)then the Lyapunov exponent � is given by
� = 12� 2�Z0 �F�m d�: (14)The solution is stable when � < 0. The behaviorof the Lyapunov exponent as a funtion of tempera-ture is also shown in Fig. 2, thin lines (�s and �n arethe Lyapunov exponents assoiated with the symmet-ri and nonsymmetri solutions). If �s and �n inrease1077
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ZFig. 3. Phase diagrams of the Blume �Capel model inthe (T; d) plane. The P, F, and F+P phase regions arefound. Dashed and solid lines represent the dynami�rst- and seond-order phase boundaries, respetively,the dynami triritial points are indiated with solidirles, and Z is the dynami zero-temperature ritialpointto zero ontinuously as the temperature approahesthe phase transition temperature, the temperature, atwhih �n = �s = 0, is the seond-order phase tran-sition temperature T. On the other hand, if one ofthe � inreases to zero disontinuously and the other �inreases to zero ontinuously as the temperature ap-proahes the phase transition temperature, the temper-ature, at whih the disontinuity �rst ours for one ofthe � and the other � = 0, is the �rst-order phase tran-sition temperature Tt. Moreover, if we ompare thebehavior of M and � in Fig. 2, we see that Tt and Tfound by using both alulations are exatly the same.We an now obtain the phase diagrams of the sys-tem and the alulated phase diagrams are presented

in Fig. 3. One of the most interesting behavior of thephase diagram is that the P phase always exists at lowvalues of T and high negative values of d. The reasonan be seen analytially from Eq. (10) as follows. Whend takes negative values and inreases, the seond termin the right-hand side of Eq. (10) disappears. Thus, thesolution for the time-dependent magnetization beomesm(�) / exp(��=
). As � !1, the stationary solutionfor m(�) always orresponds to the paramagneti solu-tion or phase, and hene the dynami magnetizationM vanishes.As seen in Fig. 3, we have obtained three main dif-ferent phase diagram topologies aording to the valuesof the redued external magneti �eld amplitude h.1. For 0 < h � 0:6562, the phase diagram is pre-sented for h = 0:1 and h = 0:4 in Fig. 3a. The systemexhibits a dynami triritial point, where both �rst-order phase transition lines merge, and signals hangefrom a �rst- to a seond-order phase transitions. At thetemperature higher than the dynami triritial pointtemperature, the dynami phase boundary between theP phase and F phase is always of a seond order. Thedynami phase boundaries between the P and the P+Fphases and the P+F and the F phases are always of a�rst-order for the temperature lower than the dynamitriritial temperature. Moreover, as the h values in-rease, a dynami triritial point ours at low tem-peratures and the F+P region shrinks, as an be seenin the �gure. The topology of this phase diagram anbe readily obtained from the phase diagrams in Figs. 7aand 7b in Ref. [20℄.2. For 0:6562 < h � 0:9828, shown in Fig. 3b forh = 0:8, the phase diagram exhibits the dynami tri-ritial point and the dynami zero-temperature riti-al point Z. For the high negative values of d, the sys-tem undergoes a seond-order phase transition, whihseparates the P phase from the F phase. For the lownegative values of d, a seond-order transition ours athigh temperatures and a �rst-order transition appearsat low temperatures; the seond-order line separatesthe F phase from the P phase and the �rst-order lineseparates the F phase from the F+P phase, seen inthe �gure. Moreover, for very low negative values of dand also for all positive values of d, the system alwaysundergoes a �rst-order phase transition that separatesthe F+P phase from the P phase. The topology ofthis phase diagram an also be obtained from the pre-vious (h; T ) phase diagrams, namely Figs. 7 and 7din Ref. [20℄, exept the ourrene of a dynami zero-temperature ritial point Z. The ourrene of thissurprising or unexpeted result is eluidated at the endof this setion.1078



ÆÝÒÔ, òîì 131, âûï. 6, 2007 Dynami phase transition in the kineti spin-1 : : :3. For h > 0:928, the phase diagram was on-struted for h = 1:25, as shown in Fig. 3. The phasediagram is similar to the one in Fig. 1b, exept thefollowing two di�erenes: (i) for positive d values, thesystem always exhibits the P phase, and hene does notundergo any phase transition; (ii) the �rst-order phasetransition line ours for high values of d, separates theF phase from the F+P phase (Fig. 3b), terminates atzero temperature, and separates the F phase from theF+P phase (Fig. 3). Hene, the P phase always oursfor high values of d and very low values of T . The topol-ogy of this phase diagram an also be obtained from thephase diagram in Fig. 7e in Ref. [20℄, exept for the o-urrene of a dynami zero-temperature ritial pointZ. The ourrene of this surprising or unexpeted re-sult is also eluidated at the end of this setion.Finally, it is worthwhile to mention that we an seethe surprising result in Figs. 3b and 3 that a dynamizero-temperature ritial point Z appears in these �g-ures, although suh a Z point was not to be expetedfrom the previous (h; T ) phase diagrams, shown inFigs. 7�e in Ref. [20℄: another dynami triritial pointinstead of a dynami zero-temperature ritial point Z.This unexpeted result an be eluidated by studyingthe phase diagrams in Figs. 3b and 3 and onsider-ing the previous (h; T ) phase diagrams in Figs. 7�ein Ref. [20℄. In the previous (h; T ) phase diagrams,the P, F, and P+F phases exist for low values of T in-luding the absolute zero temperature and the dynamiphase boundary between the P and F phases is alwaysa seond-order phase transition line. It has a bulgefor a ertain range of T , suggesting the ourrene ofsome sort of a reentrant phenomenon. In Figs. 3b and3, the seond-order phase transition line between theP and F phases should start at the Z point, beausethe P phase ours at absolute zero, seen in previous(h; T ) phase diagrams, and terminates at the dynamitriritial point where the seond-order phase transi-tion line turns to a �rst-order line; and beause the Pphase always ours for high values of T and the dy-nami phase boundary between the P and P+F phasesis a �rst-order line. Therefore, this new and surprisingresult annot be readily obtained from only the pre-vious (h; T ) phase diagrams and it an be understoodafter alulating and presenting the phase diagrams inthe (T; d) plane. 4. CONCLUSIONSWithin the mean-�eld approah, we have analyzedstationary states of the kineti spin-1 Blume �Capel

model in presene of a time-dependent osillating ex-ternal magneti �eld. We use a Glauber-type stohastidynamis to desribe the time evolution of the system.The dynami phase transition (DPT) points are ob-tained by investigating the behavior of the dynamimagnetization as a funtion of the redued tempera-ture. Phase diagrams are presented in the (T; d) plane.We found that the behavior of the system strongly de-pends on the values of h; three fundamental types ofphase diagrams, where the P, F or the P+F phases o-ur that depend on values of h, are found. Moreover,the system always exhibits a dynami triritial point.For h > 0:6562, the system also exhibits a dynamizero-temperature ritial point Z, whih is unexpetedand annot be readily obtained from only the previ-ous (h; T ) phase diagrams [20℄. This unexpeted resultan be eluidated by studying the phase diagrams inFigs. 3b and 3 and with onsidering the previous (h; T )phase diagrams. The stability of the solutions and theDPT points are heked by alulating the Lyapunovexponents.Finally, we also mention that experimental evidenefor the DPT has been found in highly anisotropi(Ising-like) and ultrathin Co/Cu(001) ferromagneti�lms [18℄ by the surfae magneto-opti Kerr e�et andin ferroi systems (ferromagnets, ferroeletris and fer-roelastis) with pinned domain walls [19℄. However,the dynami phase boundary and the nature (ontin-uous/disontinuous) of the transition have not beenstudied in detail. We hope that our detailed theo-retial investigation, espeially of the dynami phaseboundary and the nature of the transition, may shedsome light or explanation while the detailed experi-mental studies will be done with the above systems ornew systems.This work was supported by the Sienti� and Teh-nologial Researh Counil of Turkey (TÜB_ITAK),Grant � 105T114, and Eriyes University ResearhFunds, Grant �FBA-06-01.REFERENCES1. H. E. Stanley, Introdution to the Phase Transitionsand Critial Phenomena, Oxford Univ. Press, Oxford(1971); S. K. Ma, Modern Theory of Critial Pheno-mena, W. A. Benjamin, In, Reading (1976).2. T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251(1990).3. J. F. F. Mendes and E. J. S. Lage, J. Stat. Phys. 64,653 (1991).1079
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